
FAST FPGA-BASED PIPELINED DIGIT-SERIAL/PARALLEL MULTIPLIERS

Javier Valls, Trini Sansaloni, Marcos M. Peiró, and Eduardo Boemo*

Departamento de Ingeniería Electrónica, Universidad Politécnica de Valencia,
Camino de Vera s/n, 46071 Valencia, Spain. E-mail: {jvalls, mpeiro, tmsansal}@eln.upv.es,

* Escuela Técnica Superior de Informática, Universidad Autónoma de Madrid,
Ctra. Colmenar Km.15, 28049 Madrid, Spain. E-mail: eduardo.boemo@ii.uam.es

In this paper fast pipelined digit-serial/parallel multipliers are
proposed. The conventional digit-serial/parallel multipliers and
their pipelined versions are presented. Every structure has been
implemented on FPGA and the results are given. These results
have been analysed and it is detected that the pipelined ones do
not have the throughput improvement expected because of a
logic depth increment. As a consequence, a new structure
based on the fast serial/parallel multiplier proposed in [1] has
been developed. The new multipliers designed achieve better
performance than the previous ones: their throughput is higher
than it in the pipelined serial/parallel multipliers with nearly
the same cost in area.

1. INTRODUCTION

Real-time signal processing hardware requires efficient
multiplier units. However, each application needs different
sample rates; from speech to image or radar a wide frequency
range is covered. In several cases, it is senseless to use a bit-
parallel circuit: it has an important cost in area and runs faster
than the throughput required by the application. In these cases,
the bit-serial [2] or digit-serial approach became an important
alternative to efficiently implement custom DSP circuits.
Furthermore, in FPGA-targeted applications, the serial stream
of data matches better with the structure of such devices [3].

In digit-serial computation, data words of size W bits are
partitioned into digits of size N bits (the digit-size, N, is divisor
of the word-size, W) and are processed serially one digit at a
time with the least significant digit first. A complete word is
processed in P=W/N clock cycles and consecutive words
follow each other continuously. The time of P cycles is named
a sample period. In every digit-serial operator, it is necessary to
add some control signals to indicate, for example, a new word
entry. The digit-serial processors include parallel-serial and
serial-parallel converters to process in digit format and to
present the result in parallel one. The digit-serial operators are
cascaded following the data-flow algorithm in a pipeline
fashion. A detailed explanation of this kind of architectures can
be found in [4], [5], [6], [7], [8], [9]. A set of digit-serial
architectures can be designed by using different digit-sizes.
Each element of the family has a specific size and throughput.
Thus, it is possible to choose the digit-size that best suits the
speed of the application, minimising the cost in terms of area.

In this paper a set of fast pipelined serial/parallel multipliers
are proposed. All circuits compute the data-coefficient
multiplication in two’s complement representation. All the
topologies have been implemented on an EPF10K50GC403-3
Altera FPGA for W=8 bits size (data and coeficients) using the
default compilation options (automatic placement and routing).

This paper is organised in four parts: in Section 2 and 3 the
digit-serial/parallel multipliers and the pipelined digit-
serial/parallel ones are respectively explained, and the results of
each one implementation on FPGA are given. In next section, a
brief discussion of those results is made. In Section 5, more
efficient pipelined digit-serial/parallel multipliers are proposed
and the results of their implementation on FPGA are also given.
Finally, the conclusions are presented.

2. SERIAL/PARALLEL MULTIPLIER

Serial/parallel multipliers use the shift-and-add algorithm to
compute the multiplication of a coefficient, which is given in
parallel form, by a data, which enters in the multiplier in serial
style. Assuming coefficient, C, with Wc bits, and data, X, with
Wd bits, are two’s complement numbers, the equation of the
serial/parallel multiplier can be written as:

() i
W

i
i

i
W

i
i

dc

xCxCxxCXCY −
−

=

−
−

=

⋅⋅+⋅−=

+−⋅=⋅= ∑∑ 22

1

1
0

1

1
0 [1]

the term –C.x0 can be developed as:

1
00

1

1
000 22 +−−

−

=

⋅+⋅⋅+⋅−=⋅− ∑ c

c
Wi

W

i
i xxcxcxC [2]

corresponding to the computational scheme shown in Fig. 1 for
the case of both data and coefficient size of W=4 bits.

