Simulating Partial Differential equations in the World-Wide Web

Juan de Lara, Manuel Alfonseca

Dept. Ingeniería Informática, Universidad Autónoma de Madrid

Ctra. De Colmenar, km. 15, 28049 Madrid, Spain

E-Mail: {Juan.Lara, Manuel.Alfonseca}@ii.uam.es
ACKNOWLEDGMENT
This paper has been sponsored by the Spanish Interdepartmental Commission of Science and Technology (CICYT), project numbers TIC-96-0723-C02-01 and TEL97-0306.
KEYWORDS

Continuous simulation, Education, Internet, Numerical Resolution of Partial Differential Equations, Grid Generation.

ABSTRACT

This paper describes the extensions we have added to our special-purpose object-oriented continous simulation language (OOCSMP) to solve partial differential equations. We also describe the procedure we have used to generate semiautomatically a web description of the numerical resolution of partial differential equations.

INTRODUCTION

The currently most successful hypermedia system is the World Wide Web (WWW), wich has many advantages on traditional hypertext applications. This has brought around the current proliferation of educational courses in the WWW, which run from a simple transposition of lecture notes, to pages including more sophisticated elements, such as animated graphics, simulations and so forth.

We have been working for some time on the developement of advanced simulation tools, that simplify the generation of educational courses on the WWW. The language we are using is an extension of the old CSMP (Continuous System Modelling Program) language, sponsored by IBM (IBM 1972). We call the new language OOCSMP (Alfonseca et al. 1997), for its main difference with CSMP is the addition of object-oriented constructs which make it much easier the simulation of complex systems based on the mutual interaction of many similar agents (which can be modelled as collections of objects). We have used this language to build a course on Newton’s gravitation and the solar system (Alfonseca et al. 1998a), a course on ecosystems (Alfonseca et al. 1998b), and a basic course on electronics (Alfonseca et al. 1998c)

· Many physical phenomena encountered in engineering (Lapidus and Pinder 1982), biology (Braun 1993), physics (Rubinstein and Rubinstein 1998), fluid mechanics (Roache 1972), chemistry (Pearson 1993) and other fields are modelled by means of differential equations (Monsef 1997). Usually the problem addressed is too complicated to be solved by classical analytical methods, and a numerical approach is necessary.

We have extended OOCSMP to handle the numerical resolution of partial differential equations (PDEs). PDEs can be solved with OOCSMP using combinations of well known methods such as the finite element method (Zienkiewicz 1989) and several schemes of the finite differences method (Strikwerda 1989) (implicit and explicit). Domains can be discretized by mixing several techniques such as Delaunay triangulation (Hsuan-Cheng 1997), isoparametric elements or interpolation meshing (Hughes 1987) and grid generation solving two elliptic equations (Thompson et al. 1985).

In this paper, we are presenting some examples of the use of partial differential equations organized as a set of web pages containing examples of elliptic, hyperbolic and parabolic equations in 1D and 2D. A short example of grid generation is also included. The pages have been generated automatically with OOCSMP.

SOLVING PDE’s WITH OOCSMP

We have extended OOCSMP to solve systems of PDE’s of the second order in one or two spatial dimensions, plus (optionally) time. The model equation to be solved is:

[image: image14.png]
Fig. 1 : Model equation

Spatial Domains

The equations have to be solved in some spatial domain. Domains can be declared in OOCSMP by means of primitives. The domain primitives in 2D (and their shapes once discretized using an interpolation mesh or grid) are :

[image: image1.wmf]C

x

y

t

d

dt

c

x

y

t

dZ

dt

C

x

y

t

dZ

dt

A

x

y

t

d

dx

a

x

y

t

dZ

dx

A

x

y

t

d

dy

a

x

y

t

dZ

dy

A

x

y

t

d

dx

a

x

y

t

dZ

dy

B

x

y

t

dZ

dx

B

tt

tt

t

x

x

y

y

xy

xy

x

y

(

,

,

,

.

.

)

(

,

,

,

.

.

.

)

(

,

,

,

.

.

.

)

(

,

,

,

.

.

.

)

(

,

,

,

.

.

.

)

(

,

,

,

.

.

.

)

(

,

,

,

.

.

.

)

(

,

,

,

.

)

(

,

,

,

.

.

)

(

,

,

,

.

.

.

