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Abstract

The performance of m-out-of-n bagging with and without replacement in terms
of the sampling ratio (m/n) is analyzed. Standard bagging uses resampling with
replacement to generate bootstrap samples of equal size as the original training
set mwor = n. Without-replacement methods typically use half samples mwr =
n/2. These choices of sampling sizes are arbitrary and need not be optimal
in terms of the classification performance of the ensemble. We propose to use
the out-of-bag estimates of the generalization accuracy to select a near-optimal
value for the sampling ratio. Ensembles of classifiers trained on independent
samples whose size is such that the out-of-bag error of the ensemble is as low
as possible generally improve the performance of standard bagging and can be
efficiently built.

Key words: Bagging, subagging, Bootstrap sampling, subsampling, Optimal
sampling ratio, Ensembles of Classifiers, Decision Trees

1. Introduction

Empirical studies have established that bagging is a simple and robust
method that generally increases the accuracy of a single learner [1, 2, 3, 4,
5, 6, 7]. In standard bagging individual classifiers are trained on independent
bootstrap samples that are extracted with replacement from the set of labeled
examples available for learning [8]. The size of these samples is generally chosen
to coincide with the number of examples in the original training dataset. This
prescription is arbitrary and need not be optimal in terms of the generalization
accuracy of the ensemble. In this work we carry out an investigation on the de-
pendence of the ensemble performance on the sampling ratios used. The results
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obtained show that ensembles of decision trees trained on bootstrap samples
whose sizes are different from the usual choice can match the performance and
sometimes even outperform standard bagging. In most of the classification tasks
investigated, the ensembles with the lowest test errors use bootstrap samples
that are smaller than the original training data. In fact, combining classifiers
that are trained on bootstrap samples (with replacement) containing either 60%
or 80% of the original training data exhibit a good overall performance.

A less explored variant of bagging is m-out-of-n bagging without replace-
ment, also known as subagging [9, 10, 11]. Without-replacement (subsampling)
methods were used early on to provide estimates of statistical quantities by
sampling (see for instance [12] and references therein). A common choice for
the sample size in subagging is mwor = n/2 [11]. In fact, provided that high-
order terms can be neglected, half-sampling without replacement is expected to
behave similarly as m = n sampling with replacement [10, 11]. The similarities
between the behaviors of bagging and subagging can be viewed as a particu-
lar case of a more general correspondence between the statistical properties of
with-replacement samples of size mwr and of subsamples of size mwor, obtained
without replacement, when

mwr

n
=

mwor

n

1 − mwor

n

. (1)

This relation has been rigorously derived for U-statistics in [10]. This work
also provides empirical support for the validity of this equivalence in bagging
ensembles of regression trees. The special case mwr = n and mwor = n/2
has also been empirically explored in [11] using ensembles of regression trees.
In this work we extend these investigations and show that the correspondence
also holds, at least in an approximate manner, in ensembles of decision trees
for classification. Similarly to bagging, subagging ensembles trained on smaller
subsamples, mwor < n/2, often match or improve the performance ensembles
built with half-subsampling.

In summary, the sizes of the optimal samples for m-out-of-n bagging both
with and without replacement are generally lower than the usual choices of
mwr = n, when replacement is used, and mwor = n/2, if examples are not
replaced after having been extracted. However, the optimal sampling ratios
can be very different in different problems. This indicates that the amount of
resampling should not be fixed beforehand, independently of the classification
task to be solved. To estimate the optimal sampling ratios in bagging and
subagging, we propose to use out-of-bag estimates of the generalization error
[13]. As expected, this procedure tends to select sample sizes that are smaller
than the standard choices and that are close to being optimal.

The article is organized as follows: In Section 2 we present a review of previ-
ous investigations on the properties of with and without replacement sampling,
specially regarding the induction of bagging ensembles from data. The effects of
the sampling ratio on the properties of the bagging ensembles generated are dis-
cussed in Section 3. Section 4 presents the results of an empirical investigation
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of the classification performance of bagging and subagging ensembles generated
using different sampling ratios. Finally, the conclusions of this investigation are
summarized in Section 5.

2. Previous Work

Subsampling and m-out-of-n bootstrapping with m < n have been proposed
in the statistical literature as alternatives to the standard bootstrap [14, 15, 16,
17, 18]. In general, the motivation of these studies is to repair inconsistencies
of the bootstrap estimates obtained by sampling with replacement and m = n,
or to improve the efficiency of these estimates. Extensions of the bootstrap
along these lines have also been studied in the context of automatic induction
of models from data [19, 9, 20, 10, 11, 21, 22]. One of the first variants of
bagging that uses a sampling ratio different from the standard value is Rvotes

[19]. This algorithm is designed to increase the training speed when very large
databases are available for learning. In Rvotes the individual ensemble classifiers
are built using very small bootstrap samples, as small as 0.5% of the original
training data. As a consequence, the generalization performance of the proposed
algorithm is rather poor in problems where the training data is not abundant
and redundant in some way.

