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Abstract— An efficient procedure for pruning regression it is possible to select subensembles that outperform tive co
ensembles is introduced. Starting from a bagging ensemble, plete ensemble [6]. This is a reflection of the fact that some o
pruning proceeds by ordering the regressors in the original 0 reqressors generated in bagging have a detrimentat effe
ensemble and then selecting a subset for aggregation. Ensembles .
of increasing size are built by including first the regressors on the regression accuracy and ShOUId, «.actu.ally be removed
that perform best when aggregated' This Strategy gives an from the ensemble HOWGVEI’, the |dent|f|cat|on Of theSE re-
approximate solution to the problem of extracting from the gressors is a difficult task. Exploratory experiments shuat t
original ensemble the minir_num error subensemble, which we the performance of a regressor in an ensemble is not based
prove to be NP-hard. Experiments show that pruned ensembles g4ja1y on individual properties of the learner. As a matter o
with only 20% of the initial regressors achieve better general- .
ization accuracies than the complete bagging ensembles. The fact, the complemgntarmess of the response§ of regressors
performance of pruned ensembles is ana|yzed by means of the that are Comb|ned IS a key faCtor n the effeCtlveneSS Of the

bias-variance decomposition of the error. ensemble. This is in agreement with observations made in
the literature on the beneficial effects of a controlled antou
|. INTRODUCTION of diversity and/or negative correlations between regness

The combination of the outputs produced by an ensembl@ the ensemble [7], [8]. Thus, the problem of selecting
of regressors has been shown to be a consistent way th§ optimal subensemble involves searching in the space of
improve accuracy in many regression problems. Ensembié’ — 1 non empty subsets of the original ensemble of size
techniques make use of instabilities in the algorithms tha/- This problem can be shown to be NP-hard and its exact
generate the base learners to construct a set of diverssreggolution by exhaustive exploration is unfeasible for tybic
sors whose combined action can improve the generalizati®®g99ing ensembles.
performance of a single unit [1], [2], [3], [4]. In this work we introduce a greedy algorithm to address

One of the most widely used methods to construct rdhe problem of identifying the optimal subset of regressor
gression ensembles is bagging [bp6tstrap sampling and from the original bagging ensemble. The algorithm designed
aggregation. In bagging diversity is achieved by training reaches an approximate solution in polynomial time. Exper-
each regressor with a different bootstrap sample of tHenents show that, despite the fact that this solution need
original training data [5]. The bootstrap sample has thBot be globally optimal, it is in general a near-optimal
same size of the training data and is obtained by samplifgcal minimum. The strategy used is to modify the order of
with replacement from it. On average each bootstrap sampfee aggregation process. In standard bagging, regressors a
contains 63.2%. of the original data and 36.8% of repeatétigregated in the order in which they are generated from the
examples. The final prediction of the ensemble is the averagéferent bootstrap samples of the original training détae
of the responses of its individual members. In bagging, th@dgregation order is determined by the bootstrap sampling
generalization error usually decreases as more regressBrgcess and is therefore random. In ordered bagging, the
are incorporated into the ensemble. The error approach@@gregation is delayed until all regressors are generated.
asymptotically a constant level at larger ensemble sizes. TSubensembles of increasing size are constructed by incorpo
explanation for this decrease is the lower error variand@&ting at each iteration the regressor that reduces thertei
achieved by the ensemble as a result of the aggregation pRsfor of the subensemble the most. At some point in the
cess. In many regression problems of interest this asyioptodgregation the process is halted and the resulting sulpense
error is lower than the error of a single regressor construict ble is returned as the final solution. This early stopping in
with the original training data. aggregation allows the selection of a subensemble that is