)

æ

è

ç

ç

ö

ø

÷

÷

+

+

æ

è

ç

ö

ø

÷

+

æ

è

ç

ö

ø

÷

+

æ

è

ç

ö

ø

÷

+

+

(

,

,

,

.

.

.

)

(

,

,

,

.

.

.

)

(

,

,

,

.

.

.

)

x

y

t

dZ

dy

a

x

y

t

Z

f

x

y

t

+

+

=

0

0

Fig.2:Circular sectors
Fig,3:Quadrilaterals

[image: image2.png]Fig.4:Quadrilaterals
Fig.5:Triangles

whose sides are splines.

In 1D the only primitive is the line. The syntax for all these primitives is very similar :

DOMAIN <domain_id> :=

<primitive-name> (<vertex-points> , <initial-conditions>,

<boundary- conditions-in-edges>)

where the boundary conditions may be specified in one or more edges and can be of Dirichlet or Newmann type.

Discretizing Domains

The next step to solve the PDE is to discretize the domains previously declared. Meshing a domain with OOCSMP can be done by means of several techniques (structured and unstructured) such as :

· Delaunay triangulation.

· Resolution of two elliptic PDE equations, one for each x, y coordinate, where control functions can be parametrized.

· Isoparametric / interpolation generator.

In the Delaunay triangulation, several restrictions can be applied to the generated triangles, such as a restriction over the areas, the maximum size of one edge or the minimum angle. These restrictions can be combined.

In the elliptic grid generation, the elliptic equations to be solved are the Laplace equations, but this can be changed by the user.

In the interpolation generation, isoparametric elements are used when possible. The only case when they cannot be used is with circular sectors. In this case, a simple transformation from polar coordinates to cartesian coordinates is done.

[image: image3.png]In 1D the only possible mesh generator is the interpolation generator.

[image: image4.png]The basic elements (simplexes) of the generated grid can be: triangles (3 and 6 nodes per element) , quadrilaterals (4, 8 or 9 nodes per element), or lines (2,3 or 4 nodes per element) for the 1D case.

The OOCSMP syntax to mesh domains is :

MESH <mesh-id> := <mesh-generator> (<domain-id> , <element-type>

[, MAXSIZE(<max_size>)]

[, ELEMENTS(<number-x>[,<number-y>])] [, SMOOTH])

where max_size gives the maximum size allowed for some of the sides of the simplex and ELEMENTS specifies the number of elements in the domain transformed to the unit square. If the parameter SMOOTH is present, the grid, once generated, will be smoothed by means of the Laplacian smoothing, iteratively moving each node to the centroid of its neighbors (Field 1988).

The previous figures 2-5, show the discretization, by means of an interpolation mesh generator parametrized with ELEMENTS(10,15), of the 4 basic primitives.

The meshes generated for each domain can be concatenated, resulting in more complex domains, whose primitive parts could have been discretized with different meshing techniques. The OOCSMP syntax to concatenate meshes is :

<mesh-id1>.CONCAT (<mesh-id2>, <tol>)

where mesh-id1 and mesh-id2 are two meshes that have at least a border with (at least) a common point, and tol is the minimum distance for two points in each grid to be considered different points. As a result of this operation, mesh-id1 becomes a composite grid, equal to the concatenation of the two original grids.

The next figure is an example of the concatenation of two quadrilaterals and a circular sector.

[image: image5.png] (a)

 (b)

Figure 6: Discretization of an arc.

(a) Mixing Delaunay triangulation and interpolation.

(b) Using an interpolation mesh generator.
Note that meshing a triangle with the interpolation technique is done by concatenating and meshing three quadrilaterals (see Fig.5).

Declaring and solving the equations in partial derivatives

To declare a PDE, it is necessary to declare the 13 functions of the model equation, and the method of resolution. The latter can be one of the following:

· EXPLICIT : The classical explicit finite-difference methods CTCS, FTCS, FTFS, FTBS, ...

· DUFORTE: The finite-difference scheme by DuForte-Frankel.

· IMPLICIT : The Crank-Nicholson method (implicit ADI).

· FEM : The finite-element method.