The properties of m-out-of-n bagging with and without replacement have
also been analyzed in detail in [9, 20, 10, 11]. In [9, 20] subagging is proposed as
a computationally less intensive variant of bagging that is expected to have sim-
ilar accuracy in regression and classification problems. The focus of this work
is to provide a rigorous framework to understand the variance reduction effect
of bagging and subagging. Of particular interest for the current investigation
is the observation made in [10, 11] on the equivalence of results between a bag-
ging ensemble that uses samples of size mwr obtained with replacement and an
ensemble built using without-replacement samples of size mwor such that rela-
tion (1) holds. Although no general proof is given, these investigations provide
strong empirical evidence for this correspondence in the context of ensembles
of regression trees. In [11] it is shown that the bias and variance of regres-
sion bagging ensembles can be reduced by decreasing the size of the bootstrap
samples.

There are other studies where improvements in the generalization perfor-
mance of bagging are obtained by using samples sizes different from the original
training data [21, 22]. In particular, the performance of nearest neighbor can
be improved with bagging only if the samples used contain on average less
than 50% of different examples from the original training set [22]. This corre-
sponds to sampling ratios of mwr/n < 0.69 for with-replacement sampling and
mwor/n < 1/2 for subsampling. In fact, the performance of standard bagged
nearest-neighbor, which uses samples of size mwr = n, is equal to the perfor-
mance of nearest-neighbor alone [1]. By contrast, if the sampling ratio tends
to 0 as the size of the original training set tends to infinity, the performance of
the ensemble of nearest neighbor classifiers can be shown to approach the Bayes
limit [22].
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3. Influence of the Sampling Ratio in Bagging

In this section we provide a qualitative analysis of the dependence of the
properties of bagging ensembles generated using different sampling ratios. This
analysis is straightforward in subsampling, where a subset of m instances is ex-
tracted without replacement from the initial set of size n. Samples obtained with
values of m close to n are very similar to the original training set. Hence, the
members of the bagging ensemble built using these samples should be very sim-
ilar to the single classifier built using the complete original training data. The
differences between the subsample and the original sample become larger as m is
lowered. There are exactly

(

m

n

)

different subsamples of size m. The maximum
number of different subsamples corresponds to a sampling ratio m/n = 1/2.
This is one of the reasons why half-sampling has been commonly used in previ-
ous investigations [23, 24].

The analysis for with-replacement sampling is slightly more complicated.
Assume that a sample of size m is extracted with replacement from a set com-
posed of n examples. For sufficiently large values of n and m, the average
number of different examples from the original set included in the bootstrap
sample is approximately 1 − exp{−m/n}. Figure 3 shows the evolution of this
average as the sampling ratio r = m/n increases. In the standard version of
bagging, these bootstrap samples contain the same number of examples as the
original data m/n = 1. This means that, on average, a bootstrap sample of size
m = n contains ≈ 63.2% different training instances. The remaining ≈ 27.8%
are repeated examples. Another interesting point in the curve depicted in Fig-
ure 3 corresponds to bootstrap samples that contain on average one half of the
different instances in the original training data. This corresponds to samples
whose size is ≈ 69.3% of the parent set size. For sampling ratios below this
threshold, on average, every instance in the original training set is used for in-
duction in less than half of the classifiers in the ensemble. This means that,
for a given training instance, the class assignment made by the ensemble takes
into account not only its own class label, but also the class labels of nearby
instances.

The influence of the bootstrap sample size on the classification performance
of the corresponding bagging ensembles can be analyzed in the limits of very
small and very large sampling ratios. In with-replacement bagging, if the size of
the bootstrap samples is large compared to the size of the original training data
then the number of different instances in the bootstrap samples asymptotically
approaches the totality of the original examples: All of the original training
examples are selected, and, on average, they are selected the same number of
times. Under these conditions, classifiers trained on independent bootstrap sam-
ples tend to be very similar to each other and their combination in an ensemble
does not significantly modify the accuracy of the individual predictors. In the
opposite extreme, the classifier trained on a bootstrap sample that contains just
one example would assign the class label of that single example to the whole
feature space. Consequently, the combination of the decisions by majority vot-
ing of a sufficiently large number of such classifiers would always output the
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Figure 1: Average percentage of different selected examples with respect to the size of the
bootstrap sample.

most common class in the training data, irrespective of the values of the feature
vector of the instance that is being classified.

Typically the optimal generalization performance obtains at intermediate
sampling ratios, neither too large nor too small. The usual prescription is to use
bootstrap samples of the same size as the original training set. In this manner
bagging generates a variety of classifiers whose combined decisions generally
improve those of single learners and which are also better than the majority
class prediction. However, there is no a priori reason to expect mwr = n
to be the optimal sampling size in terms of the generalization performance
of the ensemble. The region mwr > n, is, in principle, less attractive than
the region m < n: On the one hand, for larger samples, the time needed to
build the ensemble increases. On the other hand, the different samples become
more similar, which implies that the diversity of the classifiers becomes smaller.
Hence, the potential for improvement of classification by combining the decisions
of the classifiers in the ensemble is reduced.

The experiments presented in the following section show that ensembles
that use sampling ratios different from the usual prescriptions, mwr/n = 1
in with-replacement sampling and mwor/n = 1/2 in without-replacement sam-
pling can have better generalization performance than standard bagging or half-
subagging. However, the optimal sampling ratios can be quite different for dif-
ferent problems. We propose to use out-of-bag estimates of the generalization
error [13] to determine the sampling ratio that is appropriate for each problem.
To estimate the out-of-bag error, the class label assigned by the ensemble to
a particular example in the original training data is computed using only the
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predictions of classifiers trained on bootstrap samples that did not include that
particular instance. The out-of-bag error is then calculated as the fraction of
examples in the original training set that are incorrectly labeled using these
predictions.