It is often assumed that this asymptotic error is the pesialler and that can improve the generalization performanc
performance bagging can produce, and that the complefiéthe original ensemble. A difficulty, inherent to all maaéi
bagging ensemble should be retained to achieve the hight&drning algorithms, is that the optimal subensemble sedec

regression accuracy. However, some investigations shatv tfPn the basis of the training set may have a suboptimal
generalization performance. Nonetheless, the expersnent
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sors, these pruned ensembles have lower storage requinas been identified [10]. The clustered representation does
ments, and shorter response times than the correspondmgf necessarily improve the performance of the complete
unpruned ensembles. Efficiency in the use of computationahsemble but is more amenable to qualitative analysis and
resources is a major issue in current applications of auiomacan yield novel insights into the data.
learning, especially in online applications that handigda  The pruning approach proposed in our work can be used in
amounts of data and/or require a fast response. combination with any parallel ensemble method, where there
The article is organized as follows: In Section I, we giveis no intrinsic order in the aggregation process. Althouwh t
a brief review of previous work on regression ensembles theg¢gressors are trained without additional terms in thererro
is related to the current investigation. Section Ill intmods  function, the ordering procedure selects first subensesmble
the problem of optimal subensemble selection. In Sectiosf complementary regressors that tend to be negatively cor-
IV an approximate near-optimal and efficient solution taelated as in [7]. The original bagging ensembles consitlere
this problem based on altering the aggregation order in our investigation are generally larger than those coensid
the bagging ensemble is proposed. A bias-variance analysigd in [7], [9], [6]. However, the pruned ensembles based
of the dependence of the regression error on the size @m ordered bagging, besides being smaller, systematically
both unordered and ordered subensembles is also presentadperform the original bagging ensembles in the regrassio
Finally, in order to assess the accuracy of the proposemoblems investigated.
ensemble pruning method we carry out experiments over a
wide variety of regression tasks, including synthetic sets [Il. SELECTION OF OPTIMAL SUBENSEMBLES

and problems from real-world applications. Consider a regression problem, where the goal is to learn

1. RELATED WORK a predictor of the dependent variafec R? as a function

As a result of the remarkable success of ensemble meff the attributesx & Rph u5|_ngdthe tra]:mmg datiéf‘ b':I'
ods, much research has been devoted to improving t éxl_’gl_)""’(xg’ylf\’)}hf[ at ISk rawn rom aBro abl ity
performance of ensembles and to reducing their rather Iarg tribution P(Z). In this work we assume = 1, but

computational requirements, both in memory and in proces _h the e;pre;smng can bke (te)asﬂy gener_ahzed to ;he case
ing time. In this section we give a short review of ensembl¥/"€7€¢ = 1. Bagging works by aggregating many diverse

pruning techniques related to the present work regressors, each one built using the same learning algorith

In [6], Zhou et al. propose the use of a genetic algorithm tdro™M & different bootstrap sample of the original training
determine an optimal set of weights for the regressors in ti@- ASSUMEf;(x|Z;) is the prediction given by theth

ensemble by minimizing a function that estimates the geneﬁggr?ssor built. withZ;, the Zth bootstrap sample OT the
itraining dataZ;.. The prediction of the ensemble is the

alization error of the ensemble. The optimization problem i f the individual f the .
solved by using a standard Genetic Algorithm with a floating2Ver@ge of the individual responses o regressors in

point scheme for real-valued weights in neural networkd'® €nsemble

ensembles. Then, those nets whose optimized weights are Mo

below a specified level are eliminated from the ensemble. G =My fix|Z,), i=1,2,..., M. (1)
The experiments made employed rather small ensembles of i=1

20 regressors. The error of the bagging ensemble is

Another related proposal is made in Ref. [7], where the
ensemble is built by simultaneously training a collection M 2
of networks using a correlation penalty term in the error £ = / <M_1Zfi(X|Zi) - f(X)) p(x)dx, (2)
function. This penalty term is included to encourage spe- i=1
cialization and cooperation among the individual networksyhere f(x) is the target function to approximate, ap(i)

It leads to the generation of regressors that are negativelythe probability density distribution in attribute spagéter
correlated. Small ensembles with about 10 neural networkgme algebra [6], Eq.(2) can be expressed as

can be constructed using this method.

The work presented in Ref. [9] describes how collinearity L
among the members of the ensemble can have harmful effects E=M Z Z Cij
on the estimation of the optimal weights for the linear com-
bination that is the output of the ensemble. Two algorithmghere
are proposed to improve the performance of the ensemble . R
by dropping some of the collinear regressors. The first oneC;; = (fi(x|Zi) — f(x)) (fj(x|Zj) — f(x)) p(x)dx
considers collinearity between the outputs of the regresso
and the second one collinearity between their errors. Thand C;; is the average squared error of tlih ensemble
ensembles built are also rather small (6 regressors). member.

