
Locomotion of a Modular Worm-like Robot using a
FPGA-based embedded MicroBlaze Soft-processor

González-Gómez J., Aguayo E., and Boemo E.

Escuela Politécnica Superior, Universidad Autónoma de Madrid, Spain
{Juan.Gonzalez, Estanislao.Aguayo, Eduardo.Boemo}@uam.es

Abstract. Modular reconfigurable robots offer the promise of more versatility,
robustness, and low cost. They are composed of simple and small modules, ca-
pable of attach and detach one to each other. In this paper, a modular worm-like
robot composed of a chain of 8 similar modules is presented. Atravelling wave,
that moves from the tail to the head, propels the robot forward. The positions of
the articulations are calculated using the following parameters: waveform, ampli-
tude, and wavelength. Instead of a conventional architecture, a FPGA-based soft-
processor core is utilized. It includes a set of custom peripheral cores, written in
VHDL. FPGAs make modular robots more versatile, adding somenew featureas
to the design of robots like reconfigurable control, hardware reuse, lower cost,
fault-recovering, and software/hardware co-design.

1 Introduction

Modular self-reconfigurable robots offer the promise of more versatility, robustness and
low cost[1]. They are composed of modules, capable of attachand detach one to each
other, changing the shape of the robot. This scheme allows them to perform unusual
actions like to traverse through any kind of terrain as well as climbing over obstacles
or crawling inside tubes. Utilities outside the research world has not been seen yet, but
they are planned to be used in space applications[3] and urban search and rescue[2].

A modular robot with N different types of modules is called N-modular. Hetero-
geneity is tend to be reduced, decreasing the ratio between Nand the total number of
modules. In the last years, the number of robot following this approach has growth
substantially[5][6][7][8].

One of the most advanced systems is Polybot[1][4], a 2-modular reconfigurable
robot. Different reconfigurations and gaits has been probed; for example, from a loop,
that uses a rolling gait, to a snake, with a sinusoidal gait, and finally to an spider. Cur-
rently, the third generation of modules (G3) is being developed[9]. Each module has its
own embebed PowerPC 555 processor with a traditional processor architecture.

An addtional step on moduratity is the use of FPGA technologyinstead of a con-
ventional microprocessor chip. It gives the designer the possibility of implementing new
architectures, faster control algorithms, or dinamicallymodify the hardware to adapt it
to a new situation. In summary, Modular Reconfigurable Robotcontrolled by a FPGA
not only are able to change their shapes, but also their hardware, so that, complete ver-
satility can be achieved.



Fig. 1. The worm-like modular robot Cube. It is composed of 8 similarlinked modules, connected
in phase.

In this paper, a modular worm-like robot (figure 1), named Cube is presented. This
is the simplest kind of modular robot, composed of 8 equal linked modules (1-modular
robot). The locomotion is achieved by the propagation of waves that travel through the
robot, from tail to the head. The entirely locomotion controller is embedded into an
FPGA.

In this first prototype, the problem of worms locomotion and FPGA-based control
has been solved. The control system is centralized; an unique custom FPGA processor
can control the 8 modules.

The MicroBlaze soft-processor[10] has been selected as core processor. Additional
hardware units has been implemented as VHDL modules. MicroBlaze is a powerful
32-bit processor, that offers new capabilities not available on conventional processors,
like the addition of custom peripheral, duplicated modulesto increase reliability, or
the use of dynamic reconfiguration to adapt the control to a new enviroment. This
soft-processor can also run operating systems like uC/OS-II[11], a real time OS, or
uCLinux[12].

The organization of the paper is as follows. Firstly, the mechanics and the modules
is presented. Secondly, the robot locomotion, algorithms,and the locomotion controller
is addressed. Finally, the implementation on FPGA is explained and the results are
presented.

2 Mechanical description

The current version of the prototype is a chain of 8 similar linked modules called Y1. In
figure 2, a CAD rendering is showed. They have just one degree of freedom, actuated
by a Futaba 3003 RC servo. The design is based on generation G1Polybot modules[4].
In this first version, no sensors are included. Our main interest was focused on the study
of locomotion, and its implementation on FPGA.



Fig. 2. CAD rendering of two Y1 modules. On the left, Two isolate modules In the middle, con-
nection in phase. On the right, they are connected out of phase.

Y1 modules are simple and cheap: it is very easy to build prototypes of worm-like
robots with them. These modules can be connected in two different ways, as shown
in figure 2. One way is the connection in phase, in which two adjacent modules have
the same orientation. Robots constructed using this link have all the articulations in
the same plane, perpendicular to the ground (figure 3). Cube comprises 8 Y1 modules,
connected in phase, so that it can only move along a line, forward or backwards.

