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Abstract— To reduce contention in Optical Burst Switched
networks, data bursts are preceded by the so-called Burst Control
Packets, which are sent a given offset time in advance in order to
advertise of the forthcoming burst arrivals. However, this policy
of one-way in-advanced reservation produces the so-calledPath
Length Priority Effect, which benefits BCP reservations with high
offset values against those with smaller offset times. Thiseffect
not only brings an unfair treatment to bursts with different offset
values, but also leads to a serious degradation of global network
performance.

This work presents a new detailed analytical study to quantify
the blocking probability perceived by BCP reservations with
continuous-time uniformly-distributed offset-time values. In ad-
dition, it shows how to apply such theoretical values onto a
proactive discarding algorithm which reduces such unfairness
and achieves an equalised picture of the blocking probability
with respect to the offset-time.

I. I NTRODUCTION AND PREVIOUS WORK

Recently, Optical Burst Switching (or just OBS) has been
proposed by the research community as a possible solution for
carrying IP traffic over Dense Wavelength Division Multiplex-
ing (DWDM), which could be deployed in the near future [1],
[2]. Among its many benefits, OBS achieves a high utilisation
of the huge amount of raw bandwidth available by fibre optics
at a moderate complexity cost.

In OBS, data packets travel through the optical infrastruc-
ture as part of a longer-size transmission unit, the so-called
optical burst, which is entirely switched in the optical domain.
Such optical bursts do not suffer from O/E/O conversion at
intermediate nodes, thus they experience only propagation
delay in the absence of optical buffering devices.

Indeed, since optical buffering devices are, at present, hardly
feasible to deploy, burst contention often leads to data loss.
That is, when a data burst needs to be transmitted through an
already occupied output port, it generally has to be dropped.
To prevent, or at least reduce this situation, several scheduling
protocols have been proposed in the literature, see Just-In-
Time [3], [4], Horizon [5] and Just-Enough-Time [6], and [7],
[8], [9] for a comparison of them.

The most widely accepted one, Just-Enough-Time (or JET),
employs one-way reservation of resources prior to sending
any data. Essentially, every data burst is preceded by the so-
called Burst-Control Packet (or BCP), which is sent ahead on
attempts to reserve resources at every node along the source-
to-destination path. Typically, the BCP contains the expected
arrival time at the core nodes and the size of its associated
data burst, which is used in the process of burst scheduling at
core nodes.

The amount of time the BCP is sent in advanced, i.e. the
offset time, must be carefully designed to provide enough time
for its O/E conversion and processing at each intermediate
node. Essentially, such processing consists of searching for an
available unscheduled gap at which to allocate the forthcoming
data burst [10]. Clearly, the offset time value must be larger
than the total amount of burst scheduling time in the entire
path, otherwise the data burst would overtake its associated
BCP.

However, in a real network scenario where offset values are
variable, the performance operation of the OBS network and
the Quality of Service perceived by the end users present the
following drawbacks: On the one hand, variable offset times
produce the so-calledretroblocking effect, at which early BCP
reservations may cause blocking to one or many successive
attempts for burst scheduling on the same wavelength starting
earlier than the already reserved time-slot [11]. On the other
hand, BCP arrivals with small offset time values have been
shown to encounter serious difficulties in finding available
time-slots since they have to compete with much earlier BCP
reservations.

The latter effect might be exploited to differentiate between
classes of traffic, where high priority traffic is given extraoffset
time to reduce its blocking probality at core nodes [12], [13].
However, this mechanism presents a few drawbacks, mainly
the extra delay experienced by the high-priority packets, which
might not be tolerated by some particular applications.

Nevertheless, as the BCP packet traverses the network,
its offset time value is reduced and thus, the probability of



successfully finding an available time slot decreases [14].
This effect is often referred to as thePath Length Priority
Effect (PLPE) [15] or Beat-Down Unfairness Problem[16]
in the literature. Regardless of the unfairness treatment to
packets of the same QoS class, PLPE is also very harmful
from the point of view of global network efficiency, for one
simple reason: Those bursts closer to their destination aremore
likely to be dropped since their offset-time has been reduced
while traversing the network. This degrades the end-to-end
throughput very significantly.

