
FPGA IMPLEMENTATION OF A BINARY32
FLOATING POINT CUBE ROOT

Carlos Minchola Guardia
School of Engineering

Universidad Autónoma de Madrid
Madrid, Spain

e-mail: carlos.minchola@uam.es

Eduardo Boemo
School of Engineering

Universidad Autónoma de Madrid
Madrid, Spain

e-mail: eduardo.boemo@uam.es

Abstract—This paper presents the implementation of a
sequential hardware core to compute a single floating point cube
root compliant with the current IEEE 754-2008 standard. The
design is based on Newton-Raphson recurrence, reciprocal and
cube root units are implemented. Optimal performance requires
two iterations for reciprocal and one for cube root units
obtaining an accurate approximation of +/- 3 least significant bits.
Our proposal is able to be performed up to 149 Mhz over
Virtex5. The hardware cost occupies 230 Slices and 12 Dsp48s
taking a latency of 19 clock cycles.

Keywords— FPGA; cube root; reciprocal; IEEE 754-2008;
binary floating point

I. INTRODUCTION
Nowadays, many scientific applications demand to

compute a large numbers of arithmetic operations involving
implementations of complex algorithms [9]. Every so often
operations such as logarithm, cube root, reciprocal and
trigonometric functions take part of several scientific formulas
being commonly utilized in many applications as digital signal
processing, multimedia, commercial and financial, mobile
robot navigation and so on [16],[8],[10]. However, Floating
Point Units are commonly implemented as software which is
dramatically slow [3]. A way of improving the speed is to
develop customized hardware versions of floating point
operations, therefore this work proposes the implementation of
a single binary floating point (BFP) cube root.

Currently, there are far fewer proposals with regard to cube
root under FPGA technology. This grants to our proposal to
capture the attention in future publications as far as this
operation is concerned.

Recently, some publications have come up focused on the
mentioned function under technology ASICs, as the proposal in
[7] that presents a Radix-2-digit-by-digit architecture that
outperforms the area x delay parameter in comparison with the
proposal in [6] for high radices. Regarding FPGA technology,
many mathematical methods have appeared for extracting cube
roots as [11] that presents a decimal digit-recurrence scheme
reducing the computational complexity, and the proposal in [5]
that gives a survey of a digit-by-digit arithmetic method
applicable to this function and suitable for FPGA
implementations.

As seen, FPGA cube root implementations have not
received a resounding attention regardless of the presence of
various mathematical methods for extracting cube root. We
hope this proposal can stimulate future FPGA implementations
of the analyzed operation.

The outline of the paper is as follows. In the next Section,
we describe the background information on binary floating-
point. In section III, the general structure of our IEEE 754-
2008 binary32 floating point cube root is explained. Section IV
describes the generation of initial approximated solutions. In
Section V, an outline of our general design is detailed. Section
VI presents the architecture of our proposal based on Newton-
Raphson iterations. Implementation and performance of our
design is explained in Section VII. Finally, Section VIII briefly
sums up some conclusions.

II. BINARY FLOATING POINT IN IEEE 754-2008
The IEEE 754-2008 [1] standard specifies formats for both

BFP and decimal floating-point numbers. The primary
difference between the two formats, besides the radix, is the
normalization of the significands (also coefficient or mantissa).
BFP significands are normalized with the radix point to the
right of the most significant bit (MSB).

The IEEE 754-2008 standard specifies BFP formats of 32,
and 64 bits. Our design tackles 32-bit BFP that is coded in the
following three fields (Figure 1):

Fig. 1. Binary interchange floating-point format

a) 1-bit sign S.

b) w-bits biased exponent E = q+bias .(bias = 127)

c) (t = p - 1)-bit trailing field digit string T = d1d2d3…dp-1
the leading bit of d0 is implicitly encoded in the biased
exponent. In keeping with binary32, the values of w and t are 8
and 24 respectively. The BFP number obtained from its
codification is expressed as:

 (1)

where s is the sign bit, q is a 8-bit exponent belonging the
range and M is the non-negative integer
significand formed as and normalized to
the range .