c0 c1 c2 c3

x x0 x1 x2 x3

x3c0 x3c0 x3c0 x3c0 x3c1 x3c2 x3c3

x2c0 x2c0 x2c0 x2c1 x2c2 x2c3

x1c0 x1c0 x1c1 x1c2 x1c3

x0c0 x0c1 x0c2 x0c3

+x0

y0 y1 y2 y3 y4 y5 y6

Fig. 1: Computational scheme

A bit-serial multiplier that maps this computational scheme is
depicted in Fig. 2. In the first Wd clock cycles, the data-bits enter
serially into the multiplier with the least significant bit (LSB)
first. The low order product bits are computed and serially
outputted with LSB first. When the last bit of the data (the sign
bit) enters, the control signal SIGN is high, the coefficient is
complemented to one and the sign bit, x3, is latched to be fed, in
the next cycle, into the final bit-serial adder. In this way, the
two’s complement is completed. In this clock cycle, the high
order word of the product is stored in redundant format: the sum
vector in the flip-flops (FFs) situated between two full adders
(FAs), meanwhile the carry vector is stored in the FFs that

implement the carry feedback. To generate these bits with the
right format, these two vectors have to be added by inserting
Wc-1 zeros into the input. This multiplier has 2 clock cycles
latency because of the final bit-serial adder stage, and needs
Wd+Wc-1 clock cycles to compute a full precision result.

C3C2C1C0

IN

OUT

CLK

SIGN

RESET_1
RESET_2

Fig. 2: Serial/parallel multiplier

The digit-serial version of the previous multiplier (Fig.2) with
N=2 bits digit-size is shown in Fig. 3. Assuming that
coefficient and data have the same size (Wd=Wc=W bits), in
the first W/N clock cycles the data-digits enter serially with
least significant digit (LSD) first. The low order W/N digits of
the product are outputted also with LSD first. When the last
digit of the data enters (that which contains the sign bit) the
control signal SIGN must be high. The coefficient is one’s
complemented and the sign bit, x3, is latched to be fed into the
final bit-serial adder in the next clock cycle. In this way, the
two’s complement can be calculated. At the same time, the
high order word of the product is stored with redundant format.
The high order product is produced by inserting W/N zeros into
the input. As a result, the multiplier also has 2 clock cycles
latency and needs 2W/N clock cycles to compute a full
precision result.

IN_L

C0 C1 C2 C3

OUT_H

RESET_1

OUT_L

IN_H

CLK

SIGN

RESET_2

C0 C1 C2 C3

Fig. 3: Serial/parallel multiplier with 2-bits digit-size

TABLE I: Results of the FPGA implementation
Digit-size

(bits)
Fclock
(MHz)

Fsample
(MHz)

Area
(LEs)

Logic depth
(LEs)

1 105.3 6.6 35 2
2 95.2 11.9 53 2
4 53.2 13.3 87 4
8 26.2 13.1 157 8

A family of these multipliers has been design by changing the
digit-size. Each topology has been checked by implemented it on
a FPGA. Main results for the different digit-sizes, are shown in
Table I. The maximum clock frequency, the sample frequency,
the occupied area in the chip and the logic depth of each
multiplier are summarised.

3. PIPELINED SERIAL/PARALLEL MULTIPLIER

In this section, the pipelined version of the previous multipliers
is presented. The goal is to maintain the throughput without
adding extra clock cycles to inset zeros and, therefore, they
compute a complete product in W/N cycles. It is achieved by
manipulating the resulting product in double precision format
[2], at the cost of using the double of output wires. Another
singularity of these multipliers is that they compute the double
of the product of the data by the coefficient (2.X.C), which is
managed by inserting a zero in the LSB and ignoring the MSB.

C3C2C1C0

IN

OUT_L

CLK

SIGN

RESET

PARALLEL/SERIAL

s3 s2 s1 s0c3 c2 c1 IN

CONTROL
BIT-SERIAL
 ADDER

CONTROL

OUT_H

s3 s2 s1 s0c3 c2 c1

PARALLEL/SERIAL

Fig. 4: Pipelined serial/parallel multiplier

The bit-serial pipelined serial/parallel multiplier is depicted in
Fig. 4. During the first W clock cycles (those in which the bits of
the data are inputted) it operates like the unpipelined version.
During these cycles, the low order bits of the product are
outputted through OUT_L. When the sign bit enters into the
circuit, the CONTROL signal must be high. As a consequence,
the sum, carry vector and the sign bit are stored in two
parallel/serial converters (PSCs). The PSCs outputs are
connected to a bit-serial adder, which computes the high order
bits of the product. This multiplier computes at the same time
the low order product of the current data and the high order
product of the previous one.

