Analysis of the Processing and Sojourn Times of
Burst Control Packets in Optical Burst Switches

Luis de Pedro, Javier Aracil, JesAlberto Herdndez and JésLuis Garta-Dorado
Networking Research Group, Depto. Ingeraeinformatica
Universidad Aubnoma de Madrid, Spain

Sojourn time

Abstract—In Optical Burst Switched networks, when a Burst
Control Packet arrives at a core node, its scheduling algorithm

looks up its internal reservation table for an available gap at Waiting time Processing time

which to accomodate the incoming burst. The processing time

Of the BCP iS Variable, and depends on the number Of aVaiIable - BCP Queue Gap searchy ——  Gap found: reservation accepted
gaps over which to perform the search.

This work analyses the gap distribution in such reservation l
table, and derives an expression for the waiting time of BCPs,

assuming LAUC-VF scheduling. Our findings can be applied to No gap available: reservation rejected
the dimensioning of the offset time values in OBS networks, for )
a realistic case of BCP variable processing times. Fig. 1. SCU model

Index Terms—Optical Burst Switching, Burst Control Packet
processing time, void filling scheduling algorithms.

gueue. The processing time accounts for the time spentaintil
|. INTRODUCTION suitable gap at which to allocate the incoming burst is found
Optical Burst Switching (OBS) [1] provides intermedi-More precisely, if the gap information is stored, for instan

ate switching granularity between optical circuit and mdckas a binary tree, then the scheduling time is proportional to
switching. For each data burst, a Burst Control Packet (BCH#e logarithm (base 2) of the number of gaps over which to
is sent ahead in order to announce the burst arrival at imternperform the search.
diate OBS nodes. With the information carried by the BCP, the Indeed, the accurate modelling of the processing time of
node’s scheduler attempts to find an available gap at whichBEPs is key in designing the offset time given to every source
allocate the forthcoming burst. If more than one suitable galestination path in the OBS network, since BCPs’ sojouretim
is found, then the Switch Control Unit (SCU) chooses one ebnsume offset time.
them according to some scheduling algorithm (see Horizpn [2

LAUC-VF [3], Min-SV [4] and MinVoids [5]). If all output Il. PRELIMINARIES
wavelengths are occupied and no available gap is found, thd-et us consider that the SCU features the LAUC-VF al-
data burst is then dropped. gorithm, and let the available gap information be struature

LAUC-VF is known to outperform since it considers all theas a binary tree, even though the methodology presented in
possible gaps among already scheduled data bursts, thiat i#is paper can be used for any other search algorithm. In what
employsvoid filling. Clearly, this algorithm requires to keepfollows, agap (or void) denotes the time interval between two
track of the starting times and durations of all scheduletkti already scheduled bursts, as shown in Fig. 2.
intervals (gaps) in a given internal structure. Upon BCvakr
the algorithm looks up this structure for an available gagl a D seconds
updates it if the burst is successfully fitted in a gap. Thus,
for scheduling algorithms with void fillingthe algorithm’s

execution time is variabjesince the processing time spent BCPB Offset] _r==ssyy. Gap (S w wavelenght
directly depends on the set of available gaps over which to -
perform the search. Clearly, such number of gaps also depend \\
on the switch’s load.
This paper aims to characterise the sojourn time of BCPs at
core OBS nodes. Essentially, incoming BCPs are first stored Fig. 2. Example of burst scheduling and resulting gaps
in a queue, and then served following a First-Come First-
Served basis (see Fig. 1). Thus, the total sojourn time of aEssentially, when a BCP arrives at a core node with
BCP constitutes the sum of the two components: waiting tinveavelengths, a time-horizon @ units of time is defined. This
in queue and processing time. time-horizon can be set, for instance, to the maximum offset
Under the assumption of Poissonian BCP arrivals [6], tligne. We note that the scheduling agent keeps track of the
M/G/1 model can be used to obtain such waiting delay imnscheduled time-slots (gaps) in all wavelengths. Theonup
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BCP arrival, the scheduling agent runs a search algorithm,
that outputsa list of possible gapsver which the burst fits. (ne1)
Then, the scheduling algorithm selects the most suitalge ga P(N(ss) =n) = (AD) e 19 1)
according to the metric defined by the particular scheduling g (n—1)! ’ Y
algorithm (LAUC-VF in our case). o .
For simplicity, we shall consider that the time taken to peP: Gap distribution at BCP arrival
form the optimal choice among the available gaps (schegulin Recall that eq. 1 gives the pdf of gaps in steady-state

time) is very low compared to the time spent in searching f@bngitions. The following derives the gap distributianBCP
available gaps (searching time). Processing and seartimeg 4 ivals.

are thus considered the same amount. Let ¢t = 0 denote the arrival time of a given BCP (“tagged”

BCP, see fig. 3) with maximum offset tim@, thus attempting
to make a reservation somewhere[inD]. The next step is
Clearly, the gap searching time, depends on the probability derive the number of successfully scheduled bursts in the
distribution of the number of gaps over which to perfornhorizon time of such tagged BCP. Clearly, BCP arrivals at
the search. In this light, the more bursts scheduled, theemdime ¢ < —D do not count since they could never possibly
gaps between them, hence the searching time increases withedule their associated bursts within time [0, D], and so
the number of successfully scheduled bursts. The followirggpplies to BCP arrivals after> 0 for the tagged BCP would
derives an exact equation for modelling the gap searching.ti have preference over them since it arrived earlier. Thus, th
number of BCPs that may attempt for burst reservation in the
A. Burst arrival process and distribution of number of gapshorizon time of the tagged BCP constitutes only a portion
of the arrivals in[—D, 0]. Clearly, some of such arrivals in
I[1—D,O] attempt for reservation ifi-D, 0], and some others
a?tempt over the time interv@), D]. The question is how many
of them attempt for reservation ové, D).

