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ABSTRACT

This paper describes a language designed to write and generate object-oriented simulation code, especially applicable when the model may be decomposed into similar interacting components. The language is called OOCSMP, an object-oriented extension of the CSMP simulation language, which has also been extended to solve partial differential equations using different methods. The programs are automatically translated into C++ and JAVA by a compiler built for this purpose. Graphical user interfaces are automatically generated for various operating systems. The procedure is demonstrated by the implementation of a model of simple electronic circuits and the resolution of a typical partial differential equation.
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1.
INTRODUCTION

System simulation [12] is one of the oldest branches of computer science. It was well advanced in the sixties, and came to maturity in the seventies.

In digital continuous simulation, time is represented by the set of multiples of a quasi-fixed time step (the elementary interval). This is equivalent to representing a continuous function by a set of samples at fixed intervals. The appropriate mathematical tool for continuous simulation is the set of algebraic-differential equations.

Continuous simulation has traditionally been programmed either in a special purpose language, or in general purpose code. Continuous simulation languages may be of different kinds, depending on their syntax:

· Block languages: each instruction represents an "electronic block", similar to those traditionally used in analog computers [1].

· Mathematically oriented languages: the mathematical model may be used almost directly as the source program. CSMP (Continuous System Modelling Program), sponsored by IBM [9-2], was one of the most used continuous simulation languages of the seventies and eighties.

· Graph languages: the mathematical model is represented as a special kind of directed graph (the bond graph) [10], or by a systems dynamics graph, using the terminology and symbols proposed by J. Forrester [11].

Object-oriented programming originated in the sixties in a discrete simulation language, SIMULA67 [5], which incorporated many of the ideas later included by Alan Kay in the first general purpose object-oriented language, Smalltalk [6], and by Bjarne Stroustrup in C++ [14]. Object-oriented continuous simulation languages and tools, however, took longer to arrive. Object orientation has been added to continuous simulation in two different ways:

· As a library of classes usable from a general purpose OO language (usually C++) [4].

· As a continuous simulation language with built-in OO constructs [7].

In a previous paper [3], we proposed some extensions to the CSMP language to support some object-oriented constructions. These extensions have now been considerably improved, and the OOCSMP language capabilities have been substantially enhanced with the ability to solve partial differential equations.

2.
OBJECT-ORIENTED EXTENSIONS IN OOCSMP
Several extensions have been introduced to CSMP to define object-oriented models. These extensions make it possible:

· To define classes of objects.

· To include previously defined classes in a new model.

· To construct objects and object collections in a previously defined class.

· To reference attributes and invoke functions (methods) on the objects and/or the collections.

2.1. Definition of classes
A class of objects is defined with the following syntax:

        CLASS class-name [: parent-class] {

                data declaration section

                [INITIAL section]

                DYNAMIC [arg1 [arg2 [...]]]

                  dynamic section

                [method-name [arg1 [arg2 [...]]]

                  method-body]


   [directive section]

                }

· Classes may inherit attributes and methods from other classes. For the time being, only simple inheritance is supported. The name of a class must be unique.

· The data declaration section contains the definition of the attributes (internal variables) for the objects in the class. This section is made of DATA, NAME, PARAMETER and ICON instructions, which declare the name of an attribute and assign a value. The value can always be omitted. If given, it will be considered as a default value, which can be replaced in the object construction instructions.


The DATA instruction defines attributes with a real value. They can be of three different types: single-valued, vectors or matrices. For vectors and matrices, the size must be specified. The following would be valid DATA instructions:

DATA PI:=3.141592

DATA VEC1[5]:=0 1 2 3 4

DATA MAT1[5;5]

Vectors and matrices can be initialised by means of an expression which depends on an index. An example would be the following:

DATA vec1[5]

DATA vec1[i]:=SIN(i*0.05)

The effect of the previous sentence is to create a vector vec1 with five elements and to assign  each element the value sin(i*0.05), where i is the position of the element in vec1.

The NAME instruction defines attributes with a character string value.

The ICON instruction also defines attributes with an alphanumeric value, which provides the name of the .gif file to be associated to the corresponding object for its graphical representation. The file can be a local file or can be stored in a web server. An example would be the following

CLASS BALL







{

NAME ballName

ICON ballGIF

DATA posX:=1.0, posY:=2.0

....

PUSH Force, Direction[]

....

