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J. L. Garcı́a-Dorado, J. E. López de Vergara and J. Aracil

Networking Research Group
Escuela Politécnica Superior
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Abstract— One of the key factors in Optical Burst
Switching Networks is the scheduling algorithm that
is used in the switches to allocate the incoming
bursts to a wavelength. In this paper we evaluate the
most well-known scheduling algorithms assuming a
realistic case of non-deterministic offset times and
burst sizes. Many interesting conclusions can be
drawn from this approach. First, the scheduling
algorithms’ performance with respect to the burst
loss ratio is not highly influenced by the burst size
distribution, whereas the offset time variability has
some influence. Secondly, if the target loss rate
is small (10−5) the performance of the different
scheduling algorithms is roughly the same. On the
other hand, extensive evaluation of the algorithms’
computational cost is also performed to conclude
that, at low loss rates, a simple First-Fit with void
filling algorithm provides the same result than a
more complex void filling algorithm, at a much lower
complexity cost. Furthermore, it turns out that these
results can be explained in terms of the “overtaking”
effect, i.e. bursts arriving earlier than other bursts
despite the Burst Control Packet (BCP) has actually
arrived after the BCP of the overtaken bursts.

Index Terms— OBS, scheduling algorithm, burst
size, offset variability, overtaking probability

I. INTRODUCTION

Several switching approaches are currently be-
ing considered for all-optical networks: optical
circuit switching (OCS), optical packet switching
(OPS) and optical burst switching (OBS). The
main drawback of OCS is the circuit setup time,
which can take more than the circuit holding time.
On the other hand, no setup time is incurred with

OPS, but the packet header has to be interpreted
in the electrical domain on a hop-by-hop basis,
which is very challenging for Gbps speeds. The
OBS approach is actually a combination of both
OCS and OPS. A Burst Control Packet (BCP)
is sent an offset time before the optical burst
transmission. Thus, the BCP announces the optical
burst arrival to the intermediate OBS switches,
which reserve a wavelength in the corresponding
output port. Typically, the BCP contains informa-
tion about the arrival instant of the incoming burst,
and also about the burst size. Consequently, the
output wavelength is reserved only for the burst
transmission time, possibly adding a guard band.
This approach is called Just Enough Time (JET)
[1], and it will be assumed in what follows.

Note that the optical burst is transmitted without
confirmation. Thus, chances are that the output
wavelength cannot be reserved in an intermediate
switch. As a result, the burst will be dropped.
A number of burst scheduling algorithms have
been proposed to minimise the burst dropping
probability. Assuming wavelength conversion ca-
pabilities are available at the switch, there are a
number of wavelengths to choose from. Precisely,
the scheduling algorithms differ in the way the
wavelength selection is performed. The simplest
approach is to choose the first available wave-
length. Note that this approach leads to a very high
utilization of the wavelengths that are probed first.
An alternate approach is to consider the smallest
void (in duration) among the ones the optical burst
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fits in. It becomes apparent that the latter reduces
fragmentation, albeit this is at the expense of a
higher computational cost.

In evaluating the scheduling algorithms, two
fundamental issues have to be considered. First,
the burst size is a random variable. In fact, bursts
are generated at the network edges by a functional
unit that will be denoted by “burstifier”. Time-
based and size-based algorithms have been con-
sidered (or a combination of both), that produce
bursts with different burst sizes. Clearly, a size-
based burstification algorithm will produce bursts
with the same size, but a time-based algorithm
will not. A number of size distributions have been
considered for that case, including Gaussian and
Gamma distributions [2], [3].

Secondly, the offset time is also a random
variable. This is a consequence of the different
distances of the burstifiers to a given switch, in
number of hops. At each intermediate switch there
is a BCP processing time which actually decreases
the offset time between BCP and burst. Note that
the burst does not leave the optical domain, while
the BCP is O/E/O converted and processed in the
electronic domain. Even if the offset times were
the same for all burst in the source burstifiers, the
different distances from them to a given switch
imply that the offset times will not be the same.
Most interestingly, a BCP may announce the ar-
rival of a burst that happens before the arrival of
other bursts whose BCPs have already arrived. We
call this phenomenon “overtaking”.

