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Abstract. In this paper, the realization of low power finite state machines 
(FSMs) on FPGAs using decomposition techniques is addressed. The original 
FSM is divided into two submachines using a probabilistic criterion. Only one 
submachine is active at a time, meanwhile the other is disabled to save power. 
Different deactivation alternatives and state encoding have been studied. For 
each option, actual measurements of power consumption have been done using 
the MCNC and the PREP benchmark circuits. A Xilinx XC4K device has been 
utilized as technological framework. The proposed technique fits well with big 
FSM, where power reductions up to 46% are obtained. 

I. Introduction 

In this work, the problem of optimising FPGA-based finite state machines (FSM) circuits 
for low power is addressed. Several techniques for state assignment have been proposed in 
the past for cell-based or gate array technology. The main idea has been to lower the 
average switching activity in two ways: either by disabling the input data to the FSM, or 
by blocking the state registers. The cost is an extra hardware to detect certain conditions to 
stop parts of the machine. 

The experiments presented in this paper are based on the ideas proposed in 
[7][15][6][3][4], adapted or modified to suit well with the technological target: LUT-based 
FPGAs. The original FSM is divided into two sub-FSMs. Each submachine must to have 
roughly the same amount of states. A probabilistic approach is utilised to determine an 
optimal partition that guarantees a minimum interaction between the submachines. The 
hardware overhead associated with the decomposition technique makes this method 
neither effective for FSMs with small numbers of states (under 10) nor applicable for 
circuits whose decomposition has a highly transition probability between submachines. 
However, for large machines, an improvement in power consumption up to 46% can be 
obtained. 

The paper is organized as follows. Section II reviews the basic definitions and 
highlights the main aspects of the traditional approaches to FSM decomposition. The 
FSM architecture proposed in this paper is described in Section III. In the next 
section, the characteristics of the benchmark circuits are exhibited. Finally, in Section 
VI, the main experimental results are summarized. 



II. Background 

A finite state machines is defined by a 6-tuple M = (Σ, σ, Q, q0, δ, λ), where Σ is a 
finite set of input symbols, σ ≠ ∅ is a finite set of output symbols, Q ≠ ∅ is a finite 
set of states, q0 ∈ Q is the “reset” state, δ(q, a): Q × Σ → Q is the transition function, 
and λ (q, a): Q × Σ → σ is the output function. 

The 6-tuple M can be described by a state transition graph (STG). Nodes 
represent the states, and directed edges (labeled with input and output values), 
describe the transition relation between states. In hardware materializations, each state 
corresponds to a binary vector stored in registers. From the current state and input 
values, the combinational logic computes the next state and the output function.  

The decomposition for low-power FSM requires first calculating the transitions 
probabilities in order to divide the machine. Thus, the activity can be reduced. Then, 
these submachines must be efficiently mapped in a FPGA, so that the hardware 
overhead does not compensate the power saving of a lower node activity.  

II.a. Calculating Probabilities  

In order to decide the submachine partitioning, a probabilistic model [24] must be 
utilized. To compute the transition probabilities for a given STG, it is first necessary 
to know the probability distribution for the inputs. Those values can be obtained by a 
higher-level simulation of FSM in a context close to the actual environment of the 
design. Then, the transition probability for each edge in the STG can be determined 
by modeling the STG as a Markov chain. A Markov chain is a stochastic process 
whose dynamic behavior is such that the probabilistic distribution for its future 
behavior depends only on the present state, without taking into account how the 
process arrived in that state. 

The steady state probability for a state qi is defined as the chance of the FSM to 
remain in qi. This value is not time dependent. That is, as the time increases, it 
converges to constant real numbers. Let P be the conditional transition probability 
matrix, and v be the steady state probability vector (whose components are the state 
probabilities). Then, the steady state probabilities can be compute by solving the 
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Here, P is a stochastic matrix (i.e. all the entries are non-negative and the sum of 
each row is one) whose entries are the conditional transition probabilities. The total 
transition probabilities Pi,j can be calculated as:  ijiji PpP ⋅= ,,  



 
Fig. 1.  a) State Transition Graph (STG), b) steady state probabilities and total transition 
probability 

II.b. Low-power design of FSM 

The most popular technique to reduce power in FSM is to modify the state encoding 
[27][4][16][28][14]. These works are focused on the Hamming distance minimization 
of the most probable state transitions. However, this solution usually increases the 
required logic to decode the next state. Then, a tradeoff between switching reduction 
and extra capacitance exists. 

In the area of FPGAs, the most utilized state encoding technique is one-hot 
[25][9]. Nevertheless, empirical measurements indicate that binary state encoding is 
better for low power [21], [8] in these FSMs that have less than eight states.  

