
Area-Time-Power of Modular Multipliers implemented in
FPGA

Gustavo Sutter1 , Jean-Pierre Deschamps2, and Eduardo Boemo1
1School of Engineering, Universidad Autónoma de Madrid, Spain

{gustavo.sutter, eduardo.boemo}@uam.es
2 Dept. Eng. Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili ,Tarragona, Spain

Abstract. Three modular multiplication algorithms are described and compared: the
so-called Multiply and Reduce, the Shift and Add, and finally, the Montgomery
product. An estimation of the cost of their combinational implementation using Xilinx
FPGAs family is calculated. Practical results in term of area, delay, and power for
both combinational and completely sequential implementations are presented.

1 Introduction

For both performance and physical security, it is often advantageous to implement
cryptographic algorithms in hardware. These algorithms can be implemented in smart cards
and others portable devices, where not only the speed and area are important, but also the
power consumed.

Many public-key algorithms are based on finite ring Zm and finite field GF(pk)
operations like RSA [1] and Elliptic Curves [2]. As a consequence, the development of
optimized VHDL models for modular multipliers is the starting point in this area. When
used as a computation primitive for calculating the exponential function yx mod m, the
modular multiplication is generally performed using the Montgomery algorithm [3]. It is an
efficient method oriented to a software implementation of the modular exponentiation [4],
but frequently has been translated to hardware in RSA ciphering/deciphering and key
generation circuits [5, 6, 7]. Nevertheless, as is explained in section 3.5.3, the algorithm is
inefficient for single modular multiplications [4].

In this paper, three modular multiplication algorithms are described and compared:
Multiply and Reduce, Shift and Add, and finally, Montgomery Product. These algorithms
are described in section 2. The area and delay figure of their combinational implementation
using Xilinx 4K serie FPGAs are presented in section 3. In next section, the analysis is
extended to the completely sequential implementation of the three algorithms. In section 5,
the power is also analysed and finally, the main conclusions are summarized in section 6.

2 Algorithms

Given three natural numbers x, y and m such that: x < m, y < m and m < 2n, three
algorithms are presented - and their corresponding implementations are compared - for
calculating: z = x.y mod m. The features of these algorithms are summarized bellow.

2.1 Multiply and reduce

This algorithm consists of: 1) multiplying x by y, obtaining a 2n-bit intermediate result p,
and 2) reducing p modulo m.

The first operation, the multiplication of two natural numbers, can be decomposed in a
series of left shifts and conditional sums (section 3). It is the classical shift and add
algorithm.

algorithm 1
p := 0;
for i in 0 .. n-1 loop p :=(p + x(i)*y)/2; end loop;
p := p*(2**n);

The second operation, the modulo m reduction, can be decomposed in a sequence of left
shifts, subtractions, and branching. The recovering algorithm is similar to the paper and
pencil division method (algorithm 2).

algorithm 2
module := m*(2**n);
r(0) := p;
for i in 1 .. n loop
 remainder := (2*r(i-1))-module;
 if remainder < 0 then r(i) := 2*r(i-1);
 else r(i) := remainder; end if;
end loop;
z := r(n) / 2**n;

algorithm 3
module := m*(2**n);
r(0) := (2*n) - module;
for i in 1 .. n-1 loop
 if r(i-1)<0 then r(i) := (2*r(i-1))+ module;
 else r(i) := (2*r(i-1))- module; end if;
end loop;
z := r(n-1) / (2**n);
if z < 0 then z := z + m; end if;

A slightly different algorithm (non-recovering algorithm) uses a sum-subtraction primitive,
where the operation selection depends on a previously calculated binary condition
(algorithm 3).

Is important to observe that the recovering algorithm includes a branching, based on the
bit sign of a result (remainder) calculated during the same iteration step, while the non-
recovering algorithm branching is based on the bit sign of a result r(i-1), calculated in the
previous iteration step.

2.2 Shift and add

In this case, instead of multiplying, obtaining a 2n-bit result, and reducing modulo m, the
solution is reducing modulo m in every step of the shift and add algorithm:

algorithm 4
z := 0;
for i in 1 .. n loop
 z := (z*2 + x(n-i)*y) mod m;
end loop;

The maximum value of 2.z+x(n-i).y is: 2.(m-1) + (m-1) = 3.(m-1).
Thus: 2.z + x(n-i).y = m.q + r, where q ∈ {0,1,2}.

As a consequence, the calculation of z.2+x(n-i).y. modulo m can be performed as is done in
algorithm 5. Additionally, this algorithm can be simplified. On the one hand p2 and p3
cannot be simultaneously negative: p2 = 2.z + x(n-i).y – m. So that -m ≤ p2 < 2.m; if p2 <
0 then: p3 = p2 + m ≥ -m + m = 0.