The burst scheduling algorithm is a central issue
in an OBS switch architecture. Therefore, a num-
ber of proposals have appeared in the literature [4],
[5], [6], [7], [8], [9], [10], [11]. The performance
evaluation of the proposed algorithms is focused
on the computational complexity and the burst loss
ratio, in comparison to other algorithms. However,
to the best of our knowledge, no comparative
performance evaluation has been published that
takes into account the fact that both burst sizes
and offset times are non-deterministic.

Actually, by considering the effect of non-
deterministic burst sizes and offset times a number
of most interesting issues arise. On one hand,
the burst size distribution does not affect much
the scheduling algorithm performance. This means
the burstification algorithm has little influence in

the switch blocking probability, no matter the
scheduling algorithm being used. While it is well
known that the burst size distribution does not
affect the switch occupancy distribution, as given
by the Erlang-B formula, the results presented in
this paper actually extend this invariant property to
the scheduling algorithm. On the other hand, the
offset time has some influence in the scheduling
performance. This fact paves the way for offset
compensation algorithms that tend to equalize the
offset times at a given switch, with knowledge of
the network topology.

Finally, we also evaluate the scheduling algo-
rithms under realistic traffic load and blocking
probability. We note that the advent of multi-
media services call for more stringent QoS re-
quirements, and optical networks are expected to
provide low loss probability. If we examine the
scheduling algorithms in a loss probability range
below 10−5 then the performance of the different
scheduling algorithms is very much alike. How-
ever, the computational cost radically differs from
one algorithm to another. Thus, the choice of a
scheduling algorithm is conditioned by the switch
loss probability regime. Most interestingly, it turns
out that an apparently worse algorithm performs
better, if we take into account the computational
cost.

In this paper, considerable insight is provided on
the practical applicability of well-known schedul-
ing algorithms, through extensive simulation ex-
periments. The paper is structured as follows: In
section II we describe the scheduling algorithms
under analysis, together with the simulation plat-
form. Section III and section IV are devoted to the
influence of burst size and offset time distribution
in the scheduling algorithm performance respec-
tively. In section V we present the discussion, and
relate the results to the “overtaking” probability.
Finally, section VI presents the conclusions that
can be drawn from this analysis.

II. BURST SCHEDULING ALGORITHMS AND

SIMULATION TOOL

In this paper, we consider the following
scheduling algorithms, which are briefly de-
scribed. Please refer to the references for further
information.
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1) First-Fit [8]: The wavelengths are numbered
in increasing order and they are probed
sequentially, searching for an available void.

2) LAUC-VF [8]:: This algorithm searches for
a void in the Latest Available Unscheduled
Channel. Namely, the algorithm searches for
a void whose starting time is as close as
possible to the ending time of the previously
transmitted burst in the same channel.

3) Best-Fit [11]: The algorithm searches for a
void with minimum fragmentation. Namely,
the algorithms selects the void that generates
the shortest voids (in duration) before and
after the scheduled burst.

4) Iizuka algorithm [4]: It is a variant of
LAUC-VF that gives preference to selecting
voids between scheduled bursts with respect
to placing bursts at the reservation horizon,
i. e. with no bursts scheduled for transmis-
sion after the incoming burst.

