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Support Vector Machines

I SVM goal: given a sample S = {(Xi , yi ) : i = 1, . . . , N},
where yi = ±1, to construct a classifier c(X ) = W · X + b
with a maximum margin

m(W , b) = min

{
yi (W · Xi + b)

‖W ‖ : i = 1, . . . ,N

}

I Alternatively, to solve

(W ∗, b∗) = argmin(W ,b)‖W ‖2

with (W , b) satisfying yi (W · Xi + b) ≥ 1 for all i
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Support Vector Machines II

I In order to solve the previous optimization problem, it is
posible to use the method of Lagrange multipliers provided
that

I ‖W ‖2 is a convex function of W
I the constraints are linear in W

I The Lagrangian function is

L(W , b, α) =
1

2
W ·W −

N∑

i=1

αi [yi (W · Xi + b)− 1],

which has to be minimized with respect to W and b; and it
also has to be maximized with respect to the non-negative
variables α, called Langrange multipliers
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Support Vector Machines III

I Instead of resolving the original optimization problem, known
as Primal, we can resolve the Dual problem defined as:

Θ(α) = min
W ,b

L(W , b, α).

I Differentiating L(W , b, α) with respect W , b and setting the
results equal to zero, we get two conditions of optimally:

∂L(W , b, α)

∂W
= 0 =⇒ W =

N∑

i=1

αiyiXi

∂L(W , b, α)

∂b
=

N∑

i=1

αiyi = 0
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Support Vector Machines IV

I The Dual problem

Θ(α) =
N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

αiαjyiyjXi · Xj ,

has to be maximized with respect α subject to the constraints

I 1) :
∑N

i=1 αiyi = 0, ∀i
I 2) : αi ≥ 0, ∀i

I Finally, we can get (W ∗, b∗) as

I W ∗ =
∑N

i=1 α∗i yiXi

I b∗ = 1−W ∗ · Xs , where Xs has α∗s > 0 and ys = +1
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Support Vector Machines V

I SVM gives a classifier with a maximum margin

I This classifier is cast in terms of the training data in the form
of a set of dots products

I It is possible to classify nonlinear problems if we replace the
dot products with kernels.

I In order to obtain this classifier, a quadratic optimization
problem is required to be solved
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Convex Hull Norm Minimization I

I Another approach to find a classifier with maximum margin is
working with the Convex Hull of the data.

I By definition, the Convex Hull for a set of points X in a real
vector space V is the minimal convex set containing X , that
is, the set of points of the form

∑N
i=1 αiXi , where αi ≥ 0 , for

i = 1, . . . , N; and
∑N

i=1 αi = 1

I For lineary separable problems, to maximize the separation
margin is equivalent to search for the minimal distance
between points of the Convex Hulls of both classes.
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Convex Hull Norm Minimization II

I Writing S̃ = {yiXi : i = 1, . . . , N} and C (S̃) its convex hull
the maximum margin vector W ∗ verifies

W ∗ = arg min{‖W ‖ : W ∈ C (S̃)}

I Moreover, the optimal W ∗ verifies m(W ∗) = ‖W ∗‖
I Thus, for any W ∈ C (S) we have

m(W ) ≤ m(W ∗) = ‖W ∗‖ ≤ ‖W ‖

I Hence, if g(W ) = ‖W ‖ −m(W ), then 0 = g(W ∗) ≤ g(W )

I Therefore, minimizing g(W ) gives an optimum margin
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Schlesinger–Kozinec (SK) Algorithm

I The SK algorithm seeks to minimize g(W ) in two steps
I At step t it selects an Xl such that l = arg mini{yiWt · Xi}
I Then it updates Wt as

Wt = (1− λt)Wt−1 + λtyl(t)Xl(t)

with

λt = arg minλ∈(0,1]{‖(1− λ)Wt−1 + λXl(t)‖}

= min

(
1,

‖Wt−1‖2 − (yiWt−1 · Xl)

‖Wt−1‖2 − 2(yiWt−1 · Xl) + ‖Xl‖2

)

I The above updates are applied even if all patterns are
correctly classified and ensure Wt ∈ C (S̃)

I The SK algorithm assures that

‖Wt‖ ≤ ‖Wt−1‖
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Convex Perceptrons

I Rosenblatt’s delta rule for pcp training updates W ′
t as

W ′
t = W ′

t−1 + yl(t)Xl(t) =
t∑

0

yl(j)Xl(j)

I We can get weights Wt ∈ C (S̃) setting Wt = 1
t W

′
t for then

Wt =
1

t

(
t−1∑

0

yl(j)Xl(j) + yl(t)Xl(t)

)
=

1

t

(
W ′

t−1 + yl(t)Xl(t)

)

=

(
1− 1

t

)
Wt−1 +

1

t
yl(t)Xl(t)

