
E. Macii et al. (Eds.): PATMOS 2004, LNCS 3254, pp. 574–584, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Power Aware Dividers in FPGA

Gustavo Sutter1, Jean-Pierre Deschamps2, Gery Bioul3, and Eduardo Boemo1

1 School of Engineering, Universidad Autónoma de Madrid, Spain
{gustavo.sutter,eduardo.boemo}@uam.es

2 Dept. Eng. Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili,
Tarragona, Spain

3 Universidad Nacional del Centro, Tandil, Argentina,
gbioul@exa.unicen.edu.ar

Abstract. This paper surveys different implementations of dividers on FPGA
technology. A special attention is paid on ATP (area-time-power) trade-offs
between restoring, non-restoring, and SRT dividers algorithms for different
operand widths, remainder representations, and radices. Main results show that
SRT radix-2 present the best ATP figure. In combinational implementation, an
important power improvement, - up to 51% - with respect to traditional non-
restoring implementations is obtained. Moreover, up to 93% power
improvement can be achieved if pipelining is implemented. Finally, the
sequential implementation is another important way to reduce the consumption
in more than 89 %.

1 Introduction

A widely implemented class of division algorithm is based on digit recurrence. The
most common implementation in modern microprocessors is SRT (Sweeney, Robert-
son, and Tocher) division. Digit recurrence, specifically SRT, and other division algo-
rithm surveys can be found in [1-5]. This paper is focused on floating-point dividers,
namely with operands in range [1,2).

Many implementations of SRT dividers on FPGA were recently presented. In [6],
dedicated Virtex II multipliers are used to implement radix 2, 4, and 8 SRT dividers.
Paper [7] presents a minimally redundant radix-8 SRT division scheme, and previous
results of a radix-4 SRT are pointed out. In [8], radix 2, 4, and 8 SRT division
schemes are iteratively implemented as fully combinational and pipelined circuits. In
contrast this paper is based on the implementation reported in [9], where low-level
component instantiations in parameterized VHDL code are used in order to keep
control over implementation details.

Power consumption, has not been taken into account in these previous works.
Thus, this paper tries to contribute to this research area by studying - and optimizing-
the power dimension. Section 2 presents the division algorithms; and section 3 briefly
discusses the details of Virtex implementation. Finally, section 4 presents some ex-
perimental results.

Power Aware Dividers in FPGA 575

2 Algorithms

Given two non-negative real numbers X (the dividend) and D (the divisor), the quo-
tient q and the remainder r are non-negative real numbers defined by the following
expression: X = q.D + r with r < D.ulp, where ulp is the unit in the least significant
position. If X<D and D are the (unsigned) significant of two IEEE-754 floating-point
numbers, then they belong to the range [1,2), and q lies in the range [0.5, 1). This
result can be normalized by shifting the quotient by one bit to the left, and adjusting
the exponent accordingly.

Division generally does not provide finite length result. The accuracy must be de-
fined beforehand by setting the allowed maximum length of the result (p). The num-
ber of algorithmic cycles will therefore depend upon the aimed accuracy, not upon the
operand length (n).

Restoring and non-restoring algorithm: To divide two integers, the most well
known procedures are restoring and non-restoring digit-recurrence algorithms [3],[4].
The corresponding FPGA implementations are straightforward, and the area/time
figure is always better for non-restoring. Figure 1 depicts restoring and non-restoring
division algorithm. In the latter one, a correction step must be added in order to
modify the last remainder whenever negative.

Restoring division algorithm Non-restoring division algorithm
r(0) := X;
for i in 1 .. p loop

rest_step(r(i-1),
D,q(i), r(i));

end loop;

rest_step (a, b, q, r)
z := 2*a - b;
if z < 0 then

q := 0; r := 2*a;
else q := 1; r := z;
end if;

r(0) := X;
for i in 0 .. p-1 loop

nonr_step(r(i-1),
D,q(i), r(i));

end loop;
q(p):=1; q(0):=1-q(0);

nonr_step (a,b,q,r)
if a < 0 then

q := 0; r := 2*a+b;
else

q := 1; r := 2*a-b;
end if;

Fig. 1. Restoring and non-restoring division algorithms

SRT division: As others digit-recurrence algorithms, SRT generates a fixed number
of quotient bits at every iteration. The algorithm can be implemented with the
standard radix-r (r = 2k) SRT iteration architecture presented at figure 2.a. The n-bit
integer division requires t = n/k iterations. An additional step is required in order to
convert the signed-digit quotient representation into a standard radix-2 notation. The
division x/d produces k bits of the quotient q per iteration.

