L ocomotion of a Modular Wor m-like Robot using a
FPGA-based embedded MicroBlaze Soft-processor

Gonzalez-Gémez J., Aguayo E., and Boemo E.

Escuela Politécnica Superior, Universidad Autonoma derida8pain
{Juan.Gonzalez, Estanislao.Aguayo, Eduardo.Boemo}@esm

Abstract. Modular reconfigurable robots offer the promise of more atlity,
robustness, and low cost. They are composed of simple anldl modules, ca-
pable of attach and detach one to each other. In this papesdalar worm-like
robot composed of a chain of 8 similar modules is presentedavklling wave,
that moves from the tail to the head, propels the robot fodw&@he positions of
the articulations are calculated using the following pagters: waveform, ampli-
tude, and wavelength. Instead of a conventional architectuFPGA-based soft-
processor core is utilized. It includes a set of custom perigl cores, written in
VHDL. FPGAs make modular robots more versatile, adding snevefeatureas
to the design of robots like reconfigurable control, hareémause, lower cost,
fault-recovering, and software/hardware co-design.

1 Introduction

Modular self-reconfigurable robots offer the promise of enersatility, robustness and
low cost[1]. They are composed of modules, capable of atiachdetach one to each
other, changing the shape of the robot. This scheme alloars tio perform unusual
actions like to traverse through any kind of terrain as weltbkmbing over obstacles
or crawling inside tubes. Utilities outside the researchlevbas not been seen yet, but
they are planned to be used in space applications[3] anchsdsrch and rescue[2].

A modular robot with N different types of modules is calledmddular. Hetero-
geneity is tend to be reduced, decreasing the ratio betwesmdNhe total number of
modules. In the last years, the number of robot following ypproach has growth
substantially[5][6][7][8].

One of the most advanced systems is Polybot[1][4], a 2-naydwiconfigurable
robot. Different reconfigurations and gaits has been prptoecgxample, from a loop,
that uses a rolling gait, to a snake, with a sinusoidal ga,fanally to an spider. Cur-
rently, the third generation of modules (G3) is being depetij9]. Each module has its
own embebed PowerPC 555 processor with a traditional psoceschitecture.

An addtional step on moduratity is the use of FPGA technoiagtead of a con-
ventional microprocessor chip. It gives the designer thesidlity of implementing new
architectures, faster control algorithms, or dinamicallydify the hardware to adapt it
to a new situation. In summary, Modular Reconfigurable Rabatrolled by a FPGA
not only are able to change their shapes, but also their lfeej\wo that, complete ver-
satility can be achieved.

Fig. 1. The worm-like modular robot Cube. Itis composed of 8 simitéked modules, connected
in phase.

In this paper, a modular worm-like robot (figure 1), named €istpresented. This
is the simplest kind of modular robot, composed of 8 equébithmodules (1-modular
robot). The locomotion is achieved by the propagation ofegahat travel through the
robot, from tail to the head. The entirely locomotion cotitiois embedded into an
FPGA.

In this first prototype, the problem of worms locomotion arR{3A-based control
has been solved. The control system is centralized; an erigstom FPGA processor
can control the 8 modules.

The MicroBlaze soft-processor[10] has been selected asprocessor. Additional
hardware units has been implemented as VHDL modules. MlezzBis a powerful
32-bit processor, that offers new capabilities not avéélamn conventional processors,
like the addition of custom peripheral, duplicated moduteéncrease reliability, or
the use of dynamic reconfiguration to adapt the control tova e@eviroment. This
soft-processor can also run operating systems like uCIQ%}/ a real time OS, or
uCLinux[12].

The organization of the paper is as follows. Firstly, the haadcs and the modules
is presented. Secondly, the robot locomotion, algorittand,the locomotion controller
is addressed. Finally, the implementation on FPGA is erpldiand the results are
presented.

2 Mechanical description

The current version of the prototype is a chain of 8 similakdid modules called Y1. In
figure 2, a CAD rendering is showed. They have just one dedgrfeedom, actuated
by a Futaba 3003 RC servo. The design is based on generatiBol@iot modules[4].
In this first version, no sensors are included. Our main @stewvas focused on the study
of locomotion, and its implementation on FPGA.

