
Analysis of the Processing and Sojourn Times of
Burst Control Packets in Optical Burst Switches

Luis de Pedro, Javier Aracil, José Alberto Herńandez and José Luis Garćıa-Dorado
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Abstract—In Optical Burst Switched networks, when a Burst
Control Packet arrives at a core node, its scheduling algorithm
looks up its internal reservation table for an available gap at
which to accomodate the incoming burst. The processing time
of the BCP is variable, and depends on the number of available
gaps over which to perform the search.

This work analyses the gap distribution in such reservation
table, and derives an expression for the waiting time of BCPs,
assuming LAUC-VF scheduling. Our findings can be applied to
the dimensioning of the offset time values in OBS networks, for
a realistic case of BCP variable processing times.

Index Terms—Optical Burst Switching, Burst Control Packet
processing time, void filling scheduling algorithms.

I. I NTRODUCTION

Optical Burst Switching (OBS) [1] provides intermedi-
ate switching granularity between optical circuit and packet
switching. For each data burst, a Burst Control Packet (BCP)
is sent ahead in order to announce the burst arrival at interme-
diate OBS nodes. With the information carried by the BCP, the
node’s scheduler attempts to find an available gap at which to
allocate the forthcoming burst. If more than one suitable gap
is found, then the Switch Control Unit (SCU) chooses one of
them according to some scheduling algorithm (see Horizon [2],
LAUC-VF [3], Min-SV [4] and MinVoids [5]). If all output
wavelengths are occupied and no available gap is found, the
data burst is then dropped.

LAUC-VF is known to outperform since it considers all the
possible gaps among already scheduled data bursts, that is,it
employsvoid filling. Clearly, this algorithm requires to keep
track of the starting times and durations of all scheduled time
intervals (gaps) in a given internal structure. Upon BCP arrival,
the algorithm looks up this structure for an available gap, and
updates it if the burst is successfully fitted in a gap. Thus,
for scheduling algorithms with void filling,the algorithm’s
execution time is variable, since the processing time spent
directly depends on the set of available gaps over which to
perform the search. Clearly, such number of gaps also depends
on the switch’s load.

This paper aims to characterise the sojourn time of BCPs at
core OBS nodes. Essentially, incoming BCPs are first stored
in a queue, and then served following a First-Come First-
Served basis (see Fig. 1). Thus, the total sojourn time of a
BCP constitutes the sum of the two components: waiting time
in queue and processing time.

Under the assumption of Poissonian BCP arrivals [6], the
M/G/1 model can be used to obtain such waiting delay in
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Fig. 1. SCU model

queue. The processing time accounts for the time spent untila
suitable gap at which to allocate the incoming burst is found.
More precisely, if the gap information is stored, for instance,
as a binary tree, then the scheduling time is proportional to
the logarithm (base 2) of the number of gaps over which to
perform the search.

Indeed, the accurate modelling of the processing time of
BCPs is key in designing the offset time given to every source-
destination path in the OBS network, since BCPs’ sojourn time
consume offset time.

II. PRELIMINARIES

Let us consider that the SCU features the LAUC-VF al-
gorithm, and let the available gap information be structured
as a binary tree, even though the methodology presented in
this paper can be used for any other search algorithm. In what
follows, agap (or void) denotes the time interval between two
already scheduled bursts, as shown in Fig. 2.
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Fig. 2. Example of burst scheduling and resulting gaps

Essentially, when a BCP arrives at a core node withw
wavelengths, a time-horizon ofD units of time is defined. This
time-horizon can be set, for instance, to the maximum offset
time. We note that the scheduling agent keeps track of the
unscheduled time-slots (gaps) in all wavelengths. Then, upon



BCP arrival, the scheduling agent runs a search algorithm,
that outputsa list of possible gapsover which the burst fits.
Then, the scheduling algorithm selects the most suitable gap
according to the metric defined by the particular scheduling
algorithm (LAUC-VF in our case).