A number of solutions have been proposed to overcome
PLPE, i.e. to bring fainess to OBS: In [15], the authors propose
Hop-by-hop Priority Increasing (HPI), a mechanism to provide
extra offset time at intermediate nodes via Fiber Delay Lines
(FDLs) to compensate for the offset time lost in the processing
of BCPs at every host. However, this scheme requires all
core nodes to implement HPI, otherwise the fairness in the
other nodes may be affected, and also it increases the delay
experienced by bursts. In [17], the authors propose a backward
reservation algorithm at which the destination node addresses
the reservation process, which brakes with the JET philosophy.
Also, it has been proposed in [18] a “merit-based” mecha-
nism at which incoming data bursts are ranked according to
some merit metric. Such metric takes into consideration key
performance aspects such as destination proximity to benefit
data bursts which have already consumed substantial network
resources. Also, fairness can be improved by reducing the
search space for free wavelength at core switches (see [16]
for further details).

Finally, proactive mechanisms constitute the majority of
studies due to their simplicity. Essentially, proactive mecha-
nisms causes deliberate burst drops to those packets which
are typically benefited by PLPE. The difference between the
algorithms proposed lies in the mechanism to adjust such
deliberate discarding probabilities. TheProactive Random
Early Dropping (PRED) proposed in [16] only states that
such discarding probabilities must decrease with the proximity
of the burst to its destination. The authors in [19] propose
a monitor-based algorithm to estimate the probabilities and
adjust the subsequent deliberated dropping probabilitiesbased
on measurements.

Nevertheless, in order to propose efficient algorithms to
remove PLPE, it is first necessary to accurately characterise
such phenomena. In this light, from an analytical point of view,
only a few studies have attempted to model the differences
in terms of blocking probability observed by BCP arrivals
with variable offset-time values. On the one hand, Barakat
et. al. [13], [20] derive an expression for the distributionof
the number of bursts that contend with a given arriving burst.
However, this work assumes that the offset-time values are
constant for data bursts of the same QoS class, but differ-
ent when compared to other classes, hence do not consider
the case for continuous-time variable offset times. On the
other hand, the model proposed in [21] considers uniformly-
distributed offset times, but the methodology used (two-state
non-homogenous Markov chain) only provides the blocking

probability conditioned to a particular value of burst sizeand
offset-time value. Additionally, the latter assumes that the
channel is slotted.

In conclusion, to the best of the authors’ knowledge, no
accurate analytical expression has been derived to charac-
terise and quantify the blocking probability experienced by
data bursts with continuous offset time values, which causes
unfair switching behaviour. Finding an analytical expression
of such variable blocking probability would clearly benefit
in the design and adjustment of such deliberate discarding
probabilities defined by the proactive mechanisms to reduce
PLPE.

The main contribution of this work is two-fold: First, it
aims to provide an accurate approximation to the blocking
probability experienced by data bursts with continuous-time
variable offset values on a single-wavelength optical switch
(or multiple-wavelength switch but without wavelength con-
version capabality). Secondly, it shows how to apply such
analysis in the design of an offset priority equaliser for core
OBS nodes, on attempts to reduce PLPE. To this end, the
remainder of this work is organised as follows: Section II
shows how to derive the blocking probability experienced
by BCPs with uniformly-distributed offset values following
a fixed-point approximation method and how to apply this
result to derive the blocking probability observed by bursts
with different offset-time values. Then, section III validates
the equations derived in the previous section via simulation.
After this, section IV shows how to apply the equations
derived in the analysis to design a proactive mechanism to
equalise the blocking probability for continuous-time variable
offset-time values. Finally, section V summarises the main
findings presented in this work and provides further lines of
investigation and application of this study.

II. A NALYSIS

A. Preliminaries

The blocking probability is derived as the probability to find
no available gaps at which to allocate a data burst observed
by a given randomly chosen BCP (the tagged BCP in what
follows). Let the tagged BCP be assumed to arrive at time
t = 0 at the scheduler of the OBS node, and let its offset time
be uniformly distributed (see figure 1). As shown, the interval
time [0, T ] denotes the horizon time of the BCP, that is, the
time range over which the tagged BCP attempts to reserve its
associated data burst. Also, the interval time[−T, 0] is refered
to as thepast-horizon time, that is,T units of time right in
the past of the tagged BCP arrival. As shown below, the past-
horizon time is key in determining the blocking probabilityof
the tagged BCP, since some arrivals over it may attempt for
reservations in the horizon time of the tagged BCP.