}

Once declared with the DATA instruction, an attribute can be read as a program parameter by means of the PARAMETER instruction. For example :

....

DATA pX :=1.0, pY:=2.0

....







PARAMETER pX, pY

In this example, variables pX and pY could be read as program parameters. If one of them, or both are not specified, they take the value given in the DATA instruction.
· The optional INITIAL section contains model equations that must be executed only at the beginning of the simulation run. Their syntax is identical to that of the INITIAL instructions outside a class definition.

· The DYNAMIC section contains the main model equations, which should be executed once per instant of time. To execute these instructions, the predefined method STEP must be invoked for one object or a collection of objects. The syntax of the DYNAMIC assignment instructions is identical to that of the same instructions outside a class definition. The DYNAMIC declaration itself, however, may contain optional parameters, which will be passed during the execution of the STEP method. There are also two new assignment instructions, with the syntax:

variable += expression

variable -= expression

indicating that the value of the expression is to be added to (subtracted from) the current value of the variable. If the expression is a vector, n increment/decrement instructions will be generated, where n is the size of the vector. For example, for a vector declared as follows

DATA vec1[3]:=0 1 2 


the following assignment
X+=vec1

will generate the following three assignment instructions
X+=vec1[0]







X+=vec1[1]

X+=vec1[2]

· Optional additional methods (functions) applicable to objects in a class, may be defined, with or without parameters.

· Directive instructions, such as PRINT, PLOT or FINISH, that define output requirements and abnormal end conditions for the simulation run, can be included inside a class declaration and will apply automatically to every object in the class.

Listing 1 gives an example of the declaration of a class. 

*****************************************************

* class ADDER1.CSM : implements a 1-bit adder

*****************************************************

CLASS ADDER1 {

*****************************************************

* inputs: A and B the bits to be added, C is the carry

*****************************************************

  NAME name

  ICON icName

  DYNAMIC A,B,C

    xor1 := EOR ( A,B )

    and1 := AND ( A,B )

    and2 := AND ( xor1, C )

    CARRY:= IOR ( and1, and2 )

    OUT  := EOR ( xor1, C )

*****************************************************

* outputs: OUT y CARRY

*****************************************************

}
Listing 1: Declaration of a class in OOCSMP

2.2. Including previously defined classes in a model

A new INCLUDE instruction has been added to the language, with the following syntax:

        INCLUDE "file-name"

Its effect is to insert the indicated file at the point of the OOCSMP program where the INCLUDE instruction appears. The included files usually contain the definition of one or more classes that the programmer wants to reuse.

It is possible to construct more complex classes by using some previously defined classes. For example, the Listing 2 shows a 4-bit adder class. This class is constructed by using the ADDER1 class defined in Listing 1.

INCLUDE "ADDER1.CSM"

CLASS ADDER4

{

    NAME   name

    ADDER1 a1("a1","add1.gif")

    ADDER1 a2("a2","add1.gif")

    ADDER1 a3("a3","add1.gif")

    ADDER1 a4("a4","add1.gif")

    ADDER1 adders:= a1,a2,a3,a4

  DATA

    OUT[4]

  DYNAMIC A[], B[], C

    a1.STEP ( A[0] , B[0] , C )

    a2.STEP ( A[1] , B[1] , a1.CARRY )

    a3.STEP ( A[2] , B[2] , a2.CARRY )

    a4.STEP ( A[3] , B[3] , a3.CARRY )

    CARRY := a4.CARRY

    OUT := adders.OUT

}

Listing 2: Using defined classes in OOCSMP

Note that in this case, the DYNAMIC section receives two arrays (A and B) and a number (C) as inputs, and produces an array (OUT) and a number (CARRY) as outputs.

2.3. Constructing objects and object collections

Objects of a class may be constructed anywhere in the OOCSMP program. The object construction instruction has the following syntax:

        Class-name Object-name (List-of-attribute-values)

where the values of the attributes are separated by commas, and should be given in the same order in which the attributes have been declared inside the class definition. If one or more of the last attributes have a default value, they may be omitted in this construction.

A collection of previously defined objects may also be declared with the following syntax:

        Class-name Collection-name := List-of-object-names

where the names of the objects in the collection are separated by commas.

In Listing 2, four objects of class ADDER1 were declared (lines 5 to 8). Two parameters were given in the constructor of each object: the object’s name, and the icon name. A collection was also created (line 9). 