For simplicity, we shall consider that the time taken to per-
form the optimal choice among the available gaps (scheduling
time) is very low compared to the time spent in searching for
available gaps (searching time). Processing and searchingtime
are thus considered the same amount.

III. A NALYSIS OF GAP SEARCHING TIME

Clearly, the gap searching time, depends on the probability
distribution of the number of gaps over which to perform
the search. In this light, the more bursts scheduled, the more
gaps between them, hence the searching time increases with
the number of successfully scheduled bursts. The following
derives an exact equation for modelling the gap searching time.

A. Burst arrival process and distribution of number of gaps

Let BCP arrivals follow a Poisson process with rateλBCP .
The burst arrival process must take into account both the
BCP arrival process and the offset-time values, which shallbe
assumed uniformly distributed. The following lemma statesa
fundamental result about the burst arrival process.

Lemma 1 If the BCP arrival process is Poisson, then the
burst arrival process is Poisson, regardless of the offset-time
distribution.

Proof: Let {Y (t), t > 0} be the BCP arrival process
(Poisson with rateλ), and let{Z(t), t > 0} be the burst arrival
process. Also, letX be the offset time with probability density
function fX(x), x > 0. Then,

P(Z(t0 + ∆t) − Z(t0) = 1) =

=

∫

∞

0

P(Y (t0 − x + ∆t) − Y (t0 − x) = 1|X = x)

fX(x)dx =

=

∫

∞

0

(λ∆t + o(∆t))fX(x)dx = λ∆t + o(∆t)

and the burst arrival process is Poisson.�

Furthermore, the number of accepted data bursts is thus
Poisson (as seen above) with rateλ = (1 − Pb)λBCP , where
Pb denotes the burst blocking probability.

Now, the following observation is key for deriving the
distribution of number of gaps:Each accepted burst generates
an extra gap. Basically, when a data burst is successfully
scheduled in a gap, such gap is effectively split into two, thus
creating two new gaps. Thus, the gap arrival process and the
accepted burst arrival process are the same.

Consequently, letN (ss)
g be the number of gaps under steady-

state conditions, and recall that the scheduling horizon time is
equal toD units of time. Then the probability density function
(pdf) of gaps under steady-state conditions is given by:

P (N (ss)
g = n) =

(λD)(n−1)

(n − 1)!
e−λD, n = 1, 2, . . . (1)

B. Gap distribution at BCP arrival

Recall that eq. 1 gives the pdf of gaps in steady-state
conditions. The following derives the gap distributionat BCP
arrivals.

Let t = 0 denote the arrival time of a given BCP (“tagged”
BCP, see fig. 3) with maximum offset timeD, thus attempting
to make a reservation somewhere in[0,D]. The next step is
to derive the number of successfully scheduled bursts in the
horizon time of such tagged BCP. Clearly, BCP arrivals at
time t < −D do not count since they could never possibly
schedule their associated bursts within timet ∈ [0,D], and so
applies to BCP arrivals aftert > 0 for the tagged BCP would
have preference over them since it arrived earlier. Thus, the
number of BCPs that may attempt for burst reservation in the
horizon time of the tagged BCP constitutes only a portion
of the arrivals in[−D, 0]. Clearly, some of such arrivals in
[−D, 0] attempt for reservation in[−D, 0], and some others
attempt over the time interval[0,D]. The question is how many
of them attempt for reservation over[0,D].

Fig. 3. Tagged BCP arrival

To do so, letO ∼ U(0,D) denote the offset time of a
BCP which arrives in the “past-horizon” time (that is, in
[−D, 0]) of the tagged BCP, and letX refer to its arrival
time. Clearly, since BCPs arrive following a Poisson process,
X is uniformly distributed over[0,D]. Then, the probability
to actually attempt for a reservation over the horizon time of
the tagged BCP is:

P =

∫ D

0

P (O > D − x)fX(x)dx =

∫ D

0

D − x

D

1

D
dx =

1

2
(2)

Thus, only half of the arrivals in[−D, 0] actually attempt
for a reservation in the horizon time of the tagged BCP. Hence,
at BCP arrivals, the distribution of the number of gaps in the
horizon time of the tagged BCP,N (BCP )

g , is given by:

P (N (BCP )
g = n) =

(λgD)(n−1)

(n − 1)!
e−λgD, n = 1, 2, . . . (3)

whereλg = 1
2 (1 − Pb)λBCP.