The process to determine the blocking probability observed
by the tagged BCP requires the following findings: (1) deter-
mine the number of attempts for reservation in the horizon
time of the tagged BCP; (2) obtain the actual number of
successfully scheduled data bursts in the horizon time of the
tagged BCP, and (3) derive the probability to fit an extra



Fig. 1. Notation

data burst in the horizon time assuming a number of already
scheduled data bursts. Accordingly, let us define the following
events:

• An: Number of arrivals in the past-horizon of the tagged
BCP.

• Bm: Number of attempts for scheduling in the horizon
of the tagged BCP.

• Rj : Number of successfully scheduled data bursts in the
horizon of the tagged BCP.

In what follows, the authors assume that BCPs arrive at the
scheduler of a given core OBS node following a Poissonian
basis with average incoming rateλ. This assumption is typi-
cally considered in the performance evaluation studies of high-
speed operational backbones, particularly those at which the
OBS paradigm has a potential application [22], [23], [24], [25],
[26], [27] and is gaining in importance among the network
research community after the recent studies on network traffic
measurements carried out by Karagiannis et. al. [28] and Haga
et. al. [29]. Thus, the number of arrivals in the past-horizon
time of the tagged BCP follows a Poisson distribution with
rateλ:

P (An) =
(λT )n

n!
e−λT , n = 0, 1, . . . (1)

Hence, the BCP interarrival times are negative exponentially
distributed with mean1/λ.

Let n denote the number of arrivals that actually occur in the
past-horizon time of the tagged BCP, and letxi, i = 1, . . . , n
denote the arrival time of thei-th BCP arrival, and letoi,
i = 1, . . . , n refer to its associated offset time (fig. 1). It is
well known that, givenn Poisson arrivals within time[−T, 0],
suchn arrivals are independently and uniformly distributed in
the interval, that is,xi ∼ U(−T, 0).

Also, the offset-time values that is, the difference between
the BCP arrival and its associated data burst arrival shall be
assumed uniformly distributed with maximum valueT , i.e.
U(0, T ). Such assumption arises from the fact that a given core
OBS node typically receives BCP reservations with disparate
destinations, some of them are far (large offset values) but
some others are close (small offset values). The assumption
of offset values uniformly distributed between[0, T ] aims to
cover most typical scenarios. Thus,oi ∼ U(0, T ).

B. Analysis of the processBm

This section aims to derive the probability distribution of
the eventBm defined above, that is, the number of attempts
for reservation in the horizon time of the tagged BCP. Clearly,
only BCP arrivals within time[−T, 0] (the past-horizon) may

attempt for a reservation for their associated data bursts at any
time in the interval[0, T ], since the offset-time distribution
is U(0, T ) (see fig. 1). Obviously, packets arriving at time
t < −T do not count since they could never possibly schedule
their associated bursts within timet ∈ [0, T ], and so applies
to BCP arrivals aftert > 0 for the tagged BCP would have
preference over them since it arrived earlier. Thus, the number
of attempts for reservation in the horizon time of the tagged
BCP constitutes only a portion of the arrivals in its past-
horizon time.

For simplicity, let An = 1 (one arrival in the past-
horizon time of the tagged BCP). The probability to have
one attempts for reservation in the horizon time of the tagged
BCP P (B1|A1) is equivalent to finding the probability that
x1 + o1 > 0. That is:

P (B1|A1) =

∫ 0

−T

Pr(o1 > −x1)fx1
(x)dx

=

∫ 0

−T

−x

T

1

T
dx =

1

2
(2)

That is, only one half of the arrivals in the past-horizon time
of the tagged BCP attempt for reservation over the horizon
time, while the other half attempt for reservation over the past-
horizon time of the tagged BCP.

Since then BCP arrivals are independent and have the
same probability to attempt for a reservation over[0, T ] (i.e.
P (B1|A1) = 1

2 ), the probabilityP (Bm|An) is given by the
following binomial distribution:

P (Bm|An) =

(

n

m

) (

1

2

)m (

1 −
1

2

)n−m

(3)

with n ≤ m. Thus, since then BCPs arrive following a
Poissonian basis with rateλ, the numberm of attempts for
scheduling over[0, T ] is given by:

P (Bm) =
∞
∑

n=m

(

n

m

) (

1

2

)m (

1 −
1

2

)n−m
(λT )n

n!
e−λT

=
(λT

2 )m

m!
e−λT

∞
∑

n=m

(λT
2 )n−m

(n − m)!

