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ABSTRACT 
This paper shows a method to verifying the thermal status of 
complex FPGA-based circuits like microprocessors. Thus, the 
designer can evaluate if a particular block is working beyond 
specifications. The idea is to extract the output frequencies of an 
array of ring-oscillators previously distributed in the die, taking 
full advantage of the configuration port capabilities in Xilinx 
technology. As a result, it is shown that the FPGA technology 
offers the designers of embedded systems the possibility of 
viewing a detailed thermal map of a circuit at a minimum cost. 
The verification can be done in actual working conditions; for 
example with heat sinks and fans attached to the chip, inside the 
system case, or even in an on-board satellite application. The 
main results of the work are unthinkable using other alternatives 
like IR cameras, external sensors, or embedded diodes. 

Categories and Subject Descriptors 
B.8.1 [Hardware]: Performance and Reliability – reliability, 
testing. B.6.1 [Hardware]: Logic design – logic arrays.  
C.3 [Computer Systems Organization]: Special-Purpose and 
Application-Based Systems – embedded systems  

General Terms 
Measurement, Design, Reliability, Verification 

Keywords 
FPGA, Embedded Processors, Temperature Measurement, Ring-
Oscillator, Run-Time Reconfiguration, JBits. 

 

1. INTRODUCTION 
Even considering that the quantitative effects of heat on electronic 
systems needs a carefully revision, it is accepted that high 
temperature and especially thermal gradients or stresses reduces 
both reliability and chip life [4].  
In the FPGA arena, current technologies limit maximum 
temperature to 125 centigrade degrees. For an actual application, 

the verification of this restriction is not an easy task. The designer 
should take into account aspects like the peak power, the effect of 
heat sinks and fans, board position, room temperature, or the 
influence of hot devices situated near the chip. The well-known 
formula: 

   DJAAJ PTT θ+=       [1] 

Is appropriated to characterize a chip packaging [1][9], but is a 
coarse model for any practical application. Current solutions, like 
the embedded diode available in Xilinx Virtex and Altera Statrix 
FPGAs, or the use of infrared cameras only solve partially the 
problem. In the first option, the temperature is measured in only 
one point of the die, so this information is only useful to know 
that there is a problem, but not to identifying it. On the other 
hand, infrared cameras require the direct vision of the silicon, and 
thus, they can not be employed in actual working conditions. 
The technique to verify die temperature proposed in this paper 
makes a novel use of the well-known readback and configuration 
port capabilities present in Xilinx FPGAs. The idea is simple but 
effective. The actual configuration, for example an embedded 
processor, is mixed with an array of ring-oscillators and counters. 
The output frequency of each ring is a function of the die 
temperature, which it is captured with an associated counter. New 
logic to operate these circuits is not required, as the measurement 
can be started by a simple reconfiguration of a LUT. Moreover, it 
is not necessary to use any new resources or dedicated I/O pads to 
read the temperature: the value in the counters can be obtained via 
readback, through the configuration port. 
The method is also compatible with dynamic reconfiguration, as 
the sensor (ring oscillator plus its associated counters) could be 
on-the-fly inserted. Two scenarios are possible: a full 
reconfiguration, where two hardware contexts are used: First, the 
application to be tested; and second, the array of sensors. At any 
moment, the main application can be stopped and a new bitstream 
with the second configuration can be loaded and activated. Then, 
the output frequencies are read back and the original bitstream is 
reloaded. For the smaller devices, the test can take only few 
milliseconds, a time much lower than the thermal constants of the 
system (the dominant constant has been measured to be around 
150 ms [5]). The other alternative is to use run-time 
reconfiguration, where the sensors are dynamically inserted in the 
circuit when they are needed. As they are completely stand-alone 
(their only interface to the rest of the FPGA is the clock node),   
and all its operation is performed via the configuration port, these 
circuits are very suitable to be used with run time reconfiguration. 
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This possibility was also explored in this paper, by using JBits 
[2].   
In any case, the main advantages of the technique proposed in this 
paper are that it uses a minimum chip area, no I/O pins, and the 
sensors can be placed in any point of the chip. They can be 
remotely operated, being suitable for application that requires 
high reliability like avionics or on-board satellite circuits. 
Detailed information of the thermal response and calibration 
techniques of the sensors has been presented in two previous 
works [6][7]. In this paper, the experiments are extended to 
demonstrate that the technique is sensitive enough to make visible 
points of high activity and temperature gradients in complex 
circuits like FPGA-embedded microprocessors.  
In the next section, the main alternatives to create an array of 
sensor are analyzed. After that, the features of the circuit to be 
tested, composed of two twin MIPS-I compatible processors, is 
summarized. Finally, main experimental results are shown in 
section 4.  
  