A different approach to ensemble pruning is to cluster Assume that a bagging ensemble composet! dfifferent
regressors in the ensemble according to their outputs &md thregressors has been constructed. To prune the regresgion ba
to select a single representative member for every clusstr t ging ensemble we try to select the subensemble composed

®3)

i=1 j=1



of u regressorgsy, sz, ..., Sy} that minimizes the error [13] to order classification ensembles. The regressor tgelec
in the uth iteration is the one that minimizes the expression

u u
E(u) = Uiz Z Z Csisj~ (4) u—1u—1 u—1
i=1 j=1 Sy = argmin u_z(z Z Cos,+2 Z Cs,x+Cri) (6)
Since the true error is not available in the learning problem k i=1j=1 =1
we make _th_e selection of the opt_imal subensemble basgfhere & ¢ {1, .., N}\{s1, $2..., $4—1} and where
on the training error. The expression for the training err0{51’52“_’5u_1} are the indexes of the regressors that

is identical to Eq. (4), where the average oygx) in the haye aiready been incorporated into the pruned ensemble at
calculation ofC; is replaced by an average over the trainingiaration « — 1. Algorithm 1 shows the pseudocode of the

data proposed algorithm.
C(tr)_iiv:f_ Z)— f FixalZ)) — f . . .
5 =W (fi(xnlZi) = f(xn))(f;(xn]Z;) — f(xn)).  Algorithm 1 Ordering Algorithm.
n=1 (5) Input: Vector of regressors R and training data Z.

All the information needed for the optimization problem isl M — |R[; N — |Z]
the matrix C;; estimated over the training set. We expec® for (i from 1 to M)

the estimateﬁg’”) to be similar to the;; matrix calculated 3 for (j from 1 to M) A

over the true distribution of the data. In doing this we maké Cij — NS0 [ fi(xn) — f(Xn))
the assumption that minimizing training error leads to the f:(x, ) — f(x ))]
minimization of generalization error. This is not necedgar I "

thg case in actual regression problems. In fact miqimithg tgg empty vector
training error usually leads to overfitting to the traininatal 6 for (u from 1 to M)
andf to the sglectlgn qf a? Ita‘r:]lserr(;lblt?1 whose 'genera:;at'lqn minimum — 0o
performance is suboptimal. Indeed, the experiments chrrig for (k in {1,.., M\ {s1, ... 5u_1})
out show that the size of the subensembles that minimizg Z9iu—1 —u—1
. value —u >3, 7 >, Cos,+
the error on the training data tend to be smaller than the QZqu C +JC ")
optimal subensembles when the error is estimated on a tesf . | S lai=1 Heik T kb
T - . if (value < minimum) {
set that is independent of the training set. Even assuming
. . Sy — k
that a subensemble with lower generalization error than ﬂlez
original pool of regressors exists, the process of findirey th )
one with the lowest error is complex and implies generating
SN 4 returns

all the possible2¥ — 1 non empty subensembles of the _ )
original ensemble. In the Appendix we show that selecting QUtPUt: An ordered vector of the regressor indexes.
the subset of regressors in an ensemble that minimizes the
mean square error estimated on some data set is an NP-hargtherefore, subensembles of increasing size are built, each
problem. Therefore the selection of the optimal subensemblith one more element than its predecessor. Because the
is not generally feasible in practice. subensemble generated at iteratiomcludes all the regres-
sors of the subensemble generated at iteration 1, this
process can be seen as an ordering of the regressors of the

As seen in the previous section, the problem of selectingbmplete ensemble, where each subensemble ofusizith
the optimal subensemble cannot be solved in polynomial < » < M is built by taking the firstu regressors in
time unless NP = P. This leads to the rather disappointinhe ordered sequence. This choice need not be the global
conclusion that, as the number of regressors in the ensembigtimum, because the optimal subensemble of siZghe
grows, the complexity of the problem becomes unmanagene with the lowest mean square error over the training data)
able. Despite this observation, it may still be possiblertd fi might not include the regressors of the optimal ensemble of
near-optimalsolutions to the subensemble selection problemize u - 1. However, on typical cases, we expect it to be a
in practice. near-optimal approximation.