=
(λ

2 T )m

m!
e−

λ
2

T (4)

which is again a Poisson process but with rateλ
2 , as shown.

Finally, it is also important to derive the number of reser-
vations over a time interval different than[0, T ]. For instance,
let us chunk the interval[0, T ] into kmax portions of size
Tp = T

kmax
. In this case, it can be easily seen that only those

BCP arrivals within the range[kTp − T, 0] (only part of the
past-horizon time) may attempt for a reservation over the range
of interest[kTp, (k+1)Tp], k = 0, 1, . . . , kmax−1 (see Fig. 2).
This occurs with probability:



pk =

∫ 0

kTp−T

Pr(kTp − x1 ≤ o1 ≤ (k + 1)Tp − x1)

fx1
(x)dx =

=

∫ 0

kTp−T

Tp

T

1

T
dx =

Tp

T
− k

(

Tp

T

)2

(5)

Fig. 2. Number of arrivals within[kTp, (k + 1)Tp]

Thus, with this new valuepk, it is easy to demonstrate that
the number of reservation attempts in the range[kTp, (k +
1)Tp] follows a Poisson distribution with rateλpk, i.e.:

P (B(kTp,(k+1)Tp)
m ) =

(λpkT )m

m!
e−λpkT , k = 0, . . . , kmax

(6)

C. Probability of successful reservation of the tagged burst

This section studies the probability to find a gap in the
horizon time of the tagged BCP, that is[0, T ], over which
to allocate its associated data burst. To do so, letj refer to
the number of reservation attempts within the horizon time of
the “tagged” BCP, and let(Y1, . . . , Yj) be thej-dimensional
random variable which denotes thesorted arrival times of
such bursts. Following [30], the joint-probability distribution
of (Y1, . . . , Yj) is given by:

fY1,...,Yj
(y1, . . . , yj) =

j!

T j
(7)

which gives the joint-probability density function of the order
statistics ofj uniformly distributed arrivals within time[0, T ].

Also, let D refer to thefixed service time of each burst
(equal-size data bursts), and letP (Rj) denote the probability
to havej successfully allocated bursts over[0, T ]. In other
words, P (Rj) gives the probability thatnone of the j data
bursts overlap with any of the other. It is easy to derive such
probabilityP (Rj), for the casej = 1 following eq. 7:

P (R1) =

∫ T

0

1!

T 1
dy1 =

T

T
= 1 (8)

Obviously, if only one burst arrives within[0, T ], it is impos-
sible that it overlaps with any other.

For j = 2 (see fig. 3), the two data burst overlap ify2 <
y1 + D (remember that theyi, i = 1 . . . , j values are sorted,
y1 < y2). Hence:

P (R2) =

∫ y2−D

0

dy1

∫ T

D

2!

T 2
dy2

=
2!

T 2

∫ T

D

(y2 − D)dy2

=
2!

T 2

(T − D)2

2
=

(

T − D

T

)2

(9)

which gives the non-overlaping probability forj = 2 reserva-
tion attempts.

Fig. 3. Case ofj = 2 arrivals of sizeD in [0, T ]

Similarly, for j = 3 (fig. 4):

P (R3) =

∫ y2−D

0

dy1

∫ y3−D

D

dy2

∫ T

2D

3!

T 3
dy3

=
3!

T 3

∫ y3−D

D

(y2 − D)dy2

∫ T

2D

dy3

=
3!

T 3

∫ T

2D

(y3 − 2D)2

2
dy3 =

3!

T 3

(T − 2D)3

2 · 3

=

(

T − 2D

T

)3

(10)

Fig. 4. Case ofj = 3 arrivals of sizeD in [0, T ]

Following this reasoning, it can be shown that, for any num-
ber of scheduling attemptsj, the non-overlaping probability
among any of them is given by:

P (Rj) =

(

T − (j − 1)D

T

)j

(11)

This equation is key to provide the probability to success-
fully allocate the tagged data burst assuming thatj data bursts
have already been successfully allocated:

P (Rj+1|Rj) =
P (Rj+1)

P (Rj)
=

(

T−jD
T

)j+1

(

T−(j−1)D
T

)j

=
1

T

(T − jD)j+1

(T − (j − 1)D)j
, j = 0, 1, . . .

