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Abstract. Bagging is a simple and robust classification algorithm in
the presence of class label noise. This algorithm builds an ensemble of
classifiers by bootstrapping samples with replacement of size equal to the
original training set. However, several studies have shown that this choice
of sampling size is arbitrary in terms of generalization performance of
the ensemble. In this study we discuss how small sampling ratios can
contribute to the robustness of bagging in the presence of class label noise.
An empirical analysis on two datasets is carried out using different noise
rates and bootstrap sampling sizes. The results show that, for the studied
datasets, sampling rates of 20% clearly improve the performance of the
bagging ensembles in the presence of class label noise.

1 Introduction

Ensembles generally improve the performance of a single classifier by combining
many randomized versions of the individual classifier. In bagging [1], the pre-
dictors are trained using different bootstrap samplings from the training data.
Each bootstrap sample in bagging is extracted from the original training set with
replacement. The standard procedure is to extract a number of samples equal
to the size of the training set, that is a sampling proportion or ratio of 100%.
This prescription produces samples containing on average 63.2% of different in-
stances and the rest are repeated examples. The final combination of classifiers
is given by majority voting. The combination of classifiers in bagging works by
removing uncorrelated errors of individual predictors, decreasing their variance
and, in consequence, the ensemble prediction error. Many studies have shown
that bagging is a robust classification algorithm under different noise conditions
[2, 3, 4, 5]. Noisy data affects the final error because of the increment of the
variance of the individual classifiers in the ensemble [3]. In this context, variance
reduction methods such as bagging is an option to consider in noisy datasets.

The prescription used in bagging for generating the bootstrap samples does
not need to be optimal in terms of generalization error. In fact, when using
sampling with equal size of the original training set, the performance of nearest
neighbours is equal to that of bagged nearest neighbours [1]. However, if each
bootstrap sample contains on average less than 50% unique instances from the
training set, then the accuracy of bagged nearest neighbours improves. In addi-
tion, if the sampling ratio tends to 0 as the training set size tends to +∞, then

∗The authors acknowledge financial support from the Spanish Dirección General de Inves-
tigación, project TIN2010-21575-C02-02



its performance tends asymptotically to that of the optimal Bayes classifier [6].
Another study [7] shows that in general subbagging with low subsampling rates
produce better results than bagging when combining stable classifiers. In [8]
is proposed an out-of-bag estimation of the optimal sampling ratios for bagging
and subbaging. The article analyses bagging in 30 datasets using sampling ratios
from 2% to 120%. The results show that the optimal sampling rate is problem
dependant and that out-of-bag error can be used to estimate the optimal sam-
pling ratio.

An important aspect of using small sampling ratios is how they affect isolated
instances, where by isolated instances we refer to those instances surrounded by
instances of another class. When bootstrap samples contain less than 50% of
the instances of the training set, then the classification given by the ensemble
for those instances will tend to be dominated by the surrounding instances [6,
8]. Interestingly, incorrectly labelled instances can in general be considered as
isolated instances. Hence, in these cases, using small sampling rates in bagging
can help to reduce its influence in the training phase and, as a consequence, to
build more robust ensembles.

In this paper, we will analyse the sensitivity of bagging ensembles in the pres-
ence of different class label noise and we will evaluate the effectiveness of different
sampling ratios in the noisy datasets. The experimental study is performed on
two datasets: a synthetic and real dataset.

2 Sampling ratio influence in bagging under class label

noise

In Figure 1 it is shown the average percentage of unique instances contained
on bootstrap samples with respect to the bootstrap sampling ratio. From this
plot we can observe that, very large or very small sampling ratios are two non
acceptable extremes. For very large sampling ratios, the number of unique in-
stances in each sample tends to the number of instances of the original training
set, and in consequence, all base learners would be rather similar –differences
among classifiers would come from the effect of repeated examples on the base
learners. On the hand, given a fixed number of instances in the training set,
a small sampling ratio producing a single instance per sample would cause the
base learners to output the class of that instance for the whole instance space.
Hence, the final decision of the ensemble would be, for the whole instance space,
equal to the class with the highest apriori probability in the training set. In gen-
eral, the optimal generalization performance will be obtained at intermediate
sampling ratios.

In addition, this figure shows that for the point where the number of unique
samples is less than 50% of the total size, is for sampling ratios below ≈ 69.3%.
For sampling ratios below this threshold, on average, every instance in the orig-
inal training set is used for induction in less than half of the classifiers in the
ensemble. This means that, the class assignment given by the ensemble to a given
training example, takes into account not only its own labelling, but also the class
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Fig. 1: Average percentage of the different selected examples with respect to the
proportion of the bootstrap sample

labels of close by instances. In the case of mislabelled instances surrounded by
instances of its real class, they would tend to be correctly classified (with respect
to its true label) by the ensemble when sampling rates below ≈ 69.3% are used.
However, mislabeled instances close to the classification boundary would not be
easily detected by using small sampling ratios.

3 Experimental Result

In this section we analyse the robustness of bagging ensembles in the presence of
different rates of label noise with respect to the bootstrap sampling proportion.
Two datasets were considered. One synthetic, Threenorm [9], and the real set,
Pima Indian Diabetes [10].

