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Efficient FPGA-Implementation of Two’s Complement
Digit-Serial/Parallel Multipliers

Javier Valls and Eduardo Boemo

Abstract—This paper presents an efficient implementation of digit-se-
rial/parallel multipliers on 4-input look-up table (LUT)-based field pro-
grammable gate arrays (FPGAs). This subset of FPGA devices hide indi-
vidual gate delays and add important wiring delay. These two facts produce
important changes over the theoretical advantages of each topology. Archi-
tectural transformations are applied to obtain topologies with minimum
logic depth and where the maximum clock speed is limited by the FPGA
technology. The main results of applying those transformations to the dif-
ferent multipliers have been quantified for Altera FLEX10K family, and
the conclusions have been extrapolated to other FPGA families.

Index Terms—Digit-serial arithmetic, field programmable gate arrays
(FPGAs), serial/parallel multiplier.

I. INTRODUCTION

Real-time signal processing hardware requires efficient multiplier
units. However, each application demands a different sample rate. From
speech to image or radar, a wide frequency range is required. In most
of the technologies, a bit-parallel circuit is expensive: its cost in area is
critical, and runs faster than the throughput required by the application.
At this point, the bit-serial [1], [2], [3] or digit-serial [4], [5], [6], [7], [8]
approaches become an important alternative. Furthermore, in FPGA-
targeted applications, the serial stream of data matches better with the
structure of such devices [9].

This paper presents a systematic study about the FPGA-imple-
mentation of digit-serial/parallel multipliers. In Section II different
multiplier topologies are presented. In Section III, actual results are
summarized, and different techniques to enhance the performance
are evaluated. All the analyzed circuits have been implemented on
an EPF10K50GC403-3 FPGA [10]. These prototypes compute 8-bit
two’s complemented words (data and coefficients), and digit-sizes
of N = 1, 2, 4, and 8 bits. For clarity, the experimental part is
divided into the following subsections. Section III-A reviews the
conventional methods to pipeline serial/parallel multipliers (SPMs),
and demonstrates that this technique results in inefficiency in some
of the circuits. In these cases, a new alternative to pipelining is also
proposed. In Section III-B, a mechanism of asynchronous clear or
set of the registers is presented. It reduces the area of some bit-serial
multiplier versions. Finally, a modified structure that diminishes the
logic depth is explained in Section III-C.

II. SERIAL/PARALLEL MULTIPLIERS (SPMS)

SPMs are embedded in digital signal processing (DSP) blocks to
compute the multiplication of a coefficient by data. The coefficient is
expressed in parallel form while the data enters to the multiplier as a
serial stream.
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(a)

(b)

Fig. 1. Bit-serial multipliers. (a) SPM-I. (b) SPM-II.

Fig. 2. Bit-serial DPSPM.

From the FPGA implementation point of view, where logic is
mapped into look-up tables (LUTs), there are two alternatives
to compute single precision serial/parallel multiplication of two’s
complement numbers. The main difference between them is the
way to process the sign-bit of the input data. In this paper, these
two alternatives are named SPM-I and SPM-II. The first does not
extend the sign bit of the input data [4], [11], [12], [13] while the

second does [4], [5], [14 ]–[18]. Their bit-serial circuits are shown
in Fig. 1.

The computational scheme of SPM-I can be used to design the
double precision SPMs (DPSPMs) [6], [7], [19]. A bit-serial DPSPM
is depicted in Fig. 2. The goal of this circuit is to maintain the
throughput without either adding the extra clock cycles to insert zeros,
or extending the sign-bit.
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TABLE I
RESULTS OF THEFPGA-IMPLEMENTATION

III. I MPLEMENTATION: MAPPING ONK = 4 LUT-BASED FPGAS

The digit-serial/parallel multipliers presented in previous section
were implemented using an EPF10K50-3 FPGA [10]. Each multi-
plier family uses 8-bit data and coefficients. Their versions include
digit-sizes ofN = 1, 2, 4, and 8 bits. The place and route of the
circuits was performed using the default options of the tools, excepting
the indication of the wires that require fast carry lines [10]. Every
circuit version was evaluated according to the following parameters:
maximum clock frequency (fc); maximum propagation delay (Tpro);
maximum sample frequency (fs); area (A); logic depth (LD); and
finally, the area-time product (A � T ). In Table I, the implementation
results of the SPM-I, SPM-II, and DPSPM are presented, and the first
area-time figure can be obtained.

