
Making Visible the Thermal Behaviour of Embedded
Microprocessors on FPGAs. A Progress Report

Sergio Lopez-Buedo and Eduardo Boemo
Computer Engineering Department

School of Engineering
Universidad Autonoma de Madrid, Spain

{sergio.lopez-buedo, eduardo.boemo}@uam.es

ABSTRACT
This paper shows a method to verifying the thermal status of
complex FPGA-based circuits like microprocessors. Thus, the
designer can evaluate if a particular block is working beyond
specifications. The idea is to extract the output frequencies of an
array of ring-oscillators previously distributed in the die, taking
full advantage of the configuration port capabilities in Xilinx
technology. As a result, it is shown that the FPGA technology
offers the designers of embedded systems the possibility of
viewing a detailed thermal map of a circuit at a minimum cost.
The verification can be done in actual working conditions; for
example with heat sinks and fans attached to the chip, inside the
system case, or even in an on-board satellite application. The
main results of the work are unthinkable using other alternatives
like IR cameras, external sensors, or embedded diodes.

Categories and Subject Descriptors
B.8.1 [Hardware]: Performance and Reliability – reliability,
testing. B.6.1 [Hardware]: Logic design – logic arrays.
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems – embedded systems

General Terms
Measurement, Design, Reliability, Verification

Keywords
FPGA, Embedded Processors, Temperature Measurement, Ring-
Oscillator, Run-Time Reconfiguration, JBits.

1. INTRODUCTION
Even considering that the quantitative effects of heat on electronic
systems needs a carefully revision, it is accepted that high
temperature and especially thermal gradients or stresses reduces
both reliability and chip life [4].
In the FPGA arena, current technologies limit maximum
temperature to 125 centigrade degrees. For an actual application,

the verification of this restriction is not an easy task. The designer
should take into account aspects like the peak power, the effect of
heat sinks and fans, board position, room temperature, or the
influence of hot devices situated near the chip. The well-known
formula:

 DJAAJ PTT θ+= [1]

Is appropriated to characterize a chip packaging [1][9], but is a
coarse model for any practical application. Current solutions, like
the embedded diode available in Xilinx Virtex and Altera Statrix
FPGAs, or the use of infrared cameras only solve partially the
problem. In the first option, the temperature is measured in only
one point of the die, so this information is only useful to know
that there is a problem, but not to identifying it. On the other
hand, infrared cameras require the direct vision of the silicon, and
thus, they can not be employed in actual working conditions.
The technique to verify die temperature proposed in this paper
makes a novel use of the well-known readback and configuration
port capabilities present in Xilinx FPGAs. The idea is simple but
effective. The actual configuration, for example an embedded
processor, is mixed with an array of ring-oscillators and counters.
The output frequency of each ring is a function of the die
temperature, which it is captured with an associated counter. New
logic to operate these circuits is not required, as the measurement
can be started by a simple reconfiguration of a LUT. Moreover, it
is not necessary to use any new resources or dedicated I/O pads to
read the temperature: the value in the counters can be obtained via
readback, through the configuration port.
The method is also compatible with dynamic reconfiguration, as
the sensor (ring oscillator plus its associated counters) could be
on-the-fly inserted. Two scenarios are possible: a full
reconfiguration, where two hardware contexts are used: First, the
application to be tested; and second, the array of sensors. At any
moment, the main application can be stopped and a new bitstream
with the second configuration can be loaded and activated. Then,
the output frequencies are read back and the original bitstream is
reloaded. For the smaller devices, the test can take only few
milliseconds, a time much lower than the thermal constants of the
system (the dominant constant has been measured to be around
150 ms [5]). The other alternative is to use run-time
reconfiguration, where the sensors are dynamically inserted in the
circuit when they are needed. As they are completely stand-alone
(their only interface to the rest of the FPGA is the clock node),
and all its operation is performed via the configuration port, these
circuits are very suitable to be used with run time reconfiguration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’04, February 22–24, 2004, Monterey, California, USA
Copyright 2004 ACM 1-58113-829-6/04/0002…$5.00.

