
Selection of Decision Stumps in Bagging

Ensembles

Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato and Alberto Suárez

Universidad Autónoma de Madrid,
Avenida Francisco Tomás y Valiente, 11,

Madrid 28049, Spain,
gonzalo.martinez@uam.es,daniel.hernandez@uam.es,alberto.suarez@uam.es

Abstract. This article presents a comprehensive study of different en-
semble pruning techniques applied to a bagging ensemble composed of
decision stumps. Six different ensemble pruning methods are tested. Four
of these are greedy strategies based on first reordering the elements of
the ensemble according to some rule that takes into account the com-
plementarity of the predictors with respect to the classification task.
Subensembles of increasing size are then constructed by incorporating
the ordered classifiers one by one. A halting criterion stops the aggre-
gation process before the complete original ensemble is recovered. The
other two approaches are selection techniques that attempt to identify
optimal subensembles using either genetic algorithms or semidefinite pro-
gramming. Experiments performed on 24 benchmark classification tasks
show that the selection of a small subset (≈ 10−15%) of the original pool
of stumps generated with bagging can significantly increase the accuracy
and reduce the complexity of the ensemble.

1 Introduction

Numerous experimental studies show that pooling the decisions of classifiers in
an ensemble can lead to improvements in the generalization performance of weak
learners. Ensemble methods take advantage of instabilities in the algorithm used
to induce a base learner. These instabilities are exploited to generate a collection
of diverse classifiers that are expected to be complementary with respect to
the classification task considered. Ensemble classification is then achieved by a
majority voting scheme. In this context, complementarity means that the errors
of the different hypothesis are not correlated, so that, when the classifiers are
pooled, correct decisions are amplified. In this manner, the ensemble can achieve
a better classification accuracy than a single learner.

In bagging ensembles [1] diverse classifiers are built by inducing each hypoth-
esis from of a different bootstrap sample from the training data [2]. Typically,
the generalization error of a bagging classification ensemble decreases monotoni-
cally with the size of the ensemble. Asymptotically, this error tends to a constant
level, which is considered the best result bagging can achieve. Nevertheless, this
asymptotic level is reached only after a large number of hypotheses are included

in the ensemble. To reduce the memory and processing requirements, the selec-
tion of a subset of classifiers from the original ensemble was first proposed in [3].
Several later investigations show that ensemble pruning can produce very good
results [3–9]. In particular, by pruning the original ensemble, the speed and stor-
age requirements can be significantly reduced without a significant deterioration,
and sometimes with an improvement, of the generalization performance.

This article presents an empirical study of several ensemble pruning tech-
niques applied to bagged decision stumps. Decision stumps are binary classifi-
cation trees consisting in a single decision (i.e., the tree has a single internal
node, the root node and two leaves). Stumps can be seen as classification rules
based on one question with only two possible answers. Classification is achieved
by making a class assignment for each different answer.

The paper is organized as follows: In Section 2 a short review of the different
pruning techniques used in the experiments is given. In Section 3 we describe
the experimental procedure carried out to compare the pruning procedures in
the different classification problems considered and present the results of these
experiments. Finally, Section 4 summarizes the conclusions of this work.

2 Methods

In this section we describe several heuristics designed to extract a subensemble
with good generalization properties from an initial bagging ensemble. The en-
semble pruning methods considered are of two types. A first family of methods
is based on altering the order in which the classifiers in the original ensemble are
aggregated. The original bagging ensemble is used as a pool of hypothesis from
which a sequence of subensembles of increasing size is constructed. Starting from
a subensemble of size u−1, a subensemble of size u is constructed by incorporat-
ing the classifier from the original bagging ensemble that is expected to maximize
the generalization performance of the augmented subensemble. By stopping the
aggregation process before the full ensemble is recovered, smaller subensembles
can be identified that perform better than the original bagging ensemble. The
various pruning techniques considered differ by the heuristic rule that is used
to guide the ordered aggregation. Heuristics based on individual properties of
the classifiers have been proved not useful. Successful ordering heuristics need
to take into account the complementarity between classifiers with respect to the
classification task. The following is a description of the four different ordering
heuristics that have been investigated in this work.
Reduce Error (RE): this heuristic was first proposed in [3]. It first selects the
classifier with the lowest classification error on the training set. Then, classifiers
are sequentially incorporated one by one, in such a way that the classification
error of the partially aggregated subensemble estimated on the training set is
as low as possible. In [3] the possibility of correcting the mistakes made by this
greedy strategy is also considered through the implementation of a backfitting

procedure. Nonetheless, backfitting has been shown not to reduce the general-
ization error significantly in bagging ensembles [7]. Furthermore, it dramatically

increases the running time of the algorithm. Thus, in this study no backfitting
has been implemented.