We shall call this the convex delta rule. We also can see that
this update is the same as the SK one with λt = 1

t
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SK and Convex Perceptrons Updates I

I Writing Wt =
∑

j αt
j yjXj , the update of Wt can be written as

Wt =
(
1− λt

)
Wt−1+λ∗ylXl =

(
1− λt

)∑

j

αt−1
j yjXj+λtylXl

I Therefore αt
j = (1− λt) αt−1

j + λtδj l and the cost of α
updates is O(N)

I To speed up the new pattern selection, we keep a margin
vector Dt

j = yjWt · Xj , j = 1, . . . , N
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SK and Convex Perceptrons Updates II

I We choose the new pattern as

l = l(t) = arg mini

{
Dt−1

i

}

I update the α coefficients

αt
j =

(
1− λt

)
αt−1

j + λtδj l

I update the margin vector

Dt
j = (1− λt)Dt−1

j + λtylyjXl · Xj

I while we have

‖Wt‖2 = (1− λt)2‖Wt−1‖2 + 2(1− λt)λtDt−1
l + (λt)2‖Xl‖2
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Introducing Kernels

I In order make the previous algorithms to be able to work with
nonlinear problems, we can replace their dot products with
kernels

I By Mercer’s theorem, a definite positive kernel K (x , z) defines
a non–linear mapping X = φ(x) such that

X · Z = φ(x) · φ(z) = K (x , z)

I Some examples of kernels:
I Polinomical learning machine =⇒ K (x , z) = (x · z + 1)p

I Radial-basis function network =⇒ K (x , z) = exp
(
−‖x−z‖2

σ2

)

I Two-layer perceptron =⇒ K (x , z) = tanh(β0x · z + β1)
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Introducing Slack Variables

I Another approach to work with nonlinear problems is to relax
the margin constraints by introducing slack variables ξi for
which we allow yiW · Xi ≥ 1− ξi , and to add a penalty
C

∑
ξk
i to the criterion function to be optimizated.

I More precisely, if we consider extended weights W̃ and
patterns X̃i defined as

W̃ =
(
W ,

√
Cξ1, . . . ,

√
CξN

)
; X̃i =

(
Xi , 0, . . . ,

yi√
C

, . . . , 0

)

the previous kernel version of the convex methods can be
extended to this setting simply by working with the kernel
K ′(x , z) = K (x , z) + 1/C .
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Using Kernels With SK and Convex Perceptrons

I We choose the new pattern as

l = l(t) = arg mini

{
Dt−1

i

}

I update the α coefficients

αt
j =

(
1− λt

)
αt−1

j + λtδj l

I update the margin vector

Dt
j = (1− λt)Dt−1

j + λtylyjK (xl , xj)

I while we have

‖Wt‖2 = (1−λt)2‖Wt−1‖2 +2(1−λt)λtDt−1
l +(λt)2K (xl , xl)

I The cost of these operations is O(C N), with C the cost of a
kernel computation.

I The cost of a T iteration SK pcp training becomes
O(T C N), while memory requirements are just O(N).
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Numerical illustration I (SK)
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Figure: Norm (upper curve) and margin evolution (lower curve) of SK
algorithm for the Thyroid dataset.
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Numerical illustration II (SK)
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Figure: Norm (upper curve) and margin evolution (lower curve) of SK
algorithm for the Heart disease dataset.
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Numerical illustration III (SK)
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Figure: Norm (upper curve) and margin evolution (lower curve) of SK
algorithm for the Pima Indian Diabetes dataset.
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Numerical illustration IV (SK and PCP)
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Figure: Norm and margin evolution for convex pcp (outer curves) and
the SK algorithm (inner curves) for the Thyroid dataset.
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Numerical illustration V (SK and PCP)
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Figure: Norm and margin evolution for convex pcp (outer curves) and
the SK algorithm (inner curves) for the Heart disease dataset.
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Numerical illustration VI (SK and PCP)

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  500  1000  1500  2000  2500  3000  3500  4000

’pima-w-sk.txt’
’pima-m-sk.txt’

’pima-w-pcp.txt’
’pima-m-pcp.txt’

Figure: Norm and margin evolution for convex pcp (outer curves) and
the SK algorithm (inner curves) for the Pima Indian Diabetes dataset.
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Conclusions

I Standard SVM construction requires to solve a costly
quadratic programming problem

I Altermatively, SK perceptron training provides optimum
margin classifiers with a less costly procedure

I When recast in a convex setting, Rosenblatt’s delta rule also
gives optimum margin classifiers, although with a slower
margin convergence

I We have seen empirically that the Convex Perceptron gives an
optimum margin, but a teorical explanation is not provided.

I Future work: to achive a faster convergence.
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