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Abstract

The wave pipeline effect is based on the equalization of all path
delays in order to allow several Awaves@ of data to travel along
the circuit with a separation several times smaller than the
maximum combinational delay of the circuit. The construction
of wave pipelines requires gates and buffers with data-
independent delay, and a well-characterized interconnection
network delay model, in order to allow the equalization process
to be managed by the designer. These features are inherently
present in several RAM-based FPGAs architectures. Look-up
tables (LUTs) permit the delay of digital blocks with different
types of gates or different logic depth to be equalized;
moreover, the delay of a FPGA interconnection network is
completely parameterized and is a priori known. This paper
describes a LUT-based wave pipeline array multiplier manually
implemented using a Xilinx chip. The results show that, even
for a single-phase non-skewed clocking strategy, a throughput
as high as 85 MHz (measured) can be achieved, with 8 waves
running in a 13-LUT logic depth combinational array with
registered I/O, producing an initial latency of 9 clock cycles. For
the FPGA architecture and the topology selected, such a large
throughput/latency ratio would be impossible using classical
pipelininig. 

1 Introduction

In classical pipelines, registers not only increment the chip area, but
also limit the minimum size of the stages, because of their setup time
and propagation delay. Thus, for fine-grain pipelines, increasing their
frequency operation follows the law of diminishing returns: the number
of register (area) must be almost duplicated in each additional logic
depth reduction in order to obtain a small circuit speedup. Wave
pipelines or maximum-rate circuits [Cot65] provide a possible way to
avoid this extra cost: they can increase the throughput of a circuit
without making use of intermediate registers. 

The wave pipeline effect is based on the equalization of all
combinational path delays between consecutive register banks,
allowing several waves of data to travel along the circuit without
interference, using the capacitance of each node as a virtual
intermediate register. The minimum clock period is not limited by the
longest path delay but by the difference between the maximum and
minimum path delays, plus the clock skew, the rise/fall time, and the
setup/hold time of the I/O registers [Won92]. 

Recent applications of wave pipelines are diverse: digital filters
[Bur94], adders [Liu94], memories [Now94], multipliers [Gho95],
[Kla94], and other arithmetic modules [Fly95]. These circuits have
been implemented using special ECL and CMOS cells, designed to
achieve data-independent propagation gate delays. However, to the best
of our knowledge, the usefulness of look-up tables as building blocks
for the equalization process have not been reported in the scientific
literature. In this paper, this alternative has been explored by using
Xilinx FPGAs whose characteristics are suited to wave pipeline
requirements: their LUTs have been designed with data-independent
delay in order to improve simulation accuracy [Xil94], and the layout
editor allows additional delay elements to be inserted (LUT or wires)
in the datapath. These two factors facilitate the equalization task.

The use of the wave pipeline technique in FPGAs could seem
inapropiate: since registers are included on most of commercial chips,
they are "free" components and their use does not incur an area
penalty, in contrast to other VLSI technologies. However, some
peculiarities of wave pipelines justify an exploration of this technique
even on FPGAs: the possibility of reducing power consumption (the
equalization not only eliminates registers, but also diminishes datapath
spurious activity), and the obtention of a high throughput/latency ratio.

In this paper, a Xilinx XC4000 series chip has been utilized as a
platform to run wave pipeline prototypes. In the next section, the main
concepts and drawbacks of wave pipelines are reviewed. In Section 3
the experimental results are summarized. 

2 Elements of Wave Pipelines

The construction of a wave pipeline usually requires the addition of
both extra cells and wiring in order to slow down all the fastest paths
so that their delay matches that of paths with longest delay. Thus, wave
pipelines are just another way to trade speed for additional area and
design time: their potential benefits must be evaluated for each
technology. 

