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Abstract. We investigate the properties of ensembles of neural net-
works, in which each network in the ensemble is constructed using a
perturbed version of the training data. The perturbation consists in
switching the class labels of a subset of training examples selected at
random. Experiments on several UCI and synthetic datasets show that
these class-switching ensembles can obtain improvements in classification
performance over both individual networks and bagging ensembles.

1 Introduction

Ensemble methods for automatic inductive learning aim at generating a collec-
tion of diverse classifiers whose decisions are combined to predict the class of
new unlabeled examples. The goal is to generate from the same training data
a collection of diverse predictors whose errors are uncorrelated. Ensembles built
in this manner often exhibit significant performance improvements over a single
predictor in many regression and classification problems. Ensemble can be built
using different base classifiers: decision stumps [1] decision trees [2–5, 1, 6–10],
neural networks [11–14, 9, 15], support vector machines [16], etc.

Generally, ensemble methods introduce a random element somewhere in the
process of generating of an individual predictor. This randomization can be
introduced either in the algorithm that builds the base models or in the training
datasets that these algorithms receive as input.

The rationale behind injecting randomness into the base learning algorithm
is that different executions of the randomized training algorithm on the same
data should generate diverse classifiers. For example, in randomization [17] the
base learners are decision trees generated with a modified tree construction al-
gorithm. This algorithm computes the best 20 splits for every internal node and
then chooses one at random. Another simple algorithm of this type consists in
generating diverse neural networks using different random initializations of the
synaptic weights. This simple technique is sufficient to generate fairly accurate
ensembles [6].



The randomization of the training dataset can be introduced in different
ways: Using bootstrap samples from the training data, modifying the empirical
distribution of the data (either by resampling or reweighting examples), manip-
ulating the input features or manipulating the output targets. Bagging [4], one
of the most widespread methods for ensemble learning, belongs to this group of
techniques. In bagging, each individual classifier is generated using a training
set of the same size of the original training set, obtained by random resampling
with replacement from it. In Boosting [2], the individual classifiers are sequen-
tially built assigning at each iteration different weights to the training instances.
Initially the weights of the training examples are all equal. At each iteration of
the boosting process these weights are updated according to the classification
given by the last generated classifier. The weights of correctly classified examples
are decreased and the weights of incorrectly classified ones are increased. In this
way the subsequent base learner focuses on examples that are harder to classify.
Another strategy consists in manipulating the input features. For instance, one
can randomly eliminate features of the input data before constructing each indi-
vidual classifier. In random subspaces [18] each base learner is generated using a
different random subset of the input features. Another data randomization strat-
egy consists in modifying the class labels. In particular, in classification problems
with multiple classes, one can build each classifier in the ensemble using a dif-
ferent coding of the class labels [19, 20]. Other algorithms that manipulate the
output targets and that are not limited to multiclass problems are based on
randomly switching the class label of a fraction of the training set to generate
each classifier (e.g. flipping [21] and class-switching [22]).

Class-switching ensembles composed of a sufficiently large number of un-
pruned decision trees exhibit a good generalization performance in many classi-
fication problems of interest [22]. In this article we analyze the performance of
class-switching algorithm using neural networks as the base learners. Because of
the different properties of neural networks and decision trees, several modifica-
tions of the procedure described in [22] need to be made to generate effective
class-switching ensembles composed of neural networks.

In Section 2, we introduce the class-switching algorithm based on modifying
the class labels of the training examples and adapt it to build neural network
ensembles. Section 3 presents experiments that compare the classification per-
formance of a single neural network, class-switching and bagging ensembles in
twelve datasets. Finally, the conclusions of this research are summarized in Sec-
tion 4.