It is important to remark that some of the theoretical advantages
of DPSPM circuits are hidden by an FPGA implementation, the tech-
nological framework selected in this work. For instance, theoretically
the clock frequency of both SPM and DPSPM for the same digit-size
should be identical. Thus DPSPMs should double the sample rate with
respect to SPMs (because the former do not require to insert extra ze-
roes). However, in the implemented versions, SPMs run faster than DP-
SPMs. Thus the resulting sample rates of DPSPMs are just only a little
bit higher (see Table I). This effect is a consequence of the fixed struc-
ture of the selected FPGA: a matrix organization in which each element
is a 4-input LUT. So, the circuits have to be divided into 4-input func-
tions in order to be implemented. The logic depth of SPM and DPSPM
is 2 LUTs and 3 LUTs, respectively, as can be seen in Fig. 3. The logic
depth increment in the DPSPM is caused by the extra PSCs. As a result,
a throughput degradation with respect to the ideal case is produced.

Partitioning logic into LUTs also causes that both bit-serial circuits
andN = 2 bits digit-size ones have the same logic depth. As a conse-
quence, both versions could ideally achieve the same clock frequency.
Table III gives an example of this effect:N = 2 DPSPM achieves
higher clock rates than bit-serial one.

Considering that FPGA-vendors are permanently marketing chips
with different LUT-size (namedk), the optimal value ofk that will
allow this kind of topology to achieve a logic depth reduction is sum-
marized in Table II for different versions of the circuit. Thek value in
thek-LUT column can be reduced in one unit for SPM-I and SPM-II
circuits, if the device also incorporates dedicated logic to implement
the synchronous reset of flip-flops.

The case of Xilinx devices whose configurable logic elements
(CLBs) consist of 4-input LUTs is a little bit different. On the one
hand, FPGA families like Spartan II, Virtex, and Virtex II contain
dedicated logic to perform synchronous reset of the flip-flop. On
the other hand, these devices include dedicated multiplexors (called
MUXFx) that allow combining several 4-input LUTs to implement
functions with higher number of inputs inside a CLB. The XC4000

Fig. 3. Multipliers cell separated in LEs: (a) SPM-I; (b) DPSPM.

TABLE II
REQUIREDLUT-SIZE TO ACHIEVE A LOGIC DEPTH REDUCTION

and Spartan devices can implement functions up to five inputs in one
CLB, Spartan II and Virtex up to six inputs in one CLB, and Virtex
II up to seven inputs in one CLB and eight inputs using two CLBs.
Hence, bit-serial SPM-I and SPM-II multipliers will achieve minimum
logic depth in such devices. Finally, pointing out that although newer
Altera families (Apex and Mercury) also include the logic resources
to perform the synchronous reset, it cannot be used to reduce the logic
depth of the target circuits because these hardware resources cannot
be used when LEs are configured in normal mode (that only can be
used as one 4-input LUT), but in counter mode (configured as two
3-input functions within a LE).