Complementariness Measure (CC): The heuristic introduced in [5] prefer-
entially incorporates classifiers whose predictions are complementary to those of
the existing subensemble. At each step of the aggregation process this criterion
selects the classifier that correctly classifies more examples in which the partially
aggregated subensemble errs. This measure of disagreement can be thought of
as the amount by which that classifier shifts the decision of the ensemble toward
the correct classification.

Margin Distance Minimization (MD): This heuristic was first proposed in
[5]. It is based on defining a signature vector ct for each classifier t in the original
ensemble. This vector has as many components as there are instances in the
training set. Component ct

i is 1 if classifier t correctly classifies the ith instance,
and −1 otherwise. The average signature vector of the ensemble is defined as
〈c〉 = T−1

∑T

t=1
ct. Note that the ith training example is correctly classified if

the ith component of 〈c〉 is strictly positive. As a result, if the average signature
vector of a subensemble is in the first quadrant (all its components are strictly
positive), it will correctly classify all examples in the training set. The greedy
strategy progressively incorporates into the partially aggregated subensemble
those classifiers that reduce the most the distance of the subensemble signature
vector 〈c〉 to a fixed point o. This point is set to be in the first quadrant with
all components equal to a small value p (e.g. p ≈ 0.1) so that vector components
corresponding to examples that are simple to classify quickly reach a value close
to p and hence have less influence in future aggregation decisions.

Boosting Based Ordering (BB): This approach was introduced in [8] and is
based on the instance reweighting scheme proposed in the Adaboost algorithm
[10]. The method is similar to boosting, except that, instead of generating new
hypotheses from the weighted data at each iteration, the classifier with the lowest
weighted error over the training set is chosen and aggregated to the partial
subensemble. If there is no classifier whose weighted training error is below 50%
the weights are set to be uniform. Unlike Adaboost, if the selected classifier
has zero error over the training set the algorithm still continues to aggregate
classifiers until all elements have been incorporated.

A second family of methods attempts to directly identify optimal subensem-
bles using either global optimization heuristics, such as genetic algorithms, or
semidefinite programming on a relaxed version of the problem:

Genetic Algorithm (GA): This approach is similar to the one suggested in [4],
where a population of individuals is evolved to identify quasi-optimal subensem-
bles. The individuals in the population represent candidate solutions to the opti-
mization problem. A subensemble is represented by a binary string chromosome
whose length is equal to T , the number of classifiers in the original ensemble:
ci ∈ {0, 1}T . The allele value ct

i is an index indicating whether classifier t is in-
cluded in the subensemble (ct

i = 1) or not (ct
i = 0). The configuration parameters

of the GA were adjusted following the recommendations of [11], using the val-
ues proposed in [4] and information from exploratory experiments. A population

of 100 individuals with diagonal initialization is considered. Uniform crossover
(probability 0.65) and single bit-flip mutation (probability 5 · 10−3) are used to
generate variability in the population. The fitness of an individual is measured as
the accuracy of the corresponding subensemble on the training set. The proba-
bility that an individual is selected for reproduction is proportional to its fitness.
Elitism is used. The GA is halted after a fixed number of epochs (200 in our
investigation) have elapsed.
Semi-definite Programming (SDP): This pruning technique has been re-
cently introduced in [6]. It is based on building a matrix G whose element Gij

is the number of common errors between classifiers with labels i and j. The di-
agonal term Gii is the error of the ith classifier. The elements on this matrix are
then normalized G̃ii = N−1Gii and G̃ij, i6=j = 1

2

(

GijG
−1

ii + GjiG
−1

jj

)

, where N

is the size of the training set. Intuitively,
∑

i G̃ii measures the ensemble strength

and
∑

i6=j G̃ij measures its diversity. The subensemble selection problem of size
k is formulated as an integer programming problem. The goal is to minimize
argx minxT G̃x s.t.