The quotient digit qj is represented using a radix-r notation (radix complement or
sign-magnitude). The first remainder w0 is initialized to X. At iteration j, the residual
wj is multiplied by the radix r (shifted by k bits on the left, producing r.wj). Based on
a few most significant bits of r.wj and d (nr and nd bits respectively), the next quotient
digit qj+1 can be inferred using a quotient digit selection table (Qsel). Finally, the
product qj+1 × d is subtracted to r.wj to form the next residual wj+1.

Figure 2.b exhibits the general architecture; the last block cond_adder is only nec-
essary if a positive remainder has to be calculated (not essential in floating-point im-
plementations). For the hardware implementation of an SRT divider, some important
parameters have to be traded-off:

Radix r = 2k: For large values of k, the iteration number t decreases but each step is
more complex (larger Qsel tables, complex products qj+1×d).

576 G. Sutter et al.

Residual representation wj : Traditionally in ASIC implementa-
tions, a redundant number system such as carry-save is used for
wj to accelerate the operation qj+1×d - r.wj. It is not necessary in
current FPGAs: The dedicated carry logic circuitry makes ripple-
carry faster than carry-save additions or subtractions for small bit
widths.

Quotient representation: To speed up the subtractive division,
redundant digit sets of the form of {-α,-α+1,...,0,...,α-1,α} are
used. The radix-2k quotient is represented by a signed-digit re-
dundant number system. It ensures that the next quotient digit
determination is possible only based on a few most
significant bits of the remainder and divisor (nr and
nd respectively). Higher values of α lead to simpler
quotient digit selection (smaller values of nr + nd for
the address of the Qsel table) but also to more com-
plex products qj+1×d.

3 FPGA Implementations

Complete description of the algorithms and area-time
tradeoffs in Virtex and Virtex 2 implementations are
summarized in [9]. The architectures analyzed are:
traditional restoring and non-restoring algorithms,
then SRT radix 2, 4, 8, and 16 with 2’s complement
remainder, and finally, a novel implementation of
SRT radix-2 with carry-save remainder representa-
tion. These division algorithms are implemented in
different versions: fully combinational (minimum
latency), pipelined with different logic depth (maxi-
mum throughput), and finally, sequential implementa-
tion with a choice of granularities (minimum area).

3.1 Radix-2 Restoring and Non-restoring

Integer division is traditionally done with restoring or non-restoring algorithms. The
adjustment to fractional operands is trivial. The restoring division algorithm, imple-
mented with the algorithm depicted in figure 1, needs p rest_step cells. Each cell uses
an (n+1)-bit subtractor and an n-bit 2-1 multiplexer. This leads to (n+1) slices. Fi-
nally, an n-bit divider with p-bit accuracy use p.(Crest_step(n))= p.(n+1) = p.n + p slices.

Non-restoring division is more efficient in Virtex FPGA. The nonr_step is imple-
mented with p (n+1)-bit adder-subtractor. Each cell needs n/2+1 slices. If the final
remainder is required, an additional conditional adder (n/2 slices) is necessary to ad-
just a possibly negative remainder.

division_stepq

Q
'(0

:p
)

remainder

q(
-1

)

D

n_w

w d

W(0) = X

W(1)

q(
-2

)
q(

-p
/k

+1
)

.

.