Fig. 2. CAD rendering of two Y1 modules. On the left, Two isolate miedun the middle, con-
nection in phase. On the right, they are connected out ofgphas

Y1 modules are simple and cheap: it is very easy to build pypts of worm-like
robots with them. These modules can be connected in twordiffavays, as shown
in figure 2. One way is the connection in phase, in which twaeeljit modules have
the same orientation. Robots constructed using this linke t&l the articulations in
the same plane, perpendicular to the ground (figure 3). Calmpidses 8 Y1 modules,
connected in phase, so that it can only move along a line daher backwards.

articulation’s plane

Ground Ground

Connection in phase Connection out of phase

Fig. 3. Two schemes of worm-like robots. On the left, all the artitigns are connected in phase
so that they all are on the same plane. On the right, the ctioneis out of phase. With this
configuration, the modules can be on different planes.

The other way of connecting the modules is out of phase. Tyaradt modules are
rotated 90 degrees one to each other, obtaining two degfée=sedom. One articula-
tion moves on the ground plane (yaw) and the other does péiqéarly (pitch). The
right image of figure 3 shows a worm with this kind of links. Bacircles represent
articulations that moves on the ground plane and grey sindpresents articulations
that moves perpendicular. This kind of robot can turn andevmvdifferent directions,
not just in straight line.

The dimensions of each module, in its initial position (0 &3 angle), are 52 x
52 x 72mm, and the weight is 50gr. They are made out of PVC. ®tsions range is
between -90 and 90 degrees. The robot is 576mm in length abgt 40 weight. The
electronic and power supply are located off-board.

The consumption depends on the gaits, but typically it isn2@@er servo, giving
a total of 1.6A. All the locomotion experiment at this firshge are realized using an
off-board power supply.

3 Locomotion

Locomotion is achieved by the propagation of waves thaense/the worm, from the
tail to the head. For programming simplicity, gait contiales are used[1], described
in more detail in section 3.1. The locomotion controllerctgen 3.3) generates these
tables automatically. The position controller reads thgmgucing the PWM signals to
actuate the servos, and thus propelling the robot.

3.1 Gait control tables

Each articulation is characterized by the angle betweetwbesegments it links. The
shape of the worm, at a given instantis determined by the angular position vector
W = (¢1,92,....,pn). Figure 4 shows a six articulations worm-like robot and the a
gular position vector at a given time.

Fig.4. Angular position vector for a worm-like robot composed of Bicalations: Vv =

(61,92,93,04, 05 06)

For every instant, an angular position vector there exiterinining the shape of
the worm: ¢ (to),$(t1), ..., ¢(tm). The control table is a matrix, which rows contains
the angular position vectors for every instant. In ordereaayate the movement, the
controller has to read the table, row by row, positioninggae/os.

In robots like Polybot, this tables are pre-calculated amsirdoaded into the mod-
ules. Each table represents one gait. It is not possiblddalede or store all the possible
tables for all the different gaits. Those tables are geadratitomatically irCube

3.2 Automatic generation of gait control tables

Control tables are generated using a wave propagation mblaelalgorithm is as fol-
lows (figure 5). Having a waveform in its initial staté(x,to) (in the figure, sinusoidal

waves are drawn, but other waveforms could be used) and a withrall its articu-
lations over thex axis (figure 5-1). Le{(x;,yi) be the coordinates of the articulation
at some instant. The angular position vector for the initial timm, is calculated
fitting the articulations to the wave, so that= f(x;,to) for all i. The distance L be-
tween articulations is maintained. It could be said thag tform fits the wave” (figure
5-2). Next, the wave is shifted (instamat Figure 5-3) and the worm fits the wave again,
obtainingw (figure 5-4). Points 3 and 4 are repeated until the wave readhiiial
phase. Afteminstant of time, all the vector that comprises the table areegated.

e .
= %
%@X s
N @ - % @ ©)
AN N

Fig. 5. The algorithm used to generate the control tables

By means of this algorithm, control tables are obtainedaréigss of the waveform
used, f(x,t). In the locomotion test, sinusoidal and semi-sinusoidalesa(just the
positive part of the sinusoidal wave) have been used.

3.3 Locomotion controller

The locomotion controller generates the PWM signals foitjpmsng the servos from
the wave parameters: waveform, amplitude, and waveleHggher level systems could
move the robot just specifying this parameters. Furtheeqairthis stage, the movement
of the robot is independent of the number of articulatiortee Planificator algorithm
will determine the best wave and its parameters based oetteért characteristics. For
example, if the robot had to pass through a tube, an amplgoggler than the section
of the tube will be needed. If the obstacle is an step, a bigggiitude will be used.

