
Aggregation Ordering in Bagging
Gonzalo Martı́nez-Muñoz and Alberto Suárez

Departamento de Ingenierı́a Informática
Universidad Autónoma de Madrid

Ciudad Universitaria de Cantoblanco
Madrid 28049, Spain

email:{gonzalo, alberto.suarez}@ii.uam.es

ABSTRACT
The order in which classifiers are aggregated in ensemble
methods can be an important tool in the identification of
subsets of classifiers that, when combined, perform better
than the whole ensemble. Ensembles with randomly or-
dered classifiers usually exhibit a generalization error that
decreases as the number of classifiers that are aggregated
increases. If an appropriate order for aggregation is chosen,
the generalization error reaches, at intermediate numbers
of classifiers, a minimum, which lies below the asymptotic
error of the ensemble. This work presents some heuris-
tics that exploit the relations between the classifiers in a
bagging ensemble to identify the appropriate ordering and
then select a subset for aggregation according to a desired
amount pruning. The resulting subensembles are smaller
and improve the classification performance of the original
ensemble.

KEY WORDS
Machine learning, bagging, ensemble pruning, decision
trees

1 Introduction

Classification methods based on pooling the decisions of
an ensemble of classifiers have demonstrated great poten-
tial for improvement in many regression and classification
problems [1, 2, 3, 4, 5, 6, 7, 8, 9]. These techniques make
use of instabilities in the algorithms that generate the base
classifiers in order to construct an ensemble of diverse clas-
sifiers whose joint action may improve the classification
performance of a single classifier.

One of the common procedures to generate classifier
ensembles is bagging [3] (Bootstrap sampling and aggre-
gation). In bagging, the diversity is obtained by using dif-
ferent data for induction: Each classifier is constructed us-
ing as training set a different bootstrap sample of the origi-
nal training data. The bootstrap sample has the same size as
the train set, and is obtained by random sampling with re-
placement from it. Each sample contains on average 63.2%
of the original training set. The rest of the sample are
repeated examples. The aggregation phase combines the
decisions of the classifiers using a simple voting method,
where all classifiers are allocated equal weights.

In bagging ensembles, the generalization error usu-
ally decreases as the number of classifiers increases. The
error tends asymptotically to a constant level, which is as-
sumed to be the best result bagging can produce. This
monotonic error descent is a consequence of the random-
ness inherent in bagging: the ordering of the aggregated
classifiers in a bagged ensemble derives from the random
order of the bootstrap process, where the possible cooper-
ation between complementary classifiers is not taken into
account.

The main idea of the present work is to exploit the
correlations between the individual classifiers in bagging to
select a subset of the ensemble that outperforms the whole
ensemble. Assume we have generated an ensemble com-
posed of T different classifiers. There are 2T − 1 pos-
sible subensembles, some of which have a generalization
performance that is better than that of the full ensemble.
Our objective is to design a procedure that can select the
subensemble with the lowest generalization error. In [10],
Tamon et al. proved that, assuming that minimizing the
training error leads to the minimization of the generaliza-
tion error, the problem of selecting the best subensemble is
NP-complete. In order to simplify the search in the space
of subensembles, it is assumed that the best subensemble
of size u − 1 is included in the best subensemble of size
u, and that we can construct a sequence of best subensem-
bles of increasing size by including one classifier at a time.
Although this assumption is not necessarily true, it seems
likely that, in general, the best subensembles of sizes u− 1
and u share most of their classifiers. The problem is then
to design a rule to determine the order in which classifiers
are aggregated.

In Section 2 we briefly describe previous work on en-
semble pruning. Section 3 introduces the learning algo-
rithm and the rules that we use to order the classifiers in
bagging: Reduce-Error ordering, Complementariness mea-
sure, and Margin Distance Minimization. The first one is
a simplified version of the reduce-error pruning rule pre-
sented in [11] without backfitting, while the last two pro-
cedures are novel proposals. The procedures designed are
empirically tested in ten datasets, synthetic and real-world,
included in the UCI repository [12]. Finally, the conclu-
sions and perspectives of this research are summarized.