2.  AN ARRAY OF SENSORS 
In the experiments, an array of 4 by 8 sensors was placed in the 
FPGA. Two alternatives where explored to design these sensors. 
First, a sensor compatible with run-time reconfiguration was 
implemented using JBits. This technology was also utilized to 
control the circuits and readback the results. Being designed the 
sensor as an RTPCore (run-time parameterizable core using the 
CoreTemplate API) the array can be constructed by simply 
instantiating a sensor as many times as necessary: 
 
for (i=0; i<numOfSensors; i++) 
{ 
  sensor[i] = new TemperatureSensor("Sensor", clk); 
} 
for (i=0; i<numOfSensors; i++) 
{ 
  sensorOffset[i] = sensor[i].getRelativeOffset(); 
  sensorOffset[i].setHorOffset(Gran.CLB, sensorXPos[i]);   
  sensorOffset[i].setVerOffset(Gran.CLB, sensorYPos[i]); 
} 
for (i=0; i<numOfSensors; i++) 
{ 
  sensor[i].implement(TimeEnable,RingEnable,CountEnable); 
}  
Bitstream.connect(clk); 

 
Each sensor makes use of 8 by 2 CLBs. Details about its design 
can be found in [5][6]. The space among them for the selected 
FPGA (XCV800) is 8 CLBs in the vertical direction and 7 CLBs 
in the horizontal one.  
The other alternative to implement the temperature sensors is to 
use a physical macro. It allows the designer to create a circuit 
equivalent to the JBits one, but using the conventional tools. The 
possibility of adding or eliminating the sensor at run-time 
operation is lost, but the sensor still can be controlled using partial 
reconfiguration, and accessed via readback. Thus, the array of 
sensors can be managed through the configuration port, without 
using additional pins. Other advantage of macros is the control of 
the placement and routing, two important parameters to simplify 
the calibration. It is also easy to create an array of sensors in this 
case, because the macro can be instantiated from VHDL:  
 
s00 : TempSensor port map (clk => buf_clk_sens); 
s01 : TempSensor port map (clk => buf_clk_sens); 
... 
 

Finally, since the macro is equivalent to the original sensor, the 
previous JBits code can be used to control and readback it.  An 
important point to keep in mind is to use of the absolute location 
directive (LOC) to fix the position of the macro inside the FPGA.  
The macro sensors are not the only valid alternative in 
conventional (VHDL) designs. JBits introduced the idea of 
“anticores” as a means to make compatible these two worlds. 
Basically, anticores allow the designer to create holes in the 
circuit, to be later filled with logic described in JBits. Thus, to use 
a JBits core in a conventional design, its corresponding anticore 
must be first generated. Then, the original circuit can be compiled 
using the classical design tools. Later, JBits can read the bitstream 
and fills the holes with the actual core.  
At first, it should be simple to apply the anticore technique to the 
temperature sensors. Because their outputs are accessed using 
readback, they don't have external connections. So, it is not 
necessary to worry about interfaces. To evaluate this strategy, a 
new core was created with the same size that the sensor (8x2 
CLBs). This step was necessary because an anticore cannot be 
generated starting from the original sensor. For a limitation of 
JBits, the cores that access directly to the FPGA configuration 
(with jbits.set) can not be utilized to create anticores. It is only 
possible if they are described using instances to ULPrimitives 
(basic elements as LUTs, flip-flops, internal multiplexers of the 
slice, etc.). Once created this equivalent core, the standard process 
was continued.  
However, when the complete bitstream was loaded into the 
FPGA, it was observed that the original design (the one 
implemented with the conventional tools) did not work correctly. 
A posterior analysis of the problem show that JBits modified 
some routing of the original design, even considering that it has a 
mechanism, called ResourceFactory, to avoid this problem.  
 