∑

i xi = k and xi ∈ {0, 1}, where the binary variable xi

indicates whether classifier ith should be included or not in the subensemble.
The solution to this problem can be approximated very accurately by carrying
out a convex semi-definite programming (SDP) relaxation.

3 Experiments

Experiments on 24 datasets from the UCI repository [12] have been performed
to compare the performance of the different ensemble pruning methods when ap-
plied to bagged decision stumps. These datasets include synthetic and real-world
problems from different fields of application, with different numbers of classes
and attributes. Since stumps produce a binary decision, they are at a disad-
vantage when applied to multiclass problems, even when used in combination
with bagging. In any case, it is interesting to investigate whether the pruned en-
sembles can achieve significant error reduction on the multiclass problems. The
characteristics of the classification tasks are summarized in Table 1.

The results reported are averages over 100 executions. For each real-world
dataset, these 100 executions correspond to 10 × 10-fold cross-validation. For
the synthetic datasets (Led24, Ringnorm, Twonorm and Waveform) random
sampling was applied to generate each of the training and testing sets. Specif-
ically, for each dataset, the following steps were carried out: (i) Generate the
training and testing sets by 10-fold-cv or random sampling (see Table 1) and
generate 100 bagged decision stumps. The stumps were created using the CART
growing tree algorithm [13] and bootstrap samples. The full ensemble general-
ization error is estimated in the unseen test set. (ii) Order the decision stumps
using: reduce-error (RE), complementariness measure (CC), Margin Distance
Minimization using p = 0.075 (MD75) and boosting based pruning (BB). The
values of the heuristics are calculaded using information only from the training
set. (iii) The error of ordered ensembles is computed on the training and the test
set for subensembles of sizes 1 to 100. (iv) Apply to the same original ensemble

the selection approaches: GA and SDP. The SDP algorithm is set to select 21
decision stumps. The number of decision stumps selected by GA is not fixed.

Fig. 1 displays the curves that trace the dependence of the ensemble gener-
alization error with respect to the number of stumps for randomly ordered bag-
ging ensembles and for ensembles ordered with the different heuristics: RE, CC,
MD75 and BB. The plots on the left (right) correspond to training (test) error
curves. Note that in (randomly-ordered) bagging the error exhibits a monotonic
decrease and eventual saturation at a constant level as the number of classifiers
included in the ensemble increases. The effect of ordered aggregation is that the
error initially decreases faster than in the original curve, it attains a minimum at
intermediate subensemble sizes and then increases to the asymptotic error level
of the complete bagging ensemble. If the aggregation process is stopped at the
minimum of the error curve, the corresponding subensemble is smaller and has
a better generalization accuracy than the original complete bagging ensemble.
Plots are shown only for a selection of datasets, but they are representative of the
qualitative behavior of error curves in all the problems investigated. The average
error of the optimal subensembles with 21 classifiers selected by SDP approach

Table 1. Characteristics of the datasets and testing method

Dataset Instances Test Attrib. Classes

Audio 226 10-fold-cv 69 24
Australian 690 10-fold-cv 14 2
Breast W. 699 10-fold-cv 9 2
Diabetes 768 10-fold-cv 8 2
Ecoli 336 10-fold-cv 7 8
German 1000 10-fold-cv 20 2
Glass 214 10-fold-cv 9 6
Heart 270 10-fold-cv 13 2
Horse-Colic 368 10-fold-cv 21 2
Ionosphere 351 10-fold-cv 34 2
Labor 57 10-fold-cv 16 2
Led24 200 5000 cases 24 10
Liver 345 10-fold-cv 6 2
New-thyroid 215 10-fold-cv 5 3
Ringnorm 300 5000 cases 20 2
Segment 2310 10-fold-cv 19 7
Sonar 208 10-fold-cv 60 2
Tic-tac-toe 958 10-fold-cv 9 2
Twonorm 300 5000 cases 20 2
Vehicle 846 10-fold-cv 18 4
Votes 435 10-fold-cv 16 2
Vowel 990 10-fold-cv 10 11
Waveform 300 5000 cases 21 3
Wine 178 10-fold-cv 13 3