2 Class-switching Ensembles

Switching the class labels to generate ensemble of classifiers was first proposed by
Breiman [21]. In this work we apply the class switching procedure as described in
[22] using neural networks as base learners. Class-switching ensembles are built
by generating each classifier in the ensemble using different perturbed versions
of the original training set. To generate a perturbed version of the training set, a



fixed fraction p of the examples of the original training set are randomly selected
and the class label of each of these selected examples is randomly switched to a
different one. The class label randomization can be characterized by a transition
probability matrix

Pj←i = p/(K − 1) for i 6= j
Pi←i = 1 − p ,

(1)

where Pj←i is the probability that an example whose label is i becomes labeled
as belonging to class j. K is the number of classes in the problem.

The class-flipping procedure proposed by Breiman [21] is designed to ensure
that, on average, the class proportions of the original training set are main-
tained in the modified training sets. However, for class unbalanced datasets this
procedure has proved not to perform efficiently [22]. On the contrary, class-
switching ensembles [22] applied to decision trees has proved to be competitive
with bagging and boosting ensembles for a large range of balanced and unbal-
anced classification tasks.

In order for this method to work, the fraction of switched examples p, should
be small enough to ensure that there are, for any given class, a majority of
correctly labeled examples (i.e. not switched). This condition is fulfilled on the
training set (on average) if Pj←i < Pi←i. Using (1)

p < (K − 1)/K . (2)

From this equation we define the ratio of the class-switching probability to its
maximum value as

p̂ = p/pmax = pK/(K − 1) . (3)

Using values of p over this limit would generate, for some regions in feature
space, a majority of examples incorrectly labeled and consequently those regions
would be incorrectly classified by the ensemble.

In Ref. [22] class-switching ensembles composed of unpruned decision trees
were experimentally tested. Using unpruned decision trees instead of pruned
trees was motivated by their better performance when combined in the ensem-
ble. Note that, provided that there are no training examples with identical at-
tributes values belonging to different classes, an unpruned decision tree achieves
perfect classification (0 error rate) on the perturbed training set. Under these
conditions and in order for class-switching to obtain good generalization errors it
is necessary to combine a large number of trees in the ensemble (≈ 1000) and to
use relatively high values of p̂. Empirically a value of p̂ ≈ 3/5 produced excellent
results in all the classification tasks investigated [22].

Preliminary experiments were performed to check whether the prescription
used for decision trees (i.e. 0 training error of the trees on the perturbed sets,
large number of units in the ensemble and high values of p̂) can be directly
applied to neural networks. Note that the architecture and training parameters
of the neural network have to be tuned for each problem in order to obtain neural
models with ≈ 0 error rates in the modified training sets. This is a drawback
with respect to decision trees, where achieving 0-error models is straightforward
and problem independent.
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Fig. 1. Average test errors for class-switching ensembles composed of neural networks
(solid lines in the plot) and decision trees (trait lines in the plot) using p̂ = 2/5 (bottom
curves) and p̂ = 4/5 (top curves) for the Waveform dataset

Figure 1 displays the evolution with the number of base classifiers of the
average generalization error (over 10 executions) for class-switching ensembles
composed of neural networks (shown with solid lines in the plot) and decision
trees (with trait lines) for the Waveform dataset. The number of hidden units
for the networks is 28, and 1000 epochs were used for the training process. The
bottom curves correspond to a p̂ value of 2/5 and the top curves correspond to
p̂ = 4/5.

The leaning curves displayed in this figure show that the generalization errors
of the class-switching neural ensembles generated in this way are similar to those
produced by decision trees class-switching ensembles. However, since the baseline
performance given by a single decision tree is different from the performance of a
neural net, the conclusions are different for ensembles composed of decision trees
and for ensembles of neural networks. The improvement obtained by decision
tree class-switching ensembles over a single tree is substantial (the generalization
error of a single decision trees is ≈ 30%). Hence, for decision trees, the strategy of
generating 0-error base learners seems to perform well. The piecewise-constant
boundaries produced by single trees evolve to more complex and convoluted
decisions boundaries when the decisions of the individual trees are combined in
the ensemble. In contrast, the results obtained by the neural ensembles show
that this strategy does not lead to ensembles that significantly improve the
classification accuracy of a single network. In particular, a single neural network
with 7 hidden units and trained with 500 epochs achieves an error rate of 19.3%, a