3. BENCHMARK CIRCUIT 
In order to verify the technique, a real, large, and complex circuit 
was utilized as a case-study: two 32-bit PLASMA 
microprocessors, compatible with MIPS-I [8]. The VHDL code 
was obtained from the opencores.org initiative.  
The two cores are placed in a XCV800HQ240-4C Virtex FPGA. 
Using the LOC directive, the position of the first processor is 
restricted to the first 32 left columns; meanwhile the second one is 
situated in the other 32 right columns. Each processor has 4 KB 
available, implemented in BlockRAM (BRAM). The first 
processor uses the left-side BRAM and the second the right ones. 
This memory is initialized with the programs to be executed by 
each CPU. These programs were changed by directly modifying 
the contents of the memories at the bitstream level, using the 
DATA2BRAM tool [11].   
In free zones previously reserved in the processor layout, the 
array of 32 sensors is added. As it was commented in the previous 
section, the sensors used are the ones described as physical 
macros, not the JBits description. It was impossible to avoid the 
interference of the JBits version of the array with the routing of 
the processors already situated in the bitstream. To implement this 
circuit, the ISE 5.1i and XST synthesizer [11] was utilized. In 
Table 1, the main characteristics of the processor to be utilized as 
benchmark circuit are shown.  
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Figure 1. Superposed layout of the sensors (array of rectangles) and  
the two twin processors (dark zones). Virtex XCV800HQ240-4C.  

 
 

Table 1. Main features of the two-microprocessor 
 benchmark circuit 

 
Area Time 

IOBs 20 (12%) Period 82,4 ns   
Processor Slices 1796 (66%) Frequency 12.1 MHz 
Sensor Slices 544 (5.7%) Logic Depth 29 LUTs   
BlockRAM 16 (57%)   
Flip-Flops 2524 (13%)   
LUTs 8724 (46%)   

 
The unusual low speed of these cores is caused by two facts: First, 
a high logic depth; the circuit is only segmented in two stages. 
Second, a non optimized design of the register bank that leads to 
very high fanout nodes.   
In figure 1 the final layout of both processors and sensors is 
presented. The position of the two cores can be clearly observed. 
The temperature sensors only make use of the 5.7% of the die.  
Two different benchmark routines were utilized to produce 
different power consumptions. The first one, named opcodes.asm, 
uses all the instructions and then it stalls in an infinite loop. The 
second, pi.c, calculates continuously the first 40 digits of the π 
number using integer arithmetic. The utility of opcodes.asm is to 
check that the CPU is working correctly, but it is also useful to 
maintain them in a low-power operation (during the final infinite 
loop). On the other hand, pi.c is a program that produces a high 
consumption, at least in comparison with opcodes.asm. To save 
time, the routines, an assembler, and a simple C compiler were 
also obtained from opencores.org. 

4. EXPERIMENTAL RESULTS 
The verification of the technique was carried out using a 
XCV800HQ240-4C inserted in an AFX board [12]. 
Measurements were done in a clean room that guarantees ambient 
temperature variations smaller than 1 °C. Previously, the response 
of all the sensors was pre-calibrated introducing the FPGAs 
sample in a temperature-controlled oven, and measuring the 
output frequencies for different temperatures. 
During operation, a clock frequency 10 MHz was selected to 
operate the processors. The measured power consumptions for 
each core and routine are summarized in Table 2.  
 

Table 2. Power consumption of the benchmark programs 
in each microprocessor. 