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 10 20 30 40 50 60 70 80 90 100

err
or

number of classifiers

 heart train

bagging
re
cc

md75
bb
ga

spd

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 10 20 30 40 50 60 70 80 90 100

err
or

number of classifiers

 heart test

bagging
re
cc

md75
bb
ga

spd

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70 80 90 100

err
or

number of classifiers

 labor train

bagging
re
cc

md75
bb
ga

spd

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 10 20 30 40 50 60 70 80 90 100

err
or

number of classifiers

 labor test

bagging
re
cc

md75
bb
ga

spd

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

err
or

number of classifiers

 twonorm train

bagging
re
cc

md75
bb
ga

spd

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90 100

err
or

number of classifiers

 twonorm test

bagging
re
cc

md75
bb
ga

spd

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

err
or

number of classifiers

 wine train

bagging
re
cc

md75
bb
ga

spd

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

err
or

number of classifiers

 wine test

bagging
re
cc

md75
bb
ga

spd

Fig. 1. Average train (left column) and test (right column) errors for Heart (top row),
Labor Negotiations (second row), Twonorm (third row) and Wine (last row) datasets

is displayed in the same figure for comparison. Finally, the average error of GA
is also shown, together with the average size of the subensemble selected by this
method. Fig. 1 shows that the pairs of training and test curves for the different
methods (including bagging) display a qualitatively similar evolution of the error
with respect to the number of stumps. What is more important, the position of
the minimum error for the ordering heuristics in the training error curves tends
to coincide with the position of the minimum in the test error curves. This fact

makes it possible to estimate the optimum number of stumps to use in the final
subensemble using information only from the training set. This is in contrast
with ensembles composed of more complex classifiers (e.g. CART trees). In such
ensembles, the minimum in the training error curves is generally achieved for
smaller subensembles than in the test curves [7].
Table 2 displays the test error in the different classification tasks, averaged over
the 100 executions. The results obtained with the ordering heuristics, which pro-
duce a collection of subensembles of increasing size (i.e. RE, CC, MD75 and BB),
are presented in two columns: the leftmost column indicates the test error for
subensembles of a fixed size (21 stumps). The column immediately to the right
displays the average test error of subensembles whose size is determined from
the position of the minimum of the training error (column labeled with Min).
Note that the figures displayed in columns Min of the Table and the values of the
test curves shown in Fig. 1 do not generally coincide: the former is an average
for different subensemble sizes and the latter is an average for a fixed number
of classifiers. Results for the selection approaches GA and SDP are also shown
in Table 2. Values of the test error that are significantly better than bagging
(using a paired ttest with p − value < 0.01) are highlighted in boldface. Errors
for cases where bagging performs significantly better (at a p− value < 0.01) are
underlined. In general, pruned bagging ensembles composed of decision stumps
perform better than the complete original ensemble. The largest improvements
are obtained using the reduce error and complementariness ordering heuristics to
aggregate decision stumps until a minimum in the training error is reached. The
improvements in accuracy are fairly large in some domains: In Wine the error
drops from 32.4 of full bagging to 5.2 of complementariness. In Twonorm the
generalization error nearly halves. In Heart the error achieved by MD75 (Min)
is 16.7 and bagging obtains 24.2, etc. As anticipated, the generalization error
in classification tasks with more than 2 classes is rather large. Notwithstanding,
the pruning procedures manage to significantly reduce the generalization error
in multiclass classification tasks: Glass, Led24, New-thyroid, Segment, Vehicle,

Vowel, Waveform and Wine. In any case, the performance in multiclass prob-
lems generally remains rather poor.
Table 3 presents the average number of stumps selected for each problem by the
different ordering heuristics, using the minimum error in the training dataset
and by the GA stumps selection approach. SDP subensembles have a fixed pre-
specified size of 21 decision stumps. The tabulated figures show that the amount
of pruning varies accross methods and datasets. However, on average, the num-
ber of selected stumps is fairly small (10–15%) for all ordering heuristics. The
smallest subensembles are generally obtained using the reduce error ordering
heuristic. This method also obtains low generalization errors. Note that for sev-
eral datasets (Audio, Australian, E-coli, ...) the number of selected stumps is on
average 1 and that, on these problems, the average generalization error of full
bagging and just one stump is very similar. For these classification tasks bag-
ging in not able to generate enough diversity and most of the decision stumps in
the ensemble are actually equal. For most of the problems analyzed the genetic

Table 2. Errors for full bagging (100 stumps) and the different ordering heuristics and selection procedures.