Ground Ground

articulation’s plane

Connection in phase Connection out of phase

Fig. 3. Two schemes of worm-like robots. On the left, all the articulations are connected in phase
so that they all are on the same plane. On the right, the connection is out of phase. With this
configuration, the modules can be on different planes.

The other way of connecting the modules is out of phase. Two adjacent modules are
rotated 90 degrees one to each other, obtaining two degrees of freedom. One articula-
tion moves on the ground plane (yaw) and the other does perpendicularly (pitch). The
right image of figure 3 shows a worm with this kind of links. Black circles represent
articulations that moves on the ground plane and grey circles represents articulations
that moves perpendicular. This kind of robot can turn and move on different directions,
not just in straight line.

The dimensions of each module, in its initial position (0 degrees angle), are 52 x
52 x 72mm, and the weight is 50gr. They are made out of PVC. The rotations range is
between -90 and 90 degrees. The robot is 576mm in length and 400gr in weight. The
electronic and power supply are located off-board.



The consumption depends on the gaits, but typically it is 200mA per servo, giving
a total of 1.6A. All the locomotion experiment at this first stage are realized using an
off-board power supply.

3 Locomotion

Locomotion is achieved by the propagation of waves that traverse the worm, from the
tail to the head. For programming simplicity, gait control tables are used[1], described
in more detail in section 3.1. The locomotion controller (section 3.3) generates these
tables automatically. The position controller reads them,producing the PWM signals to
actuate the servos, and thus propelling the robot.

3.1 Gait control tables

Each articulation is characterized by the angle between thetwo segments it links. The
shape of the worm, at a given instantt, is determined by the angular position vector
−−→ϕ(t) = (ϕ1,ϕ2, ...,ϕn). Figure 4 shows a six articulations worm-like robot and the an-
gular position vector at a given time.

ϕ

ϕ ϕ

ϕ

ϕ

ϕ

1

2
3

4

5

6

1

2

3

4

5

6

Fig. 4. Angular position vector for a worm-like robot composed of 6 articulations: −→v =
(ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,

ϕ6)

For every instant, an angular position vector there exist, determining the shape of
the worm:

−−→ϕ(t0),
−−→ϕ(t1), ...,

−−−→ϕ(tm). The control table is a matrix, which rows contains
the angular position vectors for every instant. In order to generate the movement, the
controller has to read the table, row by row, positioning theservos.

In robots like Polybot, this tables are pre-calculated and downloaded into the mod-
ules. Each table represents one gait. It is not possible to calculate or store all the possible
tables for all the different gaits. Those tables are generated automatically inCube.

3.2 Automatic generation of gait control tables

Control tables are generated using a wave propagation model. The algorithm is as fol-
lows (figure 5). Having a waveform in its initial state,f (x,t0) (in the figure, sinusoidal



waves are drawn, but other waveforms could be used) and a wormwith all its articu-
lations over thex axis (figure 5-1). Let(xi ,yi) be the coordinates of the articulationi,
at some instantt. The angular position vector for the initial time,

−−→ϕ(to), is calculated
fitting the articulations to the wave, so thatyi = f (xi ,t0) for all i. The distance L be-
tween articulations is maintained. It could be said that “the worm fits the wave” (figure
5-2). Next, the wave is shifted (instantt1. Figure 5-3) and the worm fits the wave again,
obtaining

−−→ϕ(t1) (figure 5-4). Points 3 and 4 are repeated until the wave reach its initial
phase. Afterm instant of time, all the vector that comprises the table are generated.

2

34

1

x

f(x,t )0

x

f(x,t )0

f(x,t )

x

f(x,t )

x

1 1

Fig. 5. The algorithm used to generate the control tables

By means of this algorithm, control tables are obtained, regardless of the waveform
used, f (x,t). In the locomotion test, sinusoidal and semi-sinusoidal waves (just the
positive part of the sinusoidal wave) have been used.

3.3 Locomotion controller

The locomotion controller generates the PWM signals for positioning the servos from
the wave parameters: waveform, amplitude, and wavelength.Higher level systems could
move the robot just specifying this parameters. Furthermore, at this stage, the movement
of the robot is independent of the number of articulations. The planificator algorithm
will determine the best wave and its parameters based on the terrain characteristics. For
example, if the robot had to pass through a tube, an amplitudesmaller than the section
of the tube will be needed. If the obstacle is an step, a biggeramplitude will be used.

