
Evaluation of Decision Tree Pruning with

Subadditive Penalties

Sergio Garćıa-Moratilla, Gonzalo Mart́ınez-Muñoz and Alberto Suárez

Universidad Autónoma de Madrid,
Avenida Francisco Tomás y Valiente, 11,

Madrid 28049, Spain,
sergio.garciamoratilla@estudiante.uam.es,

gonzalo.martinez@uam.es,alberto.suarez@uam.es

Abstract. Recent work on decision tree pruning [1] has brought to the
attention of the machine learning community the fact that, in classi-
fication problems, the use of subadditive penalties in cost-complexity
pruning has a stronger theoretical basis than the usual additive penalty
terms. We implement cost-complexity pruning algorithms with general
size-dependent penalties to confirm the results of [1]. Namely, that the
family of pruned subtrees selected by pruning with a subadditive penalty
of increasing strength is a subset of the family selected using additive
penalties. Consequently, this family of pruned trees is unique, it is nested
and it can be computed efficiently. However, in spite of the better theo-
retical grounding of cost-complexity pruning with subadditive penalties,
we found no systematic improvements in the generalization performance
of the final classification tree selected by cross-validation using subaddi-
tive penalties instead of the commonly used additive ones.

1 Introduction

Decision trees are one of the most extended types of classifiers. The reasons
for their wide use are the availability of efficient algorithms for the automatic
induction of decision trees from labeled data (CART [2], C4.5 [3]), the high
processing speed and accuracy that can be obtained in many classification prob-
lems of practical interest, and the interpretability of the classification models
generated.

A decision tree is a hierarchical questionnaire that partitions the data into
disjoint subsets according to the result of tests associated to each of the non-
terminal nodes of the tree. By applying the sequence of tests at the internal
nodes, an example is associated to a single leaf node on the fringe of the decision
tree. The classification given by the tree is the class label of the leaf node to
which the example is assigned. Assuming that only Boolean tests are used, as
in CART, the decision tree is a rooted binary tree. The root node has all the
examples associated to it and yields as a classification the majority class of the
examples in the whole training set. The binary decision tree is grown from the
root node by performing a test that splits the data into two disjoint subsets.

Each of these subsets is associated to one of the two child nodes of the root
node, which becomes an internal node of the tree. Each of the newly generated
child nodes becomes labeled with the majority class of the training examples
associated to it. The split is chosen to maximize a quantity that is correlated
with the classification accuracy of the tree (for instance impurity reduction [2],
information gain, information gain ratio [3], etc.) This divide-and-conquer pro-
cess is repeated for each of the newly generated nodes until either all examples
are correctly classified or a termination criterion is satisfied.

Trees grown with this greedy algorithm need not be globally optimal. Further-
more, if they are grown until they reach the minimum classification error on the
training data, they typically exhibit poor generalization performance and yield
overly optimistic estimates of the true classification error. To avoid overfitting to
the training data, the tree growing process could be stopped when a properly de-
signed termination criterion is fulfilled. However, it has proved difficult to design
appropriate stopping rules [2]. Instead, the strategy that is commonly used is
to overgrow the decision tree until all training examples are correctly classified,
and then to prune the fully-grown tree upward, in an appropriate order, until
the optimal tree is found. Biases can be avoided if the pruning process is guided
by using classification error rates estimated on a validation set, an independent
collection of labeled examples, which have not used in the construction of the
tree [4]. While this may be an appropriate strategy for problems in which la-
beled training data is either abundant or easy to obtain, in data-poor problems,
or when the labeling process is costly, one should avoid using separate portions
of the training set for the growing and for the pruning process [5]. An alternative
to this procedure is the cost-complexity pruning proposed in CART, where the
goal is to minimize a function that considers both misclassification costs and a
measure of the tree complexity [2].