The main advantages of wave pipelines in FPGAs are consequences of
the avoidance of the setup and propagation register delays. LUT, wire
and register delays are similar in most of the FPGA chips; then, for
fine-grain conventional pipelines, the stage delay is dominated by wires
and registers, which can constitute as much as the 70% of the clock
period. Moreover, the delay of each register inserted in the datapath
must be added to calculate the initial latency. On the contrary, the data
storage on wave pipelines makes use of node capacitances instead of
registers; thus, the delay of each "virtual" pipeline stage does not
include the fraction of propagation delay corresponding to the registers.
In the same way, the wave design mode does not increase the initial
latency since the longest I/O path of the combinational circuit is not
modified. 



Fig.1a: The wave emitted in t=kT reaches the
reception registers after the (k+1)T edge and
before the (k+2)T setup window. Thus, the results
are correctly latched. Two waves travel along the
stage. 

Fig.1c: For this frequency, the wave that enters in
t=kT reaches the reception  register after (k+2)T,
but it is stable before the clock edge (k+3)T. Once
again, each result is latched properly. 

Fig.1b. A frequency increment produces a setup
window violation in the reception register bank. 

Fig.2: 7-bit Guild array multiplier.

The use of a single-phase non-skewed clock (as usual on FPGAs) gives
rise to an important wave pipeline drawback: a set of frequency bands
where the circuit does not work. This phenomenon occurs every time
the operation mode (that is, the number of waves that run together
inside the circuit) is changed. For example, in Fig.1a the circuit is
running with two waves inside; however, if the clock frequency is
increased, there is an interval in which three waves start to enter and
the output register setup time is violated (Fig.1b). This problem can be
corrected simply by an additional increment of the clock frequency.
Thus, the three waves become closer and the setup problem disappears.
The circuit can run in this mode until a new clock frequency increment
produces the entrance of four waves and a new setup violation occurs.
Depending on the equalization grade, a further frequency increment
can solve the problem once again. However, note that each new
operation band is narrower than the previous one. 

The main disadvantage of wave pipelines is their sensitivity to
parameters that affect propagation delay such as power supply voltage,
process variations, or temperature [Now94a]. Although these problems
can be severe when circuits are used in production, they can be
bearable when FPGAs are employed to prototype in-laboratory future
ASICs. 

3 Experimental Results

The design of wave pipelines requires exact models rather than the
usual conservative worst-case delay specification of VLSI foundries.
Nevertheless, it is possible to make use of commercial technologies by
applying a strategy called categorical matching [Liu94], which allows
the path inbalance caused by the different grades of accuracy of the
simulation models of each circuit component (gates, wires, vias, etc.)
to be minimized. Using this approach, all data in the FPGA wave
pipeline must pass through the same number of LUTs, in the same way
that all data passes through the same number of registers in a
conventional pipeline. Moreover, all paths should be composed of the
same number of the other FPGA elements: "pips", "magic boxes", and
so on, as far as possible. 

In order to quantify the LUT-based wave pipeline option, a Guild
multiplier [Gui69] was implemented and characterized by using a
Xilinx XC4005PC84-6 chip. This circuit, depicted in Fig.2  for n=7
bits, consist of an array of n cells, that receive the input data on global2  

lines (the vertical and horizontal wires of the array) and pass the sum
and carry bits using local lines (the diagonal wires). Each cell is
composed of an AND gate plus a full-adder, and has 4 inputs and 2
outputs. Just one cell can be fitted in one XC4000 CLB. The array has
been wave pipelined in horizontal stages.

The layout of the circuit was performed manually using the Xact
editor. First, the cells were placed as similarly as possible to the original
topology, in order to take advantage of the spacial regularity. Second,
the horizontal global wires of data were assigned to long lines. Finally,
the rest of the interconnections were mapped in a regular pattern of
segment wires, that was repeated along the array. This methods
achieved equalization and avoided errors. In Fig.3, the final layout is
depicted, demonstrating the uniform use of additional resources (LUTs,
wires, and magic boxes) in order to delay the LSBs of the product
(right columns) so that they are equalized with the longest paths. 



Fig.3: XC4005PC8-6 wave pipeline array multiplier layout.