4. Experiments

Extensive experiments on 30 datasets from the UCI repository [25] and syn-
thetic classification problems [26, 27] are carried out to analyze the performance
of m-out-of-n with and without-replacement bagging as a function of m, the size
of the samples used to train the individual ensemble classifiers. The character-
istics of the different datasets used are shown in Table 1. This table includes
information on the number of labeled instances available, the protocol used for
testing and, in the last two columns, the numbers of attributes and classes, re-
spectively. Given the correspondence between subsampling and the m-out-of-n
bootstrap, the experiments are carried out in parallel, using with and without-
replacement samples whose sizes are in the relation given by Eq. (1).

The estimates for the classification errors and sampling ratios reported in
this article correspond to averages over different realizations of the classification
problems. In the synthetic problems, Led24, Ringnorm, Threenorm, Twonorm

and Waveform, 100 versions of the training and testing datasets are gener-
ated independently at random. For the remaining problems 10 × 10-fold cross-
validation is used. Each realization involves the following steps:

1. Obtain the train/test sets by random generation or by 10-fold-cv depend-
ing on the domain (see 3rd column in Table 1).

2. Using only the examples in the training set generate a sequence of bag-
ging ensembles composed of 200 unpruned CART trees [26] for the differ-
ent sampling rates considered. Unpruned trees are used as base learners
because bagging ensembles of fully developed CART trees generally out-
perform bagging ensembles of pruned CART trees [4, 5]. The experiments
are performed using a range of sampling rates that covers the different
regimes of interest with sufficient detail. In sampling with replacement,
ensemble classifiers are built from bootstrap samples of sizes that range
from 2% to 120% of the size of the original training set, in steps of 2%.
This choice of the step size provides sufficient resolution to analyze the
dependence of the ensemble performance with the size of the samples.
For subagging, the corresponding rates for without-replacement sampling
are used. This gives a total of 60 bagging and 60 subagging ensembles
composed of classifiers trained on samples of different sizes.
Standard bagging corresponds to ensembles built using bootstrap sam-
ples of the same size as the original training data. For the experiments
without replacement, the corresponding sampling ratios, computed with
Eq. (1), are used: 1/101, 2/102, . . . , 100/200, . . .120/220. Half-subagging
corresponds to a sampling ratio of 1/2 (100/200 in the series above).
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Dataset Instances Test Attrib. Classes

Audio 226 10-fold-cv 69 24
Australian 690 10-fold-cv 14 2
Balance 625 10-fold-cv 4 3
Breast W. 699 10-fold-cv 9 2
Diabetes 768 10-fold-cv 8 2
Echo 74 10-fold-cv 6 2
Ecoli 336 10-fold-cv 7 8
German 1000 10-fold-cv 20 2
Glass 214 10-fold-cv 9 6
Heart 270 10-fold-cv 13 2
Hepatitis 155 10-fold-cv 19 2
Horse-Colic 368 10-fold-cv 21 2
Ionosphere 351 10-fold-cv 34 2
Iris 150 10-fold-cv 4 3
Labor 57 10-fold-cv 16 2
Led24 200 5000 cases 24 10
Liver 345 10-fold-cv 6 2
New-thyroid 215 10-fold-cv 5 3
Ringnorm 300 5000 cases 20 2
Segment 2310 10-fold-cv 19 7
Sonar 208 10-fold-cv 60 2
Soybean 683 10-fold-cv 35 19
Threenorm 300 5000 cases 20 2
Tic-tac-toe 958 10-fold-cv 9 2
Twonorm 300 5000 cases 20 2
Vehicle 846 10-fold-cv 18 4
Votes 435 10-fold-cv 16 2
Vowel 990 10-fold-cv 10 11
Waveform 300 5000 cases 21 3
Wine 178 10-fold-cv 13 3

Table 1: Characteristics of the classification problems and testing method

3. Estimate the generalization error of the ensembles using the test set and
the out-of-bag instances [13].

The curves that trace the dependence of the training, test and out-of-bag
error estimates as a function of sampling ratio for m-out-of-n bagging with
and without replacement are displayed in Figures 2 and 3, respectively, for
a representative collection of classification problems: Glass, Ionosphere, Labor,
and Vowel. As a reference, the average test error for standard bagging (sampling
ratio = 100%) and half-subagging are marked with horizontal and vertical lines
in the plots. A paired t-test is performed to determine whether the differences
in test error with respect to standard bagging are statistically significant. Errors
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Figure 2: Training, test and out-of-bag error estimates for bagging ensembles (with-
replacement sampling) as a function of the size of the bootstrap samples.

that are significantly lower than standard bagging at a significance level α = 0.01
are marked with a cross (’x’). Similarly, errors that are significantly worse than
bagging (p − value < 0.01), are marked with a circle (’o’).