The architecture is shown in figure 6. The controller is coggubof three subsys-
tems.Control tableis the central part, where the angular position vectors aned.
The contents of this table determines the movement (se8tibn Theposition con-
troller generates the PWM signals that are applied to the servod theie angular
position.

|

! . Movement Control Position
iAmplltude ! generator I:\t table I:\‘> controller
| |

|

|

|

Input parameters

Fig. 6. Architecture of the locomotion controller

Finally, themovement generatabtain the gait control table from the parameter of
the wave (waveform, amplitude and wavelength). It is impated by software, using
the algorithm described in section 3.2.

4 Implementation on FPGA

Mainly two different approaches can be used for the impleatém of the locomotion
controller:

1. Using a conventional microprocessor system, eitherakred (a CPU that con-
trols all the modules) or distributed (every module has & @mbedded CPU,
connected by a network). All the functionality is implemeahin software. In order
to add a hardware controller, a new printed circuit boardghesould be needed.

2. Using an FPGA system. Different hardware/software &echires can be designed
and tested. Some subsystems could be implemented by hadmigte others by
software.

We have focused on the second approach: a centralized FP&énsy. All the loco-
motion controller is embebed on the FPGA. The movement gémieras well as the
control tables, are implemented by software. We have useddfi-processor Microb-
laze. Algorithms are coded in C language, first tested on aX®C and then ported to
Microblaze, using the GCC Cross compiler[13], suppliedh®yEPGA manufacturer.

The position controller is a hardware unit, written in VHDhat acts as a peripheral
for the MicroBlaze. Software can access to this unit thropgtts, mapped on the main
memory. The positions for the 8 servos are stored in the sporeding ports, where the
position controller read them and generates the PWM sidiedn main advantage of
this hardware devices is its scalability. In order to cohtnore servos, new controllers
can be mapped, without physical redesign of the board, al\Wajted to the resources
available on the FPGA: the area and pins available.

4.1 The Microblaze soft-processor

The MicroBlaze is soft-core 32 bit Harvard-style processescribed in HDL (Hard-
ware Description Language). It was released by Xilinx rélggt0]. Figures 7 shows

the design loaded in the FPGA. The buses of the processomfdiie Core Connect
standard from IBM[14]. Also, a debug module has been indiuderder to be able to
perform an intrusive debug of the processor using the GNUgdi[13].

XC2$400E
S v BRAM n
s D -]
So < O
& m ';: o0 Servo Controller IP
0 —
£a oo
- - Servo Select =
u Module - ZI)
okl - 2
9] -
-] =
o L)]
E - =
Jtag o) _ ;
h OPB MDM -z
Chain
Debug module U -
Position PWM
Registers generatos

Fig. 7. Locomotion controller scheme loaded in the FPGA

C language can be used to design both the controller and siggmocomputing
algorithms. As the whole system (memory, buses, peripbarad processor) is being
described in HDL, the hardware architecture is much sintpin traditional processor
board architectures. A modification of the controller systenly needs the loading a
new design into the FPGA. No PCB maodification is necesarysTtesting and de-
bugging stages of the design are a much simpler task. Thifueadamental feature,
since robotics is a field where testing is not only a simutatask, when a modifica-
tion to the hardware system is made. The Cube prototype eals lilne new system in
microseconds.

Traditional robotic systems have separated hardware aihdege design stages,
the hardware system is constructed once and then the sefismaded as many times
as needed to make it work. The use of an FPGA in Cube givesdhist the facility
to have many hardware and software design stages so aghiasired results. It adds
more flexibility in the design stages.

Finally, as the Microblaze is being designed to use verlglgpace in the FPGA
(near a 10% of a SpartanllE400 chip is used for the Cube diing@ystem), all the
space left can be used to implement extra hardware.

4.2 Implementation results

The implementation of the controlling system has been dgesl using the latest re-
leased Xilinx software for HDL synthesis, mapping and innpdatation, ISE 6.1. And
the processor system developer tool, also from Xilinx EDK. @he FPGA used in
Cube is a SpartanllE 400, a low cost FPGA that maintains tlectibe of a low cost
robot. The obtained results for the final place and route efttardware system are
shown in table 1.

Table 1. Implementations results using an SpartanllE 400 FPGA

| [Total[Used| Available]

BRAMs 14 8] 6(43%

Slices (Area) 235713121040 (44%

1/0 pins 146 10 136 (93%

System Clock frequency (MHZ) - 50 —

The 8 BRAM are configured to build a 32 bit words memory, haragh BRAM a
4Kx4 bit capacity sharing the address bus. The resultsmdddbr the controller leave
a 44% of space and 93% of the pins free in the FPGA. So thatysters still has a
remarkable amount of resources available for future img@moants. The board uses a
50 MHz clock generator, even considering that no optimaratif the design has been
carried out.