The time-complexity of this algorithm as a function of the
number of regressors in the bagging ensemble can be easily
We follow the classic theory on efficient approximate soluestimated. As stated earlier, it is necessary to estimate th
tions of NP-complete problems [11] and design a polynomiahatrix C;; on the training set before the ordering process

time greedy algorithm that constructs at each step the bestn begin. This preprocessing has a @§b/? - N), where
local solution. The algorithm starts with an empty ensembld&’ is the size of training samples ard is the number of
and then selects at each iteration the regressor that, whegressors in the original ensemble. Then at each one of the
incorporated, reduces the training error of the new ensemhl/ iterations we have to extract the regressor that minimizes
the most. The process is very similar to the one used in [128xpression (6) from the remaining set of regressors. This

minimum «— value

IV. ORDEREDBAGGING

A. Ordering Algorithm



task has a cosO(((M + 1) — u) - u), wherel < u < subensembles of size = 1,2,...,(M — 1). Notice that
M is the current iteration. Therefore the final cost of thevhenu = M, where)M is the size of the original ensemble,
greedy algorithm is the sum of each one of the previOU§(f¢7u) = P(fi), and the errors of ordered and standard
costs, resulting in a complexitp (M3 + M? - N). bagging ensembles are equal.

The lowest error that standard bagging achieves is
limy—eE = Bias® > 0. Hence, it is possible for the

~ In this section we perform a bias-variance analysis tgupensemble at iteration to have a lower error than this
investigate the dependence of the error on the subensegaymptotic limit if the inequality

ble size. Since the the regressors that make up a bagging

ensemble are generated from independent bootstrap samples u”'Var(u) + Bias(u)? < Bias® 9)

of the original training data, they can be seen as independen ) . o ]

realizations of a random variable drawn from a distributiofS Satisfied. This equality obtains if the algorithm selests
P(f;). Taking the expectation over this distribution, and aftep€t Of regressors from the complete ensemble with a low bias
some algebra, the mean square error of a regression ensenflé variance. In the experiments carried out it is seen that
of size u can be expressed as a function of the averad@e inequality is fulfilled for sufficiently large subenseleth
bias, the average variance and the average covariance of th&igure 1 shows the error curves for an ensemble composed

B. Bias-variance analysis.

individual regressors in the ensemble [14] of 100 neural networks for the regression probl8wmston
) Housing[15]. These curves display the dependence of the
E(u) =uVar + (1 —u")Cov + Bias, mean square error in regression on the number of regressors

in the ensemble. The four different curves correspond o tra

" “ and test errors in both randomly ordered and ordered bagging

Bias — u-—L ZBias(fi), Var — w1 Z Var(f), ensembles. Each curve is the result of averaging the 10-fold
=1

with the definitions

p cross-validation error estimates for the regression erobl
— PR with 10 different partitions of the data. The features digpd
Cov = (u—1)""u™ Zcov(fi’ 1i)- by the error curf)/es are representative of all the rczgfession

J# problems investigated.

In standard (randomly ordered) bagging the expected vari- As anticipated, when the aggregation order in bagging is
ances and biases of all regressors are equal. Also, becagggdom the error decreases monotonically as more regsessor
the regressors are built with independent bootstrap s@mnplgre added to the ensemble. The decrease slows down for
of the training data their covariances are zero. Theretb&e, |arger ensembles and asymptotica”y approaches a saturati
regression error of a randomly ordered bagging ensemble jgliel. If the aggregation order is modified according to
sizeu is simply the procedure described, the error curves show an initial

E = u War + Bias? @) decrease, which is ini.tially ste_eper than in th_e randomly
ordered ensemble. At intermediate ensemble sizes the error
whereVar and Bias are the expected variance and bias ofurves display a fairly broad minimum. After this minimum

a regressor drawn from the distributi@r( f;). the error increases slowly and eventually approaches the
The ordering procedure has the effect of altering therror level of the complete bagging ensemble from below.

