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Abstract— An efficient procedure for pruning regression
ensembles is introduced. Starting from a bagging ensemble,
pruning proceeds by ordering the regressors in the original
ensemble and then selecting a subset for aggregation. Ensembles
of increasing size are built by including first the regressors
that perform best when aggregated. This strategy gives an
approximate solution to the problem of extracting from the
original ensemble the minimum error subensemble, which we
prove to be NP-hard. Experiments show that pruned ensembles
with only 20% of the initial regressors achieve better general-
ization accuracies than the complete bagging ensembles. The
performance of pruned ensembles is analyzed by means of the
bias-variance decomposition of the error.

I. I NTRODUCTION

The combination of the outputs produced by an ensemble
of regressors has been shown to be a consistent way to
improve accuracy in many regression problems. Ensemble
techniques make use of instabilities in the algorithms that
generate the base learners to construct a set of diverse regres-
sors whose combined action can improve the generalization
performance of a single unit [1], [2], [3], [4].

One of the most widely used methods to construct re-
gression ensembles is bagging [1] (bootstrap sampling and
aggregation). In bagging diversity is achieved by training
each regressor with a different bootstrap sample of the
original training data [5]. The bootstrap sample has the
same size of the training data and is obtained by sampling
with replacement from it. On average each bootstrap sample
contains 63.2%. of the original data and 36.8% of repeated
examples. The final prediction of the ensemble is the average
of the responses of its individual members. In bagging, the
generalization error usually decreases as more regressors
are incorporated into the ensemble. The error approaches
asymptotically a constant level at larger ensemble sizes. The
explanation for this decrease is the lower error variance
achieved by the ensemble as a result of the aggregation pro-
cess. In many regression problems of interest this asymptotic
error is lower than the error of a single regressor constructed
with the original training data.

It is often assumed that this asymptotic error is the best
performance bagging can produce, and that the complete
bagging ensemble should be retained to achieve the highest
regression accuracy. However, some investigations show that
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it is possible to select subensembles that outperform the com-
plete ensemble [6]. This is a reflection of the fact that some of
the regressors generated in bagging have a detrimental effect
on the regression accuracy and should actually be removed
from the ensemble. However, the identification of these re-
gressors is a difficult task. Exploratory experiments show that
the performance of a regressor in an ensemble is not based
solely on individual properties of the learner. As a matter of
fact, the complementariness of the responses of regressors
that are combined is a key factor in the effectiveness of the
ensemble. This is in agreement with observations made in
the literature on the beneficial effects of a controlled amount
of diversity and/or negative correlations between regressors
in the ensemble [7], [8]. Thus, the problem of selecting
the optimal subensemble involves searching in the space of
2M − 1 non empty subsets of the original ensemble of size
M . This problem can be shown to be NP-hard and its exact
solution by exhaustive exploration is unfeasible for typical
bagging ensembles.

In this work we introduce a greedy algorithm to address
the problem of identifying the optimal subset of regressor
from the original bagging ensemble. The algorithm designed
reaches an approximate solution in polynomial time. Exper-
iments show that, despite the fact that this solution need
not be globally optimal, it is in general a near-optimal
local minimum. The strategy used is to modify the order of
the aggregation process. In standard bagging, regressors are
aggregated in the order in which they are generated from the
different bootstrap samples of the original training data.The
aggregation order is determined by the bootstrap sampling
process and is therefore random. In ordered bagging, the
aggregation is delayed until all regressors are generated.
Subensembles of increasing size are constructed by incorpo-
rating at each iteration the regressor that reduces the training
error of the subensemble the most. At some point in the
aggregation the process is halted and the resulting subensem-
ble is returned as the final solution. This early stopping in
aggregation allows the selection of a subensemble that is
smaller and that can improve the generalization performance
of the original ensemble. A difficulty, inherent to all machine
learning algorithms, is that the optimal subensemble selected
on the basis of the training set may have a suboptimal
generalization performance. Nonetheless, the experiments
carried out show that the optimal subensembles selected on
the basis of the training set by the pruning algorithm pro-
posed have good generalization properties in the regression
problems investigated. An analysis of their performance can
be made in terms of the dependence of the bias and variance
contributions to the error on the size of the subensembles.