2 Previous Work

As noted by Margineantu & Dietterich in [11], a drawback
of ensemble methods is the large amount of memory re-
quired to store all the classifiers in the ensemble. For a
real world application, it is difficult to justify the usage of
a classifier when this requires more storage capacity than
the database from which it is generated, especially when
a simple dictionary lookup or nearest-neighbors may also
perform well. This observation prompted the authors to in-
vestigate whether all classifiers generated with Adaboost
[1] are essential for its accuracy. The decrease in storage
requirements is not the only benefit that can be obtained
from the reduction of the ensemble size. There are also
gains in the speed of classification, which is a critical issue
for inline applications. In [11], Margineantu & Dietterich
propose some interesting heuristics for selecting the essen-
tial classifiers in an Adaboost ensemble for a given degree
of pruning. Most of these heuristics for ensemble pruning
are based on measures of diversity and performance. The
experiments they present indicate that one can significantly
reduce the number of classifiers (up to 60 to 80% pruning
in some domains) without a substantial degradation of the
classification performance.

A different approach is taken by Zhou et al. [13, 14].
These authors propose the use of a genetic algorithm to de-
termine an optimal set of weights for the classifiers in an
ensemble by minimizing a function related to the gener-
alization ability of the ensemble. The optimization prob-
lem is solved by using a standard Genetic Algorithm with a
floating-point scheme for real-valued weights in neural net-
work ensembles and with a binary scheme for 0/1 weights
in decision tree ensembles. They then eliminate from the
ensemble those nets or trees whose optimized weights are
below a specified level. Their experiments were made us-
ing rather small ensembles (20 elements).

Prodromidis et al. [15] propose a method for reduc-
ing the number of base learners of any ensemble based in
the cost complexity pruning technique of the CART algo-
rithm [16]. They train a CART tree with the outputs of the
base classifiers as attributes and the final decision of the en-
semble as the class label. Then this meta-learner is pruned
using the cost complexity methodology of CART. Finally
the base classifiers that are not used in the pruned tree are
removed from the ensemble and the ensemble is restruc-
tured.

Our approach avoids both the computationally com-
plex optimization process in the space of weights [13, 14]
and the pruning of a representation of the original ensemble
[15]. The proposed pruning procedure is based on ordering
the predictors in the ensemble according to a number of
straightforward rules that exploit the complementariness of
the individual classifiers.

3 Learning Algorithm

In this section we present a brief introduction of bagging,
which is the method used in this work to generate an en-
semble of classifiers, followed by a detailed discussion of
the rules for selecting the order in which the classifiers in
the ensemble should be aggregated.

The input for the learning algorithm is the set of train-
ing data, which consists in a collection of Ntrain labeled
examples L = {(xi, yi), i = 1, 2, ..., Ntrain}. Each train-
ing example is characterized by a feature vector xi and a
class label yi. The goal of the classification algorithm is to
generate a hypothesis, H(x), which, given a feature vector
x as an input, predicts its class label y, using the knowl-
edge contained in the training dataset L. For the sake of
simplicity, in this section, we consider only binary classifi-
cation problems where yi = ±1. The results can be easily
extended to multiclass problems.

Instead of inducing a single hypothesis from L, en-
semble methods create a diversity of hypotheses and then
combine their classifications to yield a final decision. Bag-
ging generates a set of hypotheses ht(x) : t = 1, . . . , T ,
by constructing a classifier for each of a number of dif-
ferent bootstrap samples from L. The final decision of
the bagged ensemble is taken by simple majority with un-
weighted voting. Assuming a binary classification prob-
lem, where ht(x) = ±1, the combined ensemble hypothe-
sis is

H(x) = sign

(

T
∑

t=1

ht(x)

)

. (1)

Both the process that bagging uses for generating the dif-
ferent hypotheses (bootstrap) and the voting procedure (ag-
gregation) do not take into account the relations among the
different classifiers in the ensemble.

In this work we present a strategy to improve the gen-
eralization performance of bagging by selecting subsets
of classifiers from the original ensemble. Starting with a
subensemble of size u − 1, a subensemble of size u is ob-
tained by adding an extra classifier, which is selected ac-
cording to a specified rule. This process amounts to finding
the appropriate aggregation ordering of the bagged predic-
tors. The original random ordering t = 1, 2, . . . , T of clas-
sifiers in the bagging ensemble is replaced by a different
ranking s1, s2, . . . , sT , where sj is the original position in-
dex of the classifier that occupies the jth. position in the
newly ordered ensemble. Finally, the M first classifiers are
retained, depending on the desired amount of pruning.

