
Simulating evolutionary agent communities with OOCSMP
Manuel Alfonseca(1)

(1)Dept. Ingeniería Informática,

Universidad Autónoma de Madrid

Ctra. De Colmenar, km. 15, 28049 Madrid, Spain

Tlf.: +34 91 348 22 78

Manuel.Alfonseca@ii.uam.es

Juan de Lara(1,2)

(2)School of Computer Science

McGill University

Montréal, Québec, Canada

Tlf.: + 34 91 348 22 77

Juan.Lara@ii.uam.es

ABSTRACT
This paper describes some extensions added to the continuous
simulation language OOCSMP to perform agent-oriented
simulation. The extensions are tested by simulating the evolution
of a colony of virtual ants (vants). In this simulation, each vant is
modelled as an agent and is assigned a set of genes that control
some aspects of its behaviour, such as its velocity, memory,
communication abilities, scepticism, etc. Some emergent
properties of the swarm of vants have been observed.

Categories and Subject Descriptors
I.6.2 [Simulation Languages], I.2.11 [Distributed Artificial
Intelligence] - Coherence and coordination, Intelligent agents,
Languages and structures, Multiagent systems

General Terms
Design, Experimentation, Languages.

Keywords
Agent-based simulation, Swarm Intelligence, Multi-agent
languages, Artificial ants, Evolution, OOCSMP.

1. INTRODUCTION
Agent-based simulation is a powerful and natural way to carry
out complex simulation experiments where many autonomous
and interacting entities take part. The key abstraction in this
methodology is the autonomous agent. According to [1], an agent
is “a computer system, situated in some environment, that is
capable of flexible autonomous action in order to meet its design
objectives”. Agents interact via discrete events.

Several approaches can be followed when implementing a multi-
agent system [2]: Logic-Based Architectures, Belief-Desire-
Intention (BDI) Architectures and reactive and layered
architectures. [3,4]. This work has taken the latter approach.

Agent-based simulation can be used with different objectives:

• Resolution [5] and optimisation [6] of mathematical
problems.

• Study of emergent global behaviour and social interactions
[7, 8].

• Study of population tendencies and evolution [9].

One of the most interesting things to study in this kind of
systems is emergence [10]. This phenomenon occurs when
interactions in a large population of objects at one level give rise
to different types of phenomena at another level.

OOCSMP is an object-oriented extension of the old CSMP [11]
continuous simulation language, sponsored by IBM in the
seventies and the eighties. OOCSMP is specially useful when the
system to be modelled is composed of similar components that
interact. Other extensions added to OOCSMP make it easy to
solve partial differential equations or produce distributed
simulations.

This paper presents some new language capabilities to perform
agent-oriented simulation. The extensions are tested simulating
an agent community similar to a colony of virtual ants (vants).
The objective of this simulation is not to model realistic ants, but
to experiment with several aspects of communication (vants
communicate directly, not by means of pheromones) and
evolution (every vant is provided with genes and reproduces
sexually, unlike real ants). Interesting emerging behaviour has
been observed.

The paper is organised as follows: section 2 gives a quick
overview of OOCSMP; section 3 describes the extensions to
perform agent-oriented simulation; section 4 presents the basic
scenario for the experiments; section 5 shows the main results of
the simulations; section 6 summarises with the conclusions and
future work.

2. OOCSMP: AN OVERVIEW
The OOCSMP language was designed in 1997 [12] as an object
oriented continuous simulation language. A compiler (C-OOL)
was built for this language to produce C++ code or Java applets
from the simulation models. This approach would simplify the
generation of simulation based web courses, because the user
does not have to worry about Java or HTML low-level details. In
fact, a number of courses have been generated using this
language: gravitation, partial differential equations, ecology and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’02, March 10-14, 2002, Madrid, Spain.
Copyright 2002 ACM 1-58113-445-2/02/03…$5.00.

basic electronics [13], which are accessible from:
http://www.ii.uam.es/~jlara/investigacion

The language and the compiler have been designed with an
educational focus. If Java is chosen as the object language, a user
interface is generated automatically in which the user can answer
“what if...?” questions in a “learning by doing” paradigm. When
performance is a must, the compiler may be instructed to
generate C++, although the user interface in this case is
restricted.