Dataset bagging RE CC MD75 BB GA SDP

Min 21 Min 21 Min 21 Min 21

audio 53.5±2.8 53.5±2.8 53.5±2.8 53.5±2.8 53.5±2.8 53.5±2.8 53.5±2.8 53.5±2.8 53.5±2.8 53.5±2.8 53.5±2.8
australian 14.5±3.8 14.5±3.8 14.5±3.8 14.5±3.8 14.5±3.8 14.5±3.8 14.5±3.8 14.5±3.8 14.5±3.8 14.5±3.8 14.5±3.8
breast 7.0±3.7 5.5±3.0 5.6±3.0 4.9±2.9 5.4±2.9 5.5±2.8 5.4±2.9 5.4±3.0 6.0±2.9 5.9±3.2 5.4±2.8

diabetes 27.8±4.1 26.3±4.3 26.2±4.3 26.4±4.1 28.5±5.5 26.3±4.2 26.0±4.4 26.5±4.1 26.9±4.7 27.0±4.3 26.9±4.7

ecoli 35.4±1.8 35.5±2.0 35.4±1.8 35.3±2.3 37.6±5.1 35.4±1.9 35.5±1.9 35.5±2.0 35.4±1.8 35.4±1.8 36.6±4.1
german 30.0±0.0 31.0±2.8 30.0±0.0 31.0±2.9 30.0±0.0 31.0±2.9 30.0±0.0 31.0±2.9 30.0±0.0 30.0±0.0 30.0±0.0
glass 51.4±6.7 38.0±7.8 37.8±8.0 36.4±7.4 52.1±5.2 36.0±7.5 36.0±8.1 38.9±8.4 48.1±9.8 38.3±8.2 39.2±8.2

heart 24.2±10.1 18.0±8.2 18.1±8.1 16.9±6.6 16.9±6.4 16.7±6.8 17.0±6.8 17.1±7.2 19.0±7.4 18.7±9.2 17.3±6.9

horse-colic 18.6±6.3 18.7±6.2 18.6±6.3 18.7±6.2 18.6±6.3 18.6±6.3 18.6±6.3 18.7±6.2 18.6±6.3 18.6±6.3 18.6±6.3
ionosphere 17.2±5.2 10.3±4.8 17.0±4.7 10.4±4.8 16.4±5.1 13.5±5.1 17.3±5.1 10.3±4.8 17.2±5.2 16.4±5.5 17.5±5.3
labor 18.5±15 11.4±13 13.8±13 13.5±13 15.0±13 12.3±14 12.2±13 9.9±12 12.5±14 15.2±14 10.4±12

led24 77.6±4.8 55.2±8.4 58.0±8.4 60.7±7.2 71.0±8.1 67.4±6.4 74.5±5.8 72.2±4.8 78.0±4.6 63.8±8.7 60.6±8.0

liver 37.3±7.6 33.3±8.2 33.6±8.1 32.5±7.5 30.9±7.1 33.1±7.5 32.1±7.4 32.2±8.0 32.7±7.8 34.3±7.7 32.4±8.3

new-thyroid 22.9±4.4 18.7±5.0 19.1±5.0 18.2±4.1 18.3±4.1 19.2±4.6 20.7±4.5 19.3±4.3 21.7±4.5 19.3±4.7 19.6±4.2

ringnorm 43.9±2.6 34.5±1.5 40.3±1.2 35.2±1.5 43.0±1.5 35.5±1.5 42.7±1.7 35.0±1.6 42.9±1.4 39.8±1.7 43.3±1.6
segment 55.0±5.2 44.0±4.0 45.2±5.3 43.3±2.5 50.1±7.4 43.3±2.5 52.6±6.6 50.8±7.0 57.4±4.7 43.1±2.1 44.9±5.3

