José Miguel Hernández-Lobato, Tom Heskes and Tjeerd Dijkstra

Department of Information and Knowledge Systems (IRIS). Radboud University. Nijmegen.

December 14, 2006

▲ ⑦ ▶ 1 / 36

Outline

- 2 Problem description
- 3 A simpler problem
- A Bayesian model for transcription
- **5** Looking for transcription factors

6 Final notes

└─ Introduction

Outline

- 2 Problem description
- 3 A simpler problem
- 4 A Bayesian model for transcription
- 5 Looking for transcription factors

6 Final notes

Introduction

Microarray chips

- Allow to simultaneously measure the level of expression of many genes (RNA transcripts) within a cell.
- **2** RNA transcripts are reverse transcribed to dyed cDNA.
- Ohips have spots with the complementary strands for the dyed cDNA of the genes.
- The amount of dye on each spot indicates the level of expression for each gene.
 - Images of microarrays are analyzed by computer to get a final measurement of expression level.

└─ Introduction

Example of microarray

Figure: An approximately 40,000 probe spotted microarray.

└─ Introduction

Transcription factors (TF)

- Are proteins that control the expression level of other genes (RNA transcripts).
- The expression of a TF is correlated in time with the expression of the genes it regulates.
- Correlations can be appreciated in consecutive microarray experiments.

Introduction

Consecutive microarray experiment

Time of microarray experiment

Figure: How a transcription factor could influence another gene.

▲ ⑦ ▶
 7 / 36

Problem description

Outline

- 2 Problem description
- 3 A simpler problem
- 4 A Bayesian model for transcription
- 5 Looking for transcription factors

6 Final notes

Problem description

Problem description

Objective

• Given the results of a consecutive microarray experiment we want to identify the genes that are transcription factors.

Main difficulties

- Microarray experiments contain only a few measurements for each gene.
- There are thousands of genes and most of them are correlated with each other.
- Measurement error is big.

Problem description

Example

Time of measurement

Figure: Expression level for 4199 genes of Plasmodium falciparum 3D7.

Problem description

Proposed solution

We apply Bayesian inference

- ullet We propose a probabilistic model $\mathcal M$ for transcription.
- We define a variable *t_i* which takes value 1 if gene *i* is a transcription factor and 0 otherwise.
- \bullet Given the data ${\cal D}$ of a microarray experiment, the probability of each gene to be a TF is

$$\mathcal{P}(\mathbf{t}|\mathcal{D},\mathcal{M}) = \frac{\mathcal{P}(\mathcal{D}|\mathbf{t},\mathcal{M})\mathcal{P}(\mathbf{t})}{\mathcal{P}(\mathcal{D}|\mathcal{M})}$$
 (1)

• \mathcal{M} should be simple if we want to be able to compute (1).

└─A simpler problem

Outline

- 2 Problem description
- 3 A simpler problem
- 4 A Bayesian model for transcription
- 5 Looking for transcription factors

6 Final notes

└─A simpler problem

Bayesian variable selection for the linear model

Problem

- Vector y contains the expression of one gene.
- Vectors x₁,..., x_p contain the expressions of the candidates to be TF (all the other genes).
- Which of x₁, ..., x_p regress y?

Example

The transcription factors that regulate gene y are genes x_1 and x_2 :

$$\mathbf{y} = \mathbf{x}_1 - \frac{1}{2}\mathbf{x}_2 + 0\mathbf{x}_3 + 0\mathbf{x}_4 + \dots + 0\mathbf{x}_p$$

▲ ☐ ↓ 13 / 36 └─A simpler problem

Solution to the variable selection problem

Bayesian solution based on sampling: George and McCulloch 1994.

- *r_i* indicates when x_i is a regressor of y (r_i = 1) or not (r_i = 0). *c_i* is the regression coefficient between y and x_i.
- If $r_i = 1$ then c_i is different from 0, otherwise $c_i \simeq 0$:

$$\mathcal{P}(c_i|r_i) = r_i \mathcal{N}(c_i; 0; v_1) + (1 - r_i) \mathcal{N}(c_i; 0; v_0),$$

where $v_0 \simeq 0$ and v_1 is big.

A simpler problem

Densities $\mathcal{P}(c_i|r_i)$

Regression coefficient

Figure: In red $\mathcal{P}(c_i | r_i = 1)$ and in black $\mathcal{P}(c_i | r_i = 0)$.

└─A simpler problem

Solution to the variable selection problem

- We assume a Gaussian error with variance $\frac{\sigma^2}{2}$ in the measurements for y and $x_1, ..., x_p$.
- If X is the matrix with $x_1, ..., x_p$ as columns, we have that

$$\mathcal{P}(\mathbf{r}, \mathbf{c}, \sigma^{2} | \mathbf{y}, \mathbf{X}) \propto \mathcal{N}(\mathbf{y}; \mathbf{X}\mathbf{c}; \sigma^{2} I) \mathcal{P}(\mathbf{c} | \mathbf{r}) \mathcal{P}(\sigma^{2})$$
(2)
$$\mathcal{P}(\mathbf{c} | \mathbf{r}) = \prod_{i} \mathcal{P}(c_{i} | r_{i})$$

$$\mathcal{P}(c_{i} | r_{i}) = r_{i} \mathcal{N}(c_{i}; 0; v_{1}) + (1 - r_{i}) \mathcal{N}(c_{i}; 0; v_{0})$$

• We can approximate the left part of (2) by expectation propagation (much faster than sampling).

A Bayesian model for transcription

Outline

- 2 Problem description
- 3 A simpler problem
- A Bayesian model for transcription
- 5 Looking for transcription factors

6 Final notes

A Bayesian model for transcription

Intuition

- We can extend the variable selection method for regression to a Bayesian model for transcription very easily.
- We just have to perform the regression of the expression of each gene delayed some time against all the others.
- If a gene is a transcription factor it should appear as a regressor many times.