We note that all the algorithms considered in
this study perform void filling. The algorithms
have been coded in an ad-hoc simulator written
in C, which was extensively validated. We used
an ad-hoc simulator to be able to evaluate the
algorithms performance even in low loss probabil-
ity regimes. To obtain a robust estimation of the
blocking probability for low probability values one
needs a very large number of samples, which in
turn makes simulation time increase significantly.
Therefore, our simulation code is optimized for
performance and reasonable simulation times were
achieved. The BCP arrival process is assumed
to be Poisson [12] and the burst size distribu-
tion is assumed to be Gaussian, deterministic or
Exponential. The coefficient of variation c2

v =
(variance/mean)2 for the Gaussian distribution is
always equal to 0.01. As for the offset times,
we consider a uniform distribution with different
lower and upper bound to analyze the influence of
variability on the offset time. We also consider the
NSFNet network and derive empirically the offset
time distribution, in order to evaluate a realistic
case. On the other hand, we will assume that the
OBS switches are not equipped with Fiber Delay
Lines (FDLs).

In what follows all time units are normalized
to the burst transmission time. Unless otherwise
stated, in all our figures the x-axis represents the

Algorithm Key

First-Fit firstF
LAUC-VF laucVF
Best-Fit bestF
Iizuka Iizuka

TABLE I

KEY TO THE LEGEND IN THE FIGURES

BCP (or burst) arrival rate and the number of
wavelengths is equal to 10, even though the same
conclusions are obtained with different number of
wavelengths. Table I provides a key to the legends
in the figures.

Finally, we also provide the blocking probabil-
ity results for the Erlang-B formula, for compari-
son purposes.

III. INFLUENCE OF BURST SIZE DISTRIBUTIONS

Figures 1, 2 and 3 show the burst loss for
different scheduling algorithms using Gaussian,
deterministic and exponential distributions for the
burst size, all with the same average burst size,
which is equal to five. The offset time is a uniform
random variable in the range [0, 30]. In figures 4,
5 and 6 the average burst size is now equal to 15.

It can be seen that in both cases the results
are similar if the average burst size is the same,
although the burst size distributions are different.
Note also that LAUC-VF, Best-Fit or Iizuka algo-
rithms are less sensitive to burst size distribution
than First-Fit.

Finally, it is worth noting that if the offset time
is constant then all the algorithms perform exactly
the same, since there is no void-filling at all. The
results for constant offset time will be reported in
the next section.

IV. INFLUENCE OF THE OFFSET SIZE

DISTRIBUTIONS

Figures 7, 8, 9 and 10 show the burst loss prob-
ability for uniform offset distributions with ranges
[0, 10], [0, 30], [0, 100] and [0, 300] and Gaussian
burst lengths. The average burst size is now con-
stant and equal to 5. The influence of the offset
time distribution in the burst loss probability is
now striking. Actually, as the offset time vari-
ability increases the burst loss probability also
increases. This increment is high in the first range
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Fig. 1. Offset: Uniformly distributed [0, 30], Gaussian burst
length mean=5.0
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Fig. 2. Offset: Uniformly distributed [0, 30], Deterministic
burst length=5.0
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Fig. 3. Offset: Uniformly distributed [0, 30], Exponential burst
length mean=5.0
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Fig. 4. Offset: Uniformly distributed [0, 30], Gaussian burst
length mean=15.0
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Fig. 5. Offset: Uniformly distributed [0, 30], Deterministic
burst length = 15.0
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Fig. 6. Offset: Uniformly distributed [0, 30], Exponential burst
length mean=15.0
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(with respect to Erlang-B), moderate in the second
range with respect to the first one, and low in
the third and fourth ranges, where the burst loss
is nearly the same, and insensitive to the offset
variability increment. The reason of this behavior
is given in next section, and is directly related to
the overtaking probability.

With regard to constant offset times it is in-
teresting to remark that no void-filling occurs
because no overtaking happens whatsoever. In that
case, the burst dropping probability is determined
by the occupancy distribution of the wavelengths.
Figure 11 shows the burst dropping probability in
that case. All the scheduling algorithms perform
exactly the same, and the burst dropping probabil-
ity is given by the Erlang-B formula [13].

It is also important to point out that the same
results are obtained with other burst size distribu-
tions (constant, Exponential), not shown here for
brevity.