The complexity penalty used in most cost-complexity pruning methods for
decision trees, and in particular in CART, is additive. Additive penalties increase
linearly with the size of the decision tree. Recent results in statistical learning
theory suggest that subadditive penalties, and in particular a penalty term that
varies as the square root of the size of the tree, may be more appropriate for
classification problems [1, 6–9]. A subadditive penalty is monotonic but its in-
crease with the size of the tree is slower than linear. The theoretical support for
subadditive penalty terms comes from complexity regularization theory [7] and
from structural risk minimization formulas that provide bounds for the general-
ization error of a decision tree [6]. Generally, additive penalties are used because
one can design pruning algorithms that are fast, efficient in memory use, and
easy to implement [1]. Little o no theoretical justification is given for the choice
of a linear penalty term.

The goal of the present work is to investigate whether cost-complexity prun-
ing with subadditive penalties, which seems to be theoretically well grounded,
improves the results of other pruning strategies in a collection of benchmark
problems. Previous research devoted to performing extensive comparisons be-
tween different pruning strategies [5, 10] did not consider the possibility of subad-

ditive penalties. To carry out this comparison we implement the efficient pruning
algorithms designed in [1] and confirm the main results of this work. In particu-
lar we corroborate that in all cases the family of trees selected by pruning with
a subadditive penalty is a subset of the nested family of trees obtained by prun-
ing with additive penalties. Following CART, we select a single tree from the
family of pruned trees using cross-validation error estimates. The performance
of the selected tree is then compared with the corresponding standard CART
tree, which is induced using an additive penalty.

2 Cost-complexity pruning using subadditive penalties

Consider T , a binary decision tree. Any subtree S of T containing the root node
is a pruned subtree of T . This relation is denoted by S 4 T . The set of terminal
nodes of T is T̃ and the number of terminal nodes is |T |.

The idea behind cost-complexity pruning is to avoid overfitting by balancing
the performance on the training data and the complexity of the generated model.
The performance is quantified by a cost function ρ(S). In classification trees the
cost function typically used is the training classification error. The complexity
of the model is measured by a penalty function Φ(S), which, for decision trees,
is a function of the size of the tree or, equivalently, of the number of terminal
nodes. The following assumptions can be made about these functions: (i) ρ(S) is
a monotonically non-increasing function. That is, if S1 4 S2 then ρ(S1) ≥ ρ(S2),
(ii) ρ(S) is additive; i.e. it can be calculated by ρ =

∑

t∈T̃ ρ(t) and (iii) the
penalty function Φ(|S|) is a monotonically increasing function of the tree size.
That is, if S1 ≺ S2 then Φ(|S1|) < Φ(|S2|).

To balance the importance of ρ(S) with respect to Φ(|S|) a tuning parameter
α is introduced. For a given value of α the optimal tree according to the cost-
complexity function is

T ∗(α) = argmin
S4T

[ρ(S) + αΦ(|S|)] . (1)

The final classification tree is selected by estimating the value of α using cross-
validation. Given that |T | < ∞, the solutions of Eq. (1) are a finite set of pruned
subtrees Rl 4 T, l = 1, . . . , m such that |R1| > |R2| > · · · > |Rm| = 1. Each of
these trees is optimal for a range of values of α

α ∈ [αl−1, αl) ⇒ T (α) = Rl, 0 = α0 < α1 < · · · < αm = ∞ (2)

The goal is to select the optimally pruned tree from Rl, l = 1, . . . , m by deter-
mining the correct value of α. For both additive and subadditive penalties the
family of pruned subtrees is unique and nested [1, 2]

root = Rm ≺ · · · ≺ R2 ≺ R1 4 T. (3)

Another important result demonstrated in [1] is that the family of subtrees
obtained using subadditive penalties is a subset of the family generated using

Input: Fully developed tree T

Output: Minimum cost trees T k = T k
1 , k = 1, 2, . . . , |T |

1. for t = 2|T | − 1 to 1 {
2. set T 1

t = t
3. if (t is not a terminal node) {
4. for k = 2 to |Tt| {
5. set mincost = ∞
6. for i = max(1, k − |Tr(t)|) to min(|Tl(t),k−1|) {
7. set j = k − i