Owing to the fact that they are composed of less regres-



sors, these pruned ensembles have lower storage require-
ments, and shorter response times than the corresponding
unpruned ensembles. Efficiency in the use of computational
resources is a major issue in current applications of automatic
learning, especially in online applications that handle large
amounts of data and/or require a fast response.

The article is organized as follows: In Section II, we give
a brief review of previous work on regression ensembles that
is related to the current investigation. Section III introduces
the problem of optimal subensemble selection. In Section
IV an approximate near-optimal and efficient solution to
this problem based on altering the aggregation order in
the bagging ensemble is proposed. A bias-variance analysis
of the dependence of the regression error on the size in
both unordered and ordered subensembles is also presented.
Finally, in order to assess the accuracy of the proposed
ensemble pruning method we carry out experiments over a
wide variety of regression tasks, including synthetic datasets
and problems from real-world applications.

II. RELATED WORK

As a result of the remarkable success of ensemble meth-
ods, much research has been devoted to improving the
performance of ensembles and to reducing their rather large
computational requirements, both in memory and in process-
ing time. In this section we give a short review of ensemble
pruning techniques related to the present work.

In [6], Zhouet al.propose the use of a genetic algorithm to
determine an optimal set of weights for the regressors in the
ensemble by minimizing a function that estimates the gener-
alization error of the ensemble. The optimization problem is
solved by using a standard Genetic Algorithm with a floating-
point scheme for real-valued weights in neural networks
ensembles. Then, those nets whose optimized weights are
below a specified level are eliminated from the ensemble.
The experiments made employed rather small ensembles of
20 regressors.

Another related proposal is made in Ref. [7], where the
ensemble is built by simultaneously training a collection
of networks using a correlation penalty term in the error
function. This penalty term is included to encourage spe-
cialization and cooperation among the individual networks.
It leads to the generation of regressors that are negatively
correlated. Small ensembles with about 10 neural networks
can be constructed using this method.

The work presented in Ref. [9] describes how collinearity
among the members of the ensemble can have harmful effects
on the estimation of the optimal weights for the linear com-
bination that is the output of the ensemble. Two algorithms
are proposed to improve the performance of the ensemble
by dropping some of the collinear regressors. The first one
considers collinearity between the outputs of the regressors
and the second one collinearity between their errors. The
ensembles built are also rather small (6 regressors).

A different approach to ensemble pruning is to cluster
regressors in the ensemble according to their outputs and then
to select a single representative member for every cluster that

has been identified [10]. The clustered representation does
not necessarily improve the performance of the complete
ensemble but is more amenable to qualitative analysis and
can yield novel insights into the data.

The pruning approach proposed in our work can be used in
combination with any parallel ensemble method, where there
is no intrinsic order in the aggregation process. Although the
regressors are trained without additional terms in the error
function, the ordering procedure selects first subensembles
of complementary regressors that tend to be negatively cor-
related as in [7]. The original bagging ensembles considered
in our investigation are generally larger than those consid-
ered in [7], [9], [6]. However, the pruned ensembles based
on ordered bagging, besides being smaller, systematically
outperform the original bagging ensembles in the regression
problems investigated.

III. SELECTION OF OPTIMAL SUBENSEMBLES

Consider a regression problem, where the goal is to learn
a predictor of the dependent variabley ∈ Rq as a function
of the attributesx ∈ Rp using the training dataZtr =
{(x1,y1), ..., (xN ,yN )} that is drawn from a probability
distribution P(Z). In this work we assumeq = 1, but
all the expressions can be easily generalized to the case
whereq ≥ 1. Bagging works by aggregating many diverse
regressors, each one built using the same learning algorithm
from a different bootstrap sample of the original training
data. Assumef̂i(x|Zi) is the prediction given by theith
regressor built withZi, the ith bootstrap sample of the
training dataZtr. The prediction of the ensemble is the
average of the individual responses of theM regressors in
the ensemble

f̂ (M)
ens (x) = M−1

M∑

i=1

f̂i(x|Zi), i = 1, 2, . . . ,M. (1)

The error of the bagging ensemble is

E =

∫ (
M−1

M∑

i=1

f̂i(x|Zi)− f(x)

)2

p(x)dx, (2)

wheref(x) is the target function to approximate, andp(x)
is the probability density distribution in attribute space. After
some algebra [6], Eq.(2) can be expressed as

E = M−2
M∑

i=1

M∑

j=1

Cij (3)

where

Cij =

∫ (
f̂i(x|Zi)− f(x)

)(
f̂j(x|Zj)− f(x)

)
p(x)dx

and Cii is the average squared error of theith ensemble
member.