.. . .co
nv

er
te

r

adjust

sign(W(-p/k))

division_stepq n_w

w d

W(2)

division_stepq n_w

w d

W(-p/k)

W(-p/k+1)

cond_adder

Fig. 2. a. SRT division step
b. General SRT array

W(j) D

R.W(j)

Qsel Table

Shift

Multiplier

substractor

W(j+1)

Q
(j+

1)

Power Aware Dividers in FPGA 577

3.2 SRTs Algorithms with 2´s Complement Remainder

SRT dividers for radix-2, 4, 8 and 16 were implemented. In radix-2 the Qsel table is
trivial (actually, it doesn’t exist). The most significant two bits of the remainder are
used to settle on the operation to be executed in the next division step (figure 3.a).

W(n:n-1)=
srn(1:0)

Remainder
Value

Operation Q(i)

0 0 0 ≤ r < 1/2 Nothing 0
0 1 1/2 ≤ r < 1 Subtract Div 1
1 0 -1< r ≤-1/2 Add Divisor -1
1 1 -1/2≤ r < 0 Nothing 0

a.

0 1

srn(1)
g(i)

LUT 0 1

n_w(i)

carry(i-1)

g(i+1)

n_w(i+1)

carry(i+1)

srn(0)

w(i)
d(i)

srn(1)
srn(0)

w(i+1)
d(i+1)

LUT

b.

Fig. 3. SRT radix-2, with 2´s complement remainder. a. Operations to be done in a radix-2 SRT
divider cell. b. Configuration of a Virtex slice for srt_step_r2 cell.

Therefore, Qsel, the multiplier (multiplying by –
1, 0 or 1 only) and the subtractor can be integrated
in a single cell (srt_step_r2) that uses (n+1)/2 slices
only. The slice detail of srt_step_r2 is shown at
figure 3.b. The carry (-1) is filled with srn(0) (the
second most significant bit of the previous remain-
der). The logic function g(i) implemented in each
LUT is wdsdwswdswds 1100 +++ .

The total area of the SRT radix-2 corresponds to
a p srt_step_r2 cell in p.(n+1)/2 slices, a condi-
tional adder (n/2 slices) if positive remainder is
necessary, and a converter cell (p/2+1 slices),
which is similar to the area of the non-restoring
divider. That is, p.(n+1)/2 + n/2 + p/2+1 =
(pn+n+2p)/2+1 slices. It can be observed in figure
3.a that the operation carried out by srt_step_r2 is,
for half of the time, “doing nothing”: this character-
istic of algorithm leads to a lower activity and con-
sequently, lower power consumption.

For the higher radices, the Qsel table, the multi-
plier, and the adder-subtractor are necessary. Figure
4.a exhibits a SRT radix-4 division step, and table 1
display the parameters for the different radixes. An
additional converter translates signed representa-
tion of radix-n digits to 2’s complement, as is
shown in figure 3.b for radix-4.

w(n+2:n-1)

Qsel

n_w

n+2 bits
adder_substractor

d(n+2:0

n+2 X 2
bits multiplier

q(2)

w(n+2:0)

w_q(n+4:0)

q(1)
q(0)

q(2) = sign
w_q(n+2:0)

d(n-2)

LUT 0 1

qq(i)(0)
o(2i)

LUT 0 1

q(2i)

carry(2i-1)

o(2i+1)

q(2i+1)

carry(2i+1)

qq(i)(2)

qq(i)(1)

qq(i)(2)

Fig. 4. SRT radix-4 divider de-
tails. a. srt_step_r4 cell. b. Slice
detail for SRT radix-4 converter.

578 G. Sutter et al.

3.3 Radix-2 SRT with Carry-Save Remainder

The block diagram of SRT radix-2 carry-save remainder is shown at figure 5.a. The
division_step cell is depicted in figure 5.b. The first (leftmost) 3 bits of u and v are
required to address the Qsel table where q_pos and q_neg are extracted. It has been
empirically established that 3+3 bits from the carry-save representation are good
enough to make a proper selection of the quotient digit [13], although 4+4 bits are
suggested in [3] and [4].
The Qsel cell is imple-
mented using 8 LUTs (4
slices) together with
F5mux, F6mux multi-
plexers. The carry-save
adder (CSA) of figure
5.b can be implemented
within (n+1) slices using
the cell of figure 5.c.
Each CSA digit is calcu-
lated with one LUT only
(together with a muxcy
and a xorcy), but, due to
routing limitations, only
one CSA digit can be
calculated per slice. For
that reason, the division
cell area is Ccell_cs1 = n + 4
slices.