Although it was conceived as a continuous language, OOCSMP
has features that allow including a certain degree of discrete
simulation in the models: it is possible to handle discrete events
by means of blocks INSW and FCNSW. When a discrete event
takes place, which affects a variable appearing in an expression
that should be integrated, the corresponding integrator is
automatically reset to process the discontinuity.

3. EXTENDING OOCSMP FOR AGENT-
ORIENTED SIMULATION
OOCSMP is very useful if the model can be expressed as a
collection of similar entities that interact, because the entities
can be modelled as collections of objects, and the interactions as
method invocations. Several extensions have been added to
OOCSMP to perform agent-oriented simulation:

• An agent can be modelled as an OOCSMP object.
OOCSMP classes represent types of agents. Each class
defines the agent behaviour (by means of the available
methods) and its state variables (by means of attributes).

• Multiple object constructor invocation is supported. A single
instruction can declare several ‘unnamed’ objects.

• Objects can be added to, or deleted from a collection, using
the overloaded operators ‘+=’ and “-=”.

• Objects can be eliminated from the simulation using the
DELETE operator. The compiler makes a static analysis of
the model to optimize the handling of the “dead” objects.

• The new SELF keyword refers to the addressed object.
Among other things, this permits the object to add or delete
itself from collections, or eliminate itself from the
simulation.

• A new output form represents the position and the state of
the agents. The graphical representation of an agent can
have different shapes, such as rectangles, triangles, circles,
etc. The state can be represented as the colour and/or the
size of that shape.

• Instructions to repeat (and change) experiments, and collect
statistical data.

• According to [14] a point-to-point message passing
mechanism would restrict the power of a multi-agent
system. For that reason, multicast and broadcast message-
passing mechanisms have been implemented in OOCSMP.
In this way, methods can be invoked on objects (point-to-
point), classes (broadcast) or collections of objects
(multicast). In the two last cases, an implicit iteration is

generated, which invokes the method on each object of the
class/collection. The order in which the elements of the
class/collection are accessed can be sequential (first to last
or last to first), random or specified by the user in a vector.
The syntax for method invocation on classes or collections is
shown in table 1.

According to [4], random access to the elements of the
collection can be necessary in agent-based simulation to
avoid artefacts, i.e. phenomena that arise due to accidentally
imposed inter-agent correlation.

Table 1: Syntax for method invocation on classes or
collections of objects

Syntax Meaning

<collection>.<method>(
<args>)

Invocation of the method on all
the elements in sequence.

<collection>[<].<metho
d> (<args>)

Invocation of the method on all
the elements in reverse order.

<collection>[?].<metho
d> (<args>)

Invocation of the method on all
the elements in random order.

<collection>[<vector>]
.<method> (<args>)

Invocation of the method in the
order given by the elements of
the vector.

<collection>[<scalar>]
.<method> (<args>)

Invocation of the method on the
element given by the scalar
expression in square brackets.

• If a method returns a scalar value, and is invoked on a class
or a collection of objects, the global result is a vector; each
element of the vector is the result of applying the method to
each object in the class/collection. If the method returns a
vector, the global result is a matrix.

• If one of the arguments of a method is an object, the method
may be invoked replacing that argument by a class name or
a collection of objects. In this case, an implicit iteration is
generated, and the method will be invoked for each element
in the class/collection. The order of access to the elements
in the class/collection can be modified in a way similar to
table 1. If both the target of the method and its argument are
collections of objects or classes, a double iteration is
generated, and the method is invoked for every object in the
target and each object in the argument, except when both
are the same object. This situation is useful, for example,
when agents want to communicate with the other agents in
the same collection, excluding themselves. A similar
situation arises when one of the method arguments is a
scalar and is invoked with a vector.

4. SIMULATION OF AN EVOLUTIONARY
VIRTUAL ANT COLONY
The extended OOCSMP has been used to model an artificial
foraging vant community. The aim was not to be realistic, but to
experiment on knowledge propagation between agents. Thus,
vants communicate directly with other vants when they are near,
rather than by dropping pheromones.