Other idea for low-power FSMs is the use of power management. That is, to 
shutdown the blocks of hardware in these periods where they are not producing useful 
data. Shutdown can be fulfilled in three ways: by turning off the power supply, by 
disabling the clock signal, or finally by “freezing” (blocking) the input data.  

Under the last category, fall methods like precomputation, gated clock, selectively 
clocked systems, and decomposition. In the gated-clock technique [3][5], the clocking 
of a FSM is stopped when the machine is in self-loops and the outputs do not change. 
In precomputation [1], a simple combinational block is added to the original circuit. 
Under certain input conditions, the precomputation logic disables the loading of the 
input registers. This paper is focused mainly on the decomposition approach, detailed 
in the following paragraphs. 

II.c. Decomposition architectures 

Several researchers addressed the decomposition o partitioning of FSM. First, the goal 
is to reduce the complexity of the combinational block to be mapped in a fixed logic 
[2][11]. The FSM is divided in two (or more) interacting machines (fig.2), where each 
submachine knows in which state is the other. This strategy adds an idle state to each 
sub-FSM.  



      
Fig. 2. State diagram of a FSM and the partitioned diagram in the traditional approach. 

Other scheme is the orthogonal partition [20]. In this case, the number of states in the 
partition its not n1+n2 = n, but its approximately n  in each partition. Let consider Q 
= {q1,q2,…,qn} the original state set. Two partitions ∏A = {A1, A2, …, Am} and ∏B = 
{B1, B2, …, Bk}of Q are orthogonal if, for i ≤ m, j ≤ k, either Ai ∩ Bj = ∅ or Ai ∩ Bj 
= {qi}. Thus, in order to represent an original qt state, this method uses a combination 
of an Ai and a Bj. 

II.d. Decomposition techniques for low power 

The basic low-power idea of decomposition is to disable the inactive part of a FSM. 
The deactivation is reached either by blocking the inputs (using latches, ANDs or tri-
estates buffers) or power-down the part of the circuit that is not used (by clock 
gating). In [15][6], the FSM is partitioned into several pieces, that are implemented as 
a separate machine with an extra wait state (idle state). In this case, only one of the 
sub-machines is active, meanwhile the others are idle. Therefore, the clock for 
inactive sub-machines can be gated and primary inputs can be disabled. This reduces 
switching activity and hence, the total power dissipation. In [15], the STG is 
partitioned into two unbalanced sub-machines: a small one that is active most of the 
time, and a large submachine that is usually disabled.  

An interesting disjoint encoding schema is proposed in [7]. The resulting partition 
not follows strictly the standard structure of FSM decomposition. In this method, the 
STG is partitioned in two (or more) sets of states. All the states of a given set are 
encoded with the MSB (most significant bit) at 0, meanwhile the states of the other 
sets are encoded with the MSB at 1. Thus, the combinational logic can be broken into 
two separate blocks: one that is active when the first state bit is 0, and other that is 
active when the first state bit is 1. In this way, the power consumption can be 
potentially reduced. 

Other technique is to use an orthogonal partitioning together with gated clock 
mechanism [19]. An N state machine is decomposed into two interacting machines 
with N1 and N2 states, such that N ≤ N1 × N2. In each sub-FSM, the partition tries to 
maximize the number of self-edges (where the machine remains in the same state 
after the clock edge). For all the self-edge conditions, the inputs and clock signal are 
disabled. 



III. A decomposition architecture suitable for FPGAs 

In this paper, a decomposition architecture based on [7] have been constructed and 
evaluated in terms of area-time-power. The structure fits well with LUT-based 
FPGAs. The same codes are utilized in both submachines, but only one is active. To 
point the active machine, an extra bit called ActiveFSM is set. The first architectural 
option is shown in Fig.3a. The original FSM is decomposed in two combinational 
circuits (machines A and B) that compute both outputs and next state. Only one 
submachine is active at a time. The transference of the control between the machines 
is based on the values of the inputs and actual state. If the next state corresponds to 
the other machine, the activeFSM is asserted. The shaded blocks of the Fig.3 indicate 
the circuits that “freeze” the inactive machine.  A second architectural option has also 
been implemented (fig 3.b). In this case, two registers are utilized to stop the machine 
evolution. In this case, two possibilities can be explored to control the registers: via an 
enabled signal, or by using a gated-clock. 

For both architectures, the same design flow must be followed. First, an algorithm 
to decompose the FSM in two or more sub-machines must be selected. Second, one of 
the blocking methods must be implemented. Finally, a synthesizable code of the 
circuit must be written. 

 

      
Fig. 3. Two options for decomposition FSM.  a) Architecture I, b) Architecture II. 