A. Pipelining

The feedback loops present in the serial/parallel multipliers limit the
application of pipelining: it can only be performed by registering the
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TABLE III
RESULTS OF THEFPGA-IMPLEMENTATION OF THE PIPELINED MULTIPLIERS

Fig. 4. Modified bit-serial DPSPM.

outputs of the partial-product generator block [20]. The implementa-
tion results of pipelining the previous circuits are shown in Table III.
In most of the cases, the throughput is not improved with respect to the
original versions. Bit-serial circuits (N = 1 bit) are the exception: they
reduce the logic depth in one LUT, with no area penalization. On the
contrary, pipelined DSMs (N > 1 bit), are larger and do not exhibit a
logic depth reduction. This situation is repeated in every double preci-
sion multiplier version. For example, forN = 2 bits, an FPGA with
9-input LUTs would be necessary to get a speedup. When pipelining is
applied in both A and B cutsets, bit-serial DPSPM circuits reaches the
maximum clock frequency of the chip. The area is only incremented
in 5 LEs. As final remark, the technique only is suitable forN = 1,
where an effective logic depth reduction is achieved.

If pipelining were applied to implement these circuits on Xilinx de-
vices we need not use the A cutset in bit-serial SPM-I and SPM-II
topologies, because they already exhibit minimum logic depth (1 CLB).
Furthermore, the A cutset would be required to achieve the minimum
logic depth in bit-serial DPSPM. As in the case of Altera devices, it
does not lead to any advantage to pipeline digit-serial versions of the
multipliers, the logic depth remains constant.

B. Asynchronous CLEAR of FFs

The set and clear of the flip-flops (FFs) in serial/parallel multiplier
implementations is conventionally performed asynchronously [14],
[19], [16]. Considering that most commercial FPGAs include an

asynchronous clear and set, this feature can be utilized to eliminate
one input signal of each LUT (theRESETsignal) in those devices that
do not incorporate dedicated resources to perform the synchronous
reset (XC4000 and Spartan of Xilinx and FLEX8K and FLEX10K of
Altera). In this way, a logic depth reduction can be obtained, at the
cost of one extra clock cycle to compute each word. The final balance
between the potential speedup caused by a lower logic depth (and its
corresponding wiring reduction), and the extra delay introduced by
these additional clock cycles will depend on the chip model utilized
to build the circuit.

From the previous topologies, only the bit-serial SPM-II can take
full advantage of this idea. In this circuit, each slice consists of two
5-input functions and 2 FFs. It can be mapped using 3 LEs, having
a logic depth of 2 LUTs. By using an asynchronous clear, each cell
requires two 4-input functions (2 LEs), reducing the logic depth to just
one LUT. The experimental results indicate that both logic depth and
area requirements decrease (see Table IV). Nevertheless, there is not
an effective speed increment for the selected chip. The parameterTpro

has been reduced, but the saturation frequency (125 MHz) has been
reached.

The previous optimization cannot be obtained in the other circuits:
its applicability will depend on the FPGA architecture. For example,
the bit-serial SPM-I could be optimized if 5-input LUT FPGAs were
available (the case of Xilinx FPGAs), meanwhile the 2-bit digit-size
SPM-I and SPM-II would require 10-input and 9-input LUTs respec-
tively to take advantage of this method.
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TABLE IV
BIT-SERIAL SPM-II WITH ASYNCHRONOUSCLEAR OF THE FF

TABLE V
FPGA-IMPLEMENTATION OF THE MDPSPM

TABLE VI
FPGA-IMPLEMENTATION OF THE PIPELINED MDPSPM

C. Modification of the DPSPM (MDPSPM)

The modified multiplier structure presented in [21] is based on the
fast SPM proposed by R. Gnanasekaran [22]. The main idea is to avoid
theW extra clock cycles required to complete the computation, by in-
cluding a bit-parallel adder. Thus, the sum and carry vectors are com-
puted in parallel after the firstW cycles. The adder block replaces
theW clock cycles needed to achieve the same operation serially. The
DPSPM circuit proposed in [22] can be transformed in a double preci-
sion serial/parallel multiplier, simply by adding a PSC to the bit-parallel
outputs of the RCA (Ripple Carry Adder). Commercial FPGAs usually
allow the designer to build fast and small ripple-carry adders by using
especial carry-chain lines [10]. Then, by modifying the circuit in such a
way, a logic depth reduction can be achieved. These multipliers can be
directly replaced by the MDPSPMs, without any circuit modification.
The bit-serial version of this multiplier is shown in Fig. 4.