In the problems investigated, the test error curves follow one of four distinct
patterns:

• In Balance, Ecoli, German, Heart, Ionosphere, Liver and in the synthetic
datasets (Led24, Ringnorm, Threenorm, Twonorm and Waveform) the
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Figure 3: Training, test and out-of-bag error estimates for subagging ensembles (without-
replacement sampling) as a function of the size of the samples.

error curves exhibit broad minima at intermediate sampling ratios. For
these problems, it is easy to identify sampling ratios that significantly
improve the performance of standard bagging.

• The error curves for Australian, Diabetes, Echo, Glass, Hepatitis and Iris

are very irregular. There are several values of the sampling ratio, not
necessarily close to each other, for which the corresponding ensembles sig-
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Dataset 1/5 2/5 3/5 4/5 1 6/5
audio 29.3±8.6 24.6±8.1 22.1±8.0 20.4±7.8 19.8±7.3 19.6±7.9
australian 13.5±3.7 13.0±3.8 12.7±3.6 12.9±3.9 13.1±3.7 13.6±3.9
balance 10.1±1.9 13.9±3.3 17.1±3.8 18.7±3.9 19.2±3.9 19.8±3.9
breast 4.2±2.5 3.8±2.4 3.5±2.4 3.6±2.4 3.7±2.3 3.5±2.2
diabetes 24.0±3.8 24.0±4.0 24.1±3.8 24.4±4.0 24.5±4.1 24.9±4.0
echo 25.0±12.5 24.0±13.3 22.6±14.5 22.6±14.6 22.8±14.3 23.3±15.2
ecoli 14.9±5.3 14.6±6.1 14.8±6.0 15.4±6.2 15.7±6.1 16.7±6.0
german 23.2±3.5 23.4±3.5 23.4±3.6 23.7±3.5 24.1±3.9 24.0±3.9
glass 26.5±7.1 22.6±7.0 22.3±7.6 22.3±8.0 23.3±7.9 24.6±8.5
heart 17.1±6.6 18.0±6.5 18.5±6.7 18.6±7.0 19.6±7.0 20.1±6.5
hepatitis 16.9±7.3 17.0±7.7 16.5±7.5 17.3±7.9 17.4±7.9 18.1±8.0
horse-colic 17.0±5.3 16.0±5.6 15.4±5.5 14.9±5.4 15.0±5.4 15.4±5.3
ionosphere 6.5±4.4 6.8±4.4 7.5±4.5 7.8±4.7 8.1±5.1 8.5±4.8
iris 4.6±5.2 5.1±5.6 5.5±5.7 5.4±5.7 5.3±6.0 5.4±5.9
labor 11.1±13.2 9.1±11.1 9.0±10.5 9.1±10.7 7.8±9.9 8.1±10.2
led24 28.4±1.6 29.8±1.7 31.4±1.8 32.8±1.9 34.0±2.1 35.0±2.0
liver 26.3±6.6 26.4±6.8 27.0±7.1 27.7±7.6 29.0±7.7 29.6±8.0
new-thyroid 5.8±5.3 5.6±4.8 5.0±4.6 5.5±4.5 5.6±4.6 5.6±4.7
ringnorm 9.9±1.3 8.7±1.7 9.0±2.0 9.3±1.9 9.9±2.1 10.4±1.9
segment 3.5±1.2 2.7±1.1 2.4±0.9 2.3±0.9 2.3±0.9 2.3±0.9
sonar 22.8±9.6 22.2±9.0 20.7±8.3 20.4±8.0 20.7±8.8 19.8±7.8
soybean 7.7±2.7 6.4±2.4 6.8±2.4 6.5±2.4 6.7±2.5 6.5±2.5
threenorm 18.4±1.4 18.2±1.4 18.6±1.6 18.9±1.6 19.3±1.8 19.6±1.8
tic-tac-toe 1.9±1.6 1.3±1.2 1.2±1.1 1.2±1.1 1.2±1.1 1.3±1.1
twonorm 4.9±0.8 5.3±1.0 5.8±1.2 6.3±1.4 6.7±1.6 7.0±1.6
vehicle 25.5±3.7 24.9±3.8 25.0±3.7 24.8±3.9 24.7±4.0 24.9±3.9
votes 4.4±3.1 4.5±3.0 4.4±3.0 4.5±3.0 4.4±3.0 4.6±3.2
vowel 15.8±4.2 10.7±3.4 9.0±3.0 8.4±2.8 8.2±2.5 7.9±2.5
waveform 17.8±1.2 18.3±1.2 18.7±1.3 19.1±1.3 19.5±1.4 19.9±1.4
wine 3.0±3.9 2.4±3.7 2.6±3.9 2.7±4.0 2.9±4.1 3.2±4.2
w/d/l 9/12/9 10/16/4 12/16/2 8/22/0 - 0/22/8

Table 2: Average test error (in %) using different sample ratios in bagging (with replacement
sampling).

nificantly outperform standard bagging. In these classification problems,
using smaller bootstrap samples has the potential of improving the per-
formance of bagging. However, the exact value of the optimal sampling
ratio is difficult to estimate.