Assume that a bagging ensemble composed ofM different
regressors has been constructed. To prune the regression bag-
ging ensemble we try to select the subensemble composed



of u regressors{s1, s2, . . . , su} that minimizes the error

E(u) = u−2
u∑

i=1

u∑

j=1

Csisj
. (4)

Since the true error is not available in the learning problem,
we make the selection of the optimal subensemble based
on the training error. The expression for the training error
is identical to Eq. (4), where the average overp(x) in the
calculation ofCij is replaced by an average over the training
data

C
(tr)
ij =

1

N

N∑

n=1

(f̂i(xn|Zi)− f(xn))(f̂j(xn|Zj)− f(xn)).

(5)
All the information needed for the optimization problem is
the matrix Cij estimated over the training set. We expect
the estimateC(tr)

ij to be similar to theCij matrix calculated
over the true distribution of the data. In doing this we make
the assumption that minimizing training error leads to the
minimization of generalization error. This is not necessarily
the case in actual regression problems. In fact minimizing the
training error usually leads to overfitting to the training data,
and to the selection of an ensemble whose generalization
performance is suboptimal. Indeed, the experiments carried
out show that the size of the subensembles that minimize
the error on the training data tend to be smaller than the
optimal subensembles when the error is estimated on a test
set that is independent of the training set. Even assuming
that a subensemble with lower generalization error than the
original pool of regressors exists, the process of finding the
one with the lowest error is complex and implies generating
all the possible2N − 1 non empty subensembles of the
original ensemble. In the Appendix we show that selecting
the subset of regressors in an ensemble that minimizes the
mean square error estimated on some data set is an NP-hard
problem. Therefore the selection of the optimal subensemble
is not generally feasible in practice.

IV. ORDEREDBAGGING

As seen in the previous section, the problem of selecting
the optimal subensemble cannot be solved in polynomial
time unless NP = P. This leads to the rather disappointing
conclusion that, as the number of regressors in the ensemble
grows, the complexity of the problem becomes unmanage-
able. Despite this observation, it may still be possible to find
near-optimalsolutions to the subensemble selection problem
in practice.

A. Ordering Algorithm

We follow the classic theory on efficient approximate solu-
tions of NP-complete problems [11] and design a polynomial
time greedy algorithm that constructs at each step the best
local solution. The algorithm starts with an empty ensemble
and then selects at each iteration the regressor that, when
incorporated, reduces the training error of the new ensemble
the most. The process is very similar to the one used in [12],

[13] to order classification ensembles. The regressor selected
in the uth iteration is the one that minimizes the expression

su = arg min

k

u−2(

u−1∑

i=1

u−1∑

j=1

Csisj
+2

u−1∑

i=1

Csik+Ckk) (6)

where k ∈ {1, .., N}\{s1, s2..., su−1} and where
{s1, s2..., su−1} are the indexes of the regressors that
have already been incorporated into the pruned ensemble at
iteration u − 1. Algorithm 1 shows the pseudocode of the
proposed algorithm.

Algorithm 1 Ordering Algorithm.
Input: Vector of regressors R and training data Z.

1 M ← |R|; N ← |Z|
2 for (i from 1 to M )
3 for (j from 1 to M )
4 Cij ← N−1

∑N

n=1

[(
f̂i(xn)− f(xn)

)
(
f̂j(xn)− f(xn)

)]

5 s← empty vector

6 for (u from 1 toM )
7 minimum← +∞
8 for (k in {1, ..,M}\{s1, .., su−1})
9 value← u−2(

∑u−1
i=1

∑u−1
j=1 Csisj

+

2
∑u−1

i=1 Csik + Ckk)))
10 if (value < minimum) {
11 su ← k

12 minimum← value

13 }
14 returns

Output: An ordered vector of the regressor indexes.

