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Abstract. Three modular multiplication algorithms are described and compared: the 
so-called Multiply and Reduce, the Shift and Add, and finally, the Montgomery 
product. An estimation of the cost of their combinational implementation using Xilinx 
FPGAs family is calculated. Practical results in term of area, delay, and power for 
both combinational and completely sequential implementations are presented. 

1   Introduction 

For both performance and physical security, it is often advantageous to implement 
cryptographic algorithms in hardware. These algorithms can be implemented in smart cards 
and others portable devices, where not only the speed and area are important, but also the 
power consumed.  

Many public-key algorithms are based on finite ring Zm and finite field GF(pk) 
operations like RSA [1] and Elliptic Curves [2]. As a consequence, the development of 
optimized VHDL models for modular multipliers is the starting point in this area. When 
used as a computation primitive for calculating the exponential function yx mod m, the 
modular multiplication is generally performed using the Montgomery algorithm [3]. It is an 
efficient method oriented to a software implementation of the modular exponentiation [4], 
but frequently has been translated to hardware in RSA ciphering/deciphering and key 
generation circuits [5, 6, 7]. Nevertheless, as is explained in section 3.5.3, the algorithm is 
inefficient for single modular multiplications [4]. 

In this paper, three modular multiplication algorithms are described and compared: 
Multiply and Reduce, Shift and Add, and finally, Montgomery Product. These algorithms 
are described in section 2. The area and delay figure of their combinational implementation 
using Xilinx 4K serie FPGAs are presented in section 3. In next section, the analysis is 
extended to the completely sequential implementation of the three algorithms. In section 5, 
the power is also analysed and finally, the main conclusions are summarized in section 6.  

2   Algorithms 

Given three natural numbers x, y and m such that: x < m, y < m and m < 2n, three 
algorithms are presented - and their corresponding implementations are compared - for 
calculating:  z = x.y mod m. The features of these algorithms are summarized bellow. 



 

2.1   Multiply and reduce 

This algorithm consists of:  1) multiplying x by y, obtaining a 2n-bit intermediate result p, 
and 2) reducing p modulo m. 

The first operation, the multiplication of two natural numbers, can be decomposed in a 
series of left shifts and conditional sums (section 3). It is the classical shift and add 
algorithm. 

algorithm 1 
p := 0; 
for i in 0 .. n-1 loop    p :=( p + x(i)*y)/2;  end loop; 
p := p*(2**n); 

The second operation, the modulo m reduction, can be decomposed in a sequence of left 
shifts, subtractions, and branching. The recovering algorithm is similar to the paper and 
pencil division method (algorithm 2). 

algorithm 2 
module := m*(2**n); 
r(0) := p; 
for i in 1 .. n loop 
    remainder := (2*r(i-1))-module; 
    if remainder < 0 then r(i) := 2*r(i-1); 
   else r(i) := remainder; end if; 
end loop; 
z := r(n) / 2**n; 

algorithm 3 
module := m*(2**n); 
r(0) := (2*n) - module; 
for i in 1 .. n-1 loop 
    if r(i-1)<0 then r(i) := (2*r(i-1))+ module; 
    else r(i) := (2*r(i-1))- module; end if; 
end loop; 
z := r(n-1) / (2**n); 
if z < 0 then z := z + m; end if; 

 
A slightly different algorithm (non-recovering algorithm) uses a sum-subtraction primitive, 
where the operation selection depends on a previously calculated binary condition 
(algorithm 3).  

Is important to observe that the recovering algorithm includes a branching, based on the 
bit sign of a result (remainder) calculated during the same iteration step, while the non-
recovering algorithm branching is based on the bit sign of a result r(i-1), calculated in the 
previous iteration step. 

2.2   Shift and add  

In this case, instead of multiplying, obtaining a 2n-bit result, and reducing modulo m, the 
solution is reducing modulo m in every step of the shift and add algorithm: 

algorithm 4 
z := 0; 
for i in 1 .. n loop      
    z := (z*2 + x(n-i)*y) mod m;  
end loop; 

The maximum value of   2.z+x(n-i).y  is:  2.(m-1) + (m-1) = 3.(m-1).  
Thus: 2.z + x(n-i).y = m.q + r, where q ∈ {0,1,2}.  