Table 1. Parameters for SRT radix-2, 4, 8, and 16. Qsel table size, remainder and divisor bits
utilized, quotient range and bits utilized, remainder width, and number of stages.

Qsel Table Quotient Radix
Total
Bits

Remainder
bits

Divisor
bits

Sign
Calculus

slices Range bits
Rema
inder
width

Stages

2 2 W(n-1) - W(n) - {-1, 0, 1} 2 N+1 P
4 5 W(n+1:n-1) d(n-2) W(n+2) 2 {-3,…,0,…,3} 3 N+3 P/2
8 9 W(n+2:n-2) d(n-2:n-4) W(n+3) 17 {-7,...,0,...,7} 4 N+4 P/3

16 12 W(n+4:n-2) d(n-2:n-6) W(n+5) 141 {-15,...,0,..., 15} 5 N+5 P/4

4 Implementation Results

The circuits are implemented in a Virtex XCV800hq240. They are described in
VHDL instantiating low level primitives such as LUTs, muxcy, xorcy [10] when
necessary. Xilinx ISE 6.1 tool [11] and XST [12] for synthesis were utilized. A com-
mon pin assignment, the preservation of the hierarchy, speed optimization, and timing

division_step
u v

u' v'

q_pos

q_neg

b

division_step
u v

u' v'

q_pos

q_neg

b

division_step
u v

u' v'

q_pos

q_neg

b

. . .

Q
'(0

:p
)

(p
+1

)-
bi

t s
ub

tr
ac

te
r

(m+1)-bit adder

r(p)(n:0)

X 0 D

(m)-bit cond_adder

remainder
adjust

r(p)(n)

u' v'

v(n:n-2)

q_pos

q_neg

0 0

u v b

(n+1)-bit CSA

Qsel

u(n:n-2)

0

LUT
q_pos
q_neg

u(i)

v(i)
0 1b(i)

u'(i+1)

v'(i)

Fig. 5. SRT radix-2 with remainder in carry-save format. a Array
implementation. b division_step. c. Slice contents in implementa-
tion of carry-save adder.

Power Aware Dividers in FPGA 579

constrains were part of the experimental setup. Area and delay figures were extracted
from Xilinx tools. On another hand, power consumption was measured using a Xilinx
prototype board AFX PQ240-100. It was separated in static, dynamic (data-path and
synchronization), and off-chip power as described in [14]. Chip measurements were
done using three different sequences: a) random vectors (avg_tog); b) a sequence with
a high transition probability (max_tog) and finally, c) a sequence with low activity
(min_tog). The test vectors were entered with a pattern generator [15]. All the circuits
were implemented and measured under identical conditions. Off-chip power was
determined by measuring the average input current corresponding to the pad ring.
This component was almost constant for all divider. At the output, each pad supported
the load of the logic analyzer, lower than 3 pF [16].

4.1 Results in Array Implementations

Table 2 shows, for Virtex devices, area in slices, and delay expressed in ns. Up to 24
bits, non-restoring and SRT radix-2 (srt_r2) shows best results in delays. For greater
operand sizes, SRT carry-save remainder (srt_cs), SRT radix 16 (srt_r16), and 4
(srt_r4) are the best options. In terms of area, SRT radix-2 and non-restoring (nr) are
always the best. On the opposite side, restoring (rest) and SRT radix-16 consume
more area. Best results in area × delay figure are provided by SRT radix-2 up to 24
bits, and SRT radix-4 for bigger divider sizes.