On the other hand, instead of computing: p2 = p1 + x(n-i).y - m, the value of k = m-y can be
previously computed (outside the for loop) so that p2 = p1-m or p2 = p1-k. The final
algorithm is called algorithm 6.

algorithm 5
p1 := z*2;
p2 := p1 + x(n-i)*y - m;
if p2 < 0 then p3 := p2 + m; z := p3;
else

p3 := p2 - m;
if p3 < 0 then z := p2; else z := p3; end if;

end if;

algorithm 6
z := 0; k := m-y;
for i in 1 .. n loop

if x(n-i) = 0 then w := m; else w := k; end if;
p1 := z*2; p2 := p1 - w;
if p2<0 then p3:=p2+m;else p3:=p2-m; end if;
if p3<0 then z := p2; else z := p3; end if;

end loop;

2.3 Montgomery multiplication

If m is odd, then the greatest common divisor of 2n and m is 1, so that there exits a natural
number, denoted 2-n, such that 2-n. 2n = 1 mod m. Montgomery 3. proposed an algorithm
that calculates: z = x.y. 2-n mod m. In the so-called Montgomery product, every iteration
step consists of two conditional sums:

algorithm 7
r(0) := 0;
for i in 1 .. n loop
 a := r(i-1) + x(i-1)*y;
 r(i) := (a + a(0)*m)/2;
end loop;
if r(n) < m then z := r(n); else z := r(n) - m; end if;

This algorithm does not calculate x.y mod m. Nevertheless, it can be observed that if x, y
and z = x.y mod m, are substituted by x' = x.2n mod m, y' = y.2n mod m and z' = z.2n mod
m, then: z' = x'.y'.2-n mod m.

The result z' is the Montgomery product of x' and y'. In other words, a transform that
applies Zm in Zm can be defined (a → a.2n mod m) such that the mod m product is
substituted by the Montgomery product within the transformed domain. A direct transform
a → a.2n mod m is equivalent to the Montgomery multiplication of a by 22.n mod m, and the
inverse transformation a' → a'.2-n mod m is equivalent to the Montgomery multiplication
of a' by 1.

The classical exponentiation algorithm, based on a sequence of multiplications, that
calculates e = yx is depicted in algorithm 8.

algorithm 8
e := 1;
for i in 1 .. n loop

e := e*e;
if x(n-i) = 1 then e := e*y; end if;

end loop;

algorithm 9
e := one_m;
y := MM(y,two_m);
for i in 1 .. n loop

e := MM(e,e);
if x(n-i) = 1 then e := MM(e,y); end if;

end loop;
e := MM(e,1);

In order to calculate e = yx mod m, the previous algorithm must be modified: 1 and y are
substituted by 1.2n mod m and y.2n mod m, the integer product is substituted by the
Montgomery operation, and the final result e is substituted by e.2-n mod m. Suppose that the

value of one_m = 2n mod m and two_m = 22.n mod m have been previously calculated for
all usefull values of m. Then, the algorithm 9, where MM is a procedure that calculates de
Montgomery product, computes e = yx mod m.

3 Synthesis and hardware mapping

In this section, the XC4025 implementation of the three proposed algorithm (Multiply and
Reduce, Shift and Add, and Montgomery product) are compared. The proposed algorithms
(1 and 2 or 3, 6 and 7) can be implemented with the following computation primitives:

sum: r : a+b
subtraction: r = a + (2n - b)
sum - subtraction: r = a + (1-x).b + x. (2n - b)
conditional sum: r = a + x.b
conditional subtraction: r = a + x. (2n - b)
selection: r = (1-x).a + x.b

where a and b are n-bit numbers and x a one-bit number.

All of them can be synthesized with n/2 + 1 Configurable Logic Blocks (CLB) of the
XC4K FPGA family, except the selection (a two-to-one n-bit multiplexer) that is
synthesized with n/2 CLBs.

As main result, the cost of a two-to-one multiplexer is practically the same as the cost of
a programmable adder-subtractor (n/2 vs. n/2 + 1). That is, n look-up tables. This fact is a
consequence of the FPGA structure, based on LUTs. In the case of a Standard Cell
implementation, the conclusion would be quite different.

3.1 Multiply and Reduce

The product (algorithm 1) includes n conditional sums, so that the corresponding cost is
equal to n.(n/2 + 1) CLBs.