As a consequence, the calculation of z.2+x(n-i).y. modulo m can be performed as is done in 
algorithm 5. Additionally, this algorithm can be simplified. On the one hand p2 and p3 
cannot be simultaneously negative:  p2 = 2.z + x(n-i).y – m.  So that -m ≤ p2 < 2.m; if p2 < 
0 then:  p3 = p2 + m ≥ -m + m = 0. 



 

On the other hand, instead of computing: p2 = p1 + x(n-i).y - m, the value of k = m-y can be 
previously computed (outside the for loop) so that p2 = p1-m or p2 = p1-k. The final 
algorithm is called algorithm 6. 

algorithm 5 
p1 := z*2; 
p2 := p1 + x(n-i)*y - m; 
if p2 < 0 then   p3 := p2 + m; z := p3; 
else 

p3 := p2 - m; 
if p3 < 0 then z := p2; else z := p3; end if; 

end if; 

algorithm 6 
z := 0; k := m-y; 
for i in 1 .. n loop 

if x(n-i) = 0 then w := m; else w := k; end if; 
p1 := z*2; p2 := p1 - w; 
if p2<0 then p3:=p2+m;else p3:=p2-m; end if; 
if p3<0 then z := p2; else z := p3; end if; 

end loop; 

2.3   Montgomery multiplication 

If m is odd, then the greatest common divisor of 2n and m is 1, so that there exits a natural 
number, denoted 2-n, such that 2-n. 2n = 1 mod m. Montgomery 3. proposed an algorithm 
that calculates:  z = x.y. 2-n mod m. In the so-called Montgomery product, every iteration 
step consists of two conditional sums: 

algorithm 7 
r(0) := 0; 
for i in 1 .. n loop 
     a := r(i-1) + x(i-1)*y; 
     r(i) := (a + a(0)*m)/2; 
end loop; 
if r(n) < m then z := r(n); else z := r(n) - m; end if; 

This algorithm does not calculate x.y mod m. Nevertheless, it can be observed that if x, y 
and z = x.y mod m, are substituted by x' = x.2n mod m, y' = y.2n mod m and  z' = z.2n mod 
m, then:  z' = x'.y'.2-n mod m.  

The result z' is the Montgomery product of x' and y'. In other words, a transform that 
applies Zm in Zm can be defined (a → a.2n mod m) such that the mod m product is 
substituted by the Montgomery product within the transformed domain. A direct transform 
a → a.2n mod m is equivalent to the Montgomery multiplication of a by 22.n mod m, and the 
inverse transformation a' → a'.2-n  mod m is equivalent to the Montgomery multiplication 
of a' by 1.  

The classical exponentiation algorithm, based on a sequence of multiplications, that 
calculates e = yx  is depicted in algorithm 8. 

algorithm 8 
e := 1; 
for i in 1 .. n loop 

e := e*e; 
if x(n-i) = 1 then e := e*y; end if; 

end loop; 
 

algorithm 9 
e := one_m; 
y := MM(y,two_m); 
for i in 1 .. n loop 

e := MM(e,e); 
if x(n-i) = 1 then   e := MM(e,y);   end if; 

end loop; 
e := MM(e,1); 

In order to calculate e = yx mod m, the previous algorithm must be modified: 1 and y are 
substituted by 1.2n mod m and y.2n mod m, the integer product is substituted by the 
Montgomery operation, and the final result e is substituted by e.2-n mod m. Suppose that the 



 

value of one_m =  2n mod m and two_m = 22.n mod m have been previously calculated for 
all usefull values of m. Then, the algorithm 9, where MM is a procedure that calculates de 
Montgomery product, computes e = yx mod m. 

3   Synthesis and hardware mapping 

In this section, the XC4025 implementation of the three proposed algorithm (Multiply and 
Reduce, Shift and Add, and Montgomery product) are compared. The proposed algorithms 
(1 and 2 or 3, 6 and 7) can be implemented with the following computation primitives: 

sum: r : a+b 
subtraction: r = a + (2n - b) 
sum - subtraction: r = a + (1-x).b + x. (2n - b) 
conditional sum: r = a + x.b 
conditional subtraction: r = a + x. (2n - b) 
selection: r = (1-x).a + x.b 

where a and b are n-bit numbers and x a one-bit number. 