Table 2. Results for array implementations in Virtex.

nonRest rest srt_r2 srt_r4 srt_r8 srt_r16 srt_cs N
P Slices Delay Slices Delay Slices Delay Slices Delay Slices Delay Slices Delay Slices Delay
40 880 251.7 1640 329.1 861 293.2 940 243.7 1112 277.3 2258 245.7 1779 238.6

32 576 180.6 1056 238.3 561 198.1 624 187.8 804 224.6 1666 191.1 1183 176.2

24 336 118.7 600 158.4 325 125.5 372 125.7 487 154.6 1137 138.4 695 141.4

16 160 68.8 272 91.5 153 69.2 184 82.4 243 83.9 676 81.8 335 87.9

0

60

120

180

240

M in_tog M ax_tog Avg_tog

nr rest srt_r2 srt_r4

srt_r8 srt_r16 srt_cs

0

250

500

750

1000

M in_tog M ax_tog Avg_tog

nr rest srt_r2 srt_r4

srt_r8 srt_r16 srt_cs

Fig. 6. Dynamic power consumption in mW/MHz. a. 16 bits dividers; b. 32 bits dividers.

Figure 6 depicts power consumption expressed in mW/MHz for the different vec-
tor sequences within 16 and 32 bits width. For 16 bits, SRT radix-2 presents the best
results, improved in an average of 18.5% with respect to non-restoring divider, and

580 G. Sutter et al.

71% with respect to the SRT with
carry-save remainder. For 32-bit
representation SRT radix-2 and
radix-4 are the best options. SRT
radix-2 improves by up to 51,2 %
the results of non-restoring divi-
sion, and up to 78 % the results
of SRT with carry-save remain-
der (the fastest one). Finally,
area-time-power (ATP) for the
different 32-bit dividers is pre-
sented in figure 7. The srt_r2,
srt_r4, and nr_f offer best ATP
figure. The analysis of area ×
delay × power relations of merit
points to SRT radix-2 as the best
choice, followed by SRT radix-4.

Table 3. Area in slices, register utilization, and maximum frequency, for different logic depths
and architectures.

LD C Non-Restoring SRT radix 2 SRL SRT radix 4 SRT carry save
 slices FF MHz slices FF srl MHz slices FF srl MHz slices FF srl MHz

1 33 1968 2705 101.7 1747 2274 88 111.7 - - - - 3356 3298 90 79,1
2 16 1256 1328 55.9 1169 1152 52 53.8 1288 1265 39 62,6 2257 1647 52 48,3
3 11 1066 933 49.5 1012 835 48 49.6 - - - - 1939 1164 48 43,1
4 8 943 688 34.5 915 641 40 34.3 967 632 30 39,4 1745 871 40 33,7
5 7 905 617 33.4 888 583 40 32.5 - - - - 1689 780 40 30,7
6 6 866 538 25.3 858 521 36 26.4 907 508 36 31,3 1629 685 36 28,4
7 5 822 454 22.5 825 455 28 23.9 - - - - 1566 586 28 24,9
8 4 779 368 20.0 786 385 32 20.2 835 372 12 21,7 1508 483 16 20,0

11 3 738 289 15.6 725 321 - 14.7 - - - - 1456 386 - 16,8
12 3 740 292 14.4 728 327 - 13.6 782 315 - 16,2 1462 392 - 15,4
16 2 697 208 10.8 675 224 - 10.2 736 222 - 10,6 1355 256 - 11,2
32 1 656 128 5.6 625 128 - 5.2 752 226 - 5,3 1251 147 - 5,9

4.2 Results for Pipeline Implementations

The effective frequency of each node of a digital circuit can be significantly incre-
mented by the occurrence of glitches. Although glitches do not produce errors in well-
designed synchronous systems, they can be responsible for up to 70 % of the circuit
activity [17]. The useless consumption associated to glitches can be decreased in two
ways: equalizing all circuit paths [18] (almost impossible in FPGA), or inserting in-
termediate registers or latches to reduce the logic depth [19-23].

In order to reduce the power consumption, pipeline versions of non-restoring algo-
rithm, SRT radix-2, SRT radix-4 and SRT radix 2 carry-save remainder representation
were constructed. The circuits utilize SRL (LUTs configured as shift-register) when-
ever possible. It allows the designer to condense up to 16-bit shift-register (SR) in a
single LUT. Table 3 shows area, expressed in slices, register count, and maximum

400

800

1200

1600 180

210

240200

400

600

800

E
ne

rg
y

(m
W

/M
H

z)

Dela
y(n

s)Area (Slices)

srt_r4

srt_r2nr

srt_cs

srt_8

rest

srt_r16

Fig. 7. Area-Time-Power for 32-bit dividers for
the avg_tog sequence.