Therefore, subensembles of increasing size are built, each
with one more element than its predecessor. Because the
subensemble generated at iterationu includes all the regres-
sors of the subensemble generated at iterationu − 1, this
process can be seen as an ordering of the regressors of the
complete ensemble, where each subensemble of sizeu with
1 ≤ u ≤ M is built by taking the firstu regressors in
the ordered sequence. This choice need not be the global
optimum, because the optimal subensemble of sizeu (the
one with the lowest mean square error over the training data)
might not include the regressors of the optimal ensemble of
size u - 1. However, on typical cases, we expect it to be a
near-optimal approximation.

The time-complexity of this algorithm as a function of the
number of regressors in the bagging ensemble can be easily
estimated. As stated earlier, it is necessary to estimate the
matrix Cij on the training set before the ordering process
can begin. This preprocessing has a costO(M2 ·N), where
N is the size of training samples andM is the number of
regressors in the original ensemble. Then at each one of the
M iterations we have to extract the regressor that minimizes
expression (6) from the remaining set of regressors. This



task has a costO(((M + 1) − u) · u), where 1 ≤ u ≤
M is the current iteration. Therefore the final cost of the
greedy algorithm is the sum of each one of the previous
costs, resulting in a complexityO(M3 + M2 ·N).

B. Bias-variance analysis.

In this section we perform a bias-variance analysis to
investigate the dependence of the error on the subensem-
ble size. Since the the regressors that make up a bagging
ensemble are generated from independent bootstrap samples
of the original training data, they can be seen as independent
realizations of a random variable drawn from a distribution
P(f̂i). Taking the expectation over this distribution, and after
some algebra, the mean square error of a regression ensemble
of size u can be expressed as a function of the average
bias, the average variance and the average covariance of the
individual regressors in the ensemble [14]

E(u) = u−1V ar + (1− u−1)Cov + Bias
2
,

with the definitions

Bias = u−1
u∑

i=1

Bias(f̂i), V ar = u−1
u∑

i=1

V ar(f̂i),

Cov = (u− 1)−1u−1
∑

j 6=i

Cov(f̂i, f̂j).

In standard (randomly ordered) bagging the expected vari-
ances and biases of all regressors are equal. Also, because
the regressors are built with independent bootstrap samples
of the training data their covariances are zero. Therefore,the
regression error of a randomly ordered bagging ensemble of
sizeu is simply

E = u−1V ar + Bias2 (7)

whereV ar andBias are the expected variance and bias of
a regressor drawn from the distributionP(f̂i).

The ordering procedure has the effect of altering the
distribution of the regressors that are part of the ensembleat
iterationu. Instead of being independent of the subensemble
size this distribution changes as new regressors from the
ordered sequence are aggregated into the ensemble. In what
follows P(f̂i, u) denotes the distribution of the regressors
that are part of the ordered ensemble at iterationu. Carrying
out the bias-variance error decomposition for the ordered
bagging we have that the error for an ordered subensemble
of sizeu is

E = u−1V ar(u) + Bias(u)2 (8)

whereV ar(u) and Bias(u) are the expected variance and
bias of a regressor drawn from the distributionP(f̂i, u).
As a result of the ordering strategy we expect the values
of Bias(u) and V ar(u) (the average bias and variance of
a regressor in an ordered subensemble of sizeu) to be
lower thanBias and V ar (the average bias and variance
bias and variance of a regressor in a bagging ensemble),
for intermediate subensemble sizes. In this manner ordered
bagging achieves lower errors than standard bagging for

subensembles of sizeu = 1, 2, . . . , (M − 1). Notice that
whenu = M , whereM is the size of the original ensemble,
P(f̂i, u) = P(f̂i), and the errors of ordered and standard
bagging ensembles are equal.

The lowest error that standard bagging achieves is
limM→∞E = Bias2 ≥ 0. Hence, it is possible for the
subensemble at iterationu to have a lower error than this
asymptotic limit if the inequality

u−1V ar(u) + Bias(u)2 < Bias2 (9)

is satisfied. This equality obtains if the algorithm selectsa
set of regressors from the complete ensemble with a low bias
and variance. In the experiments carried out it is seen that
the inequality is fulfilled for sufficiently large subensembles.