All of them can be synthesized with n/2 + 1 Configurable Logic Blocks (CLB) of the 
XC4K FPGA family, except the selection (a two-to-one n-bit multiplexer) that is 
synthesized with n/2 CLBs. 

As main result, the cost of a two-to-one multiplexer is practically the same as the cost of 
a programmable adder-subtractor (n/2 vs. n/2 + 1). That is, n look-up tables. This fact is a 
consequence of the FPGA structure, based on LUTs. In the case of a Standard Cell 
implementation, the conclusion would be quite different.  

3.1   Multiply and Reduce 

The product (algorithm 1) includes n conditional sums, so that the corresponding cost is 
equal to n.(n/2 + 1) CLBs. 

The reduction, performed with algorithm 2, would need n conditional subtractions and n 
multiplexers, while algorithm 3 only includes n-1 sum - subtractions, an additional initial 
subtraction and a final conditional sum. The corresponding cost is n.(n/2 + 1) + n/2 + 1 
CLBs. The total cost is equal to:  

Cmultiply and reduce = n2+ 2,5.n + 1 CLBs. 

3.2   Shift and Add 

The implementation of algorithm 6 needs: an initial subtraction (computation of k), n 
multiplexers (selection of w), n n+1-bit subtractions (computation of p2; an extra bit is 
necessary in order to detect the sign of p2), n n+1-bit sum-subtractions (in the computation 
of p3, an extra bit is necessary in order to detect the sign of p2), and finally, n multiplexers 
(selection of z). The corresponding cost is equal to n/2 + 1 + n.(n/2 + (n+1)/2 + 1 + (n+1)/2 
+ 1 + n/2). That is: 

Cshift and add = 2.n2 + 3,5.n +1 CLBs. 



 

3.3 Montgomery multiplier 

Algorithm 7 includes: n n+1-bit conditional sums (a), n n+2-bit conditional sums (r(i)), an 
n+1-bit subtraction (r(n) - m), and an n-bit multiplexer (selection of z). The corresponding 
cost is equal to n.((n+1)/2 + 1 + (n+2)/2 + 1) + (n+1)/2 + 1 + n/2, that is to say 

CMontgomery = n2  + 4,5.n + 1,5 CLBs. 

3.4 Comparison 

The three types of modular multipliers (named m_r: multiply and reduce, s_a: shift and add, 
and mont: Montgomery multiplier) have been implemented in an XC4025E array. The 
initial description is a synthesizable VHDL model using the arithmetic function packages of 
the IEEE. The sum-subtraction, conditional sum, conditional subtraction, and selection 
primitives have been modelled using if then else sentences: 

if x='0' then r <= a+b; else r <= a-b; end if; 
if x='0' then r <= a; else r <= a + b; end if; 
if x='0' then r <= a; else r <= a - b; end if; 
if x='0' then r <= a; else r <=  b; end if; 

In Table 1, the implementation results are summarized. The 24 and 32-bit versions do not 
fit in the selected FPGA model. 

Table 1. Number of CLBs and maximum delay (ns) 

 Area (CLBs)  Delay (ns) 
bits m_r s_a mont.  m_r s_a mont. 
8 85 157 102  186 201 167 

16 297 563 334  454 724 325 
24 637 1232 694     
32 1104 2160 1166     

 
Observe that the actual cost values are very similar to the predicted ones. The practical 
conclusions are: 

1. The cost of the Multiply and Reduce algorithm and of the Montgomery multiplier is 
almost the same (n2  + 2,5.n + 1 vs. n2  + 4,5.n + 1,5). Nevertheless, the Montgomery 
multiplier is the fast circuit. 

2. The cost of the Shift and Add algorithm is almost twice the two previous ones (2.n2  + 
3,5.n + 1), due to the relatively high weight of the multiplexers.  

The Shift and Add algorithm should be discarded (at least for a combinational 
implementation). As regards the choice between the Multiply and Reduce and the 
Montgomery product, the following facts must be taken into account: 

1. The Montgomery multiplication (algorithm 7) is the faster. 
2. The Montgomery exponentiation (algorithm 9) needs the previous computation of 2n 

mod m and 22.n mod m for all the useful values of m. These values should be stored in a 
memory. An alternative solution could be to design a specific configuration of the 
FPGAs as a function of the value of m. 