Power Aware Dividers in FPGA 581

0

100

200

300

400

0 4 8 12 16 20 24 28 32

minTog
maxTog

Avg_tog
Syncro

0

250

500

750

1000

0 4 8 12 16 20 24 28 32

nr
srt_r2
srt_r4
srt_cs

Fig. 8. Power consumption (mW/MHz) vs. logic depth. a. SRT radix-2 pipelining implementa-
tion. b. Different pipeline implementations using avg_tog sequence.

bandwidth in MHz, for 32-bits divider implementations and different logic depth
(LD), defined as the maximum number of division steps between successive register
banks. Pipelining in FPGA shows a low impact in area due to the embedded registers
distributed into the slices and the SRL characteristics of LUT.

Figure 8.a presents dynamic power consumption versus logic depth for non-
restoring implementations. The three different patterns have similar shape: it de-
creases practically linearly with the reduction of LD. It stands out the low influence of
the synchronization power.

As more pipeline stages are added, fewer glitches are produced, and the power is
lowered. This reduction in the activity makes less important the architecture selected.
Thus, the different dividers have similar consumption. Figure 8.b shows, for the three
different architectures, the dynamic power consumption as a function of the logic
depth. A maximally pipelined architecture (LD = 1) saves up to 93 % of the dynamic
power consumption with respect to the fully combinational architecture (LD=32).
That is, combinational architectures consume more than twelve times more than the
fully pipelined version.

4.3 Results for Iterative Implementations

To reduce area, using iterative architecture is
a common technique. The general architec-
ture adds a state machine that controls the
data-path. It is constituted by g consecutive
division_step’s and the corresponding regis-
ters to store intermediate values. The circuit
calculates at each clock g.r bits, and an extra
cycle is necessary for remainder calculation.
Then, a total of p/g.r cycles are used to com-
plete the operation plus an extra cycle if the
remainder is needed.

Table 4 shows the results for iterative im-
plementations in Virtex. The amount of bits
calculated at a time (G), and the total clock
cycles necessary (C), slices and register

Table 4. Results for iterative implementa-
tions in Virtex.

 G C slices FF P(ns) F(MHz) L(ns)

1 32 113 203 8,9 112,0 285,7
2 16 124 202 13,7 72,8 219,8
4 8 155 200 23,8 42,1 190,2

no
n_

re
st

8 4 219 196 44,9 22,3 179,6
1 32 135 240 8,0 124,6 256,9
2 16 139 236 13,4 74,5 214,8
4 8 169 236 24,1 41,5 193,0 sr

t_
r2

8 4 229 236 47,9 20,9 191,7
2 16 134 221 12,7 78,8 202,9
4 8 169 221 21,9 45,7 175,2

sr
t_

r4

8 4 240 222 41,2 24,3 164,6
4 8 336 255 23,0 43,5 183,9

_r
16

8 4 603 294 41,9 23,9 167,5
1 32 179 269 11,9 83,8 382,0
2 16 210 267 17,7 56,6 282,6
4 8 282 267 29,9 33,4 239,3 sr

t_
cs

8 4 426 267 52,5 19,0 210,2

582 G. Sutter et al.

utilization. Finally, minimum period, maximum frequency and latency are presented.
As G grows, the latency decreases at the cost of extra area. Best results in terms of
latency are provided by SRT radix-4. Minimum value for area × latency figure is
obtained for G=2.

Figure 9.a shows the average energy for an operation in n Joules for 32-bit width
divider. The synchronization and data-path components are also displayed. The syn-
chronization power decreases as G grows, mainly because of smaller cycles. In the
opposite, the data-path consumption grows with G, mainly because the glitches in-
creases. Optimum G value seems to be 4, apart from SRT carry-save remainder
(srt_cs).

