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A Sampling Technique for Variance Estimation of
Long-Range Dependent Traffic

Javier Aracil, Member, IEEE

Abstract—Due to the long-range dependence of Internet traffic,
the sampling distribution of the variance is very hard to obtain and,
as a result, confidence intervals cannot be provided. Nevertheless,
we show that the r-decimated variance sampling distribution can
be approximated by a x2 distribution. This sampling technique
can be used to provide a confidence interval for the variance, with
significant benefits for many applications in Internet dimensioning,
traffic forecasting and control.

Index Terms—Self-similarity, variance estimation.

I. INTRODUCTION AND PROBLEM STATEMENT

ONG-RANGE dependent traffic models constitute the

foundation for traffic forecasting algorithms [1] and also
for the analysis of buffer dynamics under long range dependent
traffic (Fractional Gaussian Noise -FGN-) [2]. However, all of
the above algorithms for network dimensioning and control de-
mand a priori knowledge of the traffic correlation and marginal
distribution parameters (moments). Let the time be slotted, with
the slot duration being equal to 4, and let {X;,¢ > 1} denote
the number of bytes per slot. Let us consider a traffic sample

(X1,...,X,) and the well-known variance estimator
2=t 2":()(,- - X)? (1)
n-lI L

where X = (1/n) >, X;. Due to the long range dependence,
the correlation function can be approximated by p(k) ~ k*H=2,
being H the Hurst parameter and k the correlation lag. Thus, the
covariance terms in (1) are not null and the variance estimator is
biased. Actually, the bias term A, = —(n — 1)"12 3721 (1 —
(k/n))p(k) converges to zero and s is asymptotically unbi-
ased. Furthermore, if the correlation structure of the traffic can
be estimated, then the bias can be removed with the estimated
correction factor (1 — An)_l (see [3, p. 156]), where A, is an
estimator for A,,.

On the other hand, the distributional properties of the esti-
mator are complicated (see [3, Sec. 8.4]) for a more detailed
description) and, as a result, confidence intervals cannot be pro-
vided in a closed analytical form. Needless to say, confidence
intervals are necessary to provide a reliable variance estimator.
Alternatively, variance can be estimated with maximum-likeli-
hood estimators (MLEs). Such MLEs achieve the same rate of
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convergence as under short range dependence. In fact, it can be
shown that the estimates are /7 consistent and asymptotically
normal [3, Th. 5.1].

In this letter, an alternate way to estimate the variance of
long-range dependent traffic is presented. In case of traffic with
independent increments, and by Fisher’s Theorem, it turns out
that the sampling distribution of (n—1)s2 /% is x2_, where o
is the marginal distribution variance. Thus, the objective of this
letter is to analyze to which extent the use of a sampling tech-
nique makes the distribution of (1) become x2. The intuition
behind is that correlation decreases as the lag between samples
increases, thus resembling the independent increments case. In
presence of strongly correlated traffic (H = 0.78), it will be
shown that the use of sampling at a rate 1/4 or lower provides
a distribution for the estimator (1) which can be modeled as
x?2, with significance level 5%. Extremely simple, but also ex-
tremely useful, the proposed sampling method provides a reli-
able variance estimator for a wide range of applications in traffic
engineering.

II. ANALYSIS AND RESULTS

The estimator is defined as follows:

n/r

/ 1 N )
S 2 = m Z(Xri - X (TI,,T))Z (2)

i=1

where r denotes the sampling period, for a sample of size n,
and X'(n,7) = (1/(n/r)) 777 X,.;. Concerning the r-deci-
mated sample mean X’(n, ) it has been shown [4] that the rel-
ative efficiency var(X’(n,1))/var(X’(n,r)) tendsto 1 as r —
oo for all . However, the deficiency d of X'(n,r) relative to
X’(n,1) = X such that var(X’(n + d,r)) < var(X'(n,1)) <
var(X'(n + d — 1,7)) tends to infinity as r — oo. Thus, if one
is interested in estimating the mean in a given time frame with
a finite number of samples, this can be achieved by decimation
at a moderate decrease in efficiency [4, p. 16]. In any case, the
results of this letter have also been obtained using estimation of
the sample mean without decimation, with nearly no difference
at all with respect to using the r-decimated mean.

Without loss of generality it is assumed that n/7 is an integer.
If 7 is large enough, then it will be shown that (n/r — 1)s'2 /o
has a sampling distribution which is approximately equal to

X721 r—1°

léirs%, we provide an example that shows how small values of
r make the sampling distribution of (n/r — 1)s2/0? (2) fit a
XZ/T—r Recall that a traffic sample is a n-tuple (X1,...,X,,)
that represents the number of bits per time interval. A number of
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Fig. 1. Comparison between the sampling distribution of ns? /a2 (1) and the
X2 _, distribution for (top) n = 500 (top) and (bottom) n = 1000.

60 independent FGN traffic samples are generated using the fast
and approximate method proposed in [5] (DTFT-based). The
FGN parameters are set to those inferred from the Ethernet Bell-
core traces-pOct. TL-(coefficient of variation 0% /u? = 0.1, u =
2200 kb/s, Hurst parameter H = 0.78) [2]. In order to visually
illustrate the effect of correlation on variance estimation, Fig. 1.
shows the sampling distribution of (n — 1)s?/a? (1), together
with the x2 _, distribution, for a sample size n = {500, 1000}.