The following example shows how to create objects of class Ball (see the example in section 2.1) :

BALL b1(“cannonBall”,”www.ii.uam.es/~jlara/ball.gif”)

BALL b2(“other Ball”,”balloon.gif”,0.0,0.0)

2.4. Referencing attributes and invoking methods on objects and collections

An object attribute may be referenced in the following way:

Object-name.Attribute

Collection-name.Attribute

Class-name.Attribute

The second and the third term make it possible to reference an attribute in a collection of objects. They are equivalent to a collection of attribute values, one from each object. For example, in the sentence    OUT := adders.OUT which appears in Listing 2, adders.OUT refers to the set of values of the OUT parameter for each object in the adders collection. If a class name is specified instead, the collection refers to all the objects in the class.

These terms may be used anywhere in the program: in assignment instructions, or in the PLOT, PRINT and FINISH instructions.

The dynamic instructions of an object, all the objects in a collection, or all the objects in a class, may be executed by means of the following instructions (which will appear in the dynamic section of a model):

        Object-name.STEP(Argument-list)

        Collection-name.STEP(Argument-list)

        Class-name.STEP(Argument-list)

Method F, given inside a class definition, may be executed for an object, all the objects in a collection, or all the objects in a class, by means of the following messages or instructions (which will appear in the dynamic section of a model):

        Object-name.F(Argument-list)

        Collection-name.F(Argument-list)

        Class-name.F(Argument-list)

If F is invoked with a vector argument where a vector was not declared, an implicit iteration is generated on all the elements of the vector (except the one receiving the message, when the vector contains objects).

3.
SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

A new block (PDE) has been added to the set of predefined CSMP blocks to make it possible to solve systems of partial differential equations of the second order in one or two spatial dimensions, plus (optionally) time. The model equation to be solved is:
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where Ctt, ctt, Ct, Ax, ax Ay, ay, Axy, axy, Ayx, ayx, Bx, By, a0 and f are functions that may depend on u, x, y or t.

Partial differential equations may be embodied in class definitions, making it possible to define multiple objects that use the same equation. These objects may be combined in such a way that the solution of the differential equation for one of them may serve as a boundary condition for the next. This procedure may be used, for instance, to simulate the propagation of heat across a number of objects of different lengths and thermal properties.

Equations are solved in domains of 1 or 2 dimensions. In OOCSMP there is a set of primitives for the construction of domains. These basic domains are then discretised by means of mesh generators. In OOCSMP there are several mesh generators, structured and unstructured. It is possible to build more complex grids by concatenating different meshes (even if they have been generated by using different generators). Finally, each of the equations is assigned to a grid and the system is solved by using the chosen resolution method for each grid. In this way, it is possible to mix several methods of resolution This process will be described in detail in the following sections.
3.1 Domain construction
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OOCSMP provides four different basic domains: circular sectors, quadrilaterals, quadrilaterals whose sides are splines and triangles. They are shown in Figure 1.
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Figure 1. (a) Circular sectors (b) Quadrilaterals whose sides are splines

(c) Quadrilaterals (d) Triangles

These domains can be declared with the following syntax:

DOMAIN <domain_id> := 

<primitive-name> (<vertex-points>,<initial-conditions>,<boundary-conditions-in-edges>)

where the boundary conditions may be specified in one or more edges and can be of Dirichlet or Newmann type.

3.2 Domain discretization

In order to solve the equation, the domain must be discretised by generating a mesh from the following basic elements or simplexes: triangles (3 and 6 nodes per element), quadrilaterals (4, 8 or 9 nodes per element), or lines (2,3 or 4 nodes per element).

Mesh declaration has the following syntax:

MESH <mesh-id> := <mesh-generator> (<domain-id> ,  <element-type> [, MAXSIZE(<max_size>) ]

[, ELEMENTS(<number-x>[,<number-y>])][, SMOOTH])


where mesh-generator is the technique used to perform the meshing process. This can be chosen among the following:

· Delaunay triangulation.

· Resolution of two elliptic PDE equations, one for each x, y coordinate, where control functions can be parametrised.

· Isoparametric / interpolation generator

MAX_SIZE gives the maximum size allowed for some of the sides of the simplex, element-type is one of the five basic elements mentioned above, and ELEMENTS specifies the number of elements in the transformed domain. If the parameter SMOOTH is present, the grid, once generated, will be smoothed by means of the Laplacian smoothing [8] , iteratively moving each node to the centroid of its neighbours.