To solve the equation with the finite differences methods (the three first), the domain might be discretized using an interpolation mesh generator, with the simplexes being QUADRILAT-4. In the first method (EXPLICIT), the default scheme is the CTCS (central in time and central in space), but it can be automatically modified according to the boundary conditions. For example, if we have boundary conditions on the left, but not on the right, the scheme could change to CTBS (central in time, backwards in space). When it is necessary (when the domain is not a rectangle, and we are solving using finite differences), a transformation of the equations is done, to solve them in the unit square.

The syntax to declare the PDE is the following:

[image: image6.png]
PDE <pde-id>

(<Ctt>,<ctt>,<Ct>,

 <Ax>,<ax>,<Ay>,<ay>,<Axy>,<axy>,

 <Bx>,<By>,<a0>,<f>,

 <PDE-METHOD>)

Once defined, the PDE’s must be assigned to the grid where they will be solved .To solve a system of equations, each of the equations should be assigned to the grid. In this way, it is possible to combine different methods of resolution for the problem at hand. The syntax to assign the equations to the grid is the following :

[image: image7.png]
<Mesh-id>.SETPDE(<pde-id>[,<pde-id>]*)

To solve the equations assigned to a grid, the following sentence should be included:

<Mesh-id>.STEP()

Some of the preceding methods reduce the PDE to a system of algebraic equations, wich can be solved by different methods (Stour and Bulirsch 1993) either approximate (such as SOR, SSOR and several variations, or Gauss-Seidel), or exact.

If the problem is explicitly time-dependent, the equations will be solved for every time value, using variable delta as the elementary time interval. If the problem is time independent, the equation will be solved completely for each value of time. In each case, the boundary conditions may be changed from one value of time to the next.

It is also possible to obtain the result at one or several points in the grid or to modify these values during the simulation. The value of a grid point can be used as any other OOCSMP variable. The syntax to obtain the point value is:

<Mesh-id>.VALUE(<ec>,<x>[,<y>])

where the first parameter indicates the number of the equation (in the system of equations) for which the value is wanted.

Showing the grids and the solutions

We have added sentences to the language to print the grid nodes, and/or the solution. Depending on the dimensionality of the domain, the plot will be 1D, 2D, a temporal representation of the function, or a map of isosurfaces. These graphical representations can be combined with the existing ones. For example, the following is a map of isosurfaces for the non diffusive transport equation in a 2D square.

Figure 7 : Plotting the non-diffusive transport equation in 2D.

THE EXAMPLES IN THE WEB

A few examples of the solution of PDEs can be found in the following Web address: www.ii.uam.es/~jlara/oocsmp/pdes.html

The examples have been generated semiautomatically with OOCSMP, but the descriptive texts of the HTML pages have been added by hand. The pages show the solution of :

· The Heat equation (time dependent) in 1D.

· The non-diffusive transport in 1D.

· The non-diffusive transport in 2D.

· The diffusive transport in 1D.

· The Heat equation (steady state) in 2D.

· A brief demonstration of the gridding capabilities of OOCSMP, showing the result of the meshing proccess (interpolation and Delaunay) for each domain primitive, and the discretization of an arc and a blade.

In all these pages (except the third one) the user can experiment with the problem by changing some of the parameters of the equations.

To compile OOCSMP programs, we have constructed a tool called COOL (a Compiler for the OOcsmp Language). This compiler is able to generate C++ or Java code, generating also (optionally) a user interface in each case. For the Java case, its is possible to generate a stand-alone program, or an applet, including an HTML skeleton. The visual appearance of the simulation is fully configurable by means of compiler options.

[image: image8.png]
To generate an HTML simulation page with OOCSMP and COOL, the page designer must program an OOCSMP model for the problem at hand. The model can reuse other OOCSMP components such as classes, domains, meshes or partial differential equations.

This model is then compiled with COOL, wich generates an applet for the model, and a simple HTML page with a reference to the previous applet. This applet uses some Java libraries we have constructed. There is a set of classes for the user interface, another with general mathematical functions and a third with the mesh generator and the PDE solver. Figure 8 shows the process necessary to create an HTML simulation page with OOCSMP.

For example, let’s prepare the HTML page corresponding to the simulation of the diffusive transport equation in 1D.

The first thing we have to do is to declare the domain where we are going to solve the equation. In our case, it is in a bar. Then, we discretize it (the only way to discretize a 1D domain is by means of an interpolation mesher).