The exponent q is obtained as a function of biased non-
negative integer exponent E. Stored values of q as -127 and
128 are interpreted as denormalized numbers producing zero
and +/- infinity respectively.

As an example of BFP number, a float F is set to 1 01111100
10110000000000000000000 where bold types represent sign and
fraction of mantissa respectively. In this example:

a) S = 1

b) E = 01111100, then q = 124 - 127 = -3

c) M = 1. (10110000000000000000000) = 1.6875

Thus, the BFP value is -11x1.6875 x 2-3 = -0.2109375

III. CUBE ROOT BASED ON NEWTON-RAPHSON METHOD
Newton-Raphson (NR) iteration is a convergence method

based on approximating the root of a non-linear function [2].
This procedure consists of finding values of such
that . A way to estimate roots to is to make
a reasonable guess to the neighborhood of a solution. A value
denoted as is considered as an approximated initial
solution. It is observed in Figure 2 that the equation of the
tangent line to at presents a x-intercept by .
A linear representation at is expressed as follow:

 (2)

The solution of this for produces the next relation:

 (3)

If the process is repeated, using as new guess, a new
accurate approximation is provided:

 (4)

A general expression for this function iteration is
determined by:

 (5)

Hence, the function is closer to zero when n
gradually increases.

Following, the calculated iteration function is utilized to
find the corresponding approximate solution of a cube root. If
we figure out using the NR algorithm then
should be analyzed. Right off, the derivative of is
computed as then both of these expression are
substituted in the previous four equations. This produces the
seed formula for iterative cube root:

 (6)

The previous function requires a division at each
iteration. As a workaround the division is computed as

 therefore an approximation of a reciprocal
function is proposed. The seed expression for iterative
[4] reciprocal is expressed as:

 (7)

Where represents the approximated solution of .
The above explanation refers to two approximated processes:
cube root and reciprocal. When the process begins, the first
task consists in finding the initial values for both of them from
a memory ROM. As practical illustration, Figure 2 depicts the
approximation of the solution of , the equation is
rewritten as for extracting zero solutions.
The rest of the process bases on executing the previous
expressions from (2) to (7) resulting a that represents an
approximated zero to . On account of the need for
accuracy, the system could execute further iterations.

Fig. 2. Newton's method to approximate

The diagram of the proposal is set forth in Figure 3. Before
estimating , the BFP number X is normalized such that

. Straightaway, the process gets going which will
be detailed in the succeeding Sections.

IV. ROM INITIAL APROXIMATION GENERATION
This Section explains the generating of initial

approximations for each cube root and reciprocal units. These
values are stored in ROM.

The approximation of six initial solutions are sketched out
in Table I. The first column represents the ROMs index. In the
next column, X represents any normalized number BFP. The
subsequent ones show the result of each mentioned process
with their binary representations respectively.

Some restriction should be taken in account to generate the
ROM values as: a) Initial approximations are coded into 24-bit
precision. b) Is known the any input X is fitted to the range

, this prompts that the result of the reciprocal and cube
root operations lie in the range and
respectively. The last ranges assure the presence of 1-bit
leading one for reciprocal (normalized as 1.xx..xx) and 2-bit
leading ones for cube root (normalized as 0.11xx..xx). By this
reason, memories of 22- and 23-bit ROM of size of 32 words
are considered for each operation. The indexes of the ROM are

formed by the 5 bits subsequent to the bits leading ones. c) It is
worth pointing out that the bits leading ones and ROM values
generate the 24-bit initials guess.

TABLE I. ROM INITIAL VALUES GENERATION

Ind.

R
O
M

[

 = 1.x...x

ROM[Ind.]

= .11x...x

ROM[Ind.]