Equalization in circuits with both global and local communications is
difficult. In this case, the cost of using long lines (around 3 ns for the
chip selected) to implement the horizontal global channels was
balanced by the routing of the other data lines through two
magicboxes. In situations where the long line was too heavily loaded
(so that its delay approached 4 ns), the preceding local interconnection
in the same path was routed through only one magicbox, so that the
difference was compensated. In the first segment of the pipeline, the
long line delay of 4.1 ns could not be reduced due to the lack of routing
resources. These lines were balanced by routing the rest of wires
throuh three magicboxes.

By using the methodology described above, a 7-bit wave pipeline Guild
multiplier with a constant logic depth of 13 LUT in all paths was
obtained. It makes use of 182 CLBs. The maximum unbalance
between all the I/O paths was less than 2.1 ns (simulation result). The
components of the slower (left column) and faster (right column)
paths, determined using the Xdelay tool, are shown in Table 1 (note
that the longest path delay would limit the speed below 8 MHz). In
Fig.4 the histogram of wire delay is depicted and the homogeneity of
the interconnection used can be observed. It is very different to the
Pareto-Levy net delay distribution of regular arrays processed using an
automatic partitioning, placement and routing strategy. 



Fig.4: Net delay histogram.

Source clock net : "CLK" (Rising edge)
From: Blk a0/b0 CLOCK to CLB_R1C14.XQ: 5.0ns ( 5.0ns) 
Thru: Net a0 to CLB_R2C2.G4 : 4.3ns (  9.3ns) 
Thru: Blk <0-6> to CLB_R2C2.Y  : 6.0ns ( 15.3ns) 
Thru: Net so<0-6>r to CLB_R3C3.F3 : 3.2ns ( 18.5ns) 
Thru: Blk <1-6> to CLB_R3C3.X  : 6.0ns ( 24.5ns) 
Thru: Net co<1-6>r    to CLB_R4C2.G1 : 3.0ns ( 27.5ns) 
Thru: Blk <2-6>    to CLB_R4C2.Y  : 6.0ns ( 33.5ns) 
Thru: Net so<2-6>r   to CLB_R5C3.F3 : 3.2ns ( 36.7ns) 
Thru: Blk <3-6>    to CLB_R5C3.X  : 6.0ns ( 42.7ns) 
Thru: Net co<3-6>r    to CLB_R6C2.G1 : 3.1ns ( 45.8ns) 
Thru: Blk <4-6>    to CLB_R6C2.Y  : 6.0ns ( 51.8ns) 
Thru: Net so<4-6>r   to CLB_R7C3.F3 : 3.1ns ( 54.9ns) 
Thru: Blk <5-6>    to CLB_R7C3.X  : 6.0ns ( 60.9ns) 
Thru: Net co<5-6>r    to CLB_R8C2.G1 : 3.1ns ( 64.0ns) 
Thru: Blk <6-6>    to CLB_R8C2.Y  : 6.0ns ( 70.0ns) 
Thru: Net so<6-6>r    to CLB_R9C3.F3 : 3.2ns ( 73.2ns) 
Thru: Blk <7-6>    to CLB_R9C3.X  : 6.0ns ( 79.2ns) 
Thru: Net co<7-6>r    to CLB_R10C2.G1: 3.1ns ( 82.3ns) 
Thru: Blk <8-6>    to CLB_R10C2.Y : 6.0ns ( 88.3ns) 
Thru: Net so<8-6>r    to CLB_R11C3.F3: 3.1ns ( 91.4ns) 
Thru: Blk <9-6>    to CLB_R11C3.X : 6.0ns ( 97.4ns) 
Thru: Net co<9-6>r    to CLB_R12C2.G1: 3.1ns (100.5ns) 
Thru: Blk <10-6>      to CLB_R12C2.Y : 6.0ns (106.5ns) 
Thru: Net so<10-6>r to CLB_R13C3.F3: 3.2ns (109.7ns) 
Thru: Blk <11-6>    to CLB_R13C3.X : 6.0ns (115.7ns) 
Thru: Net co<11-6>r to CLB_R14C2.G1: 3.0ns (118.7ns) 
Thru: Blk <12-6>    to CLB_R14C2.Y : 6.0ns (124.7ns) 
Thru: Net p12 to P35.O       : 2.6ns (127.3ns) 
  To: FF Setup (D), Blk c12             : 8.0ns (135.3ns) 