Once discretized, the grids can be concatenated to give more complex meshes. This is done by using the instruction :

<mesh-id1>.CONCAT (<mesh-id2>[,<mesh-idn>]*, <tolerance>)



where mesh-id, mesh-id2,... mesh-idn are several meshes that have at least a border with (at least) a common point, and tolerance is the minimum distance for two points in each grid to be considered different points. As a result of this operation, mesh-id1 becomes a composite grid, equal to the concatenation of all the grids. 

3.3 Declaration of PDE’s

The syntax of the PDE block is as follows:

PDE <pde-id> (<Ctt>,<ctt>,<Ct>,

 

<Ax>,<ax>,<Ay>,<ay>,<Axy>,<axy>,<Ayx>,<ayx>

 

<Bx>,<By>,<a0>,<f>,

 

<PDE-METHOD>) 


where Ctt, ctt, Ct, Ax, ax Ay, ay, Axy, axy, Ayx, ayx, Bx, By, a0 and f are expressions representing the functions in the model, and PDE-METHOD is the method to be used to solve the PDE. It can be chosen among the following:

· EXPLICIT : The classical explicit finite-difference methods CTCS, FTCS, FTFS, FTBS, ...

· DUFORTE: The finite-difference scheme by DuForte-Frankel.

· IMPLICIT : The Crank-Nicholson method (implicit ADI).

· FEM : The finite-element method.

3.4 PDE’s solving

Once defined, the PDE’s must be assigned to the grid where they will be solved. This is done by using the following statement for each of the equations in the system.


<Mesh-id>.SETPDE(<pde-id>[,<pde-id>]*)



To solve the equations assigned to a grid, the following sentence is used:


<Mesh-id>.STEP()








3.5 Solution access and printing

The OOCSMP instruction <Mesh-id>.VALUE(<ec>,<x>[,<y>]) can be used to obtain the result of an equation for one or more points of the grid. It is also possible to modify the value of a point in the grid by using the instruction <Mesh-id>.SETPOINT(<ec>,<x>[,<y>[,value]]).
To print the grid nodes we can use the instruction PLOTGRID <Mesh-id>. The PLOT instruction described in a previous section can be used to obtain a graphical representation of the equation solutions.

3.6 An example

Listing 3 models the heating of a bar. The bar has different conductivity coefficients. This is modelled by encapsulating a bar into an object. Each object can be parametrised with its dimensions, the conductivity coefficient, and the number of elements of the grid.

TITLE Heat equation in 1d (d/dt)u-K*(d2/dxx)u = 0

* Declare Conductivity coefficients

CLASS Bar

{

   NAME name

   * Dimensions of the bar

   DATA Xinit:=0.0 , Xend:=2.5

   * Conductivity coefficients

   DATA K := 4.8

   * number of elements

   DATA numElements := 50

   * Declare a piece of the bar, the default left BC is a senoid wave

   DOMAIN ld:=BAR(Xinit,Xend,initial(0.0),boundary1(SIN(TIME*100)))

   * Mesh the domain

   MESH   m :=ISOPARAMETRIC(ld,  LINE, ELEMENTS(numElements))

   * declare the equation t be solved

   PDE tH (0,0,1,-K,1,0,0,0,0,0,0,0,0,0,0,IMPLICIT)

   * assign the equation to the mesh

   m.SETPDE (tH)

}

* First bar takes all its parameters by default

Bar Bar1 ("Piece 1")

Bar Bar2 ("Piece 2",2.5, 5.0, 3.0)

Bar Bar3 ("Piece 3",5.0, 10.0, 2.5, 100)

* This overwrites the default left BC for Bars 2 and 3

Bar1.m.CONCAT (Bar2.m , Bar3.m, 0.0001)

DYNAMIC

Bar1.m.STEP()

PLOT Bar1.m

* Define the time increment, and the final time

TIMER  delta:=0.01, FINTIM:=5.0

Listing 3 : Simulation of a heating bar.

In this example, the first piece of the bar is divided into 50 elements, and will be solved using an implicit FD method. The second piece is discretized in 50 elements too, and the third piece is a bit longer, so it is discretized by using 100 elements.

4. THE \ SENTENCE
The sentence consisting only of the symbol \ may be used to prepare different runs of the same model. All the instructions after this sentence, to the end of the program, or to the next \ sentence, will be considered as a different run. The model itself cannot change, but all the declarative instructions: TITLE, values of parameters (DATA and TIMER instructions), object constructions, object arrays and PRINT/PLOT directives may be modified.