The digit-serial version of the pipelined serial/parallel multiplier
(Fig. 4) with N=2 bits digit-size is shown in Fig. 5. In the first
W/N clock cycles, the data-digits enter serially with LSD first
and the digits of the low order product are outputted, also with
LSD first, via OUT_LX. When the digit which contains the sign
bit (the last digit of each word), enters into the circuit, the
CONTROL signal must be high, therefore, the sum and carry
vector together with the sign bit are stored in two PSCs. The

PSCs outputs are connected to a digit-serial adder, which
computes the high order bits of the product and whose digits
are outputted by OUT_HX.

IN_L

RESET

IN_H

CLK

SIGN

s3 s2 s1 s0c3 c2 c1 IN_H

OUT_L_H

s3 s2 s1 s0c3 c2 c1

CONTROL 2

2

DIGIT-SERIAL
 ADDER

 (N=2 bits)
CONTROL

PARALLEL/SERIAL (N=2 bits)

OUT_L_L

OUT_H_L

OUT_H_H

PARALLEL/SERIAL (N=2 bits)

C3C2C1C0

C3C2C1C0

Fig. 5: Pipelined serial/parallel multiplier (N=2 bits)

A set of pipelined serial/parallel multipliers has been designed
by changing the digit-size. Each circuit has been implemented
on FPGA. The maximum clock frequency, the sample
frequency, the occupied area and the logic depth of each
multiplier are shown in Table II.

TABLE II: Results of the FPGA implementation
Digit-size

(bits)
Fclock
(MHz)

Fsample
(MHz)

Area
(LEs)

Logic depth
(LEs)

1 57.1 7.1 64 3
2 63.7 15.9 80 3
4 44.2 22.1 111 5
8 25.5 25.5 187 9

4. DISCUSSION

In the abstract, the pipelined serial/parallel multiplier should
double the throughput with respect to unpipelined one.
However, in an actual implementation it does not occur, as can
be seen by comparing table II and I. The throughput achieved
by the pipelined multipliers is only a little higher than the
corresponding to the unpipelined version, the increment varies
form 107% using the bit-serial version to 194% with the bit-
parallel one. This effect is caused by the structure of the FPGA
selected: a matrix organisation in which each element is a k-
input LUT (k=4 in the case of Altera). So, the circuits have to
be divided into 4-input functions in order to be implemented.
In Fig. 6 this division can be observed for the case of bit-serial
multipliers. The serial/parallel multiplier uses 2 LEs logic
depth and the pipelined one 3 LEs. This increment in the logic

depth is caused by the inclusion of the PSCs in the serial/parallel
multiplier, that needs 1 LE logic depth to be implemented. This
increment of the logic depth in the pipelined multipliers causes
the decrement of the throughput respect to the ideal case.

a)
C1

3-INPUT LUT

4-INPUT LUT
+ FF

b) C1

3-INPUT LUT

3-INPUT LUT

0

1

0

1

2-INPUT LUT
+ FF

3-INPUT LUT
+ FF

PSC

Fig. 6: Multipliers separated in LEs:
a) unpipelined; b) pipelined.

5. FAST PIPELINED SERIAL/PARALLEL MULTIPLIER

The novel multiplier structure presented in this paper is based in
the fast serial/parallel multiplier proposed by R. Gnanasekaran
in [1] and whose structure is shown in Fig. 7. The idea is to
avoid W extra clock cycles to complete the computation by
adding the sum and carry word, obtained after the first W cycles,
with a bit-parallel adder. Thus, the multiplication time is
improved if the addition of sum and carry word is performed
with a bit-parallel adder instead of using W more clock cycles to
propagate the carries.

C3C2C1C0

IN

Q

OUT

Q

Fig. 7: Fast serial/parallel multiplier [1]

This idea can be exploited when the multipliers are mapped on
FPGAs where their fast carry lines can be used to implement the
ripple carry adders. The circuit depicted in Fig. 7 does not have
better performance than the pipeline serial/parallel multiplier
because ripple carry addition increases the logic depth. The way
to improve its performance is to pipeline the circuit, but there
will only be throughput increment if:
• the logic depth of the serial/parallel multiplier is not

incremented
• the propagation delay in the bit-parallel adder is at least as

short as it is in a circuit with minimum logic depth (2 LEs).

Furthermore, the new multiplier must give the result with the
double precision format as the pipeline serial/parallel multiplier
does and must be suitable for digit-serial processing.