result that is equivalent to the final error of the neural class-switching ensemble of
networks with zero error on the perturbed training set with p̂ = 4/5 (19.0%). In
contrast, class-switching or bagging ensembles composed of 100 neural nets with
only about 6 hidden units trained in the same conditions obtain a generalization
error of ≈ 16.4%, which is a significant improvement over the configuration
that uses more complex nets and larger ensembles. Note that a neural net with
this number hidden units does not necessarily obtain a 0-error model on the
modified training data. Nonetheless, this ensemble of simple networks is trained
much faster and exhibits better generalization performance than an ensemble of
complex networks trained to exhibit zero error on the perturbed versions of the
training set.

3 Experiments

To assess the performance of the proposed method we carry out experiments in
ten datasets from the UCI repository [23] and in two synthetic datasets (proposed
by Breiman et al. [24, 5]). The datasets were selected to sample a variety of
problems from different fields of application. The characteristics of the selected
datasets, of the testing method and the networks generated are shown in Table 1.

Table 1. Characteristics of the datasets, testing method, number of input units, av-
erage number (± standard deviation) of hidden units and average number of training
epochs for the neural networks used in the experiments

Dataset Instances Test Attrib. Classes Input Hidden Training
units units epochs

Breast W. 699 10-fold-cv 9 2 9 4.12±1.49 328
Diabetes 768 10-fold-cv 8 2 8 5.36±1.62 364
German 1000 10-fold-cv 20 2 61 4.98±1.65 173
Heart 270 10-fold-cv 13 2 23 4.84±1.70 201
Labor 57 10-fold-cv 16 2 37 4.42±1.54 405
New-thyroid 215 10-fold-cv 5 3 5 16.2±3.55 618
Sonar 208 10-fold-cv 60 2 60 5.14±1.46 331
Tic-tac-toe 958 10-fold-cv 9 2 27 4.38±1.50 200
Twonorm 300 5000 cases 20 2 20 4.36±1.61 330
Vehicle 846 10-fold-cv 18 4 18 11.7±3.19 810
Waveform 300 5000 cases 21 3 21 5.56±1.45 511
Wine 178 10-fold-cv 13 3 13 5.88±1.43 435

The base classifiers are feedforward neural networks with one hidden layer.
We use sigmoidal transfer functions for both the hidden and output layers. The
neurons are trained using an improved RPROP batch algorithm [25]. The opti-
mal architecture and number of training epochs for the neural networks is esti-
mated for every partition of the training data using cross validation. The same



architecture and number of epochs was used in bagging and class-switching en-
sembles. For the neural networks, the FANN library [26] implementation is used.

The results given are averages of a 100 experiments for each dataset. In the
real-world datasets these experiments consisted in the execution of 10 × 10-
fold-cv. For the synthetic datasets (Twonorm and Waveform) each experiment
involves a random sampling to generate the training and testing sets (see Table 1
for the sizes of the sets). In general, each experiment involved the following steps:

1. Obtain the random training/testing datasets from the corresponding fold in
the real-world datasets and by random sampling in the synthetic ones.

2. Build a single neural network using the whole training dataset. The config-
uration of the network is estimated using cross-validation of 10-fold in the
training data. Different architectures (3, 5, and 7 hidden units) and different
values for the number of epochs (100, 300, 500 and 1000) are explored. The
configuration that obtains on average the best accuracy on the separate folds
of the training data, is used. For some datasets the range of possible hidden
units was incremented. For the Vehicle data set it was necessary to test 5,
7, 11, and 15 hidden units and for New-thyroid the tested architectures were
7, 11, 15 and 20.

3. Build the neural networks ensembles using class-switching (with p̂ values
of: 0/5, 1/5, 2/5, 3/5 and 4/5) and bagging and using the configuration
obtained for the single net. Note that class-switching with p̂ = 0/5 can not
be considered a class switching algorithm: the variability in the ensemble is
achieved solely by the training process converging to different weight values
because of the different random initial values used.