(12)

sinceRj+1 implies Rj and, consequently,P (Rj+1 ∩ Rj) =
P (Rj+1).



D. Blocking probability analysis and fixed-point equation

This section combines all the equations above into a fixed-
point equation to obtain the blocking probability observedby
the tagged BCP.

The probability to find a gap over which to reserve the data
burst associated to the tagged BCP equals the probability to
actually fit an extra data burst in its horizon time assuming that
a numberj of them are already successfully fitted (eq. 12).
In this light, the numberj of data bursts that are successfully
fitted is a portion of the total number of attempts for reser-
vation m ≥ j over the horizon time interval, since some of
them (m−j) were blocked with probabilityB. It is also worth
remarking that the numberm = 0, 1, . . . of arrivals over the
horizon time of the tagged BCP is given by eq. 4. In this
light, the blocking probability experienced by the tagged BCP
is implicitly stated in:

1 − B =

∞
∑

m=0

m
∑

j=0

(

m

j

)

(1 − B)jBm−jP (Rj+1|Rj) ×

×
(λ

2 T )m

m!
e−

λ
2

T (13)

Essentially, on the left-hand side of the equation,1 − B
represents the probability to successfully find a gap for a
data burst, as seen by the tagged BCP. On the right-hand
side, the equation shows that such probability is equivalent
to successfully fitting an extra data burst assuming thatj data
bursts are already successfully scheduled. The numberj ≤ m
of fitted data bursts is the result ofm attempts for reservation,
such thatm − j out of them were actually blocked with the
same blocking probabilityB as in the left-hand side of the
equation.

Clearly, this equation assumes that the blocking probability
observed by the tagged BCP is the same as the blocking
probability observed by them attempts for scheduling over
the horizon time of the tagged BCP. In other words, the
previous equation provides the blocking probability for bursts
with offset time in the interval[0, T ], i.e. with no restrictions
at all in the offset time values. In the next section, we provide
an approximation for the case of offset times values being
restricted to a given interval.

E. Blocking probability in the range[kTp, (k + 1)Tp]

Section II-B has derived the distribution of reservation at-
tempts in the chunk[kTp, (k+1)Tp] ∈ [0, T ], k = 0, . . . , kmax

of the horizon time. Thus, it is possible to study the blocking
probability experienced by the “tagged” BCP assuming its
offset time lies within such time interval[kTp, (k + 1)Tp]. To
do so, it is just necessary to adapt the equations derived above
to this case. That is, assumingm arrivals over[kTp, (k+1)Tp],
and j ≤ m blocks in it, the blocking probability experienced
by the “tagged” BCP can be approximated by:

1 − Bk ≈

∞
∑

m=0

m
∑

j=0

(

m

j

)

(1 − B)jBm−jPk(Rj+1|Rj) ×

×
(λpkT )m

m!
e−λpkT (14)

where:

Pk(Rm−j+1|Rm−j) =
1

Tp

(Tp − (m − j)D)m−j+1

(Tp − (m − j − 1)D)m−j
(15)

andpk =
Tp

T − k
(

Tp

T

)2

, k = 0, . . . , ⌊ T
Tp

⌋.
This gives the blocking probability of a “tagged” BCP with

offset time value uniformly distributed in[kTp, (k + 1)Tp],
which has to compete with BCP reservations in the same time
interval.

In this case, eq. 14 does not constitute a fixed-point equation
since on the right-hand side of the equation, the blocking
probability of them arrivals over the slice[kTp, (k + 1)Tp] is
assumed to beB. This is clearly an approximation, since we
are taking the blocking probability of bursts with offset times
in the interval [0, T ] in the right-hand side of the equation.
Clearly, not all the BCP arrivals in the post-horizon interval
[−T, 0] will eventually produce a burst arrival in the interval
[kTp, (k + 1)Tp]. However, this approximation is necessary
to make the problem analytically tractable. Actually, similar
approximations are performed in [13] for realistic network
scenarios with small blocking probability. Furthermore, our
simulation results assess the validity of such approximation.