The average robot power comsuption depends on the movemdotmped and will
be analized in detail in future work. A Typical value is 8W@A, 5v).

5 Conclusions and future work

A modular worm-like robot has been constructed, capableafing in a straight line,

using a wave propagation gait. Locomotion controller iselolagn control tables, au-
tomatically generated from the parameters of the wavesepplaveform, amplitude
and wavelength. Locomotion is achieved by means of the gatian of these waves
along the worm, from the tail to the head. Higher level sofaast need to specify this
parameters to locomote the robot.

The controller has been implemented on a low cost FPGA usistpm cores, de-
scribed in VHDL, together with the MicroBlaze soft-processsvhere the algorithms
are executed. FPGAs increases the robot versatility sdatiradesigner can select the
architecture that better fix the requirements. Main lintag of this approach are the
memory and FPGA resource availability. The main advandagespossibility of im-
plementing new architectures, faster control algorithdisamyc hardware modifica-
tion, hardware/software codesign, and remote hardwaomfiggiration.

A working platform has been developed. Current researchdssed on worm lo-
comotion, studying its characteristics as a function ofwtlage parameters, getting in-
sights of its relation with velocity, stability, and consption. One approach will be the

use of genetic algorithms to find the optimal parametersefitave, given an stability,
velocity, and power consumption restriction. We also aemping to study locomotion
in a plane, not restricted only to straight lines. Finalljpew generation of modules,
with embeded FPGAs are being constructed.

Acknowledgements

This research is supported by Project Number 07T/0052£30083the Consejeria de
Educacion de la Comunidad Autbnoma de Magd8gain.

References

1. Mark Yim, Ying Zhang & David Duff, Xerox Palo Alto Resear€&enter (PARC), “Modular
Robots”. IEEE Spectrum Magazine. Febrero 2002.

2. M.Yim, D. Duff, K.Roufas, “Modular Reconfigurable Robpfsn Aproach to Urban Search
and Rescue,” Proc. of 1st Intl. Workshop on Human-friendlgifare Robotic Systems
(HWRS2000) Taejon, Korea, pp.69-76, Jan. 2000.

3. M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, "ModulReconfigurable Robots in
Space Applications”, Autonomous Robot Journal, specsalésor Robots in Space, Springer
Verlag, 2003.

4. D. Duff, M. Yim, K. Roufas,"“Evolution of PolyBot: A ModulaReconfigurable Robot”,
Proc. of the Harmonic Drive Intl. Symposium, Nagano, Japéoy. 2001, and Proc. of
COE/Super-Mechano-Systems Workshop, Tokyo, Japan, NO\{L.2

5. Mark Yim, David G. Duff, Kimon D. Roufas, “Polybot: a Modad Reconfigurable Robot”,
IEEE intl. Conf. on Robotics and Automation (ICRA), San Faiano, CA, April 2000.

6. P.Will, A. Castano, W-M Shen, “Robot modularity for sedfeonfiguration,” SPIE Intl. Sym-
posium on Intelligent Sys. and Advanced ManufacturingcBealing Vol. 3839, pp.236-245,
Sept. 1999.

7. K. Kotay, D. Rus, M. Vona, C. McGray, “The Self-reconfigwgiRobotic-Molecule,” Proc.
of the IEEE International Conf. on Robotics and Automatigm424-431, May 1998.

8. S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, S. Kok#i3D self-Reconfigurable Struc-
ture,” Proc. of the IEEE International Conf. on Robotics #ndomation, pp.432-439, May
1998.

9. M. Yim, Y. Zhang, K. Roufas, D. Duff, C. Eldershaw, “Contiag and disconnecting for
chain self-reconfiguration with PolyBot”, IEEE/ASME Trawiions on mechatronics, spe-
cial issue on Information Technology in Mechatronics, 2003

10. Xilinx inc, “Microblaze processor Reference Guide’nSase, California. Julio 2003.

11. Jean J. Labrosse, “Use an RTOS on your Next MicroBlaze@&roduct”. Xcell journal.
Issue 48. Spring 2004.

12. Microblaze uClinux Project Home Page. [on-line] hitpww.itee.uq.edu.au/~jwilliams/mblaze-
uclinux/.

13. GNU project. [on-line] http://www.gnu.org.

14. IBM inc, “On-Chip Peripheral Bus, architecture speaifions”. Research Triangle Park,
North Carolina. April 2001.