distribution of the regressors that are part of the enseiible The improvements in regression accuracy in the ordered

iterationu. Instead of being independent of the subensemblensemble that are observed in the training error curve are
size this distribution changes as new regressors from tlag¢so observed in the error curve estimated on the test set. In
ordered sequence are aggregated into the ensemble. In whatticular, the minimum in the test error curve in an ensembl
follows P(f;,u) denotes the distribution of the regressorsvhose aggregation order is chosen according to the training
that are part of the ordered ensemble at iteratioGarrying data is significatively lower than the best result of randoml

out the bias-variance error decomposition for the orderastdered bagging. However, it is also apparent in Figure 1

bagging we have that the error for an ordered subensemlb® minimum appears earlier in the aggregation process (i.e

of sizeu is for smaller ensembles) in the training error curve than & th

_1 . 9 error curve for the test set. This means that it is difficult to

E =u""Var(u) + Bias(u) (8) exactly estimate from the training data where the minimum

where Var(u) and Bias(u) are the expected variance andin the error curve for the test data lies. Nevertheless, the
bias of a regressor drawn from the distributi@?{fi,u). error curves are rather flat around the minimum, so that

As a result of the ordering strategy we expect the valugwerestimating or underestimating the size of the ensemble

of Bias(u) and Var(u) (the average bias and variance ofthat corresponds to the minimum does not have a large effect

a regressor in an ordered subensemble of siggo be on the generalization performance.

lower than Bias and Var (the average bias and variance Figures 2 and 3 show how the variance and bias contribu-

bias and variance of a regressor in a bagging ensembléfns to the error of the ensemble members vary as a function

for intermediate subensemble sizes. In this manner orderefithe number of regressors in the ensemble for both train
bagging achieves lower errors than standard bagging fand test datasets in tHgoston Housingegression problem.
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Fig. 2. Ordered bagging and randomly ordered bagging averageand
test variance of the members of the ensemble, for Boston dataset
function of the number of regressors in the ensemble.
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Fig. 3. Ordered bagging and randomly ordered bagging averageand
test squared bias value for Boston data set, as a functiomeofitmber of
regressors in the ensemble.

Results are 10 fold cross-validation estimates averaged ov
10 different partitions of the data. Results are shown fahbo
ordered and random ordered bagging. For a subensemble of
sizeu > 2 the average values over the datagedf squared

bias and the variance are given by the unbiased estimates

2

Bias (u;2) =u"(u—-1)""> " Y Ci(2)
i=1 j=13j#i
Var(u; 2) =u=' S Cia(Z) - Bias (u)(2)
=1
where
Cij(Z) = 12|71 Y (file) = f(@)(f;(2) — f(2)).

zEZ

As anticipated, for randomly ordered bagging the values of
the variance and of the squared bias remain approximately
constant as the number of regressors in the ensemble is
increased. The deviations from a constant behavior in the
curves for the variance in small subensembles are probably
due to sampling fluctuations. In agreement with the large
limit of Eq. (7) the bias term for random ordered bagging
is approximately equal to the generalization error of the
complete bagging ensemble. In contrast to this, the vagianc
and the squared bias values are not constant for ordered
bagging. The values of the variance and of the squared
bias averaged over the training data both start low and
then progressively grow until they reach the constant level
of randomly ordered bagging when all the regressors are
included in the ensemble. The ordering algorithm works by
aggregating in the ensemble first regressors that have low
variance and low bias. In ordered bagging ensembles the
behavior of the curves for the average squared bias is simila
when the averages are calculated over the training data or
over the test set. However, the curves for the average \@@ian
are very different. When the training set is used, the orderin
algorithm succeeds in finding a subensemble of regressors
with a low variance. This improvement is not reflected in
the variance curves estimated with the test set. We believe
this is due to some overfitting to the training data.

Note that, according to (7) and (8), as the size of the
ensemble grows, the most important term in the error decom-
position is the value of the squared bias. Hence, it seens tha
the algorithm decreases the generalization error mainly by
reducing the bias of the regressors included in the ensemble
while keeping their variance relatively low.