III.a. Partitioning a FSM into submachines 

The technique separates the FSM into two or more submachines so that the 
probabilities of state transitions inside each submachine are maximized, meanwhile 
the interaction with the other submachines is low.  

First, the transition probability over the STG is calculated (as is shown in fig 1.b). 
Then, a partition with equal cardinality in subFSMs is achieved. For instance, let 
consider the two partitions ΠA = {Sa1, Sa2, . . .San} and ΠB = {Sb1, Sb2, . . .Sbn}, with a 
transition probability p(i,j) between state Si and Sj . In this case, the algorithm 
minimizes sum of transition probabilities between submachines. That is: 

BA jijip Π∈Π∈∀∑ ,),),(min( . 
No greedy algorithm is necessary, because a backtracking technique with an 

effective prune is fast enough.  



III.b Blocking method 

In order to eliminate the activity in the idle FSM, the best alternative in Fig.3.a 
machines is to latch the data (Blocking Latches). Other possibilities like the use of 
ANDs, or buffers have been tested and discarded: they are more expensive in both 
area and time. For FSMs like the described in Fig.3.b, the alternatives are to 
implement a gate-clock or use the clock enable signal. In the second alternative the 
clock lines continue consuming power. 

III.c. Synthesis of the final machine 

In this work, a tool that automatically generates a set of benchmark FSMs has been 
developed. The inputs are the FSM description in a KISS2 format [18], and some 
extra parameters like the blocking scheme, and the state encoding technique. The tool 
calculates the steady state probability, divides the machine as described in section 
IIIa, and finally, writes a synthezable VHDL code. The file contains the entity of the 
machine, and three processes: one for the combinatorial logic, other for the blocking 
data circuitry, and the last one to incorporate tri-states buffers at the outputs pads to 
separately measure the off-chip power.  

IV. Experiments 

In this paper, the benchmark circuits have been implemented in several ways: First, in 
the original form with both binary and One Hot state encoding. Then, each machine 
was partitioned in two ways: one corresponding to the architecture I and other for the 
architecture II scheme (fig. 3). Once again, binary and One Hot encoding was the 
applied in each submachine. Additionally, the option named architecture I, was tested 
using different blocking techniques. 

All the experiments use the MCNC91 benchmark set [13]. In addition, a large 
FSMs extracted from the PREP consortium [17] was utilized. Each FSM was first 
minimized with STAMINA [12]. Number of inputs, outputs, next state rules (arcs in 
the STG), and number of states of the benchmark machines are summarized in Table 
1. Additionally the probability of transition and the number of arcs between 
submachines is reported.  

The resulting VHDL code was compiled into a XC4010EPC84-1 FPGA sample, 
using the FPGA Express [10] and the Xilinx Foundation tools [26]. This circuit model 
does not have latches, so they were constructed using LUTs. All circuits has been 
implemented and tested under identical conditions. That is, all the measurements are 
related to the same FPGA sample, output pins, tool settings, printed circuit board, 
input vectors, clock frequency, and logic analyzer probes. Random vectors were 
utilized to stimulate the circuit. At the output, each pad supported the load of the logic 
analyzer, lower than 3pf  [22]. 

Each circuit was measured at 100 Hz, 2 MHz, and 4 MHz to extrapolate the static 
power consumption. All prototypes include a tri-state buffer at the output pads to 
measure the off-chip power [23].  



Original FSM Partition Example 
|Σ| |σ| |Q| |δ| Prob Arcs

Bbsse 7 7 13 208 0,024 52
Cse 7 7 16 91 0,017 36
Dk16 2 3 27 108 0,247 28
Dk512 1 3 15 30 0,175 7
Ex1 9 19 18 233 0,022 53
Ex2 2 2 14 56 0,218 25
Keyb 7 2 19 170 0,004 63
Kirkman 12 6 16 370 0,002 46
Mark1 5 16 12 180 0,037 79
Planet 7 19 48 115 0,052 14
Prep4 8 8 16 78 0,041 9
S386 7 7 13 69 0,024 27
S820 18 19 24 254 0,006 138
S832c 18 19 24 243 0,006 118

 

Table 1. Original FSM data, number of inputs, outputs, states and arcs. In adition partition 
information is provided (probability and arcs between partitions) 

V. EXPERIMENTAL RESULTS 

The slope of the power consumption, expressed in mW/MHz, is depicted in Table II. 
The first columns show the value for the original FSM coded in One Hot (OH) and 
binary (bin). Then, the results for the partitioned circuits (encoded in One Hot and 
binary), are listed for the four different forms: Architecture 1 (Arch1), Architecture 2 
(Arch2), Architecture  1 without blocking method (No Blk), and finally, Architecture  
I with blocking ANDs (Blk and). A power improvement factor is defined: it express 
the relationship between the power consumption of the best original FSM respect the 
best-partitioned one.  