8. set cost = ρ(T i
l(t)) + ρ(T j

r(t)
)

9. if cost < mincost {
10. set mincost = cost

11. set T k
t = merge(t, T i

l(t), T
j

r(t))

12. }
13. }
14. }
15. }
16. }

Fig. 1. Pseudocode for computing minimum cost trees

additive penalties. This implies that there are less trees available for selection
using cross-validation. Despite having a smaller range of trees to choose from,
the extra trees that appear when additive penalties are used may actually have
poorer generalization performance, in which case it would be better not to con-
sider them for selection [1].

The algorithms presented in Figs. 1 and 2 generate the family of subtrees
pruned with a general size-based penalty term of increasing strength [1]. The
algorithm detailed in Fig. 1 constructs the minimum cost pruned subtrees of
sizes 1 to |T | from the fully grown tree T . Tree nodes are indexed by numbers
1 to 2|T | − 1 in such a way that children nodes always have a larger index than
their parents. The root node has index 1. The expression Tt denotes the full tree
rooted at node t (hence T = T1) and T k

t denotes the lowest cost pruned subtree
of Tt of size k (i.e. |T k

t | = k). The expressions l(t) and r(t) refer to the left child
and right child of t, respectively. The algorithm given in Fig. 2 generates the
family of pruned subtrees Rl and thresholds αl of Eq. (2) from the minimum
cost tree set (T k = T k

1 , k = 1, 2, . . . , |T |) returned from the algorithm in Fig. 1.

3 Experiments

In order to compare the performance of pruning strategies using either linear
(additive) or square-root (subadditive) penalties we carry out experiments in
eight datasets from the UCI repository [11] and in two synthetic datasets pro-
posed by Breiman et al. [2]. The datasets are selected to sample a variety of

Input: Minimum cost trees T k
1 , k = 1, 2, . . . , |T |

Output: Family of prunings Rl and thresholds αl

1. set k1 = argmin
k

(ρ(T k) = ρ(T))

2. set R1 = T k1

3. set l = 1
4. while kl > 1 {
5. set αl = ∞
6. for k = kl − 1 to 1 {

7. set γ = (ρ(T k) − ρ(T kl))/(Φ(kl) − Φ(k))
8. if γ < αl {
9. set αl = γ

10. set kl+1 = k
11. }
12. }
13. set l = l + 1

14. set Rl = T kl

15. }

Fig. 2. Pseudocode for computing the family of pruned subtrees

problems from different fields of application. The characteristics of the selected
datasets and the testing method are shown in Table 1.

The experiments consist in 100 executions for each dataset. For real-world
datasets we perform a 10 × 10-fold cross-validation. For the synthetic datasets
(Led24 and Waveform) random sampling was applied to generate each of the
100 training and testing sets. Each experiment involves the following steps:

1. Obtain the training and testing sets (by 10-fold-cv or by random sampling)
and build a fully grown tree T with the training dataset using the CART
tree growing algorithm [2].

2. Compute the family of pruned subtrees Rl of T and thresholds αl, using a
square-root penalty (i.e. Φ(|S|) =

√

|S|) in the algorithms of Figs. 1 and 2.
3. Obtain by V-fold-cv on the training dataset V trees (T (1), . . . , T (V)) and

their respective families of pruned subtrees R
(v)
m for v = 1, ..., V . The value

V = 10 is used. Select one subtree from each of the V families for each of
the following α values: αl

geom =
√

αl−1αl, l = 1, . . . , m. For each value of

αl
geom calculate the error of the selected subtrees using the independent set

and obtain the average cv-error (el
cv) and standard deviation (sel

cv).
4. Select the pruned subtree from (Rl, l = 1, . . . , m) corresponding to the