V. EXPERIMENTAL RESULTS

To assess the performance of pruning in ordered bagging
ensembles, experiments are carried out over 14 regression
problems from the UCI-Repository [15], from the Weka Data
Mining Tool [16] and from other sources [17], [18], [19],
[20]. These datasets have been selected in order to include a
wide variety of real world and synthetic regression proldem
Table | displays the number of instances, the number of
attributes and the source of the different datasets. For the
synthetic data setBriedmanl, Friedmanzand Friedman3



the standard deviations for the additive noise are= then ordered according to the greedy algorithm described in
1,0 = 150 and ¢ = 0.1, respectively. InFriedmanl, Section IV, using error estimates only on the training set.
Friedman2, Friedman3and Peak the figures reported are (iv) The first 20% regressors are selected to construct the
averages over 100 independent realizations of the syotheftiruned subensemble. Then, the error of each of the pruned
regression problems. For each of these problems a trainiegsembles is estimated with the corresponding unseen data.
set with 200 instances, and a test set of 2000 instancEmally, these values are averaged to compute the cross-
were generated. For the real world problems the figureslidation estimate.

given are averages of 10-fold cross-validation error exstis For the synthetic datasets the individual neural networks
over ten different partitions of the data. As base learneand the ensembles are generated and ordered using the
we use feed-forward neural networks with a single hiddeprocedure described in the previous paragraph. However,
layer of sigmoidal neurons, and linear units at the outpubstead of averages of cross-validation error estimates, t
layer. Networks are trained over 1000 epochs using tHegures reported are averages 100 independent realizatfons
quasi-Newton optimization method BFGS [21]. In order tdhe train and test datasets.

avoid overfitting, a weight decay strategy is used [22] in the The pruning rule that selects the first 20% regressors in
training process. All computations are carried out usirg ththe ordered pool generated by bagging selects subensembles
R statistics software [23] with the available neural netegor that exhibit a consistently good generalization perforogan
package [24]. in the regression problems investigated. In fact, because
the test error curves are rather flat around the minimum,
any value between 15% and 25% percent of the original
pool of regressors leads to similar results. Furthermang, a
subensemble that includes more than 15% of the initial

TABLE |
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTS

Dataset Cases Attr.  Train/Test Source . .
Boston 506 13 10-foldcv  UCI-Repository regressors outperforms the complete bagging ensemblé in al
Servo 167 4 10-fold-cv  UCI-Repository the problems investigated.

Ozone 33 8  10-fold-cv  UCI-Repository Table Il shows the results for the different datasets using
Friedmanl 2200 10 200 / 2000 See [18] . S

Friedman2 2200 4 200/ 2000 " ensembles of 100 neural networks. The figures in first column
Friedman3 2200 4 200 /2000 i correspond to the average training error for the complete
Peak 2200 20 200/ 2000 See [20] ensemble. The second column displays the averaged training
AutoPrice 159 15 10-fold-cv Weka

Pollution 60 15  10-fold-cv Weka error values for the pruned ensemble. The next two columns
Solder 720 5 10-fold-cv Ref. [19] display the same information for the errors on the test set.
Sensory 576 11 10-fold-cv Weka Table 11l shows the corresponding figures using ensembles
Bodyfat 252 14 10-fold-cv Weka

Bolts 40 7 10-fold-cv Weka of 200 neural networks. These tables show that the error
Loblolly 84 2 10-fold-cv See [17] of the pruned subensembles is systematically lower than

the error of the complete bagging ensemble. A patreabt
was carried out to determine whether these improvements in
For each of the real world datasets, we use 10-folghe generalization accuracy are statistically significiable

cross-validation to estimate the regression error. TRSSI v/ shows thep-valuesgiven by the test for each regres-
validation process is repeated 10 times for different pans g, problem. In the synthetic regression problerReak
of the data. The error values reported are averages O&fedmanl Friedman2 and Friedman3, for ensembles of
these different partitions. The computation of each cros§pg members and 200 members. these p-values show that
validation estimate involves the following steps: (i) Gie  yned subensembles have a better prediction accuracy with
a random partition of the original data into 10 differenty configence level of 99.9%. A similar conclusion can be
sets in order to carry out. 10—folq cross-validation. (||)rEo reached for the real-world problems (except for Beder
each of the ten divisions into train and test, generate 'e'thﬁroblem, where only a 95% confidence level is achieved).
100 or 200 neural networks from the training set usingyowever, in this case, the statistical test may overesémat
bootstrap sampling. For each network, different archites {he significance of the differences, because the sets used in