79

This possibility was also explored in this paper, by using JBits
[2].
In any case, the main advantages of the technique proposed in this
paper are that it uses a minimum chip area, no I/O pins, and the
sensors can be placed in any point of the chip. They can be
remotely operated, being suitable for application that requires
high reliability like avionics or on-board satellite circuits.
Detailed information of the thermal response and calibration
techniques of the sensors has been presented in two previous
works [6][7]. In this paper, the experiments are extended to
demonstrate that the technique is sensitive enough to make visible
points of high activity and temperature gradients in complex
circuits like FPGA-embedded microprocessors.
In the next section, the main alternatives to create an array of
sensor are analyzed. After that, the features of the circuit to be
tested, composed of two twin MIPS-I compatible processors, is
summarized. Finally, main experimental results are shown in
section 4.

2. AN ARRAY OF SENSORS
In the experiments, an array of 4 by 8 sensors was placed in the
FPGA. Two alternatives where explored to design these sensors.
First, a sensor compatible with run-time reconfiguration was
implemented using JBits. This technology was also utilized to
control the circuits and readback the results. Being designed the
sensor as an RTPCore (run-time parameterizable core using the
CoreTemplate API) the array can be constructed by simply
instantiating a sensor as many times as necessary:

for (i=0; i<numOfSensors; i++)
{
 sensor[i] = new TemperatureSensor("Sensor", clk);
}
for (i=0; i<numOfSensors; i++)
{
 sensorOffset[i] = sensor[i].getRelativeOffset();
 sensorOffset[i].setHorOffset(Gran.CLB, sensorXPos[i]);
 sensorOffset[i].setVerOffset(Gran.CLB, sensorYPos[i]);
}
for (i=0; i<numOfSensors; i++)
{
 sensor[i].implement(TimeEnable,RingEnable,CountEnable);
}
Bitstream.connect(clk);

Each sensor makes use of 8 by 2 CLBs. Details about its design
can be found in [5][6]. The space among them for the selected
FPGA (XCV800) is 8 CLBs in the vertical direction and 7 CLBs
in the horizontal one.
The other alternative to implement the temperature sensors is to
use a physical macro. It allows the designer to create a circuit
equivalent to the JBits one, but using the conventional tools. The
possibility of adding or eliminating the sensor at run-time
operation is lost, but the sensor still can be controlled using partial
reconfiguration, and accessed via readback. Thus, the array of
sensors can be managed through the configuration port, without
using additional pins. Other advantage of macros is the control of
the placement and routing, two important parameters to simplify
the calibration. It is also easy to create an array of sensors in this
case, because the macro can be instantiated from VHDL:

s00 : TempSensor port map (clk => buf_clk_sens);
s01 : TempSensor port map (clk => buf_clk_sens);
...

Finally, since the macro is equivalent to the original sensor, the
previous JBits code can be used to control and readback it. An
important point to keep in mind is to use of the absolute location
directive (LOC) to fix the position of the macro inside the FPGA.
The macro sensors are not the only valid alternative in
conventional (VHDL) designs. JBits introduced the idea of
“anticores” as a means to make compatible these two worlds.
Basically, anticores allow the designer to create holes in the
circuit, to be later filled with logic described in JBits. Thus, to use
a JBits core in a conventional design, its corresponding anticore
must be first generated. Then, the original circuit can be compiled
using the classical design tools. Later, JBits can read the bitstream
and fills the holes with the actual core.
At first, it should be simple to apply the anticore technique to the
temperature sensors. Because their outputs are accessed using
readback, they don't have external connections. So, it is not
necessary to worry about interfaces. To evaluate this strategy, a
new core was created with the same size that the sensor (8x2
CLBs). This step was necessary because an anticore cannot be
generated starting from the original sensor. For a limitation of
JBits, the cores that access directly to the FPGA configuration
(with jbits.set) can not be utilized to create anticores. It is only
possible if they are described using instances to ULPrimitives
(basic elements as LUTs, flip-flops, internal multiplexers of the
slice, etc.). Once created this equivalent core, the standard process
was continued.
However, when the complete bitstream was loaded into the
FPGA, it was observed that the original design (the one
implemented with the conventional tools) did not work correctly.
A posterior analysis of the problem show that JBits modified
some routing of the original design, even considering that it has a
mechanism, called ResourceFactory, to avoid this problem.