Power Improvement: For most of the FSM, a power saving is obtained. It can be up to 
the 42,4%. However, in five circuits, no improvement or negative results can be 
observed. This is caused by a high transition probability between submachines in 
these circuits (Table 3).   

Binary vs. One Hot encoding in submachines: In accordance with previous results 
related to non-partitioned states machines [sut02], one hot encoding provides better 
results in FSMs with more than 16 states. On the contrary, for machines equal or 
smaller than 8 states, binary state encoding is better.   

Blocking method: Latches are better in most of the cases. The improvement respect to 
the AND gates can be up to the 30%). Only in two benchmark FSMs, the blocking 
AND gates resulted better, because the low activity of the machines.  
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Bbsse 3,90 4,70 3,80 3,95 4,04 4,34 3,55 3,76 4,23 3,91 9,0% 
Cse 3,85 4,10 3,24 3,46 4,29 5,30 3,00 2,88 3,83 3,59 25,3% 
Dk16 3,88 10,00 5,80 5,76 5,81 6,34 7,50 7,01 9,09 9,96 -32,8% 
Dk512 1,84 2,80 2,46 2,79 2,44 2,14 2,24 2,51 2,16 1,94 -5,2% 
Ex1 7,09 8,56 6,73 6,53 8,11 8,16 6,53 6,11 7,90 7,79 13,8% 
Ex2 2,51 4,10 3,40 3,09 2,69 3,26 3,09 2,88 3,58 3,46 -6,5% 
Keyb 5,50 7,06 4,73 4,31 7,88 7,69 3,66 4,65 5,25 6,81 33,4% 
Kirkman 4,50 4,61 4,90 4,66 4,49 4,50 4,80 4,49 4,83 4,80 0,3% 
Mark1 2,70 3,30 3,01 3,01 3,31 3,09 2,66 2,78 2,63 2,88 2,8% 
Planet 8,04 16,80 9,18 9,29 10,23 10,01 10,88 11,81 15,18 16,99 -12,4% 
Prep4 4,66 5,71 5,44 5,38 6,86 7,55 5,11 4,66 6,86 6,44 0,0% 
S386 4,23 4,84 4,08 4,45 4,98 4,98 4,21 4,21 5,55 4,59 3,6% 
S820 7,84 9,28 5,81 5,44 8,43 7,98 4,51 4,65 8,83 7,30 42,4% 
S832c 7,01 10,21 5,08 5,00 7,64 6,60 4,73 5,04 7,55 6,75 32,6% 

Table 2. Power consumption expressed in mW / MHz. 

Area penalty: Both the synchronization and the partition circuitry add extra logic to 
the FSM. This overheard depends on the number of inputs, outputs and states. Each 
input signal requires 2 LUTs to implement the latches, and each output an extra LUT 
to implement the output multiplexer. Finally, each state add 2 extra LUTs to 
implement the latches in architecture  I (architecture  II not need extra logic to 
implement the blocking states). In terms of power, Architecture  I its slightly better 
than Architecture  II. 
 

Sample |Σ| |σ| |Q| |δ| 
Arcs bet. 

part 
% arcs  

bet. part. 
Prob Power  

Improv. 
 Dk16 2  3 27 108 28 26 % 0,247 -32,8 % 
 Ex2 2 2 14 56 25 45 % 0,218 -6,5 % 
 Dk512 1 3 15 30 7 23 % 0,175 -5,2 % 
 Planet 7 19 48 115 14 12 % 0,052 -12,4 % 
 Prep4 8 8 16 78 9 12 % 0,041 0,0 % 

Table 3. Circuits where no improvement its possible due the highly probability of transition 
between submachines. 

Clock period penalty: The synchronization scheme produces speed degradation. Table 
4 shows the maximum frequency in MHz in each case. The influence of latches is 
remarkable nevertheless the partitioned architecture with blocking and gates shows a 
better performance.  
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Fig. 4. Frequency chart, where the negative impact of the blocking latches can be observed. 

VI. Conclusions 

This paper explores partitioning methods to reduce power in FPGA-based FSMs. The 
main conclusions are that classical decomposition techniques developed for cell-based 
circuits can be adapted to FPGA. A significant power reduction in big FSMs (up to 
the 46%) can be obtained. These results should be more significant in devices that 
have embedded latches ( Xilinx XC4000EX or the Virtex and Spartan 2).  The state-
encoding scheme of each submachine plays an important role: Binary based state 
encoding works better for small submachines (up to eight), meanwhile one hot is the 
best option in big FSMs. Finally, the achievement of a low activity between 
submachines is essential to get full advantage of the technique. 
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