 

3. The Montgomery multiplier does not compute z = x.y mod m but z'' = x.y.2-n mod m. In 
order to obtain z from z'' , the value of  22.n mod m must be known, and a second 
Montgomery product is necessary to compute z = z''.22.n.2-n mod m. As result, the 
Montgomery method is inefficient for computing a single product. 

4   Sequential implementation 

For large values of n, the circuit must be sequentialized, at least partially. The three types of 
modular multipliers have been implemented and compared under the following hypothesis: 
the (completely) sequentialized circuit implements the body of the main iteration of 
algorithms 1 and 3 (m_r), 6 (s_a) and 7 (mont.), respectively, as well as the additional 
registers, counter, and control logic.  

The following additional resources are necessary: registers, shift registers, and counters. 
In a XC4K-family CLB, an n-bit register can be synthesized with n/2 CLBs. The minimum 
number of CLBs for an n-bit counter (up to 2n states) is equal to n/2. Nevertheless, 
additional CLBs can be necessary; the exact number of them depends on the specific 
features of the counter (bidirectional, programmable, with clock enable, etc.). As a rule of 
thumb, it will be assumed that the cost of an n-bit counter is of the order of n CLBs. 

The sequential execution of algorithms 1 and 2 (Multiply and Reduce) needs the 
following blocks: an n-bit conditional sum, an n-bit sum-subtraction, an n-bit conditional 
sum (final step), a 2.n-state counter, two n-bit shift registers, a 2.n-bit register, and a 4-state 
machine. The corresponding cost is of the order of n/2 + 1 + n/2 + 1 + n/2 + 1 + log2(2.n) + 
2.(n/2) + (2.n)/2 + 4. That is to say: 

CMultiply and Reduce = 3,5.n + log2n + 8. 

The sequential version of algorithm 6 (Shift and Add) includes: an n-bit subtraction, 
two n-bit multiplexers, an n+1-bit subtraction, an n+1-bit sum-subtraction, an n-state 
counter, an n-bit shift register, and an n-bit register. 
The corresponding cost is of the order of n/2 + 1 + 2.n/2 + (n+1)/2 + 1 + (n+1)/2 + 1 + 
log2n + n/2 + n/2. As a consequence: 

CShift and Add = 3,5.n + log2n + 4. 

The sequential execution of algorithm 7 (Montgomery) needs: an n+1-bit conditional sum, 
an n+2-bit conditional sum, an n+1-bit subtraction, an n-bit multiplexer, an n-state counter, 
an n-bit shift register, and an n+1-bit register. The corresponding cost is of the order of 
(n+1)/2 + 1 + (n+2)/2 + 1 + (n+1)/2 + 1 + n/2 + log2n + n/2 + (n+1)/2. That is to say: 

CMontgomery = 3.n + log2n + 5,5. 

Table 2. Number of CLBs, Flip-Flops and Maximum frequency (MHz) 

bits Multiply and reduce  Shift and Add  Montgomery 
 CLBs FF Frec  CLBs FF Frec  CLBs FF Frec 
8 57 67 25  33 37 17,2  34 31 32,1 

16 72 124 22,4  63 70 12,7  59 56 25,8 
32 126 237 16,9  119 135 7,1  108 105 24,4 
64 240 462 -  232 264 -  204 31 - 
128 465 911 -  457 521 -  398 56 - 
256 915 1808 -  905 1034 -  783 105 - 



 

Table 2 shows the number of CLBs and the maximum clock frequency (in Megahertzs). 
The total number of clock cycles is equal to n in the case of the Shift and Add and 
Montgomery multipliers, and equal to 2.n in the case of the Multiply and Reduce one. 
Observe that the actual cost values are very similar to the computed ones. 

5. Power Consumption 

In order to measure the power consumption, random vectors sequences were generated. The 
dynamic power was isolated from the others components using the technique of Table 3. 
Each circuit was measured at 100 Hz, 2, 3, 4 and 5 MHz, and the static power consumption 
was extrapolated.  

All prototypes include tri-states buffers at the output pads to measure the off-chip 
power. Besides, each pad support the load of the logic analyzer, lower than 3pf  [11]. 

The VHDL code was synthesized using the FPGA Express [8, 9] and the Xilinx tools 
[10] into a XC4010EPC84-1 FPGA sample. All circuits has been implemented and tested 
under identical conditions.  