III. E XPERIMENTS

This section aims to check via simulations the equations
derived above.

A. On checking the arrival process

As explained above, the probability distribution of a BCP
reservation of the arrivals in the range[−T, 0] is the con-
volution of the two random variables distributed uniformly,
xi ∼ U(−T, 0) and oi ∼ U(0, T ). Such convolution has the
shape of a triangle as shown in fig. 5.

In such figure, a number of106 BCP arrivals within[−10, 0]
have been simulated, along with their corresponding offset
values. The sum of these two random variables is shown,
together with the theoretical values for each of the histogram
bins (bin-size:Tp = 1) obtained in eq. 5. It can be seen that the
theoretical equation accurately matches the simulated results,
as expected.

As shown, half of the total events attempt for reservation
within the horizon time of the tagged BCP, while the other
half target the range[−T, 0]. This agrees with the result of
Poisson reservations of rateλ/2 derived in section II-B. Also,
it is worth noticing that the number of attempts for reservation
in the first histogram bin aftert = 0 is significantly larger
than in the last histogram bin, due to the convolution of the
two uniform random variables. For this reason, a “tagged”
BCP with a small offset value encounters more difficulties in
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successfully scheduling its associated data bursts than those
with larger offset time values, since it has to compete with
more reservation attempts.

B. On checking the non-overlapping probabilityP (Rj)

Fig. 6 shows the non-overlaping probability obtained via
simulation and theoretical (see eq. 11) of burst arrivals ofsize
D = 0.15 in the range[0, 10] (again,T = 10). For simplicity,
only the range ofj ∈ [0, 20] arrivals have been considered out
of the maximumjmax = ⌊ T

D ⌋ = 66.
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Fig. 6. Non-blocking probability assuming several burst arrivals of size
D = 0.15 within time [0, 10] (T10).

As shown, the theoretical values perfectly match the simu-
lated results, as expected. It is also worth noticing that such
non-overlaping probability decays very fast asj grows.

C. Fixed-point approximation equation and comparison with
the Erlang-B formula

This section aims to show the validity of the fixed-point
approximation derived in eq. 13 obtained in section II-D. To
this end, a simulation of107 events (BCP arrivals) was run,
with system parameters:T = 10, D = 0.15 and several load
valuesρ = λD. The results obtained are depicted in table I,
where the first column denotes the system loadρ, the second
one shows the blocking probability obtained via simulation,
the third one gives the theoretical blocking probability after
using the fixed-point approximation of eq. 13, and the fourth
column shows the blocking probability given by the Erlang B
formula with loadρ = λT

T/D :

Berlang(ρ, 1) =
λD

λD + 1

ρ = λD Bsim Bfixed-point Berlang
0.001 0.0010 0.000914 0.000999
0.005 0.0050 0.0049 0.0050
0.01 0.0099 0.0098 0.0099
0.05 0.0480 0.0470 0.0476
0.10 0.0923 0.0893 0.0909
0.25 0.2061 0.1943 0.2000
0.50 0.3487 0.3204 0.3333
0.75 0.4516 0.4097 0.4286

TABLE I

BLOCKING PROBABILITY RESULTS

As shown, the simulated results are very close to both
the fixed-point approximation of eq. 13 and the Erlang-B
formula. In fact, the Erlang-B formula provides a closer
approximation to the real simulation values, than the fixed-
point approximation, especially for large values ofρ.

Indeed, in a single-wavelength switch, the retroblocking
effect described in [11] has a very little global effect and
does not cause a significant global performance degradation,
thus yielding blocking probabilities comparable to the Erlang
B formula. This has been shown by an extensive simulation
analysis in our previous work [31]. However, the Erlang B for-
mula cannot be applied to distinguish between the “observed”
blocking probability of random BCPs with offset time values
in the slices[kTp, (k+1)Tp], k = 0, . . . , kmax−1 (kmax = T

Tp
).

The next experiment shows this effect and the ability of eq. 14
to capture it.

D. Blocking probability observed by BCP arrivals with differ-
ent offset times

Fig. 7 shows the blocking probability observed by the BCP
arrivals depending on their offset-time values, at scenarios with
different load levels. Again, the offset range considered is
[0, 10], and D = 0.15 is the fixed time spent by constant-
size data bursts. The offset range[0, 10] has been divided into
kmax = 10 chunks of size1.