Figure 1 shows the error curves for an ensemble composed
of 100 neural networks for the regression problemBoston
Housing [15]. These curves display the dependence of the
mean square error in regression on the number of regressors
in the ensemble. The four different curves correspond to train
and test errors in both randomly ordered and ordered bagging
ensembles. Each curve is the result of averaging the 10-fold
cross-validation error estimates for the regression problem,
with 10 different partitions of the data. The features displayed
by the error curves are representative of all the regression
problems investigated.

As anticipated, when the aggregation order in bagging is
random the error decreases monotonically as more regressors
are added to the ensemble. The decrease slows down for
larger ensembles and asymptotically approaches a saturation
level. If the aggregation order is modified according to
the procedure described, the error curves show an initial
decrease, which is initially steeper than in the randomly
ordered ensemble. At intermediate ensemble sizes the error
curves display a fairly broad minimum. After this minimum
the error increases slowly and eventually approaches the
error level of the complete bagging ensemble from below.
The improvements in regression accuracy in the ordered
ensemble that are observed in the training error curve are
also observed in the error curve estimated on the test set. In
particular, the minimum in the test error curve in an ensemble
whose aggregation order is chosen according to the training
data is significatively lower than the best result of randomly
ordered bagging. However, it is also apparent in Figure 1
the minimum appears earlier in the aggregation process (i.e.
for smaller ensembles) in the training error curve than in the
error curve for the test set. This means that it is difficult to
exactly estimate from the training data where the minimum
in the error curve for the test data lies. Nevertheless, the
error curves are rather flat around the minimum, so that
overestimating or underestimating the size of the ensemble
that corresponds to the minimum does not have a large effect
on the generalization performance.

Figures 2 and 3 show how the variance and bias contribu-
tions to the error of the ensemble members vary as a function
of the number of regressors in the ensemble for both train
and test datasets in theBoston Housingregression problem.
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Fig. 1. Average train and test mean square error for Boston data set, for
ordered bagging and randomly ordered bagging as a function ofthe number
of regressors in the ensemble.
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Fig. 2. Ordered bagging and randomly ordered bagging averagetrain and
test variance of the members of the ensemble, for Boston data set, as a
function of the number of regressors in the ensemble.
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Fig. 3. Ordered bagging and randomly ordered bagging averagetrain and
test squared bias value for Boston data set, as a function of the number of
regressors in the ensemble.

Results are 10 fold cross-validation estimates averaged over
10 different partitions of the data. Results are shown for both
ordered and random ordered bagging. For a subensemble of
sizeu ≥ 2 the average values over the datasetZ of squared
bias and the variance are given by the unbiased estimates

B̂ias
2
(u;Z) =u−1(u− 1)−1

u∑

i=1

u∑

j=1;j 6=i

Cij(Z)

V̂ ar(u;Z) =u−1
u∑

i=1

Cii(Z)− B̂ias
2
(u)(Z)

where

Cij(Z) = |Z|−1
∑

x∈Z

(f̂i(x)− f(x))(f̂j(x)− f(x)).

As anticipated, for randomly ordered bagging the values of
the variance and of the squared bias remain approximately
constant as the number of regressors in the ensemble is
increased. The deviations from a constant behavior in the
curves for the variance in small subensembles are probably
due to sampling fluctuations. In agreement with the largeu

limit of Eq. (7) the bias term for random ordered bagging
is approximately equal to the generalization error of the
complete bagging ensemble. In contrast to this, the variance
and the squared bias values are not constant for ordered
bagging. The values of the variance and of the squared
bias averaged over the training data both start low and
then progressively grow until they reach the constant level
of randomly ordered bagging when all the regressors are
included in the ensemble. The ordering algorithm works by
aggregating in the ensemble first regressors that have low
variance and low bias. In ordered bagging ensembles the
behavior of the curves for the average squared bias is similar
when the averages are calculated over the training data or
over the test set. However, the curves for the average variance
are very different. When the training set is used, the ordering
algorithm succeeds in finding a subensemble of regressors
with a low variance. This improvement is not reflected in
the variance curves estimated with the test set. We believe
this is due to some overfitting to the training data.

Note that, according to (7) and (8), as the size of the
ensemble grows, the most important term in the error decom-
position is the value of the squared bias. Hence, it seems that
the algorithm decreases the generalization error mainly by
reducing the bias of the regressors included in the ensemble
while keeping their variance relatively low.