Vants live in a two-dimensional grid of size 50x50. Their
objective is to find food. When they are successful, they eat a
portion (which extends their life span), and take another portion
to the nest. This may be repeated until the food is depleted.
Several locations with food may exist at the same time. When a
vant arrives at the nest, it rests there for some time. When two
agents meet outside the nest, they may exchange their knowledge
about the food position. If a vant does not find food during a
certain period of time, it returns to the nest.

Figure 1 shows a state transition diagram (STD) [15] for the
vant. STDs are used broadly to express the dynamic behaviour of
software systems and are a natural way to express agents’
behaviour. Other ways to express agents behaviour can be found
in [2, 16]. Observe that some transitions depend on non-
deterministic conditions, i.e. whether a certain parameter is
greater or smaller than a random number.

Figure1: STD describing the behaviour of a vant.

Vants can be in one of five states:

• Exploring randomly, when the agents don’t know the
location of any food source.

• Returning to the nest, when the vant has found food and at
predefined intervals.

• Resting in the nest for a brief, random time.

• Going to fetch food, when the agent knows the food
location.

• Exchanging information with another vant, if they meet and
one of them doesn’t know any food position and both decide
to talk (this is controlled by the communicative attribute).

Our vants have several parameters that control their behaviour:

• Activity: It controls the speed of each vant. It has four
possible values.

• Communicative (comm in the picture): It is used to decide if
the agent will communicate with another agent when they
meet.

• Scepticism (sceptic in the picture): This parameter controls
the credulity of the agent. At one end, the agent always
believes the information about the food location received
from the other agent. At the other, it never trusts that
information.

• Lie: This parameter controls the degree to which agents lie
when they inform the others of the food position. It is a
number between 0 and 3, with the following meanings:

0: The agent always tells the truth.

1: The agent communicates the approximate position.

2: The agent provides a random position.

3: The agent sends its partners in the opposite direction.

• Memory: This parameter doesn’t appear explicitly in the
picture, but it controls the probability that an agent forgets
the food position it knew about.

The five parameters are encoded in binary and concatenated,
making a genotype. When two agents meet at the nest, they can
reproduce if there’s enough food in the nest. In each
reproduction, two new agents are created, with ‘genetic’
information resulting from their parents genomes after the
operations of mutation and (uniform) crossing-over have been
applied to them, a typical procedure in genetic algorithms [17]. A
scheme of the reproduction is shown in figure 2.

Figure 2: Vant´s reproduction

Reproduction is only allowed in the nest, and it only happens if
there is a minimum amount of food, because the new-born agents
are assumed to need some food to grow.

Other attributes are needed to implement the agent’s state, such
as its current position, the position of its nest and its maximum
age. The last attribute is set initially for each agent as a random
number with a gaussian probability (average 250, standard
deviation 50). This attribute decreases after each time step and
increases when the agent gets food. RET is a global parameter
(with the same value for all the vants) that controls the intervals
for the exploring vants to return to the nest.

In this implementation, each vant is represented as an OOCSMP
object of class AGENT. There’s also a class (NEST) that
contains a collection with all the vants belonging to the nest, and
collects statistical data. Another class (TERRITORY) takes care
of food sources, manages the amount of food in each, and
generates randomly a new source when one is completely
depleted. Listing 1 shows the code for the NEST class.

[1] INCLUDE "Territory.csm"

[2] INCLUDE "Agent.csm"

[3] CLASS NEST{

[4] TERRITORY T1

[5] DATA NUMAGENTS:= 300, POX:=0, POY:=0, ANTHILL := 0

[6] AGENT LAGENTS := AGENT [NUMAGENTS](SELF)

[7] INITIAL

[8] MAXX := T1.MAXX

[9] MAXY := T1.MAXY

[10] ...

[11] DYNAMIC

[12] FCNSW(ANTHILL, , ,LAGENTS[?].MATE(LAGENTS[?]))

[13] LAGENTS[?].STEP()

[14] LAGENTS[?].COLLIDE(LAGENTS[?])