A Bayesian model for transcription

Probabilistic formulation |

x_i⁽⁻¹⁾ represents the expression of gene i delayed one unit in time and x_i⁽⁰⁾ the expression without any delay.
r_{i,j} = 1 when x_j⁽⁰⁾ is a regressor of x_i⁽⁻¹⁾ and r_{i,j} = 0 otherwise.
Then, P(r_{i,j} = 1|t_j = 1) = w₁ and P(r_{i,j} = 1|t_j = 0) = w₀ where w₁ > w₀

A Bayesian model for transcription

Probabilistic formulation II

 If X_{-i} is the matrix with x₁,..., x_{i-1}, x_{i+1},..., x_p as columns and c_{-i} is the vector of coefficients c_{i,i≠i}, we have that

$$\mathcal{P}(\mathbf{R}, \mathbf{C}, \mathbf{t}, \sigma^2 | \mathbf{X}) \propto \prod_{i=1}^{p} \mathcal{N}(\mathbf{x}_i^{(-1)}; \mathbf{X}_{-i}\mathbf{c}_{-i}; \sigma^2 I)$$
$$\mathcal{P}(\mathbf{C}|\mathbf{R})\mathcal{P}(\mathbf{R}|\mathbf{t})\mathcal{P}(\mathbf{r})\mathcal{P}(\sigma^2)$$

• Again we can approximate the posterior distribution by expectation propagation. This time the sampling methods are not feasible.

A Bayesian model for transcription

Example 1

- We generated the expression for a TF as $z \sim \mathcal{N}(0, 3I)$.
- We generated the expression for 49 genes as $x_i = z^{(1)}$.
- We stored 50 observations of $x_1, ..., x_{49}$ and z in a dataset adding a measurement error of $\mathcal{N}(0, 31)$.

• We ran the algorithm for TF identification with $w_1 = 0.9$, $w_0 = 0.1$ and the prior for a gene to be a TF is set to 0.02.

Results

• The TF is identified with the highest probability.

A Bayesian model for transcription

Dataset used

Figure: Dataset used in example 1. In red the TF.

└─A Bayesian model for transcription

Example 2

- This time the TF z follows a smoothed curve.
- We generated the expression for 49 genes as $x_i = z^{(1)}$.
- We stored 50 observations of $x_1, ..., x_{49}$ and z in a dataset adding a Gaussian error with $sd = \frac{1}{3}sd(z)$.

• We ran the algorithm for TF identification with $w_1 = 0.9$, $w_0 = 0.1$ and the prior for a gene to be a TF is set to 0.02.

Results

 Again the TF obtained the highest probability among all the other genes.

A Bayesian model for transcription

Dataset used

4 ∰ ▶ 24 / 36

Looking for transcription factors

Outline

- 2 Problem description
- 3 A simpler problem
- 4 Bayesian model for transcription
- **5** Looking for transcription factors

6 Final notes

Looking for transcription factors

Data acquisition and preprocessing

- We took the expression dataset for the IDC of *Plasmodium falciparum* 3D7 (http://malaria.ucsf.edu).
- We estimated missing values with *impute.knn* (R cran package).
- 3 We centered at 0 the expression time series for each gene and performed a *K*-means clustering with k = 6.

Cluster 1: 902 genes.

Cluster 2: 150 genes.

Cluster 3: 693 genes.

Cluster 4: 1178 genes. Almost constant expression.

Cluster 5: 976 genes.

Cluster 6: 299 genes.

Looking for transcription factors

Clusters

Figure: Means of all the clusters except cluster 4 which has an almost constant mean around 0.

4 ☐ ▶ 27 / 36

Looking for transcription factors

Elements of cluster 2

Figure: Standardized expressions for the elements of cluster 2 and loess estimated mean in red.

▲ 🗇 ▶ 28 / 36 Looking for transcription factors

Running the algorithm for Bayesian TF discovery

• We ran the algorithm for TF identification with $w_1 = 0.9$, $w_0 = 0.1$ and the prior for a gene to be a TF is set to 1/150.

Results

- The algorithm assigned gene PFC0240c the highest probability of being a transcription factor.
- We looked PFC0240c up at the PlasmoDB site.
- It appeared in the BLASTP section to be similar in a 28% to a transcription factor of *Dictyostelium discoideum*.

Looking for transcription factors

PFC0240c

Figure: Standardized expressions for the elements of cluster 2, loess estimated mean in red and expression for gene PFC0240c in blue.

Looking for transcription factors

Elements of cluster 6

Figure: Standardized expressions for the elements of cluster 6 and loess estimated mean in red.

Looking for transcription factors

Running the algorithm for Bayesian TF discovery

• We ran the algorithm for TF identification with $w_1 = 0.9$, $w_0 = 0.1$ and the prior for a gene to be a TF is set to 1/299.

Results

- The algorithm assigned gene PFD0800c the highest probability of being a transcription factor.
- We looked PFD0800c up at the PlasmoDB site.
- It appeared in the BLASTP section to be similar in a 33% to a transcription factor of *Dictyostelium discoideum*.

Looking for transcription factors

PFD0800c

Figure: Standardized expressions for the elements of cluster 6, loess estimated mean in red and expression for gene PFD0800c in blue.

└─ Final notes

Outline

- 2 Problem description
- 3 A simpler problem
- 4 A Bayesian model for transcription
- 5 Looking for transcription factors

6 Final notes

└─ Final notes

Conclusion

The implemented algorithm seems to produce coherent results.
We expect to identify more possible TFs after running the algorithm on a bigger dataset (possibly the whole dataset).

└─ Final notes

QUESTIONS?