0 0.500 2.000 1111111111111
1111111111 0.793 00101100101111

11110110

4 0.562 1.777 1100011100011
1000111001 0.825 01001101010010

11000111

9 0.640 1.561 1000111110011
1000001101 0.862 01110010101111

10011000

16 0.750 1.333 0101010101010
1010101011 0.908 10100010010111

01101001

26 0.906 1.103 0001101001111
0111001100 0.967 11011110111100

01110010

31 0.984 1.015 0000010000010
0000100001 0.994 11111010101000

11100000

A brief example, let number of 9-bit k = 448 be, before
completing the full operation is necessary that k to be
normalized to 448 such that . Normalization
provides a result of 0.875 whose binary representation is 0.111.
The input 0.111 is extended to a 9-bit operand defined as
111000000 which feeds the proposed cube root unit. So far as the
initial value selection is concerned, the five bits following to
the 2-bit leading ones are taken representing the ROMs index.
In keeping with the example the index is 10000 (16 decimal).
Observing Table 1, an index = 16 prompts an .11 &
1010001001011101101001 as initial cube root value, immediately
the five bits following to the 2-bit leading ones are captured to
find the initial reciprocal value. This new index is 11010 (26
decimal) and according to Table 1 the value of the selected
word is 1. & 00011010011110111001100. This word represents the
reciprocal initial solution. In turn, the alignment indicated by
the binary point should be taken in consideration during
calculations.

V. SINGLE FLOATING POINT CUBE ROOT DESIGN
A general overview of proposed system is presented in

Figure 3. Arrows are used to show the direction of data flow
and the shadow blocks indicate the main stages of the design.

Initially, an IEEE-754 standard operand (X) is decoded into
three components: 1- sign (S), 8- exponent (Exp) and 23-bit
fraction mantissa. A 1-bit leading one and the fraction mantissa
are concatenated to achieve the true value of the mantissa
(Man). Cube root implies in dividing the exponent over 3, as a
workaround the exponent is expressed as multiple of 3 and a
remainder. Man is turned into and the
initial exponent () is updated to . The
sign of will be utilized later.

The is utilized as index of a memory ROM of
size of 151 words. The aforesaid indexes select 8-bit words
which provide information of any multiple of 3 () and a
remainder () of its respective index. Each word can be
represented as:

 (10)

 (11)

A partial exponent, , is generated equal to n. ,
represented as , is passed on to cube root unit, as
seen in previous sections. The analyzed function is focused in
computing normalized numbers in the range therefore

 is processed as . Its architecture is in-
depth analyzed in the next Section.

In parallel special cases are detected and represented by:
infinity, non-a-number (), overflow and
underflow.

The cube root unit begins when a start signal is asserted
and the task is to calculate . For the sake
of simplicity the multiplicand does not take part of the
calculation but will affect the final exponent summing 8.
Continuing with the explanation, as soon the process is done
the output is normalized according to the
reminder and the sign of .

Reminder represents a 24-bit constant of the
form whose result could be zero when , , when

, and when . The constants are stored in ROM.

As explained earlier, the set (, sign of) selects the
new exponent and a binary multiplication-by-constant
operation, therefore a rough approximation of the cube root
operation is obtained.

The selection is carried out as follow:

(11)

(12)

In (11) cube2, cube4, recube2, recube4 corresponding to
32-bit constants , , , respectively. The
expression means sign of In (12)

. In order to meet the normalization, the generated
 should belong to the range therefore a subsequent

process verifies this requirement. A new product is
constructed using a chunk of 32 bits of 56-bit as follows:

(13)

At the same time, the exponent changes to:

(14)

The least significant bit (LSB), guard (G), round (R) and
sticky (STK) bit are generated capturing the LSB and

subsequent bits of . The 3-bit MSB of the captured data
represents the LSB, G, and R respectively. The STK is obtained
by means of or-chain operations of the remaining bits of the
captured data.

Fig. 3. High-level Binary Floating-Point Cube Root Diagram

To continuation the rounding unit is prompted. This process
is feed by the previous bits and issues the signal add_one that
is summed to Q. This sum provides a 32-bit result that is
truncated to 24-bit MSB of Q producing the final cube root
(Fcr) normalized into . It is worth remarking that
round_ties_to_even is the rounding strategy utilized.