For intance, for load levelρ = 0.01 (fig. 7 top-left), the
blocking values range from0.0018 to 0.018. Clearly, the BCP
arrivals with small offset time values (in the range[0, 2])



0 2 4 6 8 10
0

0.005

0.01

0.015

0.02
Blocking prob. for each offset range (ρ=0.01)

B
lo

ck
in

g 
pr

ob
.

Approx. values
Avg. blocking
Sim. values

0 2 4 6 8 10
0

0.05

0.1
Blocking prob. for each offset range (ρ=0.05)

B
lo

ck
in

g 
pr

ob
.

Approx. values
Avg. blocking
Sim. values

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2
Blocking prob. for each offset range (ρ=0.1)

B
lo

ck
in

g 
pr

ob
.

Approx. values
Avg. blocking
Sim. values

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4
Blocking prob. for each offset range (ρ=0.25)

B
lo

ck
in

g 
pr

ob
.

Approx. values
Avg. blocking
Sim. values

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8
Blocking prob. for each offset range (ρ=0.5)

Offset range

B
lo

ck
in

g 
pr

ob
.

Approx. values
Avg. blocking
Sim. values

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8
Blocking prob. for each offset range (ρ=0.75)

Offset range

B
lo

ck
in

g 
pr

ob
.

Approx. values
Avg. blocking
Sim. values

Fig. 7. Blocking probability observed by each offset range in several conditions:ρ = 0.01 (top-left), ρ = 0.05 (top-right), ρ = 0.1 (middle-left), ρ = 0.25
(middle-right),ρ = 0.5 (bottom-left), andρ = 0.75 (bottom-right)

experience greater blocking probability than those with larger
offset values (in the range[8, 10]). This tendency is repeated
for increasing load levels, as shown in the remaining plots.

It is worth noticing that the analytical curve given by
eq. 14 provides a better fit to the simulated results for low
load levels than for high load levels. This is consistent with
the approximation performed in eq. 14, as the influence of
previous reservation in the past-horizon of the tagged burst is
smaller with lighter load. Nevertheless, the theoretical curve
also gives a close approximation to the observed blocking
probability at high load scenarios. Finally, the third linein the
figure (continuous with diamonds) provides a measure of the
average blocking probability (which is close to the Erlang B
values) over the whole range, but does not distinguish between
the blocking probabilities observed for “tagged” BCPs with
different offset-time values.

IV. B LOCKING PROBABILITY EQUALISATION

This section presents a methodology for achieving a flat-
shaped plot of fig. 7. That is, with the termscheduling
equalisation, we shall refer to the mechanism for achieving
uniform blocking probability regardless of the offset time

values of incoming BCPs, on attempts to providefairnessin
the process of burst scheduling. The metricf defined as [19]:

f =
max(p1, . . . , pkmax)

min(p1, . . . , pkmax)

is widely used for measuring such fairness in terms of blocking
probability between the different BCP reservations that fall
within the range[kTp, (k + 1)Tp], for k = 0, . . . , kmax− 1.

Our approach for blocking probability equalisation follows
the proactive discarding policy proposed in the literature[16],
[19]. In this light, the methodology is as follows: When a BCP
reservation arrives at the core node scheduler, the first step is
to check its offset time value, and determine the offset range
[kTp, (k+1)Tp] in which it falls. Once, the valuek is known,
the next step is to compute the particular blocking probability
Bk (as in eq. 14) experienced by BCPs whose offset values
fall within such range. With this value, the next step is to
calculate the equalisation probabilityPeqz as:

Peqz =
Beqz− Bk

1 − Bk
(16)

whereBeqz refers to thetargeted overall blocking probability.



The last step is to take a random number, sayr, and check
it with Peqz. If r < Peqz, then the packet is dropped (proactive
dropping); otherwise, it attempts for a time-slot reservation for
it.

Eq. 16 is justified as follows: The probability for any packet
to be blocked is given by:

Beqz = Peqz+ (1 − Peqz)Bk (17)

which takes into account the proactive dropping probability
and the actual blocking probability assuming the BCP is not
proactively dropped. It is easy to check that eq. 16 arises
from eq. 17. Hence, the probabilityBeqz is the targeted
overall blocking probability since it shows the actual blocking
probability experienced by all data bursts.