The architecture is shown in figure 6. The controller is composed of three subsys-
tems.Control tableis the central part, where the angular position vectors are stored.
The contents of this table determines the movement (section3.1). Theposition con-
troller generates the PWM signals that are applied to the servos to set their angular
position.



Servo 1

Servo 8

Control
table

Position
controller

PWM

Waveform

Input parameters

Wavelength

Amplitude
Movement
generator

Fig. 6. Architecture of the locomotion controller

Finally, themovement generatorobtain the gait control table from the parameter of
the wave (waveform, amplitude and wavelength). It is implemented by software, using
the algorithm described in section 3.2.

4 Implementation on FPGA

Mainly two different approaches can be used for the implementation of the locomotion
controller:

1. Using a conventional microprocessor system, either centralized (a CPU that con-
trols all the modules) or distributed (every module has its own embedded CPU,
connected by a network). All the functionality is implemented in software. In order
to add a hardware controller, a new printed circuit board design would be needed.

2. Using an FPGA system. Different hardware/software architectures can be designed
and tested. Some subsystems could be implemented by hardware, while others by
software.

We have focused on the second approach: a centralized FPGA systems. All the loco-
motion controller is embebed on the FPGA. The movement generator, as well as the
control tables, are implemented by software. We have used the soft-processor Microb-
laze. Algorithms are coded in C language, first tested on a Linux PC and then ported to
Microblaze, using the GCC Cross compiler[13], supplied by the FPGA manufacturer.

The position controller is a hardware unit, written in VHDL,that acts as a peripheral
for the MicroBlaze. Software can access to this unit throughports, mapped on the main
memory. The positions for the 8 servos are stored in the corresponding ports, where the
position controller read them and generates the PWM signal.Then main advantage of
this hardware devices is its scalability. In order to control more servos, new controllers
can be mapped, without physical redesign of the board, always limited to the resources
available on the FPGA: the area and pins available.

4.1 The Microblaze soft-processor

The MicroBlaze is soft-core 32 bit Harvard-style processordescribed in HDL (Hard-
ware Description Language). It was released by Xilinx recently[10]. Figures 7 shows



the design loaded in the FPGA. The buses of the processor follow the Core Connect
standard from IBM[14]. Also, a debug module has been included in order to be able to
perform an intrusive debug of the processor using the GNU tool gdb[13].

Jtag
Chain

In
st

ru
ct

io
n

P
LB

 B
U

S

D
A

T
A

P
LB

 B
U

S

O
P

B
 B

U
S 3

8

P
W

M
 S

IG
N

A
LS

Position

Registers

PWM

generatos

Servo Select
Module

BRAM

OPB MDM

CLK
RST

XC2S400E

Debug module

Microblaze

Servo Controller IP

Fig. 7. Locomotion controller scheme loaded in the FPGA

C language can be used to design both the controller and the position computing
algorithms. As the whole system (memory, buses, peripherals and processor) is being
described in HDL, the hardware architecture is much simplerthan traditional processor
board architectures. A modification of the controller system, only needs the loading a
new design into the FPGA. No PCB modification is necesary. Thus, testing and de-
bugging stages of the design are a much simpler task. This is afundamental feature,
since robotics is a field where testing is not only a simulating task, when a modifica-
tion to the hardware system is made. The Cube prototype can loads the new system in
microseconds.

Traditional robotic systems have separated hardware and software design stages,
the hardware system is constructed once and then the software is loaded as many times
as needed to make it work. The use of an FPGA in Cube gives this robot the facility
to have many hardware and software design stages so achieving desired results. It adds
more flexibility in the design stages.

Finally, as the Microblaze is being designed to use very little space in the FPGA
(near a 10% of a SpartanIIE400 chip is used for the Cube controlling system), all the
space left can be used to implement extra hardware.



4.2 Implementation results

The implementation of the controlling system has been developed using the latest re-
leased Xilinx software for HDL synthesis, mapping and implementation, ISE 6.1. And
the processor system developer tool, also from Xilinx EDK 6.1. The FPGA used in
Cube is a SpartanIIE 400, a low cost FPGA that maintains the objective of a low cost
robot. The obtained results for the final place and route of the hardware system are
shown in table 1.

Table 1. Implementations results using an SpartanIIE 400 FPGA

Total Used Available

BRAMs 14 8 6 (43%)
Slices (Area) 2352 13121040 (44%)

I/O pins 146 10 136 (93%)
System Clock frequency (MHZ) – 50 —

The 8 BRAM are configured to build a 32 bit words memory, havingeach BRAM a
4Kx4 bit capacity sharing the address bus. The results obtained for the controller leave
a 44% of space and 93% of the pins free in the FPGA. So that, the system still has a
remarkable amount of resources available for future improvements. The board uses a
50 MHz clock generator, even considering that no optimization of the design has been
carried out.