In the rounding stage, special cases as overflow and
underflow are tested again. In compliance with IEEE 754-2008
standard the mantissa is defined into . Therefore a left-
shift operation by 1-bit on Fcr is executed if its respective
MSB is zero. The final exponent (Fexp) is calculated as follow:

 (15)

Finally, the final mantissa is made up of the first 23 bits
subsequent to MSB of Fexp, the final exponent (Fexp), sign
(S), and special cases (SC) are processed by the Encoder stage
to generate the IEEE-754-2008 format final output. During the
final process the overflow and underflow should be analyzed
and signaled.

Regarding cycles cost, the cube root unit is fully sequential
and is made up for reciprocal and cube root cells which need 3
and 4 clock cycles respectively. The remaining process
presents combinational blocks which are: decoder, exponent
recalculating, index generation, mantissa and exponent
normalization, cube root output updating, signals required by
rounding, rounding, re-evaluation of final mantissa and
exponent, and encoder as last stage. All of them are executed
in 9 clock cycles.

The total cycles of the system can be calculated using the
expression: total_cycles = 9 + 2 x n_iter_rec + n_iter_cr,
where n_iter_rec and n_iter_cr corresponding the number of
iterations for reciprocal and cube root respectively. The design
was simulated and verified executing large amounts of data. A
reliable approximation was detected when n_iter_rec = 2 and
n_iter_cr = 1. Our proposal needs 19 cycles clock. In regard to
size of memory, the design requires 346x8 bits ROM.

VI. CUBE ROOT UNIT ARCHITECTURE
In Figure 4 exhibits the sequential architecture of our

proposal. The rounded corners shadow blocks representing the
mainly process of this unit. With regard to shadow embedded
blocks are sub-stages based on binary operations. The thin
dashed lines show the segmentation of each block. The worst
data path is signaled by the thick dashed line.

This stage receives as input the normalized value
 that was explained in the previous Section. As soon

as the input is read, a 24-bit word is drawn from ROM, using
5-bit address as it is seen in Figure 4. This word, ,
represents the initial solution for cube root approximation.
Straightaway, 5-bit chunk is extracted from this word as was
specified in the last Section producing the initial solution for
reciprocal approximation denoted as . Get this execution
done, all required inputs () and the two
approximations (and) are ready to be utilized.

As seen in earlier Sections, the proposed sequential circuit
is targeted to design the iterative function represented in (6)
and (7). Due to the presence of a division operation, seen in (6),
we can profit from this equation as follows: the division is
represented as a multiplication of the dividend and the
reciprocal of the divisor.

Hence the fact that iterative approximation for cube root
and reciprocal functions are implemented.

They both architectures are shown in Figure 4. The
hardware can be dealt with describing two blocks. The
beginning of the process means the first iteration as much for
reciprocal, denoted by as for cube root, denoted by

 There the variables and are initialized to
and respectively.

The first block based on (7) generates the result of an initial
reciprocal approximation. As is observed this block requires 3
clock cycles. In the first clock a squarer and shift register of
reciprocal initial solution are computed, getting 48- and 26-bit
operands as outputs respectively. The 48-bit output and the
cube root initial solution are multiplied whose result is
truncated to 48 bits. Finally, a subtraction of the 26-bit operand
and the output from the multiplication is carried out. The first
block is executed multiple times () according the number of
programmed iterations for reciprocal approximation denoted by
rec_iter. The output generated is truncated as is shown in
Figure 4.

Fig. 4. Sequential Hardware of Cube Root Operation

The second block, related to (6), captures 32-bit
() from the first one. The hardware requires 4
cycles. First, a squarer operation is executed prompting an
output that is truncated to 24 bits. The next cycle, the last
output and the initial cube root solution are multiplied whose
result is a 48-bit product. In the third cycle, the normalized
input, , and the previous product are summed. The
binary point is analyzed by an alignment process. Finally, a
constant multiplication operation is executed in the last cycle.