Some exploratory experiments were made in order to
ascertain whether characteristics of the individual classi-
fiers are useful criteria to order the elements in the ensem-
ble. In particular, different estimates of the individual clas-
sification error were used to determine the aggregation or-
dering. The resubstitution error on the training set is not
a reliable indicator of the generalization performance of a
given classifier and does not lead to any useful ordering
in the ensemble. Experiments where a single, sufficiently

large validation set, independent of the training data, is
used to estimate the generalization error also failed to pro-
duced a useful ordering. Based on these results, we con-
clude that ranking procedures guided by individual perfor-
mance measures do not lead to the identification of subsets
of classifiers that outperform the whole bagging ensemble.
In order to design useful ordering strategies, it is important
to take into account the complementary action of the classi-
fiers. Indeed, if we bring together very accurate classifiers,
but with a large degree of similarity, their classification ac-
curacy does not improve, while if we pool the results from
classifiers that compensate each other’s errors we do obtain
an increased accuracy [8].

The successful ordering methods make use of the
complementariness of different ensemble elements in the
classification process. An individual classifier may have
a poor classification performance but its contribution can
be important when combined with other classifiers. We
proceed now to describe in detail some ordering rules that
have proved useful: Reduce-Error pruning, Complemen-
tariness measure, and Margin Distance Minimization. The
rules make use of a selection set of Nsel labeled examples
{(xi, yi), i = 1, 2, ..., Nsel}, which could in principle co-
incide with the training set.

Reduce-Error pruning: This method is equivalent
to the one presented in [11] without backfitting. It works as
follows: the smallest (size one) subensemble in the series
is the classifier with the lowest classification error on a se-
lection set. Classifiers are then added to the ensemble one
by one, in such a way that the classification error estimated
on the selection set of the partial ensemble is as low as pos-
sible. Hence, the selected classifier in the uth iteration is
the one that maximizes the expression:

su = argmax
k

Nsel
∑

i=1

sign

(

hk(xi) +

u−1
∑

t=1

hst
(xi)

)

yi ,

(2)
where k index runs throughout the classifiers that have not
been included in the subensemble of size u − 1.

Complementariness measure: This procedure fa-
vors the inclusion of classifiers whose performance is com-
plementary to that of the subensemble. As in the previous
procedure the subensembles grow from the classifier with
the lowest error on the selection set. From a subensemble
of size u − 1, the subensemble of order u is obtained by
incorporating into the subensemble the classifier that max-
imizes

su = argmax
k

Nsel
∑

i=1

I

(

yi = hk(xi) AND

yi 6= sign

(u−1
∑

t=1

hst
(xi)

))

, (3)

where k runs through the classifiers that have not been se-
lected up to that point, and I(true) = 1, I(false) = 0.
This quantity can be thought of as the amount by which

one classifier shifts the decision of the ensemble towards
the correct classification. This criterion favors the inclu-
sion in the ensemble of classifiers that correctly classify
examples in which the partial subensemble errs.

Margin Distance Minimization: Given a labeled se-
lection set of size Nsel, consider the quantity ct defined
for each of the classifiers in the ensemble. It is an Nsel-
dimensional vector whose ith component is

(ct)i = yiht(xi), i = 1, 2, . . . , Nsel . (4)

The quantity (ct)i is equal to 1 if the tth classifier correctly
classifies the ith training example and −1 otherwise. The
accuracy of the ensemble can be expressed as an average
over the vectors ct. The ith example is correctly classified
by the ensemble if the ith component of the average vec-
tor 〈c〉 = 1

T

∑T

t=1
ct is positive. Note that 〈c〉 is a vector

whose components are equal to the example margins ac-
cording to the definition given in Ref. [5] and are therefore
bounded between −1 and 1. For a subensemble that cor-
rectly classifies all the data in the selection set, vector 〈c〉
is in the first quadrant of the Nsel-dimensional hyperspace
(i.e., all components are positive). Our goal is to select a
subensemble where this vector is as close as possible to a
reference position placed somewhere in the first quadrant.
We arbitrarily select this objective position as a constant
vector with equal components:

oi = p i = 1, . . . , Nsel : with 0 < p < 1 . (5)

Classifiers are added to the ensemble in order to re-
duce most the distance from the vector 〈c〉 to the objective
point o. The uth selected classifier is the one that mini-
mizes

su = argmin
k

d

(

o,
1

T

(

ck +

u−1
∑

t=1

cst

))

, (6)

where k runs throughout the classifiers outside the
subensemble and where d(u, v) is the usual quadratic dis-
tance between vectors u and v.