Fig. 8 : Creation of an HTML simulation page with OOCSMP

The next step is declaring the equation. In our case, the equation is:

Zt+uZx-kZxx = 0
If we declare the velocity and diffusion parameters (u and k) as model parameters in a DATA sentence, we will be able to change them during run-time.

Next, we have to assign the PDE to the mesh, and solve the equation (m.STEP()) in the DYNAMIC section.

The last thing we have to do is to choose the graphical output. We have chosen a 3D graphic for this problem.

The following listing shows the complete OOCSMP model for this problem.

TITLE Diffusive transport in 1d

* Declare Velocity and Diffusion coefficients

DATA u := 100, k := 1

* Declare the spatial domain : a 1-d bar

* Parameters : Xinit , Xend , init.cond. left BC.(a senoid wave)

DOMAIN ld:=BAR(0.0, 5.0, initial(0.0), boundary1(SIN(TIME*100)))

* Mesh the previous domain

* params:

domain
type of simp.
num. of elements

MESH m:=ISOPARAMETRIC (
ld,
LINE,

ELEMENTS(50))

* Declare the PDE to be solved on the grid

* Ctt ctt Ct Ax ax Ay ay Axy axy Bx By a0 f Solver

PDE tDiff1D(0, 0, 1.0, -k, 0 , 0, 0, 0, 0, u, 0, 0, 0, EXPLICIT)

* Assign the equation to the mesh

m.SETPDE (tDiff1D)

DYNAMIC
* Begin simulation loop

 m.STEP()

PLOT m
* Plot results

* Define the time increment, and the final time

TIMER delta:=0.001, FINTIM:= 0.05
Listing 1 : Model for the diffusive transport equation in 1D
[image: image9.png]
Figure 9 : Solving the diffusive transport equation.

Figure 9 shows the results of the execution of the previous model, wich has been compiled into a Java applet. It represents the value of the quantity being transported at every position and at every instant of time.

The parameters k and u in the window on the right can be changed by the user, who must click on the restart button to make another simulation.

The PLOT sentence, when applied to 1D meshes, produces the 3D graphic of figure 9, where one of the axis is the TIME, the other is the spatial dimension, and the Z axis is the variable being solved. When applied to 2D meshes it produces the isosurface graphic of figure 7.

In the 1-d Heat example, the PDEs are encapsulated into objects. Every object represents a heating bar. The bars are connected, so that the heat at the right end of a bar enters at the left end of the next bar, i.e all objects, except the first, take their left boundary condition from the previous object, and all except the last propagate their right temperature value to the next object.

In the non-diffusive transport in 1D, it is possible to observe numerical diffusion due to the explicit scheme used. It can be done by decreasing the velocity coefficient (making it different from the Courant number). It is also possible to increase the velocity coefficient, but when the velocity reachs a certain limit, numerical inestabilities will appear.

In the non-diffusive transport in 2D (figure 7), the quantity being transported is a cone of height 1. The cone is transported without losing height, but the numerical method (the DuForte scheme) produces small perturbations along the trajectory of the cone. This can be observed by watching the minimum color-value. When no perturbation occurs, the minimum should remain at 0.0.

In the Mesh generation page, different discretizations (interpolation and Delaunay) of the basic domain primitives are shown. More complex domains (an arc and a blade) are also discretized mixing the previous tecniques. The arc is the same as the one in figure 6(a). The blade is discretized by concatenating two semicircles and a quadrilateral. The semicircles are discretized using the Delaunay triangulation, and the quadrilateral with an interpolation mesh generator. The user can zoom in and out some zones of the grid in all those applets. The coordinates of the points appear if the user clicks on the grid.

CONCLUSIONS AND FUTURE WORK

The extensions to the OOCSMP language presented here make the language able to solve PDEs by mixing several meshing and resolution techniques. It is also possible to mix the resolution of the PDE with other simulation sentences. All this makes OOCSMP able to handle complex problems, for example, where the boundary conditions are changed by an external agent.

Solving PDEs with OOCSMP is more dynamic than the old way of solving them (preprocessor, processor and postprocessor as separate components). It also can take advantage of other OOCSMP features, such as the object orientation capabilities, wich make it possible to embody the PDE inside objects. The objects can propagate the results of their simulation to other objects. This makes it easy to simulate complex systems based on the mutual interaction of many similar agents.

Finally, the Java user interface allows the user to experiment with the equations in the model, and to answer ‘what if...?’ questions by running several simulations with different parameter values. The models and their testing are also available through the WWW.