The results of the FPGA implementation are reported in Table V. The
only difference respect to the previous circuits is that the FAST logic
synthesis option (the assignation of carry chain lines) has been used to
map the bit-parallel adder. Thus, the MDPSPM topology achieves the
best performance (Table V). The speedup goes from 1.56 (for bit-serial
version) to 1.15 (for bit-parallel version). The modified circuits have
the same logic depth than the SPM ones. This is true for every digit-se-
rial version, but they are one LUT smaller than the corresponding DP-
SPMs. As a result, they achieve a higher throughput than the con-
ventional DPSPM with nearly the same cost in area. If MDPSPM are
compared to the single precision circuits, the throughput improvement
varies from 1.35 to 1.69 (for the bit-serial version), up to 2 (for the bit-
parallel version). Once again, the enhancement is obtained without in-
crementing the latency. The MDPSPM circuits lead to several changes
in the optimized area-time figure of the multipliers.

In Table VI, the results of pipelining the MDPSPM are presented.
As was remarked in Section III-A, pipelining the circuit after the partial
product generation (cutset A in Fig. 4) increases the area by increments
but does not reduce the logic depth. As a consequence, only the results
for N = 1 and 2 bits are useful for custom DSP designers.

In the MDPSPM, pipelining can be extended to the RCA outputs
(cutset B in Fig. 4). Results for the three pipeline alternatives (A, B,
and both A and B cutsets) are reported in Table VI.

The main result can be summarized as follows: by pipelining in point
A and B, the bit-serial MDPSPM reaches the maximum frequency im-

posed by the process technology (125 MHz). The cost in area is min-
imum (just 3 extra LEs), but the penalty to be paid is an increase in la-
tency of two more cycles. This structure modifies the area-time figure
in the range 12 MHz to 15.5 MHz, saving 14 LE’s (17%) with respect
to the previous alternative.

Finally, it is important to note that this modification should not be
applied to Xilinx FPGAs: it only adds an enhancement in bit-serial
and 2-bit digit-size multipliers, and these circuits directly achieve the
minimum logic depth (maximum speed) or can easily achieve it by
pipelining, as shown in previous section.

IV. CONCLUSIONS

This work presented a systematic study of the FPGA-implementa-
tion of digit-serial/parallel multipliers. The target technology has been
ak = 4 LUT-based FPGA, but optimal results have been extended to
other LUT sizes. Three types of serial/parallel multipliers (two of single
precision, and one of double precision) have been evaluated. Pipelining
has been applied to extend the speed of each class of multiplier. Sev-
eral methods have been proposed to obtain a logic depth reduction,
obtaining the following conclusion:

Conventional pipelining only leads to a logic depth reduction in bit-
serial circuits. It is not a suitable technique in digit-serial SPM and
DPSPM circuits. Minimum logic depth is achieved in bit-serial DPSPM
if an extra pipelining (cutset B) is applied.

In the bit-serial SPM-II, the asynchronous clear of the FFs reduces
the logic depth in one LUT and the area inW LEs.

The proposed modification of the DPSPM improves the performance
for moderate word-lengths.
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An Efficient Pipelined FFT Architecture

Yun-Nan Chang and Keshab K. Parhi

Abstract—This paper presents an efficient VLSI architecture of
the pipeline fast Fourier transform (FFT) processor based on radix-4
decimation-in-time algorithm with the use of digit-serial arithmetic units.
By combining both the feedforward and feedback commutator schemes,
the proposed architecture can not only achieve nearly 100% hardware
utilization, but also require much less memory compared with the previous
digit-serial FFT processors. Furthermore, in FFT processors, several
modules of ROM are required for the storage of twiddle factors. By
exploiting the redundancy of the factors, the overall ROM size can be
effectively reduced by a factor of 2.

Index Terms—Digit-serial, fast Fourier transform (FFT), pipelined FFT,
radix-4 FFT.