• For Breast, Labor, New-thyroid, Soybean, Tic-tac-toe, Votes and Wine the
curves drop rather rapidly and quickly stabilize at the error of standard
bagging. In this case, ensembles with medium to large sampling ratios have
very similar classification performance. However, in terms of efficiency and
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Dataset 1/6 2/7 3/8 4/9 1/2 6/11
audio 29.7±8.3 26.3±8.4 23.3±7.9 22.2±8.0 21.1±7.7 20.5±7.7
australian 13.6±3.9 13.2±3.7 12.8±3.8 13.0±3.9 13.2±3.8 13.1±3.8
balance 10.3±2.0 12.8±2.9 15.9±3.6 17.1±3.5 18.2±3.9 18.7±3.9
breast 4.3±2.5 4.0±2.5 3.7±2.5 3.6±2.5 3.6±2.3 3.6±2.4
diabetes 24.0±4.2 23.9±4.0 24.1±4.0 24.3±3.8 24.6±3.9 24.7±3.9
echo 25.8±14.1 24.3±12.7 23.3±14.0 21.6±14.7 22.4±15.1 22.4±14.8
ecoli 15.2±5.2 14.5±5.7 14.8±5.8 15.1±5.7 15.3±6.0 15.8±6.0
german 23.5±3.5 23.5±3.5 23.6±3.3 23.8±3.6 23.7±3.4 23.8±3.5
glass 27.0±7.2 23.2±7.6 22.6±8.0 23.1±7.6 23.0±7.6 22.9±8.2
heart 17.7±6.8 18.0±6.6 18.4±7.0 18.5±6.9 18.8±7.0 19.3±7.1
hepatitis 16.4±6.9 17.1±7.1 17.1±8.0 17.1±7.9 17.5±7.9 17.8±8.5
horse-colic 17.2±5.6 16.3±5.4 15.5±5.4 15.3±5.3 14.8±5.3 14.7±5.4
ionosphere 6.5±4.0 6.8±4.3 7.4±4.6 8.0±4.9 8.0±4.6 8.2±4.7
iris 4.8±5.3 4.9±5.6 4.9±5.7 5.1±5.7 5.2±5.8 5.2±5.6
labor 11.4±13.9 9.4±11.6 9.3±10.6 9.5±10.8 8.9±10.4 9.2±10.7
led24 28.3±1.7 29.2±1.7 30.5±1.7 31.6±1.9 32.4±1.9 33.2±1.9
liver 27.1±6.5 26.1±7.3 26.5±7.1 26.9±7.3 27.6±7.4 28.1±7.3
new-thyroid 6.1±5.4 5.7±5.2 5.8±4.8 5.3±4.5 5.5±4.6 5.7±4.5
ringnorm 10.3±1.5 8.9±1.5 9.1±1.6 9.5±1.8 10.0±1.9 10.3±2.0
segment 3.5±1.1 2.9±1.1 2.6±1.0 2.5±1.0 2.5±0.9 2.5±0.9
sonar 23.0±8.7 22.1±9.4 21.1±8.8 21.1±8.9 20.5±9.0 20.1±8.6
soybean 8.1±2.8 6.6±2.4 6.6±2.5 6.8±2.4 6.6±2.6 6.7±2.4
threenorm 18.4±1.3 18.5±1.5 18.8±1.6 19.1±1.7 19.5±1.8 19.8±1.9
tic-tac-toe 2.1±1.5 1.3±1.2 1.2±1.1 1.2±1.1 1.2±1.1 1.2±1.1
twonorm 5.0±0.8 5.3±1.0 5.8±1.1 6.2±1.4 6.7±1.6 7.0±1.7
vehicle 26.1±3.4 25.4±3.8 25.5±4.0 25.2±3.6 25.1±3.8 25.1±3.7
votes 4.4±3.1 4.5±3.1 4.4±3.0 4.5±3.0 4.5±3.0 4.5±3.2
vowel 16.5±4.4 11.7±3.6 10.7±3.3 9.4±3.0 9.5±2.9 9.3±2.9
waveform 17.8±1.2 18.3±1.2 18.8±1.3 19.1±1.4 19.5±1.4 19.8±1.5
wine 3.4±4.1 3.3±4.1 2.7±3.9 3.0±4.0 3.0±4.1 3.0±4.0
w/d/l 6/13/11 8/16/6 9/17/4 6/23/1 - 0/24/6

Table 3: Average test error (in %) using different sampling ratios in subagging (without
replacement sampling).

speed of classification smaller sampling sizes should be preferred.

• The descent of the error curves in the problems Audio, Horse-colic, Seg-

ment, Sonar, Vehicle and Vowel is slow. The classification error is sig-
nificantly worse than bagging for most of the smaller and intermediate
sampling ratios. In these tasks the best performance is obtained for large
sampling ratios.

A general conclusion that can be drawn from the analysis of these curves is
that the standard choices mwr = n and mwor = n/2 are in many classification
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problems suboptimal. The error of ensembles built by training individual clas-
sifiers on very small bootstrap samples is generally very poor. In fact, as the
sampling ratio tends to zero, the accuracy of the ensemble becomes close to the
fraction of examples that belong to the majority class. This limiting behavior
is confirmed in the datasets with the lowest number of instances, such as Labor

and Echo. In particular, in Labor only one instance is selected for the sampling
ratio of 2%. In this case, the trees generated are formed only by the root node.
In consequence, the ensemble assigns the whole feature space to the majority
class in the training set. Hence, the average accuracy of this ensemble is similar
to the proportion of the instances of the majority class (≈ 65% for Labor). For
medium sampling sizes the generalization capability of the ensemble increases.
In many problems and for a large range of intermediate values for the sam-
pling ratio, the ensembles generated outperform standard bagging. For larger
sampling ratios (larger than 100% in with-replacement sampling, larger than
50% in without-replacement sampling), the test error curves generally present
a slight upwards tendency. This pattern is more clearly marked in Glass and
Ionosphere. In fact, if the with-replacement sampling ratio were sufficiently
large, all of the original examples would be selected in every bootstrap sample.
As a consequence, all the trees trained on these samples would actually be very
similar.