A precision of 32 bits, denoted by , is achieved as output.
As was explained in the first block, numbers of executions ()
depend on the programmed iterations (cr_iter) for cube root
approximation.

 The hardware is based on one cycle 32x24- and 24x24
binary multiplier cells, which were fitted to DSP48 Slice. The
worst data path occurs having as source the squarer stage of
second block and as destination the multiplier of the first one.

VII. FPGA FLOATING POINT CUBE ROOT IMPLEMENTATIONS
All circuits were described in VHDL. Some parts the

proposal use low level component instantiation. For synthesis
and implementation XST[15] and Xilinx ISE 14.2 tool[14]
have been used respectively. The circuits were implemented in
a Virtex-5 speed grade -3 using timing constraints[12].

Delay and area depend mainly on the number of iteration
executed and the size of the multipliers utilized. As said before,
at most 32x24 multipliers were considered. Insofar as more
accuracy of our proposal is required, multiplications of larger
binary numbers should be considered.

In Table II the results of the implementation are presented.

Unfortunately, publications based on cube root under
FPGA techniques could not be found. By this reason,
comparison with others works might be unfair.

TABLE II. SINGLE FLOATING POINT CUBE ROOT IMPLEMENTATION

Slices

Flip
Flop

Lut

Dsp48

Min
Period
 (ns)

Max
Freq

(Mhz)

Cycles

Delay
 (ns)

Bram
18kb Mops

236 439 576 12 6.7 149 19 127.3 1 7.87

A. Verification
A behavioral model testbench, using ModelSim, was fed

with large normalized BFP numbers of random vectors. As a
result of these simulations, two iterations of reciprocal
approximation and one of cube root provided a reasonable
solution obtaining an error of +/- in the mantissas. It was
added to our testbench the Real VHDL Package utilizing the
function cbrtf whose result was compared with the proposed
hardware.

In order to carry out performance assessments of our
circuit, a Win32 C++ application of millions of cube root
operations (using the cbrtf function defined in the standard
library mat.h) was evaluated whose final result was matched
with our hardware proposal. These assessments are described
below:

Execution times are shown as first test. The C++ script was
evaluated on an Intel Core i-7 Processor @ 2.20 Ghz. The
execution time required per cube root operation was around
0.11 ns. The time-consuming of our proposal was 127.3 ns @
149 Mhz under FPGA.

As second test the speed-up of a Software / Hardware
Codesign was evaluated. Therefore a Microblaze Soft-Core
Embedded Processor with its Floating Point Unit respective
was implemented [13]. The digital system based on PLB-bus

was developed over Virtex5-vfx30t-3ff665@ 50Mhz. Then, a
customized co-processor based on our design was implemented
and connected the system central through Fast Simplex Link
(FSL) bus. The C++ script was executed. The obtained result
reveals a delay of 40 cycles for version hardware and 630 for
version software producing an acceleration of 15.75. Despite
that our proposal takes 19 cycles, Microblaze took further
cycles executing FSL instructions.

B. Future Improvements
Several improvements of the analyzed operation under

Newton- Raphson and FPGA techniques could be studied in a
future advanced version. Firstly, the binary multipliers could be
segmented, therefore an improvement of the frequency
performance could be achieved. This would help us to propose
a pipeline version of our design. Secondly, the design can be
extended to compute doubles BFP, this would involve large
hardware cost due to the fact that several multipliers would be
required. As a workaround either efficient multipliers or
intellectual property cores could be utilized. Thirdly, the
division in (6) could be computed from a binary division
instead of executing convergence methods for determining

. Finally, could be analyzed the implementation of a
general solution . This would entail to limit to certain
range of values. And as was tackled our proposal, the
exponents would be expressed as multiples of the radix .

VIII. SUMMARY
This work presents the hardware of a single floating point

cube root based on Newton-Raphson method and implemented
on FPGA platform.