The reduction, performed with algorithm 2, would need n conditional subtractions and n
multiplexers, while algorithm 3 only includes n-1 sum - subtractions, an additional initial
subtraction and a final conditional sum. The corresponding cost is n.(n/2 + 1) + n/2 + 1
CLBs. The total cost is equal to:

Cmultiply and reduce = n2+ 2,5.n + 1 CLBs.

3.2 Shift and Add

The implementation of algorithm 6 needs: an initial subtraction (computation of k), n
multiplexers (selection of w), n n+1-bit subtractions (computation of p2; an extra bit is
necessary in order to detect the sign of p2), n n+1-bit sum-subtractions (in the computation
of p3, an extra bit is necessary in order to detect the sign of p2), and finally, n multiplexers
(selection of z). The corresponding cost is equal to n/2 + 1 + n.(n/2 + (n+1)/2 + 1 + (n+1)/2
+ 1 + n/2). That is:

Cshift and add = 2.n2 + 3,5.n +1 CLBs.

3.3 Montgomery multiplier

Algorithm 7 includes: n n+1-bit conditional sums (a), n n+2-bit conditional sums (r(i)), an
n+1-bit subtraction (r(n) - m), and an n-bit multiplexer (selection of z). The corresponding
cost is equal to n.((n+1)/2 + 1 + (n+2)/2 + 1) + (n+1)/2 + 1 + n/2, that is to say

CMontgomery = n2 + 4,5.n + 1,5 CLBs.

3.4 Comparison

The three types of modular multipliers (named m_r: multiply and reduce, s_a: shift and add,
and mont: Montgomery multiplier) have been implemented in an XC4025E array. The
initial description is a synthesizable VHDL model using the arithmetic function packages of
the IEEE. The sum-subtraction, conditional sum, conditional subtraction, and selection
primitives have been modelled using if then else sentences:

if x='0' then r <= a+b; else r <= a-b; end if;
if x='0' then r <= a; else r <= a + b; end if;
if x='0' then r <= a; else r <= a - b; end if;
if x='0' then r <= a; else r <= b; end if;

In Table 1, the implementation results are summarized. The 24 and 32-bit versions do not
fit in the selected FPGA model.

Table 1. Number of CLBs and maximum delay (ns)

 Area (CLBs) Delay (ns)
bits m_r s_a mont. m_r s_a mont.
8 85 157 102 186 201 167

16 297 563 334 454 724 325
24 637 1232 694
32 1104 2160 1166

Observe that the actual cost values are very similar to the predicted ones. The practical
conclusions are:

1. The cost of the Multiply and Reduce algorithm and of the Montgomery multiplier is
almost the same (n2 + 2,5.n + 1 vs. n2 + 4,5.n + 1,5). Nevertheless, the Montgomery
multiplier is the fast circuit.

2. The cost of the Shift and Add algorithm is almost twice the two previous ones (2.n2 +
3,5.n + 1), due to the relatively high weight of the multiplexers.

The Shift and Add algorithm should be discarded (at least for a combinational
implementation). As regards the choice between the Multiply and Reduce and the
Montgomery product, the following facts must be taken into account:

1. The Montgomery multiplication (algorithm 7) is the faster.
2. The Montgomery exponentiation (algorithm 9) needs the previous computation of 2n

mod m and 22.n mod m for all the useful values of m. These values should be stored in a
memory. An alternative solution could be to design a specific configuration of the
FPGAs as a function of the value of m.

3. The Montgomery multiplier does not compute z = x.y mod m but z'' = x.y.2-n mod m. In
order to obtain z from z'' , the value of 22.n mod m must be known, and a second
Montgomery product is necessary to compute z = z''.22.n.2-n mod m. As result, the
Montgomery method is inefficient for computing a single product.

4 Sequential implementation

For large values of n, the circuit must be sequentialized, at least partially. The three types of
modular multipliers have been implemented and compared under the following hypothesis:
the (completely) sequentialized circuit implements the body of the main iteration of
algorithms 1 and 3 (m_r), 6 (s_a) and 7 (mont.), respectively, as well as the additional
registers, counter, and control logic.

The following additional resources are necessary: registers, shift registers, and counters.
In a XC4K-family CLB, an n-bit register can be synthesized with n/2 CLBs. The minimum
number of CLBs for an n-bit counter (up to 2n states) is equal to n/2. Nevertheless,
additional CLBs can be necessary; the exact number of them depends on the specific
features of the counter (bidirectional, programmable, with clock enable, etc.). As a rule of
thumb, it will be assumed that the cost of an n-bit counter is of the order of n CLBs.