3. BENCHMARK CIRCUIT
In order to verify the technique, a real, large, and complex circuit
was utilized as a case-study: two 32-bit PLASMA
microprocessors, compatible with MIPS-I [8]. The VHDL code
was obtained from the opencores.org initiative.
The two cores are placed in a XCV800HQ240-4C Virtex FPGA.
Using the LOC directive, the position of the first processor is
restricted to the first 32 left columns; meanwhile the second one is
situated in the other 32 right columns. Each processor has 4 KB
available, implemented in BlockRAM (BRAM). The first
processor uses the left-side BRAM and the second the right ones.
This memory is initialized with the programs to be executed by
each CPU. These programs were changed by directly modifying
the contents of the memories at the bitstream level, using the
DATA2BRAM tool [11].
In free zones previously reserved in the processor layout, the
array of 32 sensors is added. As it was commented in the previous
section, the sensors used are the ones described as physical
macros, not the JBits description. It was impossible to avoid the
interference of the JBits version of the array with the routing of
the processors already situated in the bitstream. To implement this
circuit, the ISE 5.1i and XST synthesizer [11] was utilized. In
Table 1, the main characteristics of the processor to be utilized as
benchmark circuit are shown.

80

Figure 1. Superposed layout of the sensors (array of rectangles) and
the two twin processors (dark zones). Virtex XCV800HQ240-4C.

Table 1. Main features of the two-microprocessor
 benchmark circuit

Area Time

IOBs 20 (12%) Period 82,4 ns
Processor Slices 1796 (66%) Frequency 12.1 MHz
Sensor Slices 544 (5.7%) Logic Depth 29 LUTs
BlockRAM 16 (57%)
Flip-Flops 2524 (13%)
LUTs 8724 (46%)

The unusual low speed of these cores is caused by two facts: First,
a high logic depth; the circuit is only segmented in two stages.
Second, a non optimized design of the register bank that leads to
very high fanout nodes.
In figure 1 the final layout of both processors and sensors is
presented. The position of the two cores can be clearly observed.
The temperature sensors only make use of the 5.7% of the die.
Two different benchmark routines were utilized to produce
different power consumptions. The first one, named opcodes.asm,
uses all the instructions and then it stalls in an infinite loop. The
second, pi.c, calculates continuously the first 40 digits of the π
number using integer arithmetic. The utility of opcodes.asm is to
check that the CPU is working correctly, but it is also useful to
maintain them in a low-power operation (during the final infinite
loop). On the other hand, pi.c is a program that produces a high
consumption, at least in comparison with opcodes.asm. To save
time, the routines, an assembler, and a simple C compiler were
also obtained from opencores.org.

4. EXPERIMENTAL RESULTS
The verification of the technique was carried out using a
XCV800HQ240-4C inserted in an AFX board [12].
Measurements were done in a clean room that guarantees ambient
temperature variations smaller than 1 °C. Previously, the response
of all the sensors was pre-calibrated introducing the FPGAs
sample in a temperature-controlled oven, and measuring the
output frequencies for different temperatures.
During operation, a clock frequency 10 MHz was selected to
operate the processors. The measured power consumptions for
each core and routine are summarized in Table 2.

Table 2. Power consumption of the benchmark programs
in each microprocessor.

