
Support Vector Machines and Kernel Methods

Daniel Garćıa, Ana González, José R. Dorronsoro
Dpto. de Ingenieŕıa Informática and Instituto de Ingenieŕıa del

Conocimiento
Universidad Autónoma de Madrid,

28049 Madrid, Spain

March, 1st, 2007

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Support Vector Machines

I SVM goal: given a sample S = {(Xi , yi) : i = 1, . . . , N},
where yi = ±1, to construct a classifier c(X) = W · X + b
with a maximum margin

m(W , b) = min

{
yi (W · Xi + b)

‖W ‖ : i = 1, . . . ,N

}

I Alternatively, to solve

(W ∗, b∗) = argmin(W ,b)‖W ‖2

with (W , b) satisfying yi (W · Xi + b) ≥ 1 for all i

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Support Vector Machines II

I In order to solve the previous optimization problem, it is
posible to use the method of Lagrange multipliers provided
that

I ‖W ‖2 is a convex function of W
I the constraints are linear in W

I The Lagrangian function is

L(W , b, α) =
1

2
W ·W −

N∑

i=1

αi [yi (W · Xi + b)− 1],

which has to be minimized with respect to W and b; and it
also has to be maximized with respect to the non-negative
variables α, called Langrange multipliers

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Support Vector Machines III

I Instead of resolving the original optimization problem, known
as Primal, we can resolve the Dual problem defined as:

Θ(α) = min
W ,b

L(W , b, α).

I Differentiating L(W , b, α) with respect W , b and setting the
results equal to zero, we get two conditions of optimally:

∂L(W , b, α)

∂W
= 0 =⇒ W =

N∑

i=1

αiyiXi

∂L(W , b, α)

∂b
=

N∑

i=1

αiyi = 0

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Support Vector Machines IV

I The Dual problem

Θ(α) =
N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

αiαjyiyjXi · Xj ,

has to be maximized with respect α subject to the constraints

I 1) :
∑N

i=1 αiyi = 0, ∀i
I 2) : αi ≥ 0, ∀i

I Finally, we can get (W ∗, b∗) as

I W ∗ =
∑N

i=1 α∗i yiXi

I b∗ = 1−W ∗ · Xs , where Xs has α∗s > 0 and ys = +1

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Support Vector Machines V

I SVM gives a classifier with a maximum margin

I This classifier is cast in terms of the training data in the form
of a set of dots products

I It is possible to classify nonlinear problems if we replace the
dot products with kernels.

I In order to obtain this classifier, a quadratic optimization
problem is required to be solved

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Convex Hull Norm Minimization I

I Another approach to find a classifier with maximum margin is
working with the Convex Hull of the data.

I By definition, the Convex Hull for a set of points X in a real
vector space V is the minimal convex set containing X , that
is, the set of points of the form

∑N
i=1 αiXi , where αi ≥ 0 , for

i = 1, . . . , N; and
∑N

i=1 αi = 1

I For lineary separable problems, to maximize the separation
margin is equivalent to search for the minimal distance
between points of the Convex Hulls of both classes.

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Convex Hull Norm Minimization II

I Writing S̃ = {yiXi : i = 1, . . . , N} and C (S̃) its convex hull
the maximum margin vector W ∗ verifies

W ∗ = arg min{‖W ‖ : W ∈ C (S̃)}

I Moreover, the optimal W ∗ verifies m(W ∗) = ‖W ∗‖
I Thus, for any W ∈ C (S) we have

m(W) ≤ m(W ∗) = ‖W ∗‖ ≤ ‖W ‖

I Hence, if g(W) = ‖W ‖ −m(W), then 0 = g(W ∗) ≤ g(W)

I Therefore, minimizing g(W) gives an optimum margin

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Schlesinger–Kozinec (SK) Algorithm

I The SK algorithm seeks to minimize g(W) in two steps
I At step t it selects an Xl such that l = arg mini{yiWt · Xi}
I Then it updates Wt as

Wt = (1− λt)Wt−1 + λtyl(t)Xl(t)

with

λt = arg minλ∈(0,1]{‖(1− λ)Wt−1 + λXl(t)‖}

= min

(
1,

‖Wt−1‖2 − (yiWt−1 · Xl)

‖Wt−1‖2 − 2(yiWt−1 · Xl) + ‖Xl‖2

)

I The above updates are applied even if all patterns are
correctly classified and ensure Wt ∈ C (S̃)

I The SK algorithm assures that

‖Wt‖ ≤ ‖Wt−1‖

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Convex Perceptrons

I Rosenblatt’s delta rule for pcp training updates W ′
t as

W ′
t = W ′

t−1 + yl(t)Xl(t) =
t∑

0

yl(j)Xl(j)

I We can get weights Wt ∈ C (S̃) setting Wt = 1
t W

′
t for then

Wt =
1

t

(
t−1∑

0

yl(j)Xl(j) + yl(t)Xl(t)

)
=

1

t

(
W ′

t−1 + yl(t)Xl(t)

)

=

(
1− 1

t

)
Wt−1 +

1

t
yl(t)Xl(t)