In the future we are planning to extend the system in the following directions :

· Adding a graphical mesh generator that will produce OOCSMP code for the domains and the grid. It will be possible to include this code in OOCSMP models by means of the INCLUDE clause, as well as import/export other mesh formats.

· Making the user interface generated by COOL much more flexible. The user will be able to mix several graphical representations in a single simulation applet. Some of the graphics could be put together in the applet panel, and some could be output in separate windows.

· We are considering the possibility of the automatic change of the method of resolution for the PDE. When the solution doesn’t change much on a mesh, the method could be changed automatically by some other faster method, perhaps losing some precision. These automatic changes could be specified by the user.

· We are also begining to work with distributed objects. Given an OOCSMP model, COOL will optionally generate stand-alone code, or distributed code. This will speed-up considerably some simulations.

REFERENCES

· Alfonseca, M.; Pulido, E.; de Lara, J.; and Orosco, R. 1997.”OOCSMP: An Object-Oriented Simulation Language”. In Proceedings 9th European Simulation Symposium ESS97. SCS Int. Erlangen, 44-48.

· Alfonseca, M; de Lara, J.; and Pulido, E.; 1998. “Semiautomatic Generation of Educational Courses in the Internet by Means of an Object-Oriented Continous Simulation Language”. In Proceedings ESM’98. SCS Int, 547-551.

· Alfonseca, M; de Lara, J.; and Pulido, E. 1998. “Educational Simulation of Complex Ecosystems in the World-Wide Web”. In Proceedings ESS’98. SCS Int, pp. 248-252.

· Alfonseca, M; de Lara, J.; and Pulido, E. 1998 . "Generación semiautomática de cursos de electrónica para Internet mediante un lenguaje de simulación contínua orientado a objetos" (in Spanish) .In Proceedings TAEE'98, 125-130.

· Braun, M. 1993. “Differential equations and their applications”. Springer-Verlag, 4th. Edition.

· Field, D.A. “Laplacian smoothing and Delaunay triangulations”. Comm. Applied Numer. Meth., 4:709-712, 1988.

· Hughes, Thomas J.R; 1987, ”The Finite Element Method : Linear Static and Dynamic Finite Element Analysis”, Prentice Hall International.

· Hsuan-Cheng, Lin 1997, “JAVAMESH- A two dimensional triangular mesh generator for finite elements”, submited for MS at Pittsburgh University.

· IBM Corp. 1972. Continuous System Modelling Program III (CSMP III) and Graphic Feature (CSMP III Graphic Feature) General Information Manual. IBM Canada, Ontario, GH19-7000.

· Lapidus, L; Pinder, G.F. 1982. “Numerical Solution of Partial Differential Equations in science and engineering”. John Wiley&Sons.

· Monsef, Y. “Modelling and Simulation of Complex Systems”. 1997. SCS Int., Erlangen.

· Pearson, J.E. 1993. “Complex Patterns in a Simple System”. Science, Vol 261, 9 July 1993 : 189-192.

· Roache, P.J. 1972 “Computational Fluid Dynamics”. Hermosa Publisers, Albuquerque, NM.

· Rubinstein, I. ; Rubinstein, L. 1998. “Partial differential equations in classical mathematical physics”. Cambridge University Press.

· Stour, J. ; Bulirsch, R. 1993. ”Introduction to Numerical Analysis”. Springer-Verlag, 2nd Edition.

· Strikwerda, J.C. 1989. “Finite difference schemes and partial differential equations”. Chapman & Hall; New York.

· Thompson, J.F.; Warsi, Z.U.A. ; Mastin, C.W. 1985. ”Numerical Grid Generation”, Elsevier Science Publishing CO.Inc. In internet at:http://WWW.ERC.MsState.Edu/

education/gridbook.

· Zienkiewicz, O.C ; Taylor, R.L. 1989. “The Finite Element Method”, 4th edn, vol. I, McGraw-Hill; New York.

� INCRUSTAR Word.Picture.8 ���

� INCRUSTAR PBrush ���

� INCRUSTAR PBrush ���

� INCRUSTAR PBrush ���

[image: image10.png][image: image11.png][image: image12.png][image: image13.png]_979640962.doc
[image: image1.png]

_979721888.unknown

_979732029

_979473809

_979633649