Non-restoring division with G=4 (nr_g4) shows lowest power consumption, while
SRT radix-2 with G=4 (srt_r2_g8) and SRT radix-4 with G=4 (srt_r4_g4), have simi-
lar energy consumption. An important point is that the value of G, better that a par-
ticular algorithms, defines the power figure. In SRT radix-2, G=4 save 51% energy
with respect to G=1. The energy savings with respect to the fully combinational im-
plementations are: 85 % as regards SRT radix-2, 89 % as regards non-restoring divi-
sion, and 94% as regards the SRT carry-save remainder.

4.4 Architectural Comparisons

Figure 9.b shows ATP figure for some 32-bit circuits. The array implementations
have the lowest latency, but as the cost of a great area and excessive power dissipa-
tion. Pipeline offers the best throughput, with a relatively low increment in area with
respect to array implementations and a good power figure, but the initial latency could
be prohibitive for some applications. Finally, sequential implementations have the
smaller area, a delay less than twice the one of arrays, but have a good power figure.

srt_cs_g8
srt_cs_g4
srt_cs_g2
srt_cs_g1

--
srt_r16_g8
srt_r16_g4

--
srt_r4_g8
srt_r4_g4
srt_r4_g2

--
srt_r2_g8
srt_r2_g4
srt_r2_g2
srt_r2_g1

--
nr_g8
nr_g4
nr_g2
nr_g1

0 100 200 300

 Syncro
 DataPath

0

1000

2000 0

100

200

300

0

300

600

900
 Iterative
 pipesrt4
 Pipesrt2
 Array

E
ne

rg
y(

nJ
)

de
la

y
(n

s)

Area (slices)

srt_r2_p1

srt2_sec_g4

srt_r2

srt_r4_p2

Fig. 9. a. Dynamic power consumption for different sequential divider implementations. b.
Area-Time-Power for sequential, array, and pipeline implementations.

Power Aware Dividers in FPGA 583

5 Conclusions

This paper has presented a power analysis for improved architectures and implemen-
tations of SRT division on mantissa operations (floating-point numbers).

The circuits were implemented in VHDL, instantiating low-level primitives when
necessary. Array implementations, pipelined with different logic depths, and sequen-
tial implementations were constructed and the power was measured.

For array implementations SRT radix-2 has the best ATP figure, reducing power
consumption up to 51 % with respect to traditional non-restoring division and 93 %
with respect to SRT radix-2 with carry-save remainder representation.

Pipeline architectures offer an important way to reduce the power consumption.
The measurements show reductions of up to 93 % of dynamic power in a fully pipe-
lined divider with respect to an entirely combinational architecture. Such improve-
ment is obtained with a relative low impact in area.

The sequential implementations use lower area resources, with a relative low im-
pact in delay, but with an important power reduction, -up to 89 %- with respect to
fully combinational implementation. An important criterion in sequential implementa-
tions is the amount bits calculated at a time (G). G=4 show the best power consump-
tion and ATP figure, while G = 2 has the best Area × Latency figure. Non-restoring
and SRT radix-2 exhibit the best results.

More researches are needed to explore further alternatives such as larger operand
sizes, or ad-hoc disabling architectures to reduce glitch propagations. The dividers
features are currently analyzed for Virtex 2. An optimized in ATP fully IEEE compli-
ant floating-point unit is another key research interest.

Acknowledgement. This work is supported in part by Project TIC2001-2688-C03-03
of the Spanish Ministry of Education and Science, and in part by Project
07T/0052/2003-3 of the Consejería de Educación de la Comunidad de Madrid, Spain

References

1. S.F. Oberman and M.J. Flynn. “Division algorithms and implementations”. IEEE Transac-
tions on Computers, 46(8):833–854, August 1997.

2. M.D. Ercegovac and T. Lang. Division and Square-Root Algorithms: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic, 1994.

3. B. Parhami. Computer Arithmetic: Algorithms and Hardware Design. Oxford University
Press, 2000.

4. M.Ercegovac and T.Lang. Digital arithmetic San Francisco: Morgan Kaufmann, cop. 2004
5. P.Soderquist and M.Leeser. Area and Performance Tradeoffs in Floating-Point Divide and

Square-Root Implementations, ACM Computing Surveys, Vol. 28, No. 3, September 1996.
6. J-L.Beauchat and A.Tisserand, “Small Multiplier-Based Multiplication and Divison Op-

era-tors”, 12th Conference on Field Programmable Logic and Applications, pp. 513-522.
2002.