V. DISCUSSION

From our simulation campaign we learnt that
the burst dropping probability is influenced by
two factors: first, the wavelengths’ occupancy and,
secondly, an insufficient void size.

Clearly, a burst will be dropped if all the wave-
lengths are occupied by the moment that burst
arrives. Let us denote by Po the burst dropping
probability due to occupancy. Such burst dropping
probability is given by the Erlang-B formula. On
the other hand, even though there are available
wavelengths a burst may be dropped if the burst
transmission time is larger than the minimum
duration of the available voids. We call this effect
insufficient void size. Let Pv refer to the burst
dropping probability due to insufficient void size.
If P is the burst dropping probability then it turns
out that P = Po+Pv ≥ Po. Actually, note that the
Erlang-B formula is a lower bound for the burst
dropping probability in all the performance curves
presented in this paper. Furthermore, the fact the
Po is given by the Erlang-B formula is supported
by the lemma included in appendix I, that shows
that the burst arrival process is Poisson, no matter
that the offset time is variable.

Nevertheless, as can be seen in figure 11, if the
offset time is constant then P = Po. In that case,
no overtake between bursts happen. Conversely,
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Fig. 7. Offset: Uniformly distributed [0, 10], Gaussian burst
length mean=5.0
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Fig. 8. Offset: Uniformly distributed [0, 30], Gaussian burst
length mean=5.0
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Fig. 9. Offset: Uniformly distributed [0, 100], Gaussian burst
length mean=5.0
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Fig. 10. Offset: Uniformly distributed [0, 300], Gaussian burst
length mean=5.0



6

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

B
ur

st
 lo

ss
 r

at
io

arrival rate

firstF
laucVF

bestF
erlang-B

Iizuka

Fig. 11. Offset: Deterministic=3.0, Gaussian burst length
mean=15.0

Burst 2

BCP 1

BCP 2

Burst 1

Fig. 12. Burst 2 overtakes burst 1

the variable offset time is responsible for the burst
overtake, as explained in figure 12.

To evaluate the impact of the burst overtake
probability in the burst dropping probability we
consider the case of offset times in the NSFNet
topology, as seen in figure 13. We calculate all
routes from any source to any destination using
the minimum number of hops criteria. We assume
that that the traffic matrix is homogeneous, i. e.,
all nodes produce the same traffic to the rest of
the nodes. On the other hand, we assume that the
BCP processing time at each intermediate switch
is equal to ∆. For each of the switches, we obtain
the set of upstream switches and derive the offset
time distribution. To this end, we consider that the
burst offset time at the network edges is equal to
4∆, i.e. the network diameter in number of hops.
Then, for each of the switches upstream from a
given switch we subtract ∆ to the offset time. The
several paths that go across the switch give rise
to different offset times at that switch. Namely,
the bursts arriving to any given switch in the
network have variable offset times. We consider
an intermediate switch in the topology and obtain
the offset time distribution, by averaging the offset
times with the traffic in the paths upstream. The
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Fig. 13. NSFNet topology

Offset time Probability

2∆ 0.65137
3∆ 0.33027
4∆ 0.0101834

TABLE II

OFFSET TIME DISTRIBUTION (30,45,60)

P=[0.65137,0.33027,0.01834]

distribution range does not include the value ∆ for
the offset time as it corresponds to the last hop,
which only receives the burst. Namely, it does not
relay the burst to the next hop. Thus, the burst is
not scheduled in an output wavelength, which is
the case under analysis. Table II shows the offset
time distribution that was used in our simulation
experiment.

Figures 14 and 15 show the burst dropping
probability and the overtake probability for the
offset time distribution shown in table II, with
∆ = 15. We note that roughly 65% of the bursts
have the smallest offset time of 2∆, namely. Then,
the overtake probability is relatively high.