4. Estimate the generalization error of the classifiers (single NN, bagging and
class-switching) on the testing set.

Figure 2 displays the average generalization error curves for bagging and
class-switching ensembles for four datasets (German, Heart, Labor and New-
thyroid). These plots show that the convergence of the error class-switching en-
sembles is related to the fraction of switched examples (i.e. p̂): Higher p̂ values
result in slower convergence. From these plots we observe that combining 200
networks is sufficient to reach convergence for most of the ensemble configu-
rations. However, in some datasets (see German and Labor datasets in Fig. 2)
with a high class-switching probability (class-switching with p̂ = 4/5), 200 is not
sufficient to reach the asymptotic ensemble error rate.

Table 2 presents the average test errors over the 100 executions for single
networks, bagging and class-switching ensembles for the different values of p̂.
The lowest generalization error for every dataset is highlighted in bold-face.
The standard deviations are given after the ± sign. These results show that
class-switching ensembles exhibit the best results in nine of the twelve problems
analyzed (2 × p̂ = 1/5, 2 × p̂ = 2/5, 5 × p̂ = 3/5 and 3 × p̂ = 4/5). Bagging
has the best performance in two datasets and ensembles with p̂ = 0/5 also in
two dataset. The performance of a single network is suboptimal in all cases
investigated and is poorer than most of the different ensembles.
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Fig. 2. Average test errors for the German Credit (top left plot ), Heart (top right plot),
Labor Negotiations (bottom left plot) and New-thyroid (bottom right plot) datasets

Table 2 shows that most configurations of class-switching ensembles reach
similar generalization errors for most datasets. In particular, the same error rate
is achieved in Waveform by class-switching with p̂ = 1/5, 2/5 and 3/5 and nearly
the same results (within 0.2 points) are obtained in Diabetes, German, Tic-tac-
toe, Twonorm and Wine. The p̂ = 4/5 configuration exhibits significantly worse
results in German, Labor, Sonar and Tic-tac-toe. In some cases this is due to
the fact that larger ensembles ought to have been used.

Table 3 shows the p-values of the paired t-test for the differences between
bagging and class-switching ensembles using the different values of p̂. Significant
differences against class-switching have been underlined and statistically signif-
icant differences in favor of class-switching are high-lighted in bold-face. The
last row of Table 3 displays the win/draw/loss records, where the first (second /
third) numbers displayed in each cell correspond to the number of sets in which
the algorithm displayed in the topmost row of the table wins (draws / losses)
with respect to bagging. These records show that class-switching ensembles with
p̂ = 1/5 and p̂ = 2/5 never perform worse than bagging and that they outper-
form bagging in some of the studied datasets. Class-switching with p̂ = 3/5 and
p̂ = 4/5 outperforms bagging in several datasets but also performs significantly
worse than bagging in other datasets.



Table 2. Average generalization errors

Dataset NN Bagging Class-switching (p̂ =)
0/5 1/5 2/5 3/5 4/5

Breast 3.9±2.5 3.9±2.4 3.8±2.4 3.8±2.4 3.7±2.2 3.3±2.3 3.3±2.3
Diabetes 25.9±4.7 24.9±4.6 24.8±4.7 24.9±4.5 24.8±4.2 24.8±4.4 24.6±4.7
German 26.2±5.4 24.7±5.9 25.0±6.2 24.8±5.9 24.9±5.9 24.7±6.0 25.7±6.4
Heart 17.0±7.9 21.1±13 16.4±7.8 16.0±7.6 16.2±7.4 16.3±7.3 16.6±7.4
Labor 8.6±12 8.4±12 7.2±11 6.6±11 7.5±12 10.8±15 14.5±16
New-thyroid 5.3±4.7 5.8±5.1 5.0±4.6 4.6±4.2 4.2±4.0 4.2±3.9 4.4±3.8
Sonar 23.5±8.8 20.2±8.7 21.3±8.4 21.0±8.5 21.1±9.2 21.6±9.3 23.2±9.6
Tic-tac-toe 2.2±1.8 1.8±1.3 1.9±1.4 1.8±1.3 1.8±1.2 1.7±1.2 7.7±5.5
Twonorm 3.8±0.7 3.1±0.4 3.5±0.6 3.1±0.4 2.9±0.4 2.9±0.5 3.3±1.1
Vehicle 19.4±4.0 17.0±4.1 15.9±3.6 16.1±3.5 16.4±3.7 17.1±3.7 17.8±3.3
Waveform 20.6±8.0 16.4±1.0 16.4±1.0 16.5±1.0 16.5±0.9 16.5±1.0 16.6±0.9
Wine 5.1±5.0 2.2±3.7 2.0±3.4 1.6±2.8 1.4±2.7 1.5±3.0 1.2±2.6