 
Routine Left µP Right µP  

opcodes.asm 92,75 mW 93,75 mW 

pi.c 204 mW 206,25 mW 
 
Additionally, each processor has an idle consumption of 
approximately 25 mW. In figures 2 to 9 the results of the different 
experiments are shown. In these thermal maps, the constant chip 
temperature corresponding to this consumption is eliminated to 
make the figures more visible. Thus, the y-axis represents the 
deviation of the local temperature respect to the mean temperature 
increment caused by the activation of the microprocessors from 
the idle (reset) state. 
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Figure 2. Thermograph obtained by interpolating the sensor responses. 
The left processor is running opcodes.asm, and the right one pi.c. 

 

-0,8
-0,7
-0,6
-0,5
-0,4
-0,3
-0,2
-0,1

0
0,1
0,2

0,3
0,4

0,5
0,6

0,7

0,6-0,7
0,5-0,6
0,4-0,5
0,3-0,4
0,2-0,3
0,1-0,2
0-0,1
-0,1-0
-0,2--0,1
-0,3--0,2
-0,4--0,3
-0,5--0,4
-0,6--0,5
-0,7--0,6
-0,8--0,7

Deviation 
from the 

mean 
temperature 

increment [°C]

 
 

Figure 3. Temperature deviation respect to the mean value. 
The left processor is running opcodes.asm, and the right one pi.c. 
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Figure 4. Thermograph obtained by interpolating the sensor responses. 
The left processor is running pi.c, and the right one opcodes.asm. 
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Figure 5. Temperature deviation respect to the mean value. 
The left processor is running pi.c, and the right one opcodes.asm. 
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Figure 6. Thermograph obtained by interpolating the sensor responses. 
Both processors are running pi.c. 
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Figure 7. Temperature deviation respect to the mean value. 
Both processors are running pi.c. 
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Figure 8. Thermograph obtained by interpolating the sensor responses. 
Both processors are running opcodes.asm. 
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Figure 9. Temperature deviation respect to the idle value.  
Both processors are running opcodes.asm. 

 

85



The figures show that the technique is sensitive enough, even 
considering the small consumptions involved in the experiments. 
Is significant the case where a processor runs the heavy program 
meanwhile the other is hung (figures 2 to 5), because the 
temperature gradients can be clearly detected.  
Unfortunately, the processor descriptions utilized in the 
experiments have no indication of placement. So, the thermal 
status of the different functional units can not be determined. This 
information would be useful to redesign the blocks that are 
producing hot spots. As only exception, a little difference can be 
observed in the BlockRAM area in Figs. 8 and 9 (where both 
microprocessors are hung). A small activity is observed, caused 
by the access to two memory positions that return the JMP and 
NOP instruction codes.   
 

5. CONCLUSIONS AND FUTURE WORK 
A new technique, useful to detect hot spots or thermal gradients in 
FPGA-based circuits, has been presented. Some thermographs 
have been obtained from a real, complex system utilized as a 
case-study. The effects of different routines on the thermal status 
of the chip have been clearly evidenced. 
As a future work, the effects of the possible voltage drops have to 
be identified and compensated. This can be done by using two 
ring oscillators per sensor, with different sensitivities, as outlined 
in [5], where it is shown that it is possible to simultaneously 
obtain the temperature and voltage values with errors less than 
±1°C and ±5mV.  
The work opens the door to the design of future EDA tools, which 
could on-the-fly analyze the activity of the different blocks of a 
complex circuit implemented on FPGAs. This could be useful for 
the designer of low-power electronics. He or she could know 
which block is consuming more power, and thus has to be 
redesigned, instead of applying a global strategy to reduce power 
(for example, lowering the clock frequency). The technique is 
also useful to know, point-to-point of the die, the safety margins 
respect to the maximum nominal temperature, nowadays situated 
near 125 ºC. In those applications were thermal deration [3] is still 
a requirement, this kind of information can save hundred of hours 
of redesign. 
Finally, this technique helps to solve one of the peculiarities of 
FPGA technology, clearly expressed in [10]: “…unlike the power 
needs of a typical industry Application Specific Integrated Circuit 
(ASIC) gate array, the Field Programmable device’s power 
requirement is not determined as the device leaves the factory. 
Customers' designs can vary in power as well as physical needs. 
Therein lies the challenge in predicting the FPGA thermal 
management needs”. 
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