The average robot power comsuption depends on the movement performed and will
be analized in detail in future work. A Typical value is 8W (1.6A, 5v).

5 Conclusions and future work

A modular worm-like robot has been constructed, capable of moving in a straight line,
using a wave propagation gait. Locomotion controller is based on control tables, au-
tomatically generated from the parameters of the waves applied: waveform, amplitude
and wavelength. Locomotion is achieved by means of the propagation of these waves
along the worm, from the tail to the head. Higher level software just need to specify this
parameters to locomote the robot.

The controller has been implemented on a low cost FPGA using custom cores, de-
scribed in VHDL, together with the MicroBlaze soft-processor, where the algorithms
are executed. FPGAs increases the robot versatility so thatthe designer can select the
architecture that better fix the requirements. Main limitations of this approach are the
memory and FPGA resource availability. The main advandagesare: possibility of im-
plementing new architectures, faster control algorithms,dinamyc hardware modifica-
tion, hardware/software codesign, and remote hardware reconfiguration.

A working platform has been developed. Current research is focused on worm lo-
comotion, studying its characteristics as a function of thewave parameters, getting in-
sights of its relation with velocity, stability, and consumption. One approach will be the



use of genetic algorithms to find the optimal parameters of the wave, given an stability,
velocity, and power consumption restriction. We also are planning to study locomotion
in a plane, not restricted only to straight lines. Finally, anew generation of modules,
with embeded FPGAs are being constructed.

Acknowledgements

This research is supported by Project Number 07T/0052/2003-3 of theConsejería de
Educación de la Comunidad Autónoma de Madrid, Spain.

References

1. Mark Yim, Ying Zhang & David Duff, Xerox Palo Alto ResearchCenter (PARC), “Modular
Robots”. IEEE Spectrum Magazine. Febrero 2002.

2. M. Yim, D. Duff, K.Roufas, “Modular Reconfigurable Robots, An Aproach to Urban Search
and Rescue,” Proc. of 1st Intl. Workshop on Human-friendly welfare Robotic Systems
(HWRS2000) Taejon, Korea, pp.69-76, Jan. 2000.

3. M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, ”Modular Reconfigurable Robots in
Space Applications”, Autonomous Robot Journal, special issue for Robots in Space, Springer
Verlag, 2003.

4. D. Duff, M. Yim, K. Roufas,“Evolution of PolyBot: A Modular Reconfigurable Robot”,
Proc. of the Harmonic Drive Intl. Symposium, Nagano, Japan,Nov. 2001, and Proc. of
COE/Super-Mechano-Systems Workshop, Tokyo, Japan, Nov. 2001.

5. Mark Yim, David G. Duff, Kimon D. Roufas, “Polybot: a Modular Reconfigurable Robot”,
IEEE intl. Conf. on Robotics and Automation (ICRA), San Francisco, CA, April 2000.

6. P. Will, A. Castano, W-M Shen, “Robot modularity for self-reconfiguration,” SPIE Intl. Sym-
posium on Intelligent Sys. and Advanced Manufacturing, Proceeding Vol. 3839, pp.236-245,
Sept. 1999.

7. K. Kotay, D. Rus, M. Vona, C. McGray, “The Self-reconfiguring Robotic-Molecule,” Proc.
of the IEEE International Conf. on Robotics and Automation,pp.424-431, May 1998.

8. S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, S. Kokaji,”A 3D self-Reconfigurable Struc-
ture,” Proc. of the IEEE International Conf. on Robotics andAutomation, pp.432-439, May
1998.

9. M. Yim, Y. Zhang, K. Roufas, D. Duff, C. Eldershaw, “Connecting and disconnecting for
chain self-reconfiguration with PolyBot”, IEEE/ASME Transactions on mechatronics, spe-
cial issue on Information Technology in Mechatronics, 2003.

10. Xilinx inc, “Microblaze processor Reference Guide”. San Jose, California. Julio 2003.
11. Jean J. Labrosse, “Use an RTOS on your Next MicroBlaze-Based Product”. Xcell journal.

Issue 48. Spring 2004.
12. Microblaze uClinux Project Home Page. [on-line] http://www.itee.uq.edu.au/~jwilliams/mblaze-

uclinux/.
13. GNU project. [on-line] http://www.gnu.org.
14. IBM inc, “On-Chip Peripheral Bus, architecture specifications”. Research Triangle Park,

North Carolina. April 2001.