C3C2C1C0

IN

SIGN

RESET

CONTROL OUT_H
PARALLEL/SERIAL

OUT_L

0

Fig. 8: Fast pipelined serial/parallel multiplier

This multiplier for the bit-serial version is shown in Fig. 8. To
avoid incrementing the logic depth, load signal must not appear
and only registers need to be included. Therefore, in each clock
cycle, a ripple carry addition is performed. The parallel outputs
of the adder are fed into a PSC in order to output the high order
word of the multiplier with the right format. The adder outputs
are captured into the PSC during the first bit of each word, that
is, only once each W clock cycles. This operation is managed
by the CONTROL signal.

IN_H

SIGN

RESET

CONTROL 2
PARALLEL/SERIAL (N=2 bits) OUT_H

IN_L

OUT_L_H

OUT_L_L

C 3C 2C 1C 0

0

C3C2C1C0

Fig. 9: Fast pipelined serial/parallel multiplier (N=2 bits)

The digit-serial version of this multiplier with 2-bits digit-size
is shown in Fig. 9. The parallel outputs of the adder are fed into
a PSC in order to give the high order word of the multiplier
with the right digit-serial format. The CONTROL signal must
be high during the first digit of each word (once each W/N
cycles) and, as a consequence, the adder outputs will be
captured into the PSC.

The results of the FPGA implementation of a set of these
multipliers can be seen in Table III. The only difference in the
implementation of this case with respect to the previous ones is
that the FAST logic synthesis option has been used only to the
bit-parallel adder (it allows the use of the carry chain lines).

As can be seen in Table III, the fast pipeline serial/parallel
multipliers proposed in this paper achieve better performance
than the previous versions. The speed improvement ranges
from 156% using the bit-serial version to 115% with the bit-
parallel one. The fast pipelined circuits have the same logic
depth than the unpipelined serial/parallel ones. Therefore, they

achieve higher throughput than the pipelined serial/parallel
multipliers with nearly the same cost in area. If they are
compared to the unpipelined multipliers, the throughput
improvement varies from 169% for the bit-serial version, to
200% with the bit-parallel one. For example, the proposed
multiplier with 2-bits digit-size is faster than the serial/parallel
multiplier with 8-bits digit-size and it occupies a half area
respect to it.

TABLE III: Results of the FPGA implementation
Digit-size

(bits)
Fclock
(MHz)

Fsample
(MHz)

Area
(LEs)

Logic depth
(LEs)

1 89.3 11.2 64 2
2 87.7 21.9 81 2
4 48.6 24.3 112 4
8 28.8 28.8 169 8

6. CONCLUSIONS

A set of fast pipelined serial/parallel multipliers has been
proposed. These structures reduce the logic depth with respect to
the pipelined serial/parallel multiplier and have the same than in
the unpipelined case. As a consequence, they are more efficient
than the pipelined serial/parallel ones: they achieve higher
throughput with nearly the same cost in area. Furthermore, they
are closer to the abstract case: they manage nearly the double of
throughput than the unpipelined ones.

REFERENCES

[1] R. Gnanasekaran, “A fast serial-parallel binary
multiplier”, IEEE Trans. On Computers, Vol. C-34, NO.
8, August 1985

[2] P. Denyer and D. Renshaw, VLSI SIGNAL
PROCESSING: A Bit-Serial Approach, Addison-
Wesley, 1985.

[3] R. Petersen and B. Hutchings, “An Asssesment of the
Suitability of FPGA-based Systems for Use in DSPs”, in
Lecture Notes in Computer Science, nº975, pp.293-302,
Springer-Verlag, Berlin: 1995.

[4] S.G. Smith and P.B. Denyer, Serial Data Computation,
Kluwer Academic, Boston, MA, 1988.

[5] R. Harley and P.Corbet, “Digit-serial processing
techniques”, IEEE Trans. On Circuits and Systems, Vol.
37, no. 6, pp. 707-719, June 1990.

[6] K.K. Parhi and C. Wang, “Digit-serial DSP
architectures”, in Proc. of Int. Conf. On Application
Specific Array Processors, pp. 341-351, September
1990.

[7] K.K. Parhi, “A systematic approach for design of digit-
serial signal processing architectures”, IEEE Trans.
Circuits and Systems, Vol. 38, pp.358-375, April 1991.

[8] R.I. Hartley and K.K. Parhi, Digit-Serial Computation,
Kluwer Academic, Boston, MA, 1995.

[9] J. Valls, M.M. Peiro, T. Sansaloni and E. Boemo, “A
study about FPGA-based digital filters”, 1998 IEEE
Workshop on VLSI Signal Processing: Design and
Implementation (SiPS’98), pp. 192-201, Boston, MA.