Source clock net : "CLK" (Rising edge)
From: Blk a6/b6 CLOCK to CLB_R1C2.XQ : 5.0ns (  5.0ns) 
Thru: Net a6       to CLB_R2C3.F2 : 4.1ns (  9.1ns) 
Thru: Blk a6r      to CLB_R2C3.X  : 6.0ns ( 15.1ns) 
Thru: Net a6r      to CLB_R4C3.G4 : 3.0ns ( 18.1ns) 
Thru: Blk a6r3     to CLB_R4C3.Y  : 6.0ns ( 24.1ns) 
Thru: Net a6r2     to CLB_R4C3.F2 : 3.0ns ( 27.1ns) 
Thru: Blk a6r3     to CLB_R4C3.X  : 6.0ns ( 33.1ns) 
Thru: Net a6r3     to CLB_R6C3.G4 : 3.0ns ( 36.1ns) 
Thru: Blk a6r5     to CLB_R6C3.Y  : 6.0ns ( 42.1ns) 
Thru: Net a6r4     to CLB_R6C3.F2 : 2.9ns ( 45.0ns) 
Thru: Blk a6r5     to CLB_R6C3.X  : 6.0ns ( 51.0ns) 
Thru: Net a6r5     to CLB_R8C3.G4 : 3.1ns ( 54.1ns) 
Thru: Blk a6r7     to CLB_R8C3.Y  : 6.0ns ( 60.1ns) 
Thru: Net a6r6     to CLB_R8C3.F2 : 2.9ns ( 63.0ns) 
Thru: Blk a6r7     to CLB_R8C3.X  : 6.0ns ( 69.0ns) 
Thru: Net a6r7     to CLB_R10C3.G4: 3.1ns ( 72.1ns) 
Thru: Blk a6r9     to CLB_R10C3.Y : 6.0ns ( 78.1ns) 
Thru: Net a6r8     to CLB_R10C3.F2: 2.9ns ( 81.0ns) 
Thru: Blk a6r9     to CLB_R10C3.X : 6.0ns ( 87.0ns) 
Thru: Net a6r9     to CLB_R12C3.G4: 3.0ns ( 90.0ns) 
Thru: Blk a6r11    to CLB_R12C3.Y : 6.0ns ( 96.0ns) 
Thru: Net a6r10    to CLB_R12C3.F2: 3.0ns ( 99.0ns) 
Thru: Blk a6r11    to CLB_R12C3.X : 6.0ns (105.0ns) 
Thru: Net a6r11    to CLB_R13C3.G2: 3.0ns (108.0ns) 
Thru: Blk <11-6>      to CLB_R13C3.Y : 6.0ns (114.0ns) 
Thru: Net p11r     to CLB_R14C3.F2: 3.1ns (117.1ns) 
Thru: Blk p11r2/a6r12    to CLB_R14C3.X : 6.0ns (123.1ns) 
Thru: Net p11      to P37.O       : 2.1ns (125.2ns) 
  To: FF Setup (D), Blk c11             : 8.0ns (133.2ns) 

 

Table 1: Components of the slower (left column) and faster (right column) paths.

The prototype has been tested using 2 random vectors as well as a set16 

of 16 operand that produce the toggle of almost all the output pins
(both sequences were produced using another FPGA, an XC3120-3,
that allowed a low-cost pattern generator to be obtained). The second
sequence of numbers facilitated the detection of phenomena like
double-clocking and zero-clocking, that are common on single-phase
clock pipelines. 