Every \ sentence restores the original state of the model. All the changes specified afterwards modify that state.

5. GRAPHICAL REPRESENTATION OF SIMULATION RESULTS
OOCSMP provides several instructions for the graphical representation of results. They are 

· PLOT  for bidimensional graphics and surface representation

· ICONICPLOT for iconic representation of variables, and

· CONNECTIONPLOT  for iconic representation of equations

· PLOTGRID to show a PDE mesh.

The PLOT instruction draws one or more curves on the same x-axis, which can be different from TIME. It can also be used to represent surfaces. If a PLOT instruction is included inside a class definition, the values of all the specified variables will be plotted for all the objects in the corresponding class. In addition, if a parameter of iconic type has been defined inside that class, this can also be drawn. If one of the arguments of the PLOT instruction is a matrix, a 3D surface will be represented.

The ICONICPLOT instruction allows the representation of variables by means of icons. The number of icons drawn will be proportional to the value of the variable.

Finally, if we want to represent equations, we can use the CONNECTIONPLOT instruction. Figure 2 shows examples of all kinds of graphical representations available in OOCSMP.

6. COMPILATION

We have built a compiler that translates OOCSMP models into C++ or Java. Graphical user interfaces may also be automatically generated for DOS, Amulet (an object-oriented prototype-instance interface developed by Carnegie-Mellon University) [13], and Java. Thus, a single compiler may generate models that work in very different environments, such as Unix, MacOS, Windows-95 and DOS. The compiler also generates optionally html skeletons integrating the model Java applets, in this way making it very easy to produce web-based courses with the following procedure:

· Designing on paper an interactive course based on continuous simulation models. Depending on the course, a single model may be used in one or more (sometimes all) pages.

· Building the models in OOCSMP.

· Designing the different simulation runs for each page in the course. The same basic model may be tested in different situations and provides interactive facilities that make it possible for the student to experiment.

· Translating the models into C++ and testing them. The compiler provides a fast, easy-to-use stand alone environment that simplifies testing and allows the course-writer to experiment many different situations.

· Translating the models and run situations into Java applets. The same compiler is used for both this and the previous step, as the object language is a parameter of the compiler.
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Figure 2. (a) PLOT   (b) CONNECTIONPLOT  (c) ICONICPLOT (d) PLOTGRID  

(e) Surface representation  (f) 3D graphics

· Automatic generation of html skeletons for each page in the course. The Java applets embodying the models are automatically embedded in the html pages.

· Manual addition of text, images, and internal/external references to the skeletons. This adjustment is needed to fill the html skeletons with explanations, images and cross references to other pages. The resulting set of pages is ready to be made available to the students through the Internet. 

Some of the courses and demonstrations we have generated can be seen at the following addresses:

· http://www.ii.uam.es/~epulido/newton/grav.htm

· http://www.ii.uam.es/~epulido/ecology/simul.htm

· http://www.ii.uam.es/~epulido/circ/modules.htm

· http://www.ii.uam.es/~jlara/oocsmp/pdes.html

7. CONCLUSION
The OOCSMP language proposed here is a true extension of the old CSMP simulation language, in the sense that CSMP programs can still be compiled and executed by our compilers. The extensions added to the language make it possible to build extremely compact object-oriented models when the system to be simulated consists of many similar interacting parts, as in the gravitational example we have given and others we have developed. The ability to solve a large family of partial differential equations also adds greatly to the power of the language and extends its domain of application.

Partial differential equations may be embodied in class definitions, making it possible to define multiple objects that use the same equation. These objects may be combined in such a way that the solution of the differential equation for one of them may serve as a boundary condition for the next. This procedure may be used, for instance, to simulate the propagation of heat across a number of objects of different lengths and thermal properties.

In the future we are planning to construct a graphical mesh generator. This generator will produce OOCSMP code for the domains and the grid. It will be possible to include this code in OOCSMP models by means of the INCLUDE clause, as well as to import/export other mesh formats.

We are studying the possibility of automatically changing the PDE’s resolution method depending on user constraints. For example, if the solution doesn’t change too much in a grid, the actual method could be changed for a less time consuming and less precise method.

We are also beginning to work with distributed objects. Given an OOCSMP model, COOL will optionally generate stand-alone code, or distributed code. This will speed-up some simulations in a considerably way.
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