The sequential execution of algorithms 1 and 2 (Multiply and Reduce) needs the
following blocks: an n-bit conditional sum, an n-bit sum-subtraction, an n-bit conditional
sum (final step), a 2.n-state counter, two n-bit shift registers, a 2.n-bit register, and a 4-state
machine. The corresponding cost is of the order of n/2 + 1 + n/2 + 1 + n/2 + 1 + log2(2.n) +
2.(n/2) + (2.n)/2 + 4. That is to say:

CMultiply and Reduce = 3,5.n + log2n + 8.

The sequential version of algorithm 6 (Shift and Add) includes: an n-bit subtraction,
two n-bit multiplexers, an n+1-bit subtraction, an n+1-bit sum-subtraction, an n-state
counter, an n-bit shift register, and an n-bit register.
The corresponding cost is of the order of n/2 + 1 + 2.n/2 + (n+1)/2 + 1 + (n+1)/2 + 1 +
log2n + n/2 + n/2. As a consequence:

CShift and Add = 3,5.n + log2n + 4.

The sequential execution of algorithm 7 (Montgomery) needs: an n+1-bit conditional sum,
an n+2-bit conditional sum, an n+1-bit subtraction, an n-bit multiplexer, an n-state counter,
an n-bit shift register, and an n+1-bit register. The corresponding cost is of the order of
(n+1)/2 + 1 + (n+2)/2 + 1 + (n+1)/2 + 1 + n/2 + log2n + n/2 + (n+1)/2. That is to say:

CMontgomery = 3.n + log2n + 5,5.

Table 2. Number of CLBs, Flip-Flops and Maximum frequency (MHz)

bits Multiply and reduce Shift and Add Montgomery
 CLBs FF Frec CLBs FF Frec CLBs FF Frec
8 57 67 25 33 37 17,2 34 31 32,1

16 72 124 22,4 63 70 12,7 59 56 25,8
32 126 237 16,9 119 135 7,1 108 105 24,4
64 240 462 - 232 264 - 204 31 -
128 465 911 - 457 521 - 398 56 -
256 915 1808 - 905 1034 - 783 105 -

Table 2 shows the number of CLBs and the maximum clock frequency (in Megahertzs).
The total number of clock cycles is equal to n in the case of the Shift and Add and
Montgomery multipliers, and equal to 2.n in the case of the Multiply and Reduce one.
Observe that the actual cost values are very similar to the computed ones.

5. Power Consumption

In order to measure the power consumption, random vectors sequences were generated. The
dynamic power was isolated from the others components using the technique of Table 3.
Each circuit was measured at 100 Hz, 2, 3, 4 and 5 MHz, and the static power consumption
was extrapolated.

All prototypes include tri-states buffers at the output pads to measure the off-chip
power. Besides, each pad support the load of the logic analyzer, lower than 3pf [11].

The VHDL code was synthesized using the FPGA Express [8, 9] and the Xilinx tools
[10] into a XC4010EPC84-1 FPGA sample. All circuits has been implemented and tested
under identical conditions.

Table 3: Determination of power component in arithmetic circuits

Dynamic
Power

In a CMOS circuits as: V f c = P 2
DDnn

nodes all
∑ where, cn is the load capacitance at

the output of the node n, fn the frequency of switching and VDD supply voltage. To
calculate it, the total power is measured and then the static, off-chip and
synchronization power is deducted.

Static
power

The chip is configured but neither stimulus nor clocking is applied. The pull-up
resistors and other external elements that require the FPGAs remain connected.

Off-chip
power

The circuit is measured twice. First, during normal operation. Second, by disabling
the tri-state output buffers. Thus, the off-chip component can be approximated to the
difference between the two results. In addition, the use of the tri-state buffers in low-
power design is also useful to separate the results from a particular PCB.

Synchro-
nization
power

A constant data (for example, all bit zeroed) is inputted to the circuit, meanwhile the
clock signal is applied. Thus, only the clock tree has activity. Is important to note that
FPGAs use multiplexers to emulate the effect of a clock enable. As a consequence, the
use of the clock enable pin of a CLB does not interrupt the clocking of the flip-flops.

5.1 Combinational implementations

The input/output of the sequential multipliers was registered. Eight bit wide data path was
chosen in order to fit into the targeted FPGA. The table 4 shows the Power-Area-Time
figure of the circuits.

Table 4. Area-Time-Power of the combinational multipliers

 M_r s_a mont.
Energy (nJoules) 96,0 186,4 92,7

Area (CLBs) 85 157 102
Time (ns) 186 201 167

Observe that Montgomery implementation consumes a less power than multiply and
reduce, in spite of the bigger area used. The Montgomery algorithm has about 4% less
output transition for the test pattern utilized. This is caused by the fact that Montgomery not
compute z = x.y mod m but z'' = x.y.2-n mod m.