sonar 25.7±9.6 27.4±11.0 27.1±9.9 27.6±9.6 28.3±9.7 26.8±10.3 27.0±10.0 27.1±10.1 27.7±9.4 26.8±9.2 27.5±9.7
tic-tac-toe 30.1±4.8 30.1±4.8 30.1±4.8 30.2±4.7 30.5±4.6 30.1±4.8 30.1±4.8 30.2±4.7 30.4±4.7 30.1±4.8 30.4±4.7
twonorm 20.6±5.5 12.2±2.0 12.4±2.0 11.6±1.9 12.0±1.8 11.3±2.2 11.6±1.8 11.3±1.9 11.5±2.2 13.4±2.9 11.2±1.8

vehicle 59.6±2.7 44.8±4.8 45.3±5.3 45.3±5.1 54.3±6.1 44.8±4.7 49.1±4.9 53.1±7.1 58.2±3.8 48.3±7.8 45.7±5.3

votes 4.4±3.0 4.4±3.0 4.4±3.0 4.4±3.0 5.5±3.4 4.4±3.0 4.4±3.0 4.4±3.0 4.6±3.1 4.4±3.0 4.8±3.3
vowel 74.6±2.1 67.2±3.2 68.3±3.1 70.8±3.7 75.8±4.5 69.5±3.1 72.9±3.4 72.9±2.9 77.6±4.3 67.5±4.2 70.5±3.8

waveform 39.2±5.0 27.5±4.8 29.1±6.2 27.8±5.0 29.2±5.9 28.9±5.0 30.3±5.2 28.0±4.9 30.4±6.7 32.4±7.1 29.3±6.3

wine 32.4±7.6 8.6±9.5 9.2±10.2 5.2±5.2 9.7±11.9 7.0±6.1 9.2±6.7 6.2±5.5 6.5±5.6 11.5±11.7 5.4±5.2

Average 34.2±5.2 27.9±5.4 28.9±5.4 28.1±4.9 31.1±5.5 28.5±5.0 30.1±5.0 29.3±5.1 31.7±5.1 29.5±5.6 29.0±5.2

Table 3. Number of selected stumps for the different datasets and algorithms.

Dataset RE CC MD75 BB GA

audio 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 50.0±5.0
australian 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 49.9±4.7
breast 12.2±19.3 8.8±9.3 11.7±10.0 6.6±5.9 49.0±5.0
diabetes 1.8±1.6 4.9±8.3 3.9±7.8 2.6±5.0 46.7±6.3
ecoli 1.0±0.0 1.1±0.4 1.0±0.0 1.0±0.0 50.8±4.7
german 1.0±0.1 1.1±0.6 1.1±0.5 1.1±0.4 50.6±4.5
glass 12.6±16.1 14.4±17.5 16.9±15.0 42.5±24.1 47.7±5.4
heart 14.4±12.0 20.0±14.0 19.4±13.9 14.0±18.2 46.1±5.7
horse-colic 1.0±0.1 1.0±0.1 1.0±0.0 1.0±0.1 50.0±4.8
ionosphere 2.0±0.2 2.2±2.0 8.8±8.6 2.1±0.6 44.4±6.3
labor 5.8±5.6 8.4±7.7 17.4±9.9 5.9±3.6 47.8±5.6
led24 22.7±11.7 34.0±18.8 37.6±20.8 23.6±23.1 45.3±6.3
liver 26.6±13.6 28.3±12.9 24.6±7.3 19.5±10.9 42.9±6.5
new-thyroid 3.3±2.4 14.7±26.7 17.2±28.0 11.7±23.9 46.9±6.2
ringnorm 3.7±5.6 3.6±1.6 3.8±2.9 3.4±1.3 41.1±7.5
segment 32.5±25.1 26.5±21.3 33.0±19.8 35.2±28.6 49.2±5.0
sonar 11.3±6.8 12.9±13.0 14.7±5.8 8.9±4.6 45.2±5.7
tic-tac-toe 1.0±0.0 1.0±0.2 1.0±0.0 1.0±0.2 50.0±5.2
twonorm 24.8±8.9 24.8±9.5 26.4±6.7 20.1±6.7 42.3±7.1
vehicle 14.4±11.5 24.9±17.2 18.8±16.0 19.0±19.8 41.0±7.1
votes 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 49.6±5.3
vowel 32.0±19.4 38.8±26.7 26.7±20.7 50.0±26.8 46.5±5.2
waveform 18.2±11.2 22.1±14.5 23.8±13.9 16.6±11.8 41.3±7.2
wine 16.9±10.4 22.3±9.1 33.4±10.2 20.0±7.7 38.3±7.7