Tables 2 and 3 display the average and standard deviation of the test errors
for the different classification problems investigated and for different values of
the sampling ratio. In all tables the estimates of the test error that are sig-
nificantly different from bagging or subagging (using a t-test with α = 0.01)
are marked. They are highlighted in boldface if they improve the results of
bagging and underlined if they are significantly worse than bagging. The last
rows of these tables summarize the significant wins/draws/losses with respect
to standard bagging and half-subagging using a t-test with a significance level
α = 0.01.

Table 2 shows that ensembles that use a fixed sampling ratio of 80% (column
4/5) never perform significantly worse than bagging in the classification prob-
lems investigated. This strategy is significantly better than standard bagging in
eight of the classification tasks analyzed. Ensembles that use a sampling ratio of
120% (6/5), which is above the conventional choice, never perform significantly
better than bagging in the problems investigated. Using sampling ratios under
the 69.3% frontier—which means that, on average, less than half of the original
training examples are selected in each bootstrap sample—increases the number
of significant wins (twelve, ten and nine for 3/5, 2/5 and 1/5 respectively) but
also has a larger number of significant losses with respect to bagging (two, five
and nine, respectively). In some domains the accuracy improvements are re-
markable. In Heart the error of standard bagging (19.6%) is reduced to 17.1%
when each classifier in the ensemble is trained on bootstrap samples whose size
is only 20% of the original data. For the problems German, Ionosphere and
Liver, a 20% sampling ratio also significantly improves the performance. In
Ecoli and in the synthetic domains a substantial improvement is observed for
a wide range of sampling ratios, smaller than the conventional choice. A fairly

12



large increase in accuracy is also observed in the Balance-scale dataset: the error
rate is reduced from 19.2% of standard bagging to 10.1% using a sampling ratio
of 20%. However, the improvement in this domain is a side-effect of the diffi-
culties that CART trees have to represent one particular class in this problem.
The Balance-scale task consists in classifying each example as either having the
balance scale tip to the right, tip to the left, or balanced. The attributes are the
weight on the left arm, the left distance, the weight on the right arm and the
corresponding distance. The classification rule consists in selecting the greater
of the quantities (left-distance * left-weight) and (right-distance * right-weight).
If they are equal, the scale is balanced. The architecture of decision trees is not
suitable for learning the balanced class: from a training instance such as {1, 5,
1, 5} it is very difficult to mark examples such as {5, 1, 5, 1} or {3, 3, 3, 3} as
balanced. In fact, in the experiments performed, none of the examples in the test
set that belong to the balanced class are correctly classified by the ensembles,
irrespective of the sampling ratio used. Similarly, none of the examples labeled
by the ensembles as balanced are of this type. Because the examples of the bal-
anced class are surrounded only by non-balanced instances the reduction of the
sampling size in this problem has the effect of effectively erasing the balanced
class from the possible outputs of the ensemble. The effect of not attempting to
label any instance as balanced is that the instances belonging to the other two
classes are classified more accurately.

Table 3 shows that the trends in subagging are similar to those in with-
replacement bagging. In particular, the number of significant losses increases
as the sampling ratio is reduced; the number of significant wins is largest at
sampling rates 3/8 (which corresponds to 3/5 in with-replacement sampling)
and the sampling ratio 6/11 never performs significantly better than subagging.

The trends in Figures 2 and 3 are very similar. These results illustrate
that the statistical equivalence between sampling with and without replace-
ment [9, 11] is also valid in bagging ensembles for classification. To analyze
this correspondence in detail the training and test error curves are plotted in
Figure 4 using comparable scales for the sizes of the samples obtained with and
without replacement. For this purpose, instead of using mwor/n in the abscissa,
the without-replacement error rate is drawn as a function of the corresponding
with-replacement sampling ratio given by Eq. (1). Using this transformation
the curves for m-out-of-n bagging with and without-replacement appear almost
superimposed. There are sizable differences for intermediate sampling ratios in
the training error curves for the problems Glass and Ionosphere. To a lesser
extent, this behavior is also present in the training error curves for Labor and
Vowel. The origin of these discrepancies is the different proportion of distinct
instances from the original training set that appear in the equivalent samples
obtained with and without replacement. Given that unpruned trees are used,
the training error approaches zero for sufficiently large sampling ratios and en-
semble sizes. As the sampling ratio is lowered, this error becomes different from
zero. The transition takes place around the point where the samples contain
on average half of the different instances of the original complete training set:
mwr/n = 69.3% for with replacement sampling and mwor/n = 50% (or, equiva-
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lently, mwr(mwor)/n = 100%) for without-replacement sampling. As discussed
in Section 3, when, on average, less than half different instances from the origi-
nal training set are sampled, the class label assigned by the ensemble to a given
training example also depends on the class labels of the surrounding training in-
stances. Consequently, for sampling rates lower than the aforementioned values,
the ensemble training error is typically larger than zero.