This architecture is capable of computing 7.8 MOPS.

Regarding Dsp48s slice consumption, the design occupies
12 slices. All the available Dsp48s in the utilized FPGA
(Virtex-5) would only allow us to fit five cores of our proposal.
Working with larger Virtex-5 such as the model xc5lx330t-
2ff1738 would allow us to fit 16 units of our custom hardware.

 A co-processor, connected to a Microblaze embedded
processor, of the proposed circuit accelerates its version
software up to 15.75 times.

Our core can be utilized in scientific calculation that
involves cube root functions.

The resulting mantissa presents a decimal error of .

ACKNOWLEDGMENT
This research has been supported by Fundación Vodafone

España under contracts FUAM 085212 and 085206. Additional
funds have been obtained from Euroform Polo Español.

REFERENCES
[1] IEEE Standard for Floating-Point Arithmetic, 2008. IEEE Std 754-2008.
[2] Andrew Adler. Notes on Newton-Raphson method. online

available:http://www.math.ubc.ca/ anstee/math104/newtonmethod.pdf.
[3] M. F. Cowlishaw. Decimal floating-point: algorism for computers. In

Proc. 16th IEEE Symp. Computer Arithmetic, pages 104–111, 2003.
[4] Jean-Pierre Deschamps. Synthesis of Arithmetic Circuits FPGA, ASIC

and Embedded Systems. New Jersey : John Wiley, 2006, 2006.
[5] M.D. Ercegovac. On Digit-by-Digit Methods for Computing Certain

Functions . In Signals, Systems and Computers, 2007. ACSSC 2007.
Conference Record of the Forty-First Asilomar Conference on, pages
338 – 342, 2007.

[6] J.D. Bruguera J.-A Pineiro, M.D. Ercegovac. Algorithm and
Architecture for Logarithm, Exponential and Powering Computation. In
Computers, IEEE Transactions on, volume 53, pages 1085–1096, 2004.

[7] P. Montuschi J. Bruguera, F. Lamberti. A Radix-2 Digit-by-Digit
Architecture for Cube Root. In Computers, IEEE Transactions on,
volume 57, pages 562–566, 2008.

[8] Hyun-Chul Shin ; Jin-Aeon Lee ; Lee-Sup Kim. A minimized hardware
architecture of fast Phong shader using Taylor series approximation in
3D graphics. In Computer Design: VLSI in Computers and Processors,
1998. ICCD ’98. Proceedings. International Conference on, pages 286 –
291, 1998.

[9] K. E. Wires M. J. Schulte, J. E. Stine. High-speed reciprocal
approximations. In Signals, Systems & Computers, 1997. Conference
Record of the Thirty-First Asilomar Conference on, volume 2, pages
1183–1187, 1997.

[10] P. Tang S. Story. New algorithms for improved transcendental functions
on IA-64. In Computer Arithmetic, 1999. Proceedings. 14th IEEE
Symposium on, pages 4–11, 1999.

[11] Brian J. Shelburne. Another Method for Extracting Cube Roots. Dept. of
Math and Computer Science-Wittenberg University.

[12] Xilinx Inc. Virtex-5 FPGA Data Sheet: DC and Switching
Characteristics (DS202), v5.3 edition, May 5, 2010 2010.

[13] Xilinx Inc. EDK Concepts, Tools, and Techniques, 14.2 edition, April
2012.

[14] Xilinx Inc. Xilinx Inc. Xilinx ISE Design Suite 14.2 Software Manuals,
v14.2 edition, June 2012.

[15] Xilinx Inc. Xilinx Inc. XST User Guide 14.2, v14.2 edition, June 2012.
[16] Chia-Sheng Chen-Hau-Zen Sze An-Peng Wang Ying-Shieh Kung,

Kuan-Hsuan Tseng. FPGA-Implementation of Inverse Kinematics and
Servo Controller for Robot Manipulator. In Robotics and Biomimetics,
2006. ROBIO ’06. IEEE International Conference on, pages 1163–1168,
2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