Table 3: Determination of power component in arithmetic circuits  

Dynamic 
Power 

In a CMOS circuits as: V f c = P 2
DDnn

nodes all
∑  where, cn is the load capacitance at 

the output of the node n, fn the frequency of switching and VDD supply voltage. To 
calculate it, the total power is measured and then the static, off-chip and 
synchronization power is deducted. 

Static 
power 

The chip is configured but neither stimulus nor clocking is applied. The pull-up 
resistors and other external elements that require the FPGAs remain connected. 

Off-chip 
power 

The circuit is measured twice. First, during normal operation. Second, by disabling 
the tri-state output buffers. Thus, the off-chip component can be approximated to the 
difference between the two results. In addition, the use of the tri-state buffers in low-
power design is also useful to separate the results from a particular PCB. 

Synchro-
nization 
power 

A constant data (for example, all bit zeroed) is inputted to the circuit, meanwhile the 
clock signal is applied. Thus, only the clock tree has activity. Is important to note that 
FPGAs use multiplexers to emulate the effect of a clock enable. As a consequence, the 
use of the clock enable pin of a CLB does not interrupt the clocking of the flip-flops. 

5.1 Combinational implementations 

The input/output of the sequential multipliers was registered. Eight bit wide data path was 
chosen in order to fit into the targeted FPGA. The table 4 shows the Power-Area-Time 
figure of the circuits. 

Table 4. Area-Time-Power of the combinational multipliers 

 M_r s_a mont. 
Energy (nJoules)   96,0 186,4 92,7 

Area (CLBs) 85 157 102 
Time (ns) 186 201 167 

 



 

Observe that Montgomery implementation consumes a less power than multiply and 
reduce, in spite of the bigger area used. The Montgomery algorithm has about 4% less 
output transition for the test pattern utilized. This is caused by the fact that Montgomery not 
compute z = x.y mod m but z'' = x.y.2-n mod m. 

The measurements shows that the Multiply and Reduce and the Montgomery 
algorithms, has almost de same values not only in area-delay but also in power. 
Nevertheless, the Montgomery multiplier is a little faster and consumes less power. The 
power of the Shift and Add algorithm (as the area) is almost twice the previous ones. 

5.2 Sequential implementations 

In this case, the dynamic power was divided into clock power (due to clock and FF) and 
combinational power (due to datapath). Main result in that the synchronization power in the 
multiply and reduce circuit is increase linearly with the number of flip-flop.  

Table 5. Area-Time-Power of the sequential multipliers 

 m_r s_a mont. 
Dynamic Energy (nJoules)   71,5 52,4 38,6 
Synchronization Energy (nJoules)   46,8 26,2 27,2 
Combinational Energy (nJoules)   24,7 26,2 11,1 
Area (CLBs) 57 33 34 
Flip - Flops 67 37 31 
Total Time (ns) 320 465 249 

 
The sequential implementation the Montgomery algorithm consume less power than the 
others alternatives. The multiply and reduce circuit has the worst power figure and uses 
twice cycles to compute the result. 

Observe that the energy consumed (power x time) is lower in the sequential 
implementation. It can be explained due to the reduction of glitches produced by the 
registered stages [12]. Nevertheless, the clock power is grater than combinational power.  

6. Conclusions 

For calculating e = yx mod m, where m belongs to a known set of values (in such a way that 
the values of 2n and 22.n modulo m can be previously tabulated), the Montgomery algorithm 
is definitely exhibit the best Area-Time-Power figure, independently of the type of 
implementation (combinational or sequential).  

For calculating z = x.y mod m, the combinational implementation of the Multiply and 
Reduce algorithm is better than the Shift and Add algorithm. However, in the sequential 
implementation, both approach (Multiply and Reduce, Shift and Add) present similar 
results in area and bandwidth (taking into account that the Multiply and Reduce version 
needs 2.n cycles instead of n), but the power consumption is lower in the Shift and Add 
algorithm. 

Other approaches are under study. Among others, the definition of serial arithmetic 
algorithms and the generation of hard-macros optimized at the physical level are being 
considered. Another interesting approach is the use of reconfigurability to define specific 



 

circuits for every value of m. Finally, other granularity of sequential implementation can be 
studied to obtain different area-time-power trade-off.  
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