[15] KF := 0

[16] KF += LAGENTS.KNOWFOOD

[17] NA := 0

[18] NA += INSW (LAGENTS.MAXAGE, 0, 1)

[19] NL := MEAN (LAGENTS.GETLIE())

[20] NAC := MEAN (LAGENTS.GETACTIVITY())

[21] NSCEP := MEAN (LAGENTS.GETSCEPTIC())

[22] NCOM := MEAN (LAGENTS.GETCOMMUNICATIVE())

[23] NMEM := MEAN (LAGENTS.GETMEMO())

[24] PRINT NA, NAC, NSCEP, NCOM, NL, NMEM}

Listing 1: Nest class

Lines 4-7 declare some attributes. The INITIAL section starts at
line 8 (executed only once, after the constructor of the object is
called). Several auxiliary methods are not shown (line 10). Line
11 begins the declaration of the DYNAMIC section, which
executes once per time step. First of all (line 12) it checks if
there’s enough food in the nest to allow reproduction. If this is
the case (discrete event, handled by FCNSW), it iterates on the
vant collection, in random order. Line 13 calls the DYNAMIC
section for each vant (this is done by the STEP method
invocation) in random order. Line 14 processes communication
between vants. The following lines collect statistics (gene
distribution in the population), which are printed at line 24.
Since the PRINT instruction is located inside the NEST class, the
statistics of all the objects in class NEST are shown; this is a
useful feature that makes scalability easier.

5. SIMULATION RESULTS
Since we need a lot of computing power, we have compiled our
examples into C++. Figure 3, however, shows a slower
simulation compiled into Java (the user interface has been
generated automatically with C-OOL) with only one nest and two
graphical output forms:

• At the left, a plot representing the position and state of the
vants, nests and food sources.

• To the right, an animated 2-dimensional plot shows the
number of vants (the upper line, in green) and the number
of vants that know the location of a food position. Agents
may lie: some of those that think they know the location of a
food source may be wrong.

• The result of the PRINT instruction in listing 1, line 32 is
shown in the background window.

Figure 3: A moment in the simulation (Java Interface)

We have found that the average of the Activity parameter in the
population grows quickly to its maximum value, because the
fastest vants have an evident advantage on the others. The same
happens with the Memory parameter, which grows quickly to the
maximum (the larger a vant can remember a food position, the
better, because, the vant can return several times for food until it
is depleted). The other parameters may oscillate, but we have
identified two situations for the case with a single nest:

• When food is scarce, agents compete between themselves
and liars begin to proliferate. As this parameter goes up,
scepticism also grows. The explanation is clear: in this
situation it is more advantageous not to trust the others,
because if a vant trusts a liar, it can be sent to a completely
wrong position. A false information can be propagated
quickly among the population: this gives rise to the
appearance of rumours. Since rumours are clearly bad for
the community, it defends itself by increasing scepticism.

• When there’s plenty of food, it’s better for vants to co-
operate, and liars may disappear quickly. The same happens
with sceptic vants. The explanation for this is also clear: if
there are few liars, it is much more advantageous to trust. It
must be noted that, if there’s plenty of food, the number of
liars does not decrease always but, if this happens, it only
happens when there’s plenty of food.

This is an emergent behaviour of the system, which does not
include an explicitly programmed correlation between lying and
scepticism.

The behaviour of the other parameter (Communicative) is less
clear, but it tends to be higher in situations of abundance. In such
situations, the Activity and Memory parameters tend to grow
more slowly, as there is not such a selective pressure. On the
contrary, when food is scarce, these two parameters tend to grow
very quickly to their maximum values.

6. CONCLUSIONS
This paper has described some extensions that turn OOCSMP in
a good choice for agent-oriented simulation. Some useful features
are the facilities to iterate on collections of objects using
different schemes, and the possibility to invoke methods on
objects, classes and collections of objects. OOCSMP was
conceived as a continuous simulation language, thus it is also
possible to take advantage of powerful features such as integrals,
derivatives, solving partial differential equations, etc.

The compilation scheme adopted, lets the experimenter choose
between two alternative situations:

• If performance is needed, compilation into C++ can be
better. Additional hand optimisation can be done if needed.

• Compilation into Java is a better option if there is a need to
inspect visually the results of the simulation. With the
automatically generated Java user interface, parameters can
be changed during the simulation execution. Due to Java
slower performance, as compared to C++, these experiments
usually contain a smaller number of agents.

The language extensions have been tested with the simulation of
an evolutionary vant colony, using STD’s as a general tool to
describe the agents’ behaviour. In the simulation, interesting
results have been observed, such as a correlation between liar
and sceptical agents.