V. EXPERIMENTAL RESULTS

To assess the performance of pruning in ordered bagging
ensembles, experiments are carried out over 14 regression
problems from the UCI-Repository [15], from the Weka Data
Mining Tool [16] and from other sources [17], [18], [19],
[20]. These datasets have been selected in order to include a
wide variety of real world and synthetic regression problems.
Table I displays the number of instances, the number of
attributes and the source of the different datasets. For the
synthetic data setsFriedman1, Friedman2and Friedman3,



the standard deviations for the additive noise areσ =
1, σ = 150 and σ = 0.1, respectively. InFriedman1,
Friedman2, Friedman3, and Peak the figures reported are
averages over 100 independent realizations of the synthetic
regression problems. For each of these problems a training
set with 200 instances, and a test set of 2000 instances
were generated. For the real world problems the figures
given are averages of 10-fold cross-validation error estimates
over ten different partitions of the data. As base learners
we use feed-forward neural networks with a single hidden
layer of sigmoidal neurons, and linear units at the output
layer. Networks are trained over 1000 epochs using the
quasi-Newton optimization method BFGS [21]. In order to
avoid overfitting, a weight decay strategy is used [22] in the
training process. All computations are carried out using the
R statistics software [23] with the available neural networks
package [24].

TABLE I

CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset Cases Attr. Train/Test Source
Boston 506 13 10-fold-cv UCI-Repository
Servo 167 4 10-fold-cv UCI-Repository
Ozone 330 8 10-fold-cv UCI-Repository
Friedman1 2200 10 200 / 2000 See [18]
Friedman2 2200 4 200 / 2000 ”
Friedman3 2200 4 200 / 2000 ”
Peak 2200 20 200 / 2000 See [20]
AutoPrice 159 15 10-fold-cv Weka
Pollution 60 15 10-fold-cv Weka
Solder 720 5 10-fold-cv Ref. [19]
Sensory 576 11 10-fold-cv Weka
Bodyfat 252 14 10-fold-cv Weka
Bolts 40 7 10-fold-cv Weka
Loblolly 84 2 10-fold-cv See [17]

For each of the real world datasets, we use 10-fold
cross-validation to estimate the regression error. This cross-
validation process is repeated 10 times for different partitions
of the data. The error values reported are averages over
these different partitions. The computation of each cross-
validation estimate involves the following steps: (i) Generate
a random partition of the original data into 10 different
sets in order to carry out 10-fold cross-validation. (ii) For
each of the ten divisions into train and test, generate either
100 or 200 neural networks from the training set using
bootstrap sampling. For each network, different architectures
(2, 3, 5, and 7 hidden units) are explored. We also consider
12 possible values, equally spaced in the interval[0, 1],
for the weight decay constant. All possible combinations
of the number of hidden units and of the values of the
weight decay constant are tried to determine which model
provides the best regression fit, based on a separate 10-
fold cross-validation estimate of the mean square error on
the training data. Once the best parameter combination is
found we build the network by training over 1000 epochs.
For each of the ten ensembles the error is estimated with the
corresponding unseen data. Finally, these values are averaged
to compute the cross-validation error. (iii) The ensemblesare

then ordered according to the greedy algorithm described in
Section IV, using error estimates only on the training set.
(iv) The first 20% regressors are selected to construct the
pruned subensemble. Then, the error of each of the pruned
ensembles is estimated with the corresponding unseen data.
Finally, these values are averaged to compute the cross-
validation estimate.

For the synthetic datasets the individual neural networks
and the ensembles are generated and ordered using the
procedure described in the previous paragraph. However,
instead of averages of cross-validation error estimates, the
figures reported are averages 100 independent realizationsof
the train and test datasets.

The pruning rule that selects the first 20% regressors in
the ordered pool generated by bagging selects subensembles
that exhibit a consistently good generalization performance
in the regression problems investigated. In fact, because
the test error curves are rather flat around the minimum,
any value between 15% and 25% percent of the original
pool of regressors leads to similar results. Furthermore, any
subensemble that includes more than 15% of the initial
regressors outperforms the complete bagging ensemble in all
the problems investigated.