Average 10.9±7.6 13.3±9.6 14.4±9.1 12.9±9.3 46.4±5.8

approach selects subensembles with approximately 50% of the original bagged
stumps. Thus, GA tends to select suboptimal subsensembles that are too large.

4 Conclusions

This paper presents an empirical evaluation of different techniques used to prune
ensembles of decision stumps generated with bagging. Six ensemble pruning
heuristics are tested: reduce error (RE), complementariness (CC), margin dis-
tance minimization (MD75), boosting based pruning (BB), genetic algorithms
(GA) and semidefinite programing (SDP). The first four heuristics are greedy
approaches that determine the order in which the classifiers generated in bag-
ging are incorporated into the ensemble according to some rule that exploits the
complementarity of the base learners. Pruning is performed by selecting the first
τ classifiers in the ordered ensemble either by specifying a fixed subemsemble
size (21 in this investigation) or by estimating the optimum number of classifiers
in some manner. An important finding of this study is that, for decision stumps,
the minimum of the curve that displays the dependence of the test error with

the size of the subensemble is fairly close to the minimum in the corresponding
curve for the training error. This is probably related to the fact that decision
stumps are simple classifiers and do not tend to overfit the data. Hence, the
optimal stopping point for the ordered aggregation is close to the minimum of
the error curve in the training dataset. The GA and SDP approaches attempt to
identify a single subensemble that is optimal according to some estimate of the
generalization performance. The GA approach solves the selection problem by
means of a genetic algorithm without prescribing a target size for the optimal
subensemble. In SDP a convex semi-definite programming relaxation is used to
approximately maximize a goal function dependent on both accuracy and di-
versity for a prespecified ensemble size. For most of the datasets the pruning
techniques investigated significantly reduce the generalization error of bagged
decision stumps by selecting a fairly small subset of classifiers. The best perfor-
mances are for ordered bagging, where the order of aggregation is determined by
either the reduce error or complementariness heuristic, and aggregation stops at
the minimum of the error curve for the training data. SDP obtains good overall
results despite the fact that the number of classifiers needs to be fixed a pri-

ori. The performance of GA in terms of generalization error and percentage of
pruning achieved is significantly worse than the other pruning methods.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
2. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman &

Hall/CRC (1994)
3. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Proc. 14th

International Conference on Machine Learning, Morgan Kaufmann (1997) 211–218
4. Zhou, Z.H., Tang, W.: Selective ensemble of decision trees. In: Lecture Notes in

Artificial Intelligence 2639, 2003, pp.476-483, Berlin: Springer (2003) 476–483
5. Mart́ınez-Muñoz, G., Suárez, A.: Aggregation ordering in bagging. In: Proc. of

the IASTED International Conference on Artificial Intelligence and Applications,
Acta Press (2004) 258– 263

6. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite program-
ming. Journal of Machine Learning Research 7 (2006) 1315–1338

7. Mart́ınez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Pro-
ceedings of the 23rd International Conference on Machine Learning. (2006) 609–616

8. Mart́ınez-Muñoz, G., Suárez, A.: Using boosting to prune bagging ensembles.
Pattern Recognition Letters 28(1) (2007) 156–165

9. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better
than all. Artificial Intelligence 137(1-2) (2002) 239–263

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. In: Proc. 2nd European Conference on Computa-
tional Learning Theory. (1995) 23–37

11. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer-Verlag,
Berlin (2003)

12. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
13. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Chapman & Hall, New York (1984)