(2,3, 5, and 7 hidden units) are explored. We also considg{e cross-validation estimates are not independent [25].
12 possible values, equally spaced in the interjall],

for the weight decay constant. All possible combinations VI. CONCLUSIONS

of the number of hidden units and of the values of the In this paper we have proved that the selection of an

weight decay constant are tried to determine which modeptimal subensemble from a bagging regression ensemble
provides the best regression fit, based on a separate il@at minimizes the error over a given data set is an NP-

fold cross-validation estimate of the mean square error drard optimization problem. An approximate greedy strategy

the training data. Once the best parameter combination tisat generally reaches a near-optimal solution consists in
found we build the network by training over 1000 epochsordering the regressors in the initial bagging ensemble,

For each of the ten ensembles the error is estimated with thad then selecting a subset for aggregation. The ordering
corresponding unseen data. Finally, these values aregageraprocedure incorporates first those regressors from thialinit

to compute the cross-validation error. (jiii) The ensembles pool of classifiers that improve the regression accuracy of



TABLE Il
AVERAGE TEST AND TRAIN MEAN SQUARE ERROR FOR THE COMPLETE ANDRUNED BAGGING ENSEMBLES USING A POOL OA.00 NEURAL
NETWORKS. RESULTS HAVE BEEN MULTIPLIED BY A FACTOR(*) 1073, (**) 103, (***) 10~S.

Train Test
Dataset Complete Pruned Complete Pruned
Boston 6.82+0.80 4.754+0.59  12.05+1.07  10.38+0.86
Servo 0.0734+0.010  0.040+0.006 0.273+0.054 0.2184+0.076
Ozone 13.79+£0.73  11.56+0.68  17.73+0.46  17.26+0.45

Friedmanl 1.1440.31 0.90+0.31 2.99+0.38 2.64+0.37
Friedman2*  17.40+5.14 12.07+2.35 23.01+£4.52 19.56+1.27
Friedman3** 12.524+2.63 9.96£2.01 18.27+3.08 17.554+2.47

Peak 4.07£0.18 2.71+£0.13  25.79£1.06  23.55£1.01
AutoPrice***  4.2940.19 2.02+0.12 7.07£0.31 9.77£0.55
Pollution* 2.71+0.22 1.10£0.19 3.07+0.08 2.20+0.24
Solder 4.4040.26 4.00+0.25 7.53£0.32 7.43£0.29
Sensory** 366.2+6.5 343.3+6.2 535.9£7.0 522.9+£7.8

Bodyfat 1.77£0.27 0.53+0.03 2.93£0.31 1.98+0.19
Bolts 2.45+0.41 0.69+0.15  10.95+3.07 7.90£2.91
Loblolly 0.74+0.69 0.12+0.02 1.68+0.89 0.91+0.19

TABLE Il

AVERAGE TEST AND TRAIN MEAN SQUARE ERROR OF COMPLETE AND PRUNEBAGGING ENSEMBLES USING200 NEURAL NETWORKS. RESULTS
HAVE BEEN MULTIPLIED BY A FACTOR (*) 1073, (**) 103, (***) 1076,

Train Test
Dataset Complete Pruned Complete Pruned
Boston 6.80+0.75 4.61+0.60 12.04+1.02 10.14+0.87
Servo 0.071+0.009 0.0384+0.006 0.2704+0.055 0.210+0.067
Ozone 17.70+0.36 17.24+0.24 13.75+0.72 11.42+0.71

Friedmanl 1.1440.31 0.88+0.29 2.99+0.38 2.61+0.39
Friedman2*  17.17+4.86 11.88+2.34  22.7844.22 19.33£1.25
Friedman3** 12.524+2.57 9.89+1.20 18.25+3.10 17.40+2.58

