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Bayesian Inference

Inference

Given some data we want to assign probabilities to a set of
hypothesis.

Uncertainty is involved in the whole process.

The tool to reason under uncertainty is Probability Theory.

Bayes Theorem

P(θ|D,M) = P(D|θ,M)P(θ|M)
P(D|M) .

M represents our assumptions (model) for the problem.

θ is a hypothesis.
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Main difficulties in the Bayesian framework

We have to work with complex integrals

To normalize distributions:

P(D|M) =

∫
P(D|θ,M)P(θ|M) . (1)

To make predictions:

P(y |D,M) =

∫
P(y |θ)P(θ|D,M)dθ . (2)

Approximate Solutions

Laplace’s method.

Monte Carlo methods.

Variational Inference.

Expectation Propagation.
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Kullback-Leibler Divergence

DKL(p‖q) =
∫

p(x)log p(x)
q(x)dx

Is a distance measure from a true density p to an another
density q.

DKL(p‖q) = 0⇔ p = q, otherwise DKL(p‖q) > 0.

It is not symmetric DKL(p‖q) 6= DKL(q‖p).

We can approximate p with a simpler density q by minimizing
DKL(p‖q) (direct) or DKL(q‖p) (inverse).

4 / 24



Non-symmetry of the KL divergence I
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Figure: Inverse solution (left) and direct solution (right) for an
approximation of a bivariate Gaussian with two independent Gaussian
components.
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Non-symmetry of the KL divergence II
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Figure: Inverse solution (left) and direct solution (right) for an
approximation of a mixture of two Gaussians with a Bivariate Gaussian.
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Exponential Family

A density q is in the exponential family if

q(x) = exp{
∑

i

gi (x)νi} . (3)

νi are the natural parameters.

gi are the sufficient statistics: (1, x , x2) for a Gaussian.

Exponential families are closed under multiplication.

We can minimize DKL(p‖q) if q is in an exponential family
just by

∀i ,

∫
giq(x)dx =

∫
gip(x)dx . (4)
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Assumed Density Filtering

We write p(x) as a product of terms p(x) =
∏n

i=1 ti(x) .

We approximate p term by term with q.

Algorithm

1 q0(x)← constant

2 for i ← 1 to n

1 Zi ←
∫

qi−1(x)ti (x)dx .
2 qi ← minq DKL(

1
Zi

qi−1ti‖q) .

3 Z ←
∏n

i=1 Zi

4 Return qn and Z

qn approximates p(x)
R

p(x)dx
and Z approximates

∫
p(x)dx .
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Main disadvantage of ADF

Problem

The solution depends on the processing order of the ti(x) .
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Figure: p(x) is shown in black and the approximations obtained by ADF
using different orderings are shown in red.
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Expectation Propagation

Solves the ordering dependence of ADF.

Approximates p(x) =
∏n

i=1 ti (x) by q(x) =
∏n

i=1 t̂i (x) where
all t̂i are in the same exponential family and so is q.

Each t̂j term is chosen so that

q(x) = t̂j(x)
∏
i 6=j

t̂i (x) (5)

is as close as possible to

tj(x)
∏
i 6=j

t̂i(x) . (6)

The distance measure used is the direct K-L divergence.

It is easy to work with q and it can be integrated
automatically.
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Pseudocode of Expectation Propagation

Algorithm

1 Initialize all t̂i and q to constant densities.
2 Until all t̂i converge:

1 Choose a t̂i to update.
2 qold ←

q

t̂i
.

3 q ← minq′ DKL(qold ti‖q′) .
4 t̂i ←

q
qold

.

3 Return q .

∫
p(x)dx is approximated by

∫
q(x)dx

p(x)
R

p(x)dx
is approximated by q(x)

R

q(x)dx
.
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Final Notes on Expectation Propagation

The t̂i terms and therefore q could also be factorized densities.

In this case we only have to perform some marginalizations in
the algorithm.

Advantages of Expectation Propagation

No local minima minimizing the K-L divergence.

Applicable to high dimensional densities.

Usually faster than other approaches.

Disadvantages of Expectation Propagation

It is not guaranteed to converge.

qold might not be a proper density.

The ti terms have to be simple.
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Bayes Machine I

It is a Bayesian single layer perceptron.

w determines the hyperplane of a perceptron.

Given a data set D = {(x1, y1), ..., (xn , yn)}, y ∈ {−1, 1}, the
likelihood for w is

P(D|w) =
∏
i

P(yi |w) =
∏
i

Θ(yiw
T xi ) , (7)

where Θ is the step function.

We can take into account a labeling error rate ǫ

P(yi |w) = ǫ + (1− 2ǫ)Θ(yiw
Txi ) . (8)

The likelihood only depends on the number of errors.
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Bayes Machine II

The prior for w is P(w) ∼ N (0, I), a spherical Gaussian.

The posterior for w is P(w|D) ∝
∏

i P(yi |w)P(w) .

The predictive distribution for a point x is

P(y |x,D) =

∫
w

P(y |x,w)P(w|D) . (9)

The model evidence is

P(D|M) =

∫
w

∏
i

P(yi |w)P(w) . (10)

We approximate the posterior P(w|D) with a multivariate
Gaussian N (µ,Σ) by means of EP.

EP also approximates the evidence.
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Example of a Bayes Machine
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Figure: Contour plot of the decision surface obtained by the Bayes
machine and maximum margin classifier in black. The Bayes machine
approximates a vote between all possible linear separators. In this
example ǫ = 0.
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Non-linear Bayes Machine

It is possible to rewrite the whole EP algorithm for the Bayes
Machine in terms of inner products.

The kernel trick allows us to work with the data projected on
an infinite dimension space where it can be linearly separated.

We can fix the kernel and its parameters just by maximizing
the approximation for the evidence.

The same procedure can be used to perform selection of
attributes.
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Example: the Spiral Dataset with 100 points

We fix a Gaussian kernel exp(− 1
2σ2 (xi − xj)

T (xi − xj)) and
maximize log(P(D|M)) with respect to σ.

σ log(P(D|M))

1 -33

0.5 -25

0.25 -22.6

0.1 -34

0.35 -22.7

0.3 -22.4
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The Non-linear Bayes Machine on the Spiral Data Set I
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Figure: Contour plot of the decision surface obtained by the non-linear
Bayes machine. In this example σ2 = 1 and ǫ = 0.
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The Non-linear Bayes Machine on the Spiral Data Set II
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Figure: Contour plot of the decision surface obtained by the non-linear
Bayes machine. In this example σ2 = 0.3 and ǫ = 0.
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Results of a SVM on the Spiral Data Set
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Figure: Decision surface obtained by a support vector machine. We used
a Gaussian kernel and ǫ = 0. The with of the kernel was selected by cross
validation.
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Results of a SVM on another Data Set
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Figure: Decision surface obtained by a support vector machine. We used
a Gaussian kernel and ǫ = 0. The with of the kernel was selected by cross
validation.
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Results of the Bayes Machine on another Data Set
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Figure: Decision surface obtained by the non-linear Bayes machine. We
used a Gaussian kernel and ǫ = 0. The with of the kernel was selected by
maximizing the approximation for the evidence.
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Bayes Machines vs SVMs

SVMs

Generally lead to less smooth decision borders.

To tune their parameters you have to use CV and discard data.

Training process is faster.

Prediction is faster because they only use the support vectors.

They do not output probabilities directly.

Bayes Machines

Seem to generalize better (see ref 1).

The kernel parameters can be fixed using all data.

Training is slow, O(n3).

Prediction is slow.

They output a predictive distribution.
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