For both datasets a similar experimental protocol was followed. The results
reported are averages over one hundred partitions of the data into train and
test sets. In Pima the partitions were obtained by 10×10-fold-cv. In Threenorm
100 random samplings from the true distribution were carried out, generating
training sets of 300 instances and test sets of 2000 instances. For each data
partition the following steps were carried out: (i) Noise was injected in the
train set by changing the class to a given percentage of instances using the
following values: 0% (no noise), 5%, 10% and 20%; (ii) For each noise level,
six bagging ensembles composed of 500 CART unpruned trees [11] were built.
The bootstrap sampling proportions used to train the bagging ensembles were:
20%, 40%, 60%, 80%, 100% (normal bagging) and 120%. CART trees were
trained using its default parameters; (and iii) The generalization error of the
ensembles was estimated in the test set. No noise was injected in the test sets,
in order to make the performance of the different classifiers across different noise
proportions comparable. Additionally, for the Threenorm dataset, the output of
the ensemble was compared to the output of the optimal bayes classifier. This
gives a total of 4× 6× 100× 500 = 1200000 trees built for each dataset.



Table 1: Average error (in %) for various sampling sizes and label noise levels
on Threenorm

no noise 5% noise 10% noise 20% noise
ratio vs. Bay Error vs. Bay error vs. Bay error vs. Bay error

20 14.5 17.8 15.4 18.7 15.9 19.0 18.8 21.6

40 14.6 18.0 15.4 18.6 16.1 19.3 19.2 22.0
60 14.8 18.2 15.7 18.8 16.8 19.8 19.9 22.5
80 15.3 18.6 16.0 19.3 17.2 20.1 19.9 22.3
100 15.7 19.1 16.9 20.1 17.6 20.5 20.6 23.0
120 16.1 19.3 17.2 20.1 18.1 21.0 21.6 23.9

Table 2: Average test error (in %) for various sampling sizes and label noise
levels on Pima

ratios no noise 5% noise 10% noise 20% noise

20 23.8 23.8 24.8 25.5

40 23.9 24.1 25.0 27.2
60 23.9 24.6 25.3 26.9
80 24.2 24.9 26.0 28.0
100 24.6 25.0 26.0 29.2
120 24.8 25.8 26.7 29.3

In Table 1, the average test error for bagging with different sampling ratios
and noise levels, is shown for Threenorm. In addition, the table shows the
mean difference of the ensembles’ classification with respect to the optimal Bayes
output (column ”vs. Bayes”). Table 2 shows the same results for Pima Indian
Diabetes except the comparison with the Bayes classifier since it is unknown.

In both datasets, the best results are obtained for small sampling ratios.
Note that, the performance of bagging with a sampling ratio of 20% and with
a noise injected of 10% in the train set, is equivalent to the performance of
normal bagging trained in the noiseless data in both datasets. In addition, lower
sampling ratios present lower differences with the oracle Bayes classifier (see
Table 1). In Pima Indian Diabetes, bagging with sampling proportion of 20%
presents a remarkably low deterioration of the classification error with respect to
the level of noise injected. It goes from 23.8% error, when no noise is injected, to
25.5% when trained on the 20% label noise data (less than two percent points).
By contrast, normal bagging presents a generalization deterioration of 5 percent
points (from 24.6% with no noise to 29.2% with 20% noise).

Plots of Figures 2 show the performance of the ensembles with respect to
the number of combined hypothesis for Threenorm. Similar plots are obtained
for Pima dataset. What we observe in the figures is: (i) All ensembles over
69% sampling ratios (80%, standard bagging–100%– and 120%) independently
of the noise injected, reach zero error in the training set. This indicates that
the ensembles present some degree of over-fitting. Their performance in the test
set seems to corroborate this observation. This is specially apparent when high
noise levels are injected. (ii) The training error in ensembles with lower sampling
ratios (20%, 40% and 60%), increases with the amount of injected noise. These
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Fig. 2: Average test (left) and training (right) errors for different sampling ratios
in presence of no-noise (top) and 10% (bottom) class label noise for Threenorm
dataset.

seems to indicate the these ensembles present do not tend to over-fit to the
injected noise as much as when 80%, 100% and 120% are used.

These observations can be explained by the fact that, for higher sampling
ratios, each instance is used to train more than half of the base classifiers. And
since we are using unpruned trees, all training instances will be correctly clas-
sified by the ensemble independently of the correctness of the class label. In
these cases, regions in the attribute space around incorrectly labelled instances,
will be miss classified. By contrast, when we use sampling ratios below 69%, the
classification of each instance is influenced by the class of nearby instances. This
is a positive property when a miss labelled instance is surrounded by correctly
labelled examples. In this sense, the use of small sampling ratios in bagging can
be seen as a regularization strategy.



4 Conclusion

In this article we have analysed the robustness of bagging for different sampling
ratios under the presence of class label noise. The experiments carried out show
that, in the two studied datasets, bagging ensembles of unpruned CART trees
trained on bootstrap samples between 20% and 40% of the size of the original
training set, are more robust than standard bagging. These are very promising
results specially taking into account that standard bagging is considered as a
robust classification algorithm. We have the intention to carry out a more ex-
haustive study on the effects of sampling size in the presence of noise using a
larger and more diverse set of datasets and different base classifiers.
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