IIl. A NALYSIS OF GAP SEARCHING TIME

Let BCP arrivals follow a Poisson process with rate-p.
The burst arrival process must take into account both t
BCP arrival process and the offset-time values, which dtsll
assumed uniformly distributed. The following lemma stades
fundamental result about the burst arrival process.

Lemma 1 If the BCP arrival process is Poisson, then the tagged BCP
burst arrival process is Poisson, regardless of the ofiiset- HH@X ffset O
distribution. | !
Proof: Let {Y(¢),t > 0} be the BCP arrival process t=-D t=0 t=D
past horizon time [-D,0]  horizon time [0,D]

(Poisson with rate\), and let{ Z(¢), ¢ > 0} be the burst arrival

process. Also, leX be the offset time with probability density _ _
function fX(T) > 0. Then Fig. 3. Tagged BCP arrival
To do so, letO ~ U(0,D) denote the offset time of a

P(Z(to + At) — Z(to) = 1) = BCP which arrives in the “past-horizon” time (that is, in

_ /oo B(Y(t — 2+ Af) — Y(ty — 2) = 1]X = ) [-D,0]) of the tagged BCP, and leX refer to its arrival
0 time. Clearly, since BCPs arrive following a Poisson prgces
fx(@)dz = X is uniformly distributed ovef0, D]. Then, the probability

to actually attempt for a reservation over the horizon tirhe o

= /0 (AAt + o(At)) fx (x)dz = AAL + o(At) the tagged BOP i

and the burst arrival process is Poissbh.

Furthermore, the number of accepted data bursts is thus D Dp_+1 1
Poisson (as seen above) with rate= (1 — Py)Agcp, where P = [ P(O>D —x)fx(x)de = / 5 p¥=3
P, denotes the burst blocking probability. 0 0 @)

Now, the following observation is key for deriving the Thus, only half of the arrivals ii—D, 0] actually attempt
distribution of number of gaps&ach accepted burst generategor a reservation in the horizon time of the tagged BCP. Hence
an extra gap Basically, when a data burst is successfullgt BCP arrivals the distribution of the number of gaps in the
scheduled in a gap, such gap is effectively split into twaisth horizon time of the tagged BC g(BCP), is given by:
creating two new gaps. Thus, the gap arrival process and the
accepted burst arrival process are the same.

Consequently, IeNSESS) be the number of gaps under steady-
state conditions, and recall that the scheduling horizoe fis
equal toD units of time. Then the probability density function
(pdf) of gaps under steady-state conditions is given by:  where), = %(1 — Py) Ascp

n—1
P(N!gBCP) — n) — ()\QD)( )e—ng

(n—1)! , n=12.. (3



C. Gap Searching tlme Waiting time in BCP queue when busy
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Calculated

Finally, letT, denote the SCU service time. Then, assuming Simulated _+
a binary search algorithm is employed, the searching time is
proportional to the logarithm (base 2) of the number of gaps
over which the search is performed. That is: »

20

T, = klog(N{P“P) @)

pdf

wherek > 0 is an arbitrary constant that denotes the cost per **[

search (in units of time). Therefore: o

P(T, =t,) = P(NPP) =n), n=1,... (5 .

wheret,, = klog(n), n = 1,2,... are discrete values. The
service time distribution functiodr, (¢t) = P(Ts < t), which ° oo oo e o o o
is necessary for the next section, is thus given by:

Fig. 4. Waiting Time for a BCP in the queue. Offset: Uniform=,Constant
burst length = 5.0, k = 0.01, BCP arrival rate = 5.0

. e = ,
—~ (i—-1) L'(n close to the Erlang-B, since this is the case for OBS switches

(6) operating at low loads [8].
wheren satisfiest, <t < t,11, and the incomplete gamma A number of L = 3 terms has been considered to estimate
function isTinc(z, n) = [ t"~letdt. fw,(t) as given in eq. 10, since adding terms after this
value does not improve the accuracy fif;,. As shown, the

theoretical results accurately match the simulation \&alue
To analyse the waiting time pdf in the M/G/1 queue we

follow [7, chapter 5], which gives:

“~ (A\gD)D Linc(AgD
FTS(LL) _ Z (/\9 ) —A¢D _ |nc(/\g ’n) t>0

IV. WAITING TIME DISTRIBUTION

VI. SUMMARY AND CONCLUSIONS

This work provides an accurate model for the processing
S (n) time of BCPs at core OBS nodes. The model shows that: (1)
fw, (1) = (1 = p) Z PR (@), 20 () such value is variable, (2) follows a Poisson distributibthne
n=0 BCPs arrive on a Poisson process, (3) depends on the number
wherep is the M/G/1 utilisation factor andk("™) (¢) is then- of searchs (or gaps) required by the scheduling algorithos t
th convolution of the service time residual life pdf(¢) [7, on the switch’s load, characterised byand P, and (4) can

equation 5.38]: be applied to a M/G/1 queue to obtain the BCP waiting time
1 distribution.
frR)==0—-Fr,(t), t>0 (8) This result is key in dimensioning the offset time values
Et
) L between BCPs and data bursts.
where E't is the mean service time in the SCU.
Using eq. 6 and 8fx(t) arises easily as: ACKNOWLEDGEMENTS
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