I. INTRODUCTION

The fast Fourier transform (FFT) plays an important role in the de-
sign and implementation of discrete-time signal processing algorithms
and systems. In recent years, motivated by the emerging applications
in the modern digital communication systems and television terrestrial
broadcasting systems, there has been tremendous growth in the design
of high-performance dedicated FFT processors [1], [2]. Pipelined FFT
processor is a class of real-time FFT architectures characterized by con-
tinuous processing of the input data which, for the reason of the trans-
mission economy, usually arrives in the word sequential format. How-
ever, the FFT operation is very communication intensive which calls
for spatially global interconnection. Therefore, much effort on the de-
sign of FFT processors focuses on how to efficiently map the FFT algo-
rithm to the hardware to accommodate the serial input for computation.
This paper presents a novel FFT implementation based on the use of
digit-serial arithmetic which can lead to very efficient architectures.
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II. REVIEW OF FFT PROCESSORS

The discrete Fourier transform (DFT)X(k) of anN -point sequence
x(n) is defined by

X(k) =

N�1

n=0

x(n)Wnk
N ; k = 0; 1; . . . ; N � 1

WN =e�j(2�=N): (1)

Instead of direct implementation of the computationally intensive
DFT, the FFT algorithm is used to factorize a large point DFT recur-
sively into many small point DFTs such that the overall operations
involved can be drastically reduced. There are two well-known types
of FFT algorithms calleddecimation-in-time (DIT)anddecimation-in-
frequency (DIF)FFT which can be derived from each other by transpo-
sition. For example, according to radix-4DIT FFT, (1) can be decom-
posed and expressed in the matrix form as follows:

X(k); X k +
N

4
; X k +

N

2
; X k +

3N

4

T

=

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

W 0
NF0(k)

W k
NF1(k)

W 2k
N F2(k)

W 3k
N F3(k)

: (2)

Here

Fn (k) =

(N=4)�1

n =0

x(n1 + 4n2)W
n :k
N=4

for n1 = 0; 1; 2; 3; k = 0; 1; . . . ;
N

4
� 1:

Radix-2 and radix-4 are the most common radices used in FFT de-
compositions. Radix-4 decomposition is more attractive since it re-
quires less amount of multiplication operations for FFT and reduces
the number of multiplications fromN2 for direct implementation of
DFT to only(log4N � 1)N .

Since the data sequencex(n) arrives sequentially, the parallel
data flow graph has to be projected along the order of input se-
quence in order to obtain efficient pipeline architectures. As (2)
shows, each stage of FFT computation consists of retrieving the data
F0(k); F1(k); F2(k); F3(k) for specific k, and the corresponding
twiddle factor multiplication, followed by the multiplication of the
radix-4 butterfly matrix. Direct implementation of (2) requires three
multipliers to perform the twiddle factor multiplication as shown
in Fig. 1(a) [1], [3]. Here, the commutator is used to generate the
proper data sequence for the following twiddle factor multiplication
by swapping/exchanging the output data coming from the previous
stage. The salient feature of this feedforward approach is that the
trivial factor W 0

N(=1) in the twiddle matrix can be reflected in the
hardware. However, unless four input data are sampled in parallel, this
architecture cannot achieve full efficiency. For most of the applications
where FFT processor must be interfaced to a continuous word serial
stream, it is only possible to achieve 25% hardware utilization as
there is a 4 : 1 mismatch between the bandwidth of input data rate and
that of the processor. (In general, the utilization for radix-r butterfly
unit is 1=r.) In order to compensate this mismatch, a fully utilized
architecture based on the use of digit-serial arithmetic units has been
proposed in [4].

The other way of implementing (2) is to use a single multiplier
for the twiddle factor multiplication as shown in Fig. 1(b). Instead of
generating the vector[F0(k); W k

NF1(k); W
2k
N F2(k); W

3k
N F3(k)]

T

in parallel as shown in Fig. 1(a), this scheme generates each element
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