Table II shows the results for the different datasets using
ensembles of 100 neural networks. The figures in first column
correspond to the average training error for the complete
ensemble. The second column displays the averaged training
error values for the pruned ensemble. The next two columns
display the same information for the errors on the test set.
Table III shows the corresponding figures using ensembles
of 200 neural networks. These tables show that the error
of the pruned subensembles is systematically lower than
the error of the complete bagging ensemble. A pairedt-test
was carried out to determine whether these improvements in
the generalization accuracy are statistically significant. Table
IV shows thep-valuesgiven by the test for each regres-
sion problem. In the synthetic regression problems (Peak,
Friedman1, Friedman2 and Friedman3), for ensembles of
100 members and 200 members, these p-values show that
pruned subensembles have a better prediction accuracy with
a confidence level of 99.9%. A similar conclusion can be
reached for the real-world problems (except for theSolder
problem, where only a 95% confidence level is achieved).
However, in this case, the statistical test may overestimate
the significance of the differences, because the sets used in
the cross-validation estimates are not independent [25].

VI. CONCLUSIONS

In this paper we have proved that the selection of an
optimal subensemble from a bagging regression ensemble
that minimizes the error over a given data set is an NP-
hard optimization problem. An approximate greedy strategy
that generally reaches a near-optimal solution consists in
ordering the regressors in the initial bagging ensemble,
and then selecting a subset for aggregation. The ordering
procedure incorporates first those regressors from the initial
pool of classifiers that improve the regression accuracy of



TABLE II

AVERAGE TEST AND TRAIN MEAN SQUARE ERROR FOR THE COMPLETE AND PRUNED BAGGING ENSEMBLES USING A POOL OF100 NEURAL

NETWORKS. RESULTS HAVE BEEN MULTIPLIED BY A FACTOR (*) 10
−3 , (**) 10

3 , (***) 10
−6 .

Train Test
Dataset Complete Pruned Complete Pruned
Boston 6.82±0.80 4.75±0.59 12.05±1.07 10.38±0.86
Servo 0.073±0.010 0.040±0.006 0.273±0.054 0.218±0.076
Ozone 13.79±0.73 11.56±0.68 17.73±0.46 17.26±0.45
Friedman1 1.14±0.31 0.90±0.31 2.99±0.38 2.64±0.37
Friedman2* 17.40±5.14 12.07±2.35 23.01±4.52 19.56±1.27
Friedman3** 12.52±2.63 9.96±2.01 18.27±3.08 17.55±2.47
Peak 4.07±0.18 2.71±0.13 25.79±1.06 23.55±1.01
AutoPrice*** 4.29±0.19 2.02±0.12 7.07±0.31 5.77±0.55
Pollution* 2.71±0.22 1.10±0.19 3.07±0.08 2.20±0.24
Solder 4.40±0.26 4.00±0.25 7.53±0.32 7.43±0.29
Sensory** 366.2±6.5 343.3±6.2 535.9±7.0 522.9±7.8
Bodyfat 1.77±0.27 0.53±0.03 2.93±0.31 1.98±0.19
Bolts 2.45±0.41 0.69±0.15 10.95±3.07 7.90±2.91
Loblolly 0.74±0.69 0.12±0.02 1.68±0.89 0.91±0.19

TABLE III

AVERAGE TEST AND TRAIN MEAN SQUARE ERROR OF COMPLETE AND PRUNED BAGGING ENSEMBLES USING200 NEURAL NETWORKS. RESULTS

HAVE BEEN MULTIPLIED BY A FACTOR (*) 10
−3 , (**) 10

3 , (***) 10
−6 .

Train Test
Dataset Complete Pruned Complete Pruned
Boston 6.80±0.75 4.61±0.60 12.04±1.02 10.14±0.87
Servo 0.071±0.009 0.038±0.006 0.270±0.055 0.210±0.067
Ozone 17.70±0.36 17.24±0.24 13.75±0.72 11.42±0.71
Friedman1 1.14±0.31 0.88±0.29 2.99±0.38 2.61±0.39
Friedman2* 17.17±4.86 11.88±2.34 22.78±4.22 19.33±1.25
Friedman3** 12.52±2.57 9.89±1.20 18.25±3.10 17.40±2.58
Peak 4.01±0.18 2.51±0.13 25.72±1.04 23.01±1.00
AutoPrice*** 4.27±0.17 1.89±0.09 7.11±0.33 5.72±0.34
Pollution* 2.72±0.22 1.05±0.19 3.05±0.10 2.08±0.22
Solder 4.39±0.27 3.96±0.26 7.51±0.31 7.41±0.27
Sensory** 365.5±6.8 339.9±6.7 535.9±6.7 520.2±7.4
Bodyfat 1.73±0.23 0.51±0.03 2.87±0.28 1.93±0.19
Bolts 2.38±0.40 0.62±0.15 10.93±3.08 7.72±2.85
Loblolly 0.66±0.54 0.11±0.02 1.51±0.65 0.88±0.17