Peak 4.01+£0.18 2.51+0.13  25.7241.04  23.01£1.00
AutoPrice***  4.274+0.17 1.89£0.09 7.114+0.33 5.72£0.34
Pollution* 2.7240.22 1.054+0.19 3.05+0.10 2.08+0.22
Solder 4.3940.27 3.96+0.26 7.5140.31 7.414+0.27
Sensory** 365.5+6.8 339.9+6.7 535.94+6.7 520.24+7.4
Bodyfat 1.73£0.23 0.51+0.03 2.87+0.28 1.93+0.19
Bolts 2.384+0.40 0.62+0.15  10.9343.08 7.72£2.85
Loblolly 0.66+0.54 0.11+0.02 1.51£0.65 0.88+0.17

the ensemble the most. In this manner we build a sequenessembles. We take advantage of this feature in the error
of subensembles of increasing size and plot error curvesirves and select a pruned ensemble that includes only the
that display the dependence of the regression error on tfiest 20% elements from the ordered ensemble of regressors.
subensemble size. For standard bagging, where the ordédre pruned ensembles consistently improve the generaliza-
of aggregation is random, these curves show a monotortion performance of the complete bagging ensemble in the
decrease of the error as the number of regressors in thegression problems investigated. The proposed algorithm
subensemble is increased. In ordered bagging the meezsn be also used to prune regression bagging ensembles
square error reaches a minimum value for subensemblesaafmposed of other types of regressors as base learners.
intermediate size. This minimum corresponds to an error

that is below the error of the complete bagging ensemble. APPENDIX

Around this minimum the error curve is fairly broad, which
implies that it is easy to improve the results of bagging b
early stopping in the aggregation process in ordered bgggi

In this appendix we prove that finding the subensemble
)éf a regression bagging ensemble that minimizes the mean
square error over a given data set is an NP-hard optimization



TABLE IV
RESULTS OF A PAIREDt-teStFOR THE DIFFERENCES BETWEEN THE TEST
ERRORS OF PRUNED AND COMPLETE ENSEMBLES

p-values

Dataset 100 members 200 members
Boston 7.35-10~ 12 1.97.10~ 14
Servo 9.6.10~4 4.2.10~4
Ozone 2.9.10~4 2.3.10~4
Friedmanl  2.9-10—35 1.5-10737
Friedman2  2.7.10—12 1.3.10713
Friedman3  7.2.10~% 1.4-10~4
Peak 2.6-10~54 1.5-10~ 71
AutoPrice 1.5-10~7 6.0-10~7
Pollution 3.9.10~11 3.7.10~13
Solder 4.28.10~2 2.1.10—2
Sensory 1.4-10~ 11 4.9.10~16
Bodyfat 5.10~8 4.7.1079
Bolts 5.2.10~7 6107
Loblolly 6.1-104 1.2.107%

problem. This optimal subensemble selection problem

manuscript.

(1]
(2]

(3]
(4]

(5]
(6]

(7]
(8]

i€l

related to theSubset Sunproblem, which is NP-complete [10]

[11]. The Subset Surproblem consists in extracting from a
given set of integers = {s1, s9, ..., s, } @ subset of elements

whose sum is equal to zero.

Suppose that an algorithri that solves the optimal

[11]

subensemble selection problem in polynomial time exist 3]

The Subset Sunproblem would then be solvable in poly-

nomial time by letting each of the members of the set of

zero is the target output. In this manner the Seaif integer

values can be seen as the output of the ensemble in a datd&8tC. L.

with only one instance. Then, according to this expression,

2
de=0s=(lCIT'Y ] =0vCCS C#D

ceC ceC

[16]

[17]

finding a subensemble with zero mean square error is equiv-
alent to finding a subset ¢ whose elements add up to zero.[18]

If a subset ofS with zero mean square error exists (this is th

lowest possible mean square error) then algorithrwould
be able to find it in polynomial time. This subset 8fhas

the property that its elements add up to zero and therefore
a solution to thesubset Sumproblem. On the other hand if a

Tio)

[20]

)

[22]

subset with mean square error greater than zero is returned,

then there is no subset & the sum of whose elements is

zero.
Unless NP=P, no algorithm with the properties4gxists.

Hence, the problem of finding the optimal subensemble of
regression bagging ensemble is at least as hard as any

[23]

(73]

complete problem. These types of problems are NP-hard, aid]
unless NP=P, no polynomial time algorithm that computes a

solution to any of this problems exits. Notice that this fesu

also implies that pruning a weighted averaged regression

ensemble is an NP-hard problem.
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