Routine Left µP Right µP

opcodes.asm 92,75 mW 93,75 mW

pi.c 204 mW 206,25 mW

Additionally, each processor has an idle consumption of
approximately 25 mW. In figures 2 to 9 the results of the different
experiments are shown. In these thermal maps, the constant chip
temperature corresponding to this consumption is eliminated to
make the figures more visible. Thus, the y-axis represents the
deviation of the local temperature respect to the mean temperature
increment caused by the activation of the microprocessors from
the idle (reset) state.

81

Figure 2. Thermograph obtained by interpolating the sensor responses.
The left processor is running opcodes.asm, and the right one pi.c.

-0,8
-0,7
-0,6
-0,5
-0,4
-0,3
-0,2
-0,1

0
0,1
0,2

0,3
0,4

0,5
0,6

0,7

0,6-0,7
0,5-0,6
0,4-0,5
0,3-0,4
0,2-0,3
0,1-0,2
0-0,1
-0,1-0
-0,2--0,1
-0,3--0,2
-0,4--0,3
-0,5--0,4
-0,6--0,5
-0,7--0,6
-0,8--0,7

Deviation
from the

mean
temperature

increment [°C]

Figure 3. Temperature deviation respect to the mean value.
The left processor is running opcodes.asm, and the right one pi.c.

82

Figure 4. Thermograph obtained by interpolating the sensor responses.
The left processor is running pi.c, and the right one opcodes.asm.

-0,8
-0,7
-0,6
-0,5
-0,4
-0,3
-0,2
-0,1

0
0,1
0,2
0,3

0,4
0,5

0,6
0,7

0,6-0,7
0,5-0,6
0,4-0,5
0,3-0,4
0,2-0,3
0,1-0,2
0-0,1
-0,1-0
-0,2--0,1
-0,3--0,2
-0,4--0,3
-0,5--0,4
-0,6--0,5
-0,7--0,6
-0,8--0,7

Deviation
from the

mean
temperature

increment [°C]

Figure 5. Temperature deviation respect to the mean value.
The left processor is running pi.c, and the right one opcodes.asm.

83

Figure 6. Thermograph obtained by interpolating the sensor responses.
Both processors are running pi.c.

-0,8
-0,7
-0,6
-0,5
-0,4
-0,3
-0,2
-0,1

0
0,1
0,2
0,3
0,4

0,5
0,6

0,7

0,6-0,7
0,5-0,6
0,4-0,5
0,3-0,4
0,2-0,3
0,1-0,2
0-0,1
-0,1-0
-0,2--0,1
-0,3--0,2
-0,4--0,3
-0,5--0,4
-0,6--0,5
-0,7--0,6
-0,8--0,7

Deviation
from the

mean
temperature

increment [°C]

Figure 7. Temperature deviation respect to the mean value.
Both processors are running pi.c.

84

Figure 8. Thermograph obtained by interpolating the sensor responses.
Both processors are running opcodes.asm.

-0,8
-0,7
-0,6
-0,5
-0,4
-0,3
-0,2
-0,1

0
0,1
0,2
0,3

0,4
0,5

0,6
0,7

0,6-0,7
0,5-0,6
0,4-0,5
0,3-0,4
0,2-0,3
0,1-0,2
0-0,1
-0,1-0
-0,2--0,1
-0,3--0,2
-0,4--0,3
-0,5--0,4
-0,6--0,5
-0,7--0,6
-0,8--0,7

Deviation
from the

mean
temperature

increment [°C]

Figure 9. Temperature deviation respect to the idle value.
Both processors are running opcodes.asm.

85

The figures show that the technique is sensitive enough, even
considering the small consumptions involved in the experiments.
Is significant the case where a processor runs the heavy program
meanwhile the other is hung (figures 2 to 5), because the
temperature gradients can be clearly detected.
Unfortunately, the processor descriptions utilized in the
experiments have no indication of placement. So, the thermal
status of the different functional units can not be determined. This
information would be useful to redesign the blocks that are
producing hot spots. As only exception, a little difference can be
observed in the BlockRAM area in Figs. 8 and 9 (where both
microprocessors are hung). A small activity is observed, caused
by the access to two memory positions that return the JMP and
NOP instruction codes.