Table 3. Results of a paired t-test for the differences between the test errors of bagging
ensembles and class-switching ensembles

Dataset class-switching (p̂ =)
0/5 1/5 2/5 3/5 4/5

Breast 8.6·10−1 6.1·10−1 7.7·10−2 8.3·10−6 8·10−7

Diabetes 7.0·10−1 8.2·10−1 5.5·10−1 7.3·10−1 3.7·10−1

German 1.0·10−1 2.7·10−1 2.5·10−1 1.0·100 3.2·10−4

Heart 8.6·10−5 3.0·10−5 6.9·10−5 1.0·10−4 2.6·10−4

Labor 2.6·10−1 1.1·10−1 4.4·10−1 9.2·10−2 9.5·10−5

New-thyroid 2.5·10−2 4.5·10−3 4.5·10−4 2.1·10−4 1.9·10−3

Sonar 3.6·10−2 1.2·10−1 1.3·10−1 4.6·10−2 2.2·10−4

Tic-tac-toe 6.0·10−3 1.8·10−1 1.0·10−1 9.6·10−2 5.1·10−19

Twonorm 5.1·10−21 2.3·10−1 7.6·10−11 4.5·10−7 2.5·10−1

Vehicle 1.5·10−5 2.4·10−4 3.5·10−3 7.1·10−1 4.5·10−3

Waveform 4.6·10−1 8.6·10−2 1.8·10−1 2.3·10−1 2.0·10−2

Wine 4.8·10−1 1.7·10−2 3.9·10−3 4.7·10−2 3.0·10−3

3/6/3 4/8/0 5/7/0 5/6/1 4/2/6

4 Conclusions

In the present article we have analyzed the performance of class-switching ensem-
bles [22] using neural networks as base classifiers. The class-switching ensembles
generate a diversity of classifiers using different perturbed versions of the train-
ing set. To generate each perturbed set, a fraction of examples is selected at
random and their class labels are switched also at random to a different label.

The prescription used for decision trees (generate individual classifiers that
achieve 0-error in the perturbed training datasets) is not to be the appropriate



configuration for neural networks ensembles constructed with class-switching.
Combining neural networks whose architecture is designed by standard archi-
tecture selection techniques (and therefore do not necessarily achieve 0 error
in the perturbed training datasets) produces significantly better results than
ensembles composed of more complex nets that do achieve 0 error in the per-
turbed datasets. As a consequence, the number of base learners needed for the
convergence of the ensembles to its asymptotic error level is smaller that in
class-switching ensembles composed of decision trees.

Class-switching ensembles of neural networks built according to this prescrip-
tion exhibit a classification accuracy that is better or equivalent to bagging on
the tested datasets. Class-switching ensembles with p̂ = 1/5 and 2/5 never obtain
results that are statistically worse than bagging in the studied datasets. Class-
switching ensembles with p̂ = 3/5 and 4/5 obtain significantly better generaliza-
tion error over bagging in the same number of datasets as class-switching with
p̂ = 1/5 and 2/5 but also obtain generalization errors significantly worse than
bagging for some of the investigated datasets.
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