The circuit operated as fast as fine grain pipelines, but using 28
registers instead of 278 ones. The highest operational frequency band
(measured) was between 83 Mhz to 85 Mhz, with 8 waves running
inside it, a frequency that is close to the limit of the selected chip. For
this example, the circuit ran nearly 10 times faster than the value
predicted by the Xdelay  tool, meanwhile the factor between simulation
results and the real frequency of operation has been measured as 1.3
for non-equalized pipeline circuits (Fig.5).

Running at maximum speed, the circuit is equivalent to a pipeline of
8 stages; then, the latency of the prototype is 9 clock cycles including
the I/O registers. Considering that, for n=7 bits, the Guild topology has
13 cells in the longest path, and each of them requires one CLB, the
classical pipeline must have 13 stages in order to reach a throughput of
84 Mhz. Even if it were possible to obtain that speed by means of a
careful layout, the latency would be 14 clock cycles. Pipelining every
two cells could reduce the latency to 8 clock cycles but would  imply
an even less realistic timing budget for the chip selected: 11.9 ns for 2
LUT, register and routing delays. 

The equalization produces an area overhead; the prototype makes use
of 182 CLBs, while a hand-made classical pipeline design could be
fitted in less CLBs (a 13-stage, n=7 bit, array just requires 278
registers). However, the final number of CLBs in the wave version is



Fig.5: Simulated vs. measured frequency operation.
Conventional and wave pipelines (L=logic depth in LUTs)

Fig.7 :Power consumption  vs. frequency.
Conventional and wave pipelines

Fig.6: mW per CLB-MHz figure vs. logic depth.
Conventional and wave pipelines.

a consequence of two choices: regularity and categorical matching.
Both strategies simplify the equalization task but require extra logic. In
principle, the use of extra routing to balance LUT delays could reduce
the number of CLBs occupied even less than quantity needed by the
equivalent classical pipelines. But preliminary evaluations of this
possibility suggest that the gap between simulation and actual delays is
different for LUTs and routing. Then, the non-categorical equalization
option would require to be performed a previous characterization of all
chip elements. 

In terms of power consumption, the wave pipeline technique
diminishes synchronization power as well as datapath spurious activity
(due to path equalization). For example, a non-equalized combinational

array outputs a maximum of 40 intermediate values between two
consecutive results: ten times the number measured for the wave array
(with output registers removed). Thus, both conventional and wave

pipelining, allow to increase the speed and reduce power
simultaneously [Boe95]. In Fig.6 the mW/CLB-Mhz figure for several
arrays with different logic depth has been plotted. Both fine-grain
pipelines and the wave pipeline prototype consume less power than the
combinational version in the common range of operation, in spite of
the hardware overhead. Nevertheless, the wave prototype consumed a
little more than fine-grain pipeline arrays (Fig.7).

Finally, the main disadvantage of wave pipelines is its strong
dependence on the power supply voltage. For example, at 84 Mhz (the
middle of the last frequency band), changes in power supply below
4.88 V or above 5.13 V produced erroneous outputs, while in the
middle of the six-wave mode band, 62.5 Mhz, variations between 4.75
V and 5.21 V can be tolerated. 

4 Conclusions and future work

The feasibility of constructing wave pipelines using LUTs has been
demonstrated. Even using commercial chips and tools, a low latency
and high throughput figure has been obtained. Nevertheless, the
efficiency of wave pipelining on FPGAs would be improved if extra
buffers with the same delay of LUTs were included in future chips.  In
terms of power consumption, no advantage with respect to
conventional pipelined arrays has been obtained; however, the power
reduction could be significant for FPGA architectures in which
synchronization fraction dominated the power consumption. 

Current research includes the development of a clock-skewed [Gra93]
wave pipeline version. In this case, the clock edges are delayed in the
same way as the data. It eliminates the dark bands of the circuit, but
also allows resynchronization of the data using intermediate registers.
It leads to classical pipelines in which each stage run in the wave
fashion. Preliminary evaluation suggests that, for the same chip utilized
in this experiment, a speed up to 100 Mhz can be obtained. 
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