The model will be extended by making the agent’s behaviour
more complex. They will be given a new gene that controls their
‘Aggressivity,’ so they will be able to rob or kill agents
belonging to different nests. If a nest is too crowded, it will split
and generate a new anthill. Another interesting extension would
be modelling scents, pheromones and other types of indirect
communication.

As OOCSMP has primitives to generate parallel simulations, we
will explore possible parallel implementations of the model.

We are planning to enhance the discrete possibilities of our
language with event queues, event types, etc. We are also
thinking of adding an external API to call C++ or Java functions
from OOCSMP, and enhancing the mechanisms of OOCSMP for
handling objects and collections of objects. Detailed comparisons
between OOCSMP and other simulation languages [3, 4] are also
needed.

7. ACKNOWLEDGEMENTS
This paper has been sponsored by the Spanish Interdepartmental
Commission of Science and Technology (CICYT), project
number TEL1999-0181

8. REFERENCES
[1] Jennings, N.R., Sycara, K., Wooldridge, M. “A Roadmap of

Agent Research and Development”. Autonomous Agents

and Multi-Agent Systems, 1, 7-38 (1998). Kluwer Academic
Publishers.

[2] Wooldridge, M. “Intelligent Agents”. In “Multiagent
Systems. A modern approach to Distributed Artificial
Intelligence” (Weiss ed.). pp. 27-77, The MIT Press. 1999.

[3] Swarm home page: http://www.swarm.org

[4] Axtell, R. “Why Agents? On the varied motivations for
agent computing in the social sciences”. Working paper
nº17 at Center on Social and Economic Dynamics.
Brookings Institution. 2000.

[5] Drogoul, A. “When Ants Play Chess (Or Can Strategies
Emerge From Tactical Behaviors?)”. LNAI, nº 957, pp. 13-
27, Springer-Verlag, Berlin-Heidelberg (1995.).

[6] Dorigo, M., Maniezzo, V. “The Ant System: Optimization
by a colony of cooperating agents”. IEEE Transactions on
Systems, Man, and Cybernetics, Part-B, Vol.26 (1996),
No.1, pp. 1-13.

[7] de Lara, J., Alfonseca, M. “Some strategies for the
simulation of vocabulary agreement in multi-agent
communities”. JASSS vol. 3 (2000), no. 4,
<http://www.soc.surrey.ac.uk/JASSS/3/4/2.html>

[8] Hraber, P.T., Jones, T., Forrest, S. “The Ecology of Echo”.
Artificial Life 3:165-190. (1997).

[9] Ophir, S. “Simulating Ideologies”. Journal of Artificial
Societies and Social Simulation vol. 1 (1998), no. 4,
<http://www.soc.surrey.ac.uk/JASSS/1/4/5.html>

[10] Gilbert, N., Troitzsch, K. “Simulation for the Social
Scientist”. Open University Press. 1999.

[11] IBM Corp.: "Continuous System Modelling Program III
(CSMP III) and Graphic Feature (CSMP III Graphic
Feature) General Information Manual", IBM Canada,
Ontario, GH19-7000, 1972.

[12] Alfonseca, M., Pulido, E., Orosco, R., de Lara, J.
"OOCSMP: an object-oriented simulation language".
ESS'97, Passau, pp. 44-48. 1997.

[13] Alfonseca, M., de Lara, J., Pulido, E. "Semiautomatic
Generation of Web Courses by Means of an Object-Oriented
Simulation Language", special issue of "SIMULATION",
Web-Based Simulation, Vol 73 (1999), num.1, pp. 5-12.

[14] Fisher, M. “Representing and Executing Agent-Based
Systems”. In Wooldridge and Jennings (eds), Intelligent
Agents. LNCS 890. Springer-Verlag (1995).

[15] Pressman, R.S. “Software Engineering: A Practitioner’s
Approach”. 4th Edition. McGraw Hill, 1997.

[16] Wooldridge, M., Jennings, N.R., Kinny, D. “The Gaia
Methodology for Agent-Oriented Analysis and Design”.
Journal of Autonomous Agents and Multi-Agent Systems 3
(3) 285-312. Kluwer Academic Publishers (2000).

[17] Holland, J.H. “Adaptation in Natural & Artificial Systems.”
University of Michigan Press (1975).