We shall call this the convex delta rule. We also can see that
this update is the same as the SK one with λt = 1

t

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

SK and Convex Perceptrons Updates I

I Writing Wt =
∑

j αt
j yjXj , the update of Wt can be written as

Wt =
(
1− λt

)
Wt−1+λ∗ylXl =

(
1− λt

)∑

j

αt−1
j yjXj+λtylXl

I Therefore αt
j = (1− λt) αt−1

j + λtδj l and the cost of α
updates is O(N)

I To speed up the new pattern selection, we keep a margin
vector Dt

j = yjWt · Xj , j = 1, . . . , N

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

SK and Convex Perceptrons Updates II

I We choose the new pattern as

l = l(t) = arg mini

{
Dt−1

i

}

I update the α coefficients

αt
j =

(
1− λt

)
αt−1

j + λtδj l

I update the margin vector

Dt
j = (1− λt)Dt−1

j + λtylyjXl · Xj

I while we have

‖Wt‖2 = (1− λt)2‖Wt−1‖2 + 2(1− λt)λtDt−1
l + (λt)2‖Xl‖2

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Introducing Kernels

I In order make the previous algorithms to be able to work with
nonlinear problems, we can replace their dot products with
kernels

I By Mercer’s theorem, a definite positive kernel K (x , z) defines
a non–linear mapping X = φ(x) such that

X · Z = φ(x) · φ(z) = K (x , z)

I Some examples of kernels:
I Polinomical learning machine =⇒ K (x , z) = (x · z + 1)p

I Radial-basis function network =⇒ K (x , z) = exp
(
−‖x−z‖2

σ2

)

I Two-layer perceptron =⇒ K (x , z) = tanh(β0x · z + β1)

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Introducing Slack Variables

I Another approach to work with nonlinear problems is to relax
the margin constraints by introducing slack variables ξi for
which we allow yiW · Xi ≥ 1− ξi , and to add a penalty
C

∑
ξk
i to the criterion function to be optimizated.

I More precisely, if we consider extended weights W̃ and
patterns X̃i defined as

W̃ =
(
W ,

√
Cξ1, . . . ,

√
CξN

)
; X̃i =

(
Xi , 0, . . . ,

yi√
C

, . . . , 0

)

the previous kernel version of the convex methods can be
extended to this setting simply by working with the kernel
K ′(x , z) = K (x , z) + 1/C .

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Using Kernels With SK and Convex Perceptrons

I We choose the new pattern as

l = l(t) = arg mini

{
Dt−1

i

}

I update the α coefficients

αt
j =

(
1− λt

)
αt−1

j + λtδj l

I update the margin vector

Dt
j = (1− λt)Dt−1

j + λtylyjK (xl , xj)

I while we have

‖Wt‖2 = (1−λt)2‖Wt−1‖2 +2(1−λt)λtDt−1
l +(λt)2K (xl , xl)

I The cost of these operations is O(C N), with C the cost of a
kernel computation.

I The cost of a T iteration SK pcp training becomes
O(T C N), while memory requirements are just O(N).

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Numerical illustration I (SK)

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000

’thyroid-w-sk.txt’
’thyroid-m-sk.txt’

Figure: Norm (upper curve) and margin evolution (lower curve) of SK
algorithm for the Thyroid dataset.

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Numerical illustration II (SK)

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000

’heartdis-w-sk.txt’
’heartdis-m-sk.txt’

Figure: Norm (upper curve) and margin evolution (lower curve) of SK
algorithm for the Heart disease dataset.

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Numerical illustration III (SK)

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000

’pima-w-sk.txt’
’pima-m-sk.txt’

Figure: Norm (upper curve) and margin evolution (lower curve) of SK
algorithm for the Pima Indian Diabetes dataset.

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Numerical illustration IV (SK and PCP)

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000

’thyroid-w-sk.txt’
’thyroid-m-sk.txt’

’thyroid-w-pcp.txt’
’thyroid-m-pcp.txt’

Figure: Norm and margin evolution for convex pcp (outer curves) and
the SK algorithm (inner curves) for the Thyroid dataset.

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Numerical illustration V (SK and PCP)

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000

’heartdis-w-sk.txt’
’heartdis-m-sk.txt’

’heartdis-w-pcp.txt’
’heartdis-m-pcp.txt’

Figure: Norm and margin evolution for convex pcp (outer curves) and
the SK algorithm (inner curves) for the Heart disease dataset.

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Numerical illustration VI (SK and PCP)

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000

’pima-w-sk.txt’
’pima-m-sk.txt’

’pima-w-pcp.txt’
’pima-m-pcp.txt’

Figure: Norm and margin evolution for convex pcp (outer curves) and
the SK algorithm (inner curves) for the Pima Indian Diabetes dataset.

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

Conclusions

I Standard SVM construction requires to solve a costly
quadratic programming problem

I Altermatively, SK perceptron training provides optimum
margin classifiers with a less costly procedure

I When recast in a convex setting, Rosenblatt’s delta rule also
gives optimum margin classifiers, although with a slower
margin convergence

I We have seen empirically that the Convex Perceptron gives an
optimum margin, but a teorical explanation is not provided.

I Future work: to achive a faster convergence.

D. Garćıa, A. González, J.R. Dorronsoro Support Vector Machines and Kernel Methods