C. Gap searching time

Finally, letTs denote the SCU service time. Then, assuming
a binary search algorithm is employed, the searching time is
proportional to the logarithm (base 2) of the number of gaps
over which the search is performed. That is:

Ts = k log(N (BCP )
g ) (4)

wherek > 0 is an arbitrary constant that denotes the cost per
search (in units of time). Therefore:

P(Ts = tn) = P (N (BCP )
g = n), n = 1, . . . (5)

where tn = k log(n), n = 1, 2, . . . are discrete values. The
service time distribution functionFTs

(t) = P(Ts < t), which
is necessary for the next section, is thus given by:

FTs
(t) =

n
∑

i=1

(λgD)(i−1)

(i − 1)!
e−λgD =

Γinc(λgD,n)

Γ(n)
, t ≥ 0

(6)
wheren satisfiestn ≤ t < tn+1, and the incomplete gamma
function isΓinc(x, n) =

∫

∞

x
tn−1e−tdt.

IV. WAITING TIME DISTRIBUTION

To analyse the waiting time pdf in the M/G/1 queue we
follow [7, chapter 5], which gives:

fWq
(t) = (1 − ρ)

∞
∑

n=0

ρnf
(n)
R (t), t ≥ 0 (7)

whereρ is the M/G/1 utilisation factor andR(n)(t) is then-
th convolution of the service time residual life pdffR(t) [7,
equation 5.38]:

fR(t) =
1

Et
(1 − FTs

(t)), t ≥ 0 (8)

whereEt is the mean service time in the SCU.
Using eq. 6 and 8,fR(t) arises easily as:

fR(t) =
1

Et

(

1 −
Γinc(λgD,n)

Γ(n)

)

, t ≥ 0 (9)

The infinite sum given by eq. 7 can be truncated toL terms
since the values for largen decreases rapidly withρn, ρ ≤ 1.
Thus:

fWq
(t) ≈ (1 − ρ)

L
∑

n=0

ρnf
(n)
R (t), t ≥ 0 (10)

V. SIMULATION RESULTS

Fig. 4 shows the waiting time pdf of BCPs arriving at a core
OBS node with obtained both theoretically and via simulation.
The values of the simulation parameters are: BCP arrival rate
λBCP = 5.0 bursts per unit of time, maximum offset-time
D = 10 units of time, cost per searchk = 0.01 units of
time, fixed burst lengthc = 5.0 units of time andw = 4
wavelengths. The blocking probability has been considered
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Fig. 4. Waiting Time for a BCP in the queue. Offset: Uniform=10.0, Constant
burst length = 5.0, k = 0.01, BCP arrival rate = 5.0

close to the Erlang-B, since this is the case for OBS switches
operating at low loads [8].

A number ofL = 3 terms has been considered to estimate
fWq

(t) as given in eq. 10, since adding terms after this
value does not improve the accuracy offWq

. As shown, the
theoretical results accurately match the simulation values.

VI. SUMMARY AND CONCLUSIONS

This work provides an accurate model for the processing
time of BCPs at core OBS nodes. The model shows that: (1)
such value is variable, (2) follows a Poisson distribution if the
BCPs arrive on a Poisson process, (3) depends on the number
of searchs (or gaps) required by the scheduling algorithm, thus
on the switch’s load, characterised by:λ andPb, and (4) can
be applied to a M/G/1 queue to obtain the BCP waiting time
distribution.

This result is key in dimensioning the offset time values
between BCPs and data bursts.
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