Let us now consider, for the sake of com-
parison, an inverted offset time distribution,
namely let us consider the offset time distri-
bution (30, 45, 60) with probability vector p =
[0.01834, 0.33027, 0.65137]. We choose this dis-
tribution because the shortest offset time 30 is
now less frequent (roughly 2%). Figures 16 and 17
show the burst dropping probability and the over-
take probability for the new offset time distribu-
tion. Since the overtake probability now decreases,
it turns out that the burst dropping probability
also decreases as expected. In this case, there
are less chances of void filling, and the burst
dropping probability due to insufficient void size
now decreases.
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Fig. 14. Burst dropping probability Offset: Discrete (30,
45, 60) p=[0.65137,0.33027,0.01834], Gaussian burst length
mean=5
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Fig. 15. Overtake probability Offset: Discrete (30,45,60)
p=[0.65137,0.33027,0.01834], Gaussian burst length mean=5

This fact explains the behavior identified in
section IV when analyzing figures 7-10: if the
offset varies in the range [0, 10], the overtaking
probability increases rapidly from zero and the
performance gets worse. Then, in the range [0, 30],
the overtaking probability and the burst loss in-
crease again notably. Next, in the range [0, 100] the
overtaking probability increases again, but not so
much. Finally, in the range [0, 300] the overtaking
probability and the burst loss tend to stabilize.
Logically, when the overtaking probability is near
100% the rate of increase cannot be that large, thus
reducing the sensitiveness to offset variations. It
is also interesting to note that First-Fit algorithm
is more sensitive to such overtaking probability,
being the rest of algorithms more adaptive to this
variability, needing a higher variability to achieve
the stable burst loss.
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Fig. 16. Burst dropping probability Offset: Discrete (30,
45, 60) p=[0.01834,0.33027,0.65137], Gaussian burst length
mean=5.0
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Fig. 17. Overtake probability Offset: Discrete
[0.01834,0.33027,0.65137], Gaussian burst length mean=5.0

It is worth remarking that there are scheduling
algorithms, which are not considered in this pa-
per, that tackle the overtake issue using ordered
scheduling [6], or bursts rescheduling [7]. As
an alternate approach, the Virtual Fixed Offset
scheduling algorithm [5] reduces the variability
of the offset times. However, the main drawback
of these algorithms is the extra signalling which
is required to reallocate bursts and the increased
computational effort.

A. Low loss rate regime

Optical networks are expected to provide low
packet dropping probability. This motivates the
analysis of the scheduling algorithms under low
loss rate regime. Furthermore, considering sparse
network topologies and a loss probability vec-
tor (p1, . . . , pM ) for a path traversing switches
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Fig. 18. Burst dropping probability Offset: Uniformly dis-
tributed [0, 30], Gaussian burst length mean=5.0
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Fig. 19. Comparison between LAUC-VF and First-Fit algo-
rithms

1, . . . , M then it turns out that the path burst
dropping probability p can be approximated as
p ≈

∑
M

i=1
pi, if the pis are small. This further

motivates the investigation of scheduling algo-
rithms in low loss rate regime, because the loss
probability is additive, the worse the larger the
path in number of hops. Thus, the loss probability
at each individual switch must be kept reasonably
small.

Figure 18 shows the burst dropping probabil-
ity of the different scheduling algorithms, for
dropping probabilities smaller than 10−4. While
LAUC-VF provides the best performance, the dif-
ference is bounded by 3 · 10−5. This is actually
shown in figure 19, which shows the difference
between the worst and the best scheduling algo-
rithms in figure 18. However, we note that the dif-
ference in computational cost is very significant,
as will be explained in the next subsection.
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Fig. 20. Offset: Uniformly distributed [0, 3], Gaussian burst
length mean=5.0

B. Computation cost

The computational cost of a scheduling algo-
rithm relates to the BCP service time, which is in
turn related to the offset time. If the execution
time of a scheduling algorithm is large, then
the offset time must also be large. Otherwise,
chances are that the burst reaches a given switch
before the associated BCP, because it was delayed
too much in the upstream switches. Furthermore,
large execution times are also a limiting factor
for switch scalability, since the same control unit
will not be able to serve an increasing number
of wavelengths, and will have to be replaced.
It is expected that the number of wavelengths
increases, as the underlying optical technological
becomes more mature.