5. CONCLUSIONS AND FUTURE WORK
A new technique, useful to detect hot spots or thermal gradients in
FPGA-based circuits, has been presented. Some thermographs
have been obtained from a real, complex system utilized as a
case-study. The effects of different routines on the thermal status
of the chip have been clearly evidenced.
As a future work, the effects of the possible voltage drops have to
be identified and compensated. This can be done by using two
ring oscillators per sensor, with different sensitivities, as outlined
in [5], where it is shown that it is possible to simultaneously
obtain the temperature and voltage values with errors less than
±1°C and ±5mV.
The work opens the door to the design of future EDA tools, which
could on-the-fly analyze the activity of the different blocks of a
complex circuit implemented on FPGAs. This could be useful for
the designer of low-power electronics. He or she could know
which block is consuming more power, and thus has to be
redesigned, instead of applying a global strategy to reduce power
(for example, lowering the clock frequency). The technique is
also useful to know, point-to-point of the die, the safety margins
respect to the maximum nominal temperature, nowadays situated
near 125 ºC. In those applications were thermal deration [3] is still
a requirement, this kind of information can save hundred of hours
of redesign.
Finally, this technique helps to solve one of the peculiarities of
FPGA technology, clearly expressed in [10]: “…unlike the power
needs of a typical industry Application Specific Integrated Circuit
(ASIC) gate array, the Field Programmable device’s power
requirement is not determined as the device leaves the factory.
Customers' designs can vary in power as well as physical needs.
Therein lies the challenge in predicting the FPGA thermal
management needs”.

6. ACKNOWLEDGEMENTS
This research is supported by project number 07T/0052/2003-3 of
the Consejería de Educación de la Comunidad Autónoma de
Madrid, Spain.

7. REFERENCES
[1] Electronic Industries Association. Integrated Circuits

Thermal Test Method Environmental Conditions - Natural
Convection (Still Air). EIA/JEDEC Standard JESD51-2,
December 1995.

[2] Guccione S. A. and Levi D. JBits: A Java-based Interface to
FPGA Hardware. Xilinx Inc, San Jose, CA, 1998.

[3] Jackson M., Lall P. and Das D. Thermal Deration - A Factor
of Safety or Ingnorance. IEEE Trans. on Components,
Packaging and Manufacturing Technology, Part A, 20,
1(Mar. 1997), 83-85.

[4] Lall P. Tutorial: Temperature as an Input to
Microelectronics-Reliability Models. IEEE Trans. on
Reliability, 45, 1(Mar. 1996), 3-9.

[5] Lopez-Buedo S. Tecnicas de verificacion termica para
arquitecturas dinamicamente reconfigurables. Ph.D. thesis,
in Spanish. Universidad Autonoma de Madrid, Spain.
Available at http://www.ii.uam.es/~sergio/tesis.pdf.

[6] Lopez-Buedo S., Garrido J., and Boemo E. Dynamically
Inserting, Operating, and Eliminating Thermal Sensors of
FPGA-based Systems. IEEE Transactions on Components
and Packaging Technologies (CPM), 25, 4(Dec. 2002), 561-
566.

[7] Lopez-Buedo S., Garrido J. and Boemo E. Thermal Testing
on Reconfigurable Computers. IEEE Design & Test of
Computers, 17, 1(Jan.-Mar.) 2000, 84-90.

[8] Rhoads S. The Plasma CPU Core. Available at
http://www.opencores.org. September 2001.

[9] Texas Instruments Inc. Package Thermal Characterization
Methodologies (Application Report). March 1999.

[10] Xilinx Inc. Packaging Thermal Management. Application
Note, July 2002.

[11] Xilinx Inc. Development System Reference Guide – ISE 5.
2002.

[12] Xilinx Inc. Xilinx Prototype Platforms User Guide for Virtex
and Virtex-E Series FPGAs. Application Note, December
1999.

86