On the other hand, Fig. 2 shows the sampling distribution of
(n/r —1)s"?/a? (2) for n = {500, 1000} and r = 10 with the
same parameters (number of samples, sample size, FGN mean,
variance and Hurst parameter). Note that the Y3, and x3, distri-
butions fit the sampling distribution much better, in comparison
to the results obtained in Fig. 1.

More formally, the Pearson statistic was used to test good-
ness of fit of the sampling distribution of (n/r — 1)s'?/c?
2) to a xfl ,_ distribution. Traces are generated using the
DTFT-based method [5] and the random midpoint displace-
ment method [6]. Furthermore, and in order to provide a model
as close as possible to real Internet traffic, traces have also been
obtained by superposition of Poisson arriving Pareto-distributed
bursts [7]. The results are shown in Tables I (n = 500) and II
(n = 1000). The first column is the lag r for the estimator (2),
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Fig. 2. Comparison between the sampling distribution of (n/r — 1)s’2/o?
(2) and the x2 /1 distribution (r = 10) for (top) n = 500 and (bottom)
n = 1000.

the second column is the Pearson statistic and the third column
is the reject threshold for the null hypothesis Hy of goodness
of fit to a x? distribution, for a significance level of 5%. In
order to obtain the Pearson statistic, the number of bins were
selected so that more than five samples per bin were always
available. Thus, the goodness of fit threshold varies depending
on the value of r. Regarding the variance estimator (1) the
Pearson statistic takes on values well above the null hypothesis
threshold. For example, for the DTFT-based generator, the
Pearson statistic is equal to 58.033 77 for n = 500 (goodness of
fit threshold 5% = 13.276 704) and 44.686 554 for n = 1000
(goodness of fit threshold 5% = 16.811894). Values of the
Pearson statistic well above the goodness of fit threshold are
also obtained with the RMD and M/ Par /oo generators. Thus,
the null hypothesis Hy cannot be accepted.

The following conclusions can be obtained from Tables I
(n = 500) and IT (n = 1000). First, the null hypothesis of
goodness of fit cannot be rejected for nearly all » values with
r > 4. Furthermore, the Pearson statistic takes on low values in
comparison with the Hy reject threshold. Second, since a sam-
pling distribution can be identified, the proposed estimator (2)
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TABLE 1

PEARSON STATISTIC VERSUS r FOR n = 500

DTFT-based [3] RMD [6] M/Par] [7]
r Pearson stat. | Hpy thresh. (5%) | Pearson stat. ] Hy thresh. (5%) | Pearson stat. | Ho thresh. (5%)
2 10.905331 9.487729 51.966728 13.276704 13.084941 11.070498
3 4.422827 9.487729 51.966728 13.276704 3.974490 9.487729
4 6.514215 9.487729 29.947941 15.086272 6.094170 12.591587
5 2.452535 11.070498 15.506250 15.086272 4.301482 11.070498
6 4.891207 9.487729 6.442152 16.811894 3.273594 11.070498
7 11.997296 12.591587 13.050696 16.811894 4.683629 12.591587
8 2.885880 12.591587 17.400188 16.81189%4 12.212222 14.067140
9 6.009133 12.591587 5.490216 11.344867 18.085748 14.067140
10 8.875018 11.070498 3.587152 13.276704 0.795887 12.591587
11 13.564603 11.070498 4.238611 16.81189%4 7.868512 11.070498
12 5.107333 12.591587 5.463474 16.811894 7.913223 9.487729
13 2.569502 11.070498 1.738125 15.086272 5.036819 12.591587
14 2.662108 12.591587 6.212236 15.086272 6.212778 11.070498
15 5.130196 11.070498 2.528135 15.086272 5.791853 12.591587
TABLE II
PEARSON STATISTIC VERSUS 7 FOR n = 1000
DTFT-based [5] RMD [6] M/Par/oo [7]
T | Pearson stat. | Ho thresh. (5%) | Pearson stat. | Ho thresh. (5%) | Pearson stat. | Ho thresh. (5%)
2 8.122400 12.591587 81.438702 15.086272 16.183464 11.070498
3 14.641594 9.487729 24.512192 15.086272 4.928069 11.070498
4 5.519479 9.487729 34.980645 15.086272 4.374393 9.487729
5 4.839687 9.487729 9.555719 15.086272 2.705874 11.070498
6 9.216731 11.070498 7.659267 15.086272 3.821124 9.487729
7 6.109357 12.591587 6.298723 16.811894 1.727433 11.070498
8 1.749234 11.070498 18.414237 15.086272 8.561873 12.591587
9 5.548344 11.070498 13.697659 15.086272 13.443318 11.070498
10 4.739715 11.070498 7.338337 15.086272 7.188905 11.070498
11 3.226673 11.070498 13.758732 16.811894 2.812539 9.487729
12 6.038950 11.070498 9.181775 16.811894 7.916704 12.591587
13 1.601226 12.591587 3.920196 16.811894 14.876435 9.487729
14 6.563014 11.070498 13.831221 16.811894 8.938706 12.591587
15 4.116972 12.591587 12.439699 16.81189%4 3.156371 12.591587
serves to provide a confidence interval for the variance. Such REFERENCES

confidence interval, for a significance level «, is equal to
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being Xfl Jr—Tia the 1 — « percentile of a Xi Jr—1 distribution.

Finally, similar results have also been obtained with different
values of H. As the value of H increases the sampling interval
also increases, due to the stronger long-range dependence. Such
results are not shown in the letter for brevity.

III. CONCLUSION

In this letter, a simple estimator for the marginal distribu-
tion variance of long-range dependent traffic has been presented,
that provides a confidence interval for reliable estimation of the
traffic variance.
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