In all cases, the out-of-bag and the test error curves exhibit similar quali-
tative and quantitative behavior (see Figures 2 and 3). This means that the
out-of-bootstrap error can be used to estimate sampling ratios that are near-
optimal. To reduce the computational cost of determining the optimal sample
size the out-of-bag error is estimated in only twelve of the 60 ensembles available.
When sampling with replacement is used, the 12 different ensembles considered
are those with sampling ratios between 1/10 and 12/10 in steps of 1/10. In sub-
sampling, the out-of-bag selection is made from the equivalent ensembles, that
is, those with sampling ratios: 1/11, 2/12, 3/13, 4/14, 5/15, 6/16, 7/17, 8/18,
9/19, 10/20 (half-subagging), 11/21 and 12/22. Note that a precise determina-
tion of the optimal sampling ratio is not possible because of the fluctuations in
the out-of-bag estimates. In fact, using a finer grid for the search of the optimal
sampling ratio does not lead to a significant improvement of the generaliza-
tion performance. Table 4 shows the average generalization error for standard
bagging, half-subagging and of ensembles built using out-of-bag estimates of
the optimal sampling sizes. The average values of these sampling ratios are
displayed in the fourth and seventh columns of this table. In most classifica-
tion problems, the selected sampling ratios are smaller than the conventional
choices. Since fewer training examples are used, the individual classifiers can be
built faster. Furthermore, the trees generated with smaller surrogate training
datasets also tend to be smaller, which implies that the corresponding ensembles
need less storage and classify faster. Nonetheless these improvements are only
moderate in the problems investigated.

Table 4 shows that the performance of ensembles built using with-replacement
sampling in which the sample size is estimated by minimizing the out-of-bag er-
ror (oob wr ensembles) is significantly better than bagging in 9 problems and
has equivalent accuracy in 21. For without-replacement sampling estimating
the optimal sample size using out-of-bag instances significantly improves the
classification accuracy of subagging in 7 classification problems and is equiva-
lent in 23. In the problems investigated, using oob estimates of the sample size
never leads to a significantly worse generalization performance than the stan-
dard choices. The out-of-bag estimates of the sampling ratios are near-optimal
in terms of the classification accuracy of the corresponding ensembles. In Audio,

Segment or Vowel datasets, where the best average result from Table 4 corre-
sponds to standard bagging, out-of-bag selects bootstrap sizes around 100%
for with-replacement and 50% for without-replacement sampling. In the other
extreme, in datasets where the optimal sample ratios are around 20% (1/6 in
without-replacement sampling), such as the synthetic problems, the out-of-bag
estimates tend to select smaller sampling ratios, in the range 20-40%.

To determine whether these improvements are statistically significant, the
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Figure 4: Comparison of training and test error for m-out-of-n with and without-replacement
bagging as a function of the size of the samples. To make the comparison possible, in the
curves for without-replacement sampling, the sample size mwor , is scaled according to Eq. (1),
and the corresponding mwr is used.

performance of the different classification systems in the set of problems in-
vestigated are compared using the methodology proposed in [28]. For a given
classification problem, the algorithms are ranked according to their performance
on the test set. Then, a Friedman test with α = 0.05 is applied to the average
ranks to determine whether it is possible to reject the hypothesis that there
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with-replacement sampling without-replacement sampling
bagging oob wr subag. oob wor