In this light, fig. 8 shows a case example of a core OBS node
fed with ρ = λD = 0.1 and with various values of targeted
overall blocking probabilities. Fig. 8 top-left shows the plot
of blocking probability with respect to the offset range value
before any equalisation. At this point, the scheduler presents
a fairness coefficient offbef. eqz.= 17.99 and overall blocking
probabilityBeqz = 0.0917. Fig. 8 top-right shows the blocking
plot after equalisation withPeqz = 0.5B, whereB is fixed-
point solution given by eq. 13. This case equalises part of the
blocking plot (those BCPs with higher offset values) achieving
f0.5B = 4.34 and overall blocking probabilityBeqz = 0.0951,
which is slightly larger than the overall blocking probability
before any equalisation technique was adopted (Fig. 8 top-
left). This result makes sense since proactive dropping always
increases the overall blocking probability. Basically, when
dropping bursts proactively, it may well occur that large-offset
bursts are dropped on attempts to increase the chances of
small-offset bursts to be scheduled, but none of these arrives.
So, it often occurs that some bursts are dropped proactively
for nothing, thus increasing the overall blocking probability.
This effect is specially enhanced at high load levels.

Fig. 8 (middle-left) shows a case wherePeqz = 1B leading
to a more fair plot withf1B = 1.99, but with overall blocking
probability Beqz = 0.1089. The remaining plots in Fig. 8
shows cases where almost complete fairness (f ≈ 1) is
achieved, however at the expense of substantially higher block-
ing probabilities. A summary of the fairness values, together
with the overall blocking probabilities, for the equalisation
of the case example explained above with different targeted
blocking probabilities is given in fig. 9.

As shown, the fairness coefficient defined in eq. 16 de-
creases the larger the value ofBeqz is, leading to very flat
blocking probability plots, as shown in fig. 8. However, thisis
at the expense of a significant increase in the overall blocking
probability as shown. As shown, a good trade-off could be
the choice ofBeqz∈ [1B−1.5B] which does not increase the
overall blocking probability too much and achieves fairness
coefficients in the rangef ∈ [1, 2], which are characteristic
of flat blocking probability plots similar to the one shown in
fig. 8 middle-left.
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Fig. 9. Summary of overall blocking probability (top) and fairness values
(bottom) for severalBeqz values in a scenario withρ = 0.1.

V. SUMMARY AND DISCUSSION

This work presents a study of the blocking probability
observed by BCP arrivals with continuous-time uniformly-
distributed offset times in a single-wavelength core OBS node
(or a core OBS without wavelength conversion capabilities).
As previously reported by the research community, the BCP
reservations arriving with large offset values typically suffer
less blocking than those arrivals with small offset-time values,
which produces the so-called Path Length Priority Effect. The
contribution of this work is to quantify the difference in terms
of blocking probability perceived by the BCP reservations with
offset-time which areuniform in a range of values. Note that
this is acontinuous casewhich differs from the discrete case
that has been reported elsewhere [13], [20].

As a result, a fixed-point equation is derived which brings
the blocking probability experienced by a tagged BCP with
uniformly-distributed offset range. This result is then applied
to quantify the blocking probability experienced by a given
tagged BCP whose offset falls in a particular range within
the maximum offset range. The analytical values are shown to
accurately approximate the simulation results.

As a possible application, this work proposes a proactive
descarding policy to achieve an equalised plot of the block-
ing probability regardless of the particular offset valuesof
incoming BCPs. The mechanism proposed is designed such
that incoming BCPs are proactively descarded with greater
probability the larger its offset-time value is, which reduces
the number of reservations with large offset times on attempts
to benefit those BCP arrivals with small offset values. The
experiments section shows that, although this mechanism
increases the overall blocking probability, a good level of
fairness can be achieved at the expense of moderate increase
in the global blocking probability.
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Fig. 8. Blocking probabilities before and after equalisation with different targeted blocking probabilities: Beforeequalisation (top-left); After equalisation
with Beqz = 0.5B (top-right); After equalisation withBeqz = 1B (middle-left); After equalisation withBeqz = 2.5B (middle-right); After equalisation with
Beqz = 5B (bottom-left); and, After equalisation withBeqz = 10B (bottom-right).
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