αl
geom value producing the smallest cv-error el∗

cv. Denote this tree by CV-
0SE. We also select the smallest tree corresponding to cv-error such that
el

cv < el∗
cv + sel∗

cv and denote it by CV-1SE. Breiman et al. advocate the
selection of CV-1SE (the 1 SE rule in [2]) because it is the simplest tree
whose accuracy is comparable to CV-0SE (the optimal tree according to

Table 1. Characteristics of the datasets and testing method

Dataset Instances Test Attrib. Classes

Australian 690 10-fold-cv 14 2
Breast W. 699 10-fold-cv 9 2
Diabetes 768 10-fold-cv 8 2
German 1000 10-fold-cv 20 2
Heart 270 10-fold-cv 13 2
Ionosphere 351 10-fold-cv 34 2
Led24 200 5000 cases 24 10
New-thyroid 215 10-fold-cv 5 3
Tic-tac-toe 958 10-fold-cv 9 2
Waveform 300 5000 cases 21 3

the cross-validation procedure) when the uncertainty in the cross-validation
error estimates is taken into account.

5. Repeat steps 2-4 using additive penalties Φ(|S|) = |S|. This configuration
results in standard CART trees.

The results of the experiments performed are in agreement with the theo-
retical results demonstrated in [1]. In particular, the family of pruned subtrees
obtained when applying a square-root subadditive penalty term is a subset of
the family of trees obtained when considering additive penalties.

Table 2 displays the average test error and average size of the selected trees
for the different pruning configurations and datasets. The best average test error
for each classification task is highlighted in boldface. The test errors are very
similar in trees selected with either subadditive or additive penalties. The dif-
ferences between CV-0SE and CV-1SE (and between these and unpruned trees)
are actually larger. Another important observation is that there does not seem
to be a systematic trend in the variations in performance. In some datasets the
more complex trees perform better (New-thyroid, Tic-tac-toe). In other prob-
lems the minimum is obtained for medium-sized trees (Breast W., Heart, Led24,

Waveform). Finally, there are some datasets where the smaller trees are slightly
better (Australian, Diabetes, German). The lack of a clear tendency in the re-
sults is apparent in the Ionosphere dataset, where the highest error corresponds
to a tree of intermediate size.

The average sizes of the trees selected using subadditive and additive penal-
ties are very similar. This can be seen in the second and third columns of Table 3,
which display the average size of the families of subtrees for subadditive and ad-
ditive penalties, respectively. The differences are small for most datasets. In fact,
they are less that one on average for half of the studied datasets (Breast, Heart,

Ionosphere, New-thyroid, Waveform). This indicates that the size of the final
tree selected with both types of penalties is very similar. The fourth and fifth
columns of Table 3 show the number of times (out of the 100 executions) in which
both penalties actually selected the same final pruned subtree for CV-0SE and

Table 2. Test errors and sizes of the decision trees selected

Unpruned CV-0SE CV-1SE
Subadd. CART Subadd. CART

Dataset error size error size error size error size error size

Australian 18.7 151.2 15.1 9.8 15.2 9.9 14.7 3.6 14.7 3.8
BreastW. 5.6 67.4 5.3 31.3 5.5 29.7 6.0 12.3 6.2 12.5
Diabetes 29.9 247.1 26.0 19.1 25.8 22.5 25.9 8.1 25.8 6.8
German 30.8 329.2 26.0 26.9 26.0 23.6 26.1 10.8 25.8 11.1
Heart 26.8 83.9 22.7 15.7 22.7 16.4 23.4 9.0 23.3 8.5
Ionosphere 10.4 44.3 11.3 16.0 11.4 15.5 10.8 5.9 10.7 5.7
Led24 43.6 146.3 32.7 21.7 32.9 24.7 33.7 18.6 33.6 18.6
New-thyroid 6.6 22.9 7.6 17.6 7.6 17.5 9.2 10.6 9.1 10.7
Tic-tac-toe 5.5 143.1 5.9 105.4 5.9 106.1 6.7 69.1 6.7 71.0
Waveform 29.6 78.9 28.9 31.7 29.0 28.3 30.2 16.0 30.3 15.7

CV-1SE, respectively. The fact that in most instances the same tree is selected,
irrespective of the type of complexity penalty used, accounts for the similarity
of the values of test errors.