the ensemble the most. In this manner we build a sequence
of subensembles of increasing size and plot error curves
that display the dependence of the regression error on the
subensemble size. For standard bagging, where the order
of aggregation is random, these curves show a monotonic
decrease of the error as the number of regressors in the
subensemble is increased. In ordered bagging the mean
square error reaches a minimum value for subensembles of
intermediate size. This minimum corresponds to an error
that is below the error of the complete bagging ensemble.
Around this minimum the error curve is fairly broad, which
implies that it is easy to improve the results of bagging by
early stopping in the aggregation process in ordered bagging

ensembles. We take advantage of this feature in the error
curves and select a pruned ensemble that includes only the
first 20% elements from the ordered ensemble of regressors.
The pruned ensembles consistently improve the generaliza-
tion performance of the complete bagging ensemble in the
regression problems investigated. The proposed algorithm
can be also used to prune regression bagging ensembles
composed of other types of regressors as base learners.

APPENDIX

In this appendix we prove that finding the subensemble
of a regression bagging ensemble that minimizes the mean
square error over a given data set is an NP-hard optimization



TABLE IV

RESULTS OF A PAIREDt-testFOR THE DIFFERENCES BETWEEN THE TEST

ERRORS OF PRUNED AND COMPLETE ENSEMBLES.

p-values
Dataset 100 members 200 members
Boston 7.35·10−12

1.97·10−14

Servo 9.6·10−4
4.2·10−4

Ozone 2.9·10−4
2.3·10−4

Friedman1 2.9·10−35
1.5·10−37

Friedman2 2.7·10−12
1.3·10−13

Friedman3 7.2·10−4
1.4·10−4

Peak 2.6·10−54
1.5·10−71

AutoPrice 1.5·10−7
6.0·10−9

Pollution 3.9·10−11
3.7·10−13

Solder 4.28·10−2
2.1·10−2

Sensory 1.4·10−11
4.9·10−16

Bodyfat 5·10−8
4.7·10−9

Bolts 5.2·10−7
6·10−7

Loblolly 6.1·10−4
1.2·10−4

problem. This optimal subensemble selection problem is
related to theSubset Sumproblem, which is NP-complete
[11]. The Subset Sumproblem consists in extracting from a
given set of integersS = {s1, s2, ..., sn} a subset of elements
whose sum is equal to zero.

Suppose that an algorithmA that solves the optimal
subensemble selection problem in polynomial time exists.
The Subset Sumproblem would then be solvable in poly-
nomial time by letting each of the members of the set of
integersS be the output of a regressor and assuming that
zero is the target output. In this manner the setS of integer
values can be seen as the output of the ensemble in a dataset
with only one instance. Then, according to this expression,

∑

c∈C

c = 0⇐⇒

(
|C|−1

∑

c∈C

c

)2

= 0 ∀C ⊂ S, C 6= ∅

finding a subensemble with zero mean square error is equiv-
alent to finding a subset ofS whose elements add up to zero.
If a subset ofS with zero mean square error exists (this is the
lowest possible mean square error) then algorithmA would
be able to find it in polynomial time. This subset ofS has
the property that its elements add up to zero and therefore is
a solution to theSubset Sumproblem. On the other hand if a
subset with mean square error greater than zero is returned,
then there is no subset ofS the sum of whose elements is
zero.

Unless NP=P, no algorithm with the properties ofA exists.
Hence, the problem of finding the optimal subensemble of a
regression bagging ensemble is at least as hard as any NP-
complete problem. These types of problems are NP-hard, and
unless NP=P, no polynomial time algorithm that computes a
solution to any of this problems exits. Notice that this result
also implies that pruning a weighted averaged regression
ensemble is an NP-hard problem.
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