To evaluate the computational cost, we consider
that probing a wavelength for a void is a basic
task in the scheduling algorithm. Figure 20 shows
the number of tasks (i.e. checking whether there
is a void in a wavelength or not for the incoming
burst) for 15, 000, 000 bursts processed. The offset
is uniform in the range [0, 30] and the burst length
is Gaussian.

Clearly, the First-Fit algorithm shows a much
lower computational cost, since it does not require
checking every wavelength in order to find the
shortest void, as happens with Best-Fit or LAUC-
VF. At low loss rate regimes, one has to trade-
off the simplicity of the scheduling algorithm
implementation versus the real gains in terms of
burst dropping probability, as indicated by figures
18 and 19.
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C. Validation

Finally, it is worth mentioning that our simu-
lation campaign also serves to validate previously
published results, concerning QoS differentiation
with offset time. Figure 21 shows the offset
time Cumulative Distribution Function (CDF) for
dropped bursts, with uniform offset times and
burst lengths. It turns out that bursts with smaller
offset times have more chances to be dropped than
bursts with larger offset times, as it is commonly
accepted [8]. On the other hand, figure 22 shows
the burst size CDF for dropped bursts, which
shows that larger bursts have a larger dropping
probability. This matches our intuition that it is
harder to find a void for large burst than for small
bursts. However, this is not in contradiction with
the fact that the burst size distribution does not
affect the burst dropping probability (see section
III). It only shows that within the same burst size
distribution, large bursts are more likely to be
dropped.

VI. CONCLUSIONS AND FUTURE WORK

The results presented in this paper provide
considerable insight into the dynamics and perfor-
mance of burst scheduling algorithms. First, our
findings show that the burst size distribution does
not affect the burst dropping probability signifi-
cantly, but the same does not apply to offset times.
On the other hand, we decompose the dropping
probability in two terms: the first due to occupancy
and the second due to insufficient void size. We
show that the latter is affected by the overtake
probability, the larger the overtake probability the
worse the performance.

Overall, LAUC-VF shows a better performance
in comparison to the rest of the algorithms. Other
experiments, not included here for brevity, have
shown that Best-Fit and Iizuka algorithms improve
their results with respect to LAUC-VF when there
is a higher variability on the offset time. However,
at realistic low loss rate regimes, the benefits may
not pay off for the increased computational cost.

Finally, our findings constitute a departure point
for a number of research avenues to pursue. The
fact that the scheduling performance is marginally
affected by the burst size distribution has an
impact in the design of burstification algorithms.
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On the other hand, we plan to study policies
for equalizing the offset time distribution, as the
offset time distribution has an influence on burst
dropping performance.

APPENDIX I
BURST POISSON ARRIVAL

Lemma: If BCP arrivals follow a Poisson
distribution then burst arrivals follow a Poisson
distribution.

Proof:. Let the BCP arrival process be Poisson
with rate λ and let X ∼ U(0, Z) be the offset
time, uniform in the range [0, Z]. Let PB(t0, t0 +
∆t) = P (1 burst arrival in(t0, t0 + ∆t)) and
PBCP(t0, t0 +∆t) = P (1 BCP arrival in(t0, t0 +
∆t)). Then,
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PB(t0, t0 + ∆t) = (1)∫ Z

0

PBCP(t0 − x − ∆t, t0 − x)|X = x)
1

Z
dx =

∫ Z

0

(λ∆t + o(∆t))
1

Z
dx =

λ∆t + o(∆t).

and the burst arrival process is Poisson with rate
λ.
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