Dataset error error moob
wr /n error error moob

wor/n
audio 19.8±7.3 20.1±8.0 100.6±16.4 21.1±7.7 21.5±7.9 51.6±3.3
australian 13.1±3.7 13.0±3.9 65.9±22.8 13.2±3.8 13.2±3.7 41.5±9.5
balance 19.2±3.9 9.8±1.9 12.9±4.6 18.2±3.9 9.9±1.8 12.1±3.8
breast 3.7±2.3 3.7±2.3 79.3±24.7 3.6±2.3 3.7±2.3 45.4±7.8
diabetes 24.5±4.1 24.3±4.1 53.4±29.0 24.6±3.9 24.8±4.1 33.6±13.5
echo 22.8±14.3 22.2±14.2 75.5±23.5 22.4±15.1 22.6±14.2 41.8±11.0
ecoli 15.7±6.1 15.0±6.1 47.0±17.1 15.3±6.0 14.8±5.3 35.9±9.4
german 24.1±3.9 23.4±3.6 58.8±27.5 23.7±3.4 23.8±3.4 36.3±11.5
glass 23.3±7.9 22.9±7.9 68.7±22.0 23.0±7.6 22.8±7.7 44.6±7.3
heart 19.6±7.0 17.8±6.9 25.0±20.6 18.8±7.0 17.7±6.5 23.6±13.7
hepatitis 17.4±7.9 17.1±7.5 51.2±28.4 17.5±7.9 17.7±7.3 33.4±12.4
horse-colic 15.0±5.4 15.4±5.4 82.7±23.7 14.8±5.3 15.0±5.4 49.7±5.7
ionosphere 8.1±5.1 7.1±4.0 32.5±13.3 8.0±4.6 6.6±4.1 25.0±8.5
iris 5.3±6.0 5.4±5.5 70.8±40.7 5.2±5.8 5.3±5.4 36.4±15.3
labor 7.8±9.9 8.6±9.8 94.7±23.1 8.9±10.4 9.3±10.2 47.9±8.8
led24 34.0±2.1 28.9±1.6 24.6±12.2 32.4±1.9 28.9±1.9 19.7±9.3
liver 29.0±7.7 26.8±7.1 41.2±17.2 27.6±7.4 26.7±6.8 31.2±11.0
new-thyroid 5.6±4.6 5.5±4.5 64.3±23.8 5.5±4.6 5.7±4.6 41.4±9.0
ringnorm 9.9±2.1 9.0±2.0 64.7±30.5 10.0±1.9 9.0±1.5 35.8±9.2
segment 2.3±0.9 2.4±0.9 98.1±19.7 2.5±0.9 2.5±0.9 51.2±3.9
sonar 20.7±8.8 20.6±8.4 88.8±24.8 20.5±9.0 21.5±8.5 46.7±7.2
soybean 6.7±2.5 6.6±2.3 80.7±31.8 6.6±2.6 6.6±2.4 41.6±8.1
threenorm 19.3±1.8 18.5±1.5 45.9±26.1 19.5±1.8 18.7±1.5 30.8±11.2
tic-tac-toe 1.2±1.1 1.1±1.1 81.1±24.0 1.2±1.1 1.1±1.1 45.4±7.0
twonorm 6.7±1.6 5.1±0.8 33.2±21.7 6.7±1.6 5.0±0.8 20.2±9.0
vehicle 24.7±4.0 25.1±3.9 82.6±28.9 25.1±3.8 25.5±3.7 42.4±9.6
votes 4.4±3.0 4.7±3.0 65.2±31.6 4.5±3.0 4.7±3.0 37.2±13.2
vowel 8.2±2.5 8.1±2.5 100.6±15.9 9.5±2.9 9.4±3.0 50.7±3.6
waveform 19.5±1.4 18.1±1.3 34.9±26.8 19.5±1.4 18.0±1.3 21.1±11.3
wine 2.9±4.1 2.9±4.0 74.5±30.8 3.0±4.1 2.8±3.8 41.0±12.1
w/d/l 9/21/0 7/23/0

Table 4: Average test error (in %) of ensembles that use samples whose sizes are determined
using the out-of-bag error (oob) and the corresponding sampling ratios (also in %) for with and
without-replacement sampling. The average test error for standard bagging and half-subaging
are given for reference.

are no differences in performance among the different classification methods for
the problems investigated. If this hypothesis is rejected, a Nemenyi test is ap-
plied to determine whether the differences in average ranks between pairs of
algorithms are statistically significant at a 95% confidence level. Figure 5 dis-
plays the average ranks of standard bagging, subagging and of the ensembles in
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Figure 5: Comparison of the different methods using the Namenyi test. Classifiers not signif-
icantly different (p-value=0.05) are connected.

which the sampling ratio is estimated using out-of-bag data. In this diagram
methods whose average ranks are not significantly different according to the
Nemenyi test (p-value< 0.05) appear connected by a horizontal line. The crit-
ical difference is shown for reference (CD=0.86 for 4 methods, 30 dataset and
α = 0.05). The best performance corresponds to the oob wr ensembles, which
employ samples extracted with replacement, followed by oob wor ensembles,
where without-replacement sampling is used. The out-of-bag with-replacement
ensembles are significantly better than both standard bagging and subagging.
In the case of subagging there is not enough evidence to determine whether the
differences between sampling ratios estimated using out-of-bag data and the
standard choice (half subsampling) are statistically significant.

5. Conclusions

In this article we have carried out an empirical analysis of the dependence
of the generalization performance of m-out-of-n bagging and subagging with
the size of the samples used to train the individual ensemble classifiers. This
investigation shows that there is a correspondence between the results of with-
replacement and without-replacement sampling for ensembles of classification
trees when the corresponding sampling ratios are related by (1). In most of the
problems investigated the sampling ratios that are optimal in terms of the gen-
eralization performance of the ensemble do not coincide with the conventional
choices. The optimal value of the sampling ratios is problem dependent and
can be estimated using the out-of-bag estimate of the generalization error of the
ensemble.

In most cases, sampling ratios smaller than the standard choices are selected
by the out-of-bag method proposed. Using smaller training samples has some
advantages: First, the ensembles are generated faster. Second, classification
trees trained on smaller samples also tend to be simpler. These properties en-
tail a reduction in storage needs for the ensemble and an acceleration of the
classification process, both of which are desirable properties, especially in on-
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line applications. In terms of classification performance, using smaller bootstrap
samples tends to increase the diversity of the classifiers and, therefore, the like-
lihood that the errors made by the different classifiers are uncorrelated. In this
manner, incorrect classifications can be compensated by pooling the decisions of
the classifiers in the ensemble. Another reason why using smaller samples can
be useful to improve the generalization performance of the ensemble is that this
procedure effectively smooths the feature space by reducing the influence of iso-
lated examples whose class label is different from the class label of neighboring
examples: As the sampling ratio becomes smaller, some training examples are
included in less than half of the bootstrap samples. Consequently, the regions
in the neighborhood of these examples are classified by the ensemble taking into
account the class labels of nearby instances as well.
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