Table 3. Family size and number of coincidences in the tree selected

Dataset Average m # same tree
is selected

Subadd. CART CV-0SE CV-1SE

Australian 10.74 13.32 79 96
Breast W. 10.01 10.54 59 70
Diabetes 11.24 16.02 64 82
German 13.52 19.52 44 65
Heart 9.47 10.19 64 71
Ionosphere 7.59 8.25 92 97
Led24 11.19 15.76 76 94
New-thyroid 5.85 6.60 99 95
Tic-tac-toe 13.40 17.22 78 75
Waveform 11.23 12.20 67 70

4 Conclusions

Despite the large body of work on decision trees, there has been little research
into the problem of how to prune fully grown trees to their optimal size using
complexity penalty terms. This paucity of theoretical investigations may be as-
cribed to the fact that pruning with additive penalties, which are commonly used

in cost-complexity pruning, can be readily and efficiently implemented. Further-
more, classification trees that are selected using cross-validation from a family
of trees pruned with additive penalties seem to perform well in many problems
of practical interest. Recent work on statistical learning theory for classification
problems indicates that subadditive penalties may have a sounder theoretical ba-
sis than the additive penalty terms commonly used in cost-complexity pruning.
In this research we implement the efficient algorithms designed in [1] to generate
families of decision trees pruned with nonadditive penalty terms. The family of
pruned trees is generated using a subadditive complexity penalty that increases
with the square root of the size of the tree. From this family a tree is selected
as the final classifier using cross-validation error estimates.

Experiments on benchmark problems from the UCI repository show that,
in the datasets investigated, there is no systematic improvement of the classifi-
cation performance of decision trees selected by cross-validation from a family
of pruned trees induced with a square-root penalty. Since the family of trees
pruned using subadditive penalties is necessarily smaller than or equal to the
family pruned using additive ones, there is little room for improvement and,
in fact, the decision trees selected using either a square-root penalty or linear
penalty are often equal. This conclusion should also obtain for other subadditive
penalties. In summary, despite the implications of recent theoretical work, we
have found no evidence in the classification problems analyzed of systematic im-
provements in generalization performance by using subadditive penalties instead
of the usual additive ones.

References

1. Scott, C.: Tree pruning with subadditive penalties. IEEE Transactions on Signal
Processing 53(12) (2005) 4518–4525

2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Chapman & Hall, New York (1984)

3. Quinlan, J.R.: C4.5 programs for machine learning. Morgan Kaufmann (1993)
4. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3) (1987)

221–234
5. Esposito, F., Malerba, D., Semeraro, G., Kay, J.: A comparative analysis of meth-

ods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine
Intelligence 19(5) (1997) 476–491

6. Mansour, Y., McAllester, D.A.: Generalization bounds for decision trees. In: COLT
’00: Proceedings of the Thirteenth Annual Conference on Computational Learning
Theory, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (2000) 69–74

7. Nobel, A.: Analysis of a complexity-based pruning scheme for classification trees.
IEEE Transactions on Information Theory 48(8) (2002) 2362–2368

8. C., S., R., N.: Dyadic classification trees via structural risk minimization. Advances
in Neural Information Processing Systems 15 (2003)

9. Scott, C., Nowak, R.: Minimax-optimal classification with dyadic decision trees.
IEEE Transactions on Information Theory 52(4) (2006) 1335–1353

10. Mingers, J.: An empirical comparison of pruning methods for decision tree induc-
tion. Machine Learning 4(2) (1989) 227–243

11. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