7. B.R. Lee and N. Burgess, “Improved Small Multiplier Based Multiplication, Squaring and
Division” 11thIEEE symposium on Field-Programmable Custom Computing Ma-
chines.2003.

8. X. Wang and B.E. Nelson, “Tradeoffs of Designing Floating Point Division and Square
Root on Virtex FPGAs” 11th IEEE symposium on FCCM. 2003.

584 G. Sutter et al.

9. G.Sutter, G.Bioul, and J-P.Deschamps, “Comparative Study of SRT-Dividers in FPGA”,
Conf.on Field Programmable Logic and Applic. (FPL’04), Antwerp, Belgium, Sept 2004.

10. Xilinx Inc, Libraries Guide for ISE 6.1 available at www.xilinx.com, 2003.
11. Xilinx Inc, Xilinx ISE 6 Software Manuals, available at www.xilinx.com, 2003.
12. Xilinx Inc, XST User Guide 4.0, available at www.xilinx.com, June 2003.
13. G.Sutter, “FPGA implementation and comparison of SRT dividers”, UAM, Technical

Report, December 2003.
14. E. Todorovich, G. Sutter, N. Acosta, E. Boemo and S. López-Buedo, "End-user low-power

alternatives at topological and physical levels. Some examples on FPGAs", Proc.
DCIS'2000, Montpellier, France, Nov. 2000.

15. Tektronix inc, TLA7PG2 Pattern Generator Module User Manual. www.tektronix.com.
16. Tektronix inc, TLA 700 Series Logic Analyzer User Manual. www.tektronix.com.
17. A. Shen, A. Gosh, S. Devadas and K. Keutzer, "On average Power Dissipation and Ran-

dom Pattern Testability of CMOS Combinational Logic Networks", Proc. ICCAD-92
Conf, pp.402-407, IEEE Press, 1992.

18. M. Pedram, "Power Minimization in IC Design: Principles and Applications", ACM Trans.
On Design Automation of Electronic Systems", vol.1, nº1, pp.3-56, January 1996.

19. A. Chandrakasan, S. Sheng and R. Brodersen, "Low-Power CMOS Digital Design", IEEE
Journal of Solid-State Circuits, Vol. 27, No. 4, pp. 473-484. April 1992

20. E. Mussol and J. Cortadella, “Low-Power Array Multiplier with Transition-Retaining
Barriers”, Proc. PATMOS´95, Fifth Int. Workshop, pp. 227-235, Oldenburg, October 1995.

21. J. Leiten, J. van Meerbegen and J. Jess, Analysis and Reduction of Glitches in Synchro-
nous Networks”, Proc. 1995 ED&TC, pp.1461-1464. New York: IEEE Press, 1995

22. E. Boemo, G. Gonzalez de Rivera, S.Lopez-Buedo and J. Meneses, "Some Notes on Power
Management on FPGAs", LNCS, No.975, pp.149-157. Berlin: Springer-Verlag 1995.

23. E. Boemo, S. Lopez-Buedo, C. Santos, J. Jauregui and J. Meneses, "Logic Depth and
Power Consumption: A Comparative Study Between Standard Cells and FPGAs", Proc.
XIII DCIS Conference (Design of Circuit and Integrated Systems), Madrid, Univ. Carlos
III: Nov 1998.

24. Sutter G, Todorovich E, Lopez-Buedo S, and Boemo E. “Logic Depth, Power, and Pipe-
line Granularity: Updated Results on XC4K and Virtex FPGAs” III Workshop on Recon-
figurable Computing and Applications JCRA03, Madrid Spain, Sept 2003.

	Introduction
	Algorithms
	FPGA Implementations
	Radix-2 Restoring and Non-restoring
	SRTs Algorithms with 2´s Complement Remainder
	Radix-2 SRT with Carry-Save Remainder

	Implementation Results
	Results in Array Implementations
	Results for Pipeline Implementations
	Results for Iterative Implementations
	Architectural Comparisons

	Conclusions