The measurements shows that the Multiply and Reduce and the Montgomery
algorithms, has almost de same values not only in area-delay but also in power.
Nevertheless, the Montgomery multiplier is a little faster and consumes less power. The
power of the Shift and Add algorithm (as the area) is almost twice the previous ones.

5.2 Sequential implementations

In this case, the dynamic power was divided into clock power (due to clock and FF) and
combinational power (due to datapath). Main result in that the synchronization power in the
multiply and reduce circuit is increase linearly with the number of flip-flop.

Table 5. Area-Time-Power of the sequential multipliers

 m_r s_a mont.
Dynamic Energy (nJoules) 71,5 52,4 38,6
Synchronization Energy (nJoules) 46,8 26,2 27,2
Combinational Energy (nJoules) 24,7 26,2 11,1
Area (CLBs) 57 33 34
Flip - Flops 67 37 31
Total Time (ns) 320 465 249

The sequential implementation the Montgomery algorithm consume less power than the
others alternatives. The multiply and reduce circuit has the worst power figure and uses
twice cycles to compute the result.

Observe that the energy consumed (power x time) is lower in the sequential
implementation. It can be explained due to the reduction of glitches produced by the
registered stages [12]. Nevertheless, the clock power is grater than combinational power.

6. Conclusions

For calculating e = yx mod m, where m belongs to a known set of values (in such a way that
the values of 2n and 22.n modulo m can be previously tabulated), the Montgomery algorithm
is definitely exhibit the best Area-Time-Power figure, independently of the type of
implementation (combinational or sequential).

For calculating z = x.y mod m, the combinational implementation of the Multiply and
Reduce algorithm is better than the Shift and Add algorithm. However, in the sequential
implementation, both approach (Multiply and Reduce, Shift and Add) present similar
results in area and bandwidth (taking into account that the Multiply and Reduce version
needs 2.n cycles instead of n), but the power consumption is lower in the Shift and Add
algorithm.

Other approaches are under study. Among others, the definition of serial arithmetic
algorithms and the generation of hard-macros optimized at the physical level are being
considered. Another interesting approach is the use of reconfigurability to define specific

circuits for every value of m. Finally, other granularity of sequential implementation can be
studied to obtain different area-time-power trade-off.

Acknowledgement: This work is supported in part by Project TIC2001-2688-C03-03 of the
Spanish Ministry of Education and Science, and in part by Project 07T/0052/2003-3 of the Consejería
de Educación de la Comunidad de Madrid, Spain

References
1. R. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public-

Key Cryptosystems", Commic. of the ACM, vol.21,no2, pp.120-126, February 1978.
2. I.Blake, G.Seroussi and N.Smart, "Elliptic Curves in Cryptography", Cambridge University Press,

1999.
3. P.Montgomery, "Modular multiplication without trial division", Mathematics of Computation,

vol.44, pp. 519 - 521, April 1895.
4. Menezes, P. van Oorschot and S. Vanstone, "A Handbook of Applied Cryptography", CRC Press,

1996.
5. V.Fisher and M.Drutarovský, "Scalable RSA Processor in Reconfigurable Hardware - a SoC

Building Block", XVI Conference on Design of Circuits and Integrated Systems, November 2001,
Porto, pp. 327 - 332.

6. D.Matilla, M.López-Vallejo and A.Rojo, "Hardware - Software Co-design of a Cryptographic
Application", XVI Conference on Design of Circuits and Integrated Systems, November 2001,
Porto, pp. 100 - 105.

7. T.Blum and C.Paar, "Montgomery Modular Exponentiation and Reconfigurable Hardware", 14th
IEEE Symp. on Computer Arithmetic, April 1999, Adelaide, Australia.

8. FPGA Compiler II / FPGA Express VHDL Reference Manual, Version 1999.05, Synopsys,
Inc.,May 1999

9. FPGA Express page. Synopsis, inc.; www.synopsys.com/products/fpga/fpga_express.htm
10. Software Manuals and documentation for Foundation Series 3.1i.

http://toolbox.xilinx.com/docsan/3_1i/
11. Tektronix inc., “TLA 700 Series Logic Analyzer User Manual”, available at

http://www.tektronix.com.
12. E. Boemo, G. Gonzalez de Rivera, S.Lopez-Buedo and J. Meneses, "Some Notes on Power

Management on FPGAs", Lecture Notes in Computer Science, No.975, pp.149-157. Berlin:
Springer-Verlag 1995.