The value of p should be chosen small (i.e. p ∼
(0.05, 0.25)). In such manner, easy examples (i.e. those
correctly classified by most of the classifiers) will promptly
achieve a value near p and, consecuently, their influence in
the selection of the next classifiers will be reduced, increas-
ing the influence of the harder examples. On the other hand,
if a value of p near 1 is selected, there is a similar attraction
for all examples throughout the selection process, making
the method less effective.

4 Experimental Results

The proposed ordering rules have been tested on ten differ-
ent machine learning problems. Two of these are synthetic
datasets (Twonorm and Ringnorm) proposed by Breiman
in [17]. The remaining problems are included in the UCI

Table 2. Average train error in % for ensembles of 10%, 20% and 40% classifiers. Results having standard deviations higher
than bagging are shown in italics.

Bagging Reduce-Error Complementariness Distance (p = 0.075)
Ensemble size 100% 10% 20% 40% 10% 20% 40% 10% 20% 40%
Breast W. 3.0±0.6 0.5 0.9 1.5 1.1 1.4 1.9 0.8 1.8 2.5
Diabetes 20.5±1.5 11.0 12.6 15.0 12.5 14.2 16.5 12.1 14.7 17.3
German 20.4±1.2 12.1 13.0 14.5 13.4 14.5 15.9 13.2 14.7 16.7
Heart 11.4±2.4 1.8 2.8 4.9 3.2 4.7 6.8 2.7 5.2 8.2
Ringnorm 2.9±1.0 0.3 0.3 0.5 0.6 0.6 0.9 0.4 0.7 1.6
Segment 3.7±1.6 0.1 0.2 0.7 0.8 0.8 1.3 0.2 0.7 1.7
Thyroid 2.6±1.2 0.0 0.0 0.2 0.2 0.3 0.5 0.0 0.2 1.0
Twonorm 0.6±0.6 0.0 0.0 0.0 0.3 0.1 0.1 0.0 0.1 0.5
Waveform 9.9±2.6 0.8 1.2 2.8 1.9 2.4 4.2 1.5 3.1 6.3
Wine 0.9±1.0 0.0 0.0 0.0 0.4 0.4 0.4 0.0 0.0 0.1

Table 1. Characteristics of the used datasets

Dataset Train Test Attribs Classes
Breast W. 500 199 9 2
Diabetes 468 300 8 2
German 700 300 20 2
Heart 170 100 13 2
Ringnorm 400 7000 20 2
Segment 210 2100 19 7
Thyroid 140 75 5 3
Twonorm 400 7000 20 2
Waveform 300 4700 21 3
Wine 100 78 13 3

repository [12]: Breast Cancer Wisconsin, Pima Indian Di-
abetes, German Credit, Heart, Image Segmentation, Wine,
Thyroid and Waveform. Table 1 displays the number of
examples used for training and testing, the number of at-
tributes and the number of classes for each dataset.

For each dataset 100 experiments were carried out.
Each experiment involved the following steps:

1. Generate a stratified random partition of the data in
training and testing (see table 1 for sizes).

2. Create a bagging ensemble of 200 CART trees.

3. Order the decision trees using the three procedures
described in the previous section (Error-Reduction,
Complementariness measure and Margin Distance
Minimization), using as selection set the training set
used in the creation of the ensemble. For the Mar-
gin Distance Minimization procedure a value of p =
0.075 was chosen based on some preliminary tests 1.

4. Finally, the ordered ensembles were evaluated for
sizes of 10%, 20% and 40% (i.e., 90%, 80% and %60

1Similar accuracies are obtained with p = 0.05 and p = 0.25. With
p = 0.25, however, larger sub-ensembles are needed.

percent pruning) of the original ensemble, using the
testing set.

Tables 2 and 3 present a summary of the train and
test errors obtained by the different ordering procedures at
the different pruning levels for the analyzed datasets. The
numbers reported are averages over the 100 experiments.
The first column of the table shows the dataset name. The
second column reports the test error of bagging when all
classifiers are used. The standard deviation is shown af-
ter the ± sign. The following groups of columns present
the average test error for Reduce-Error, Complementari-
ness and Margin Distance Minimization (p = 0.075) meth-
ods for ensemble sizes of 10%, 20% and 40% of the origi-
nal. Standard deviations are not shown. However, they are
lower than in bagging for most cases except for some re-
sults (marked with italics in the tables) in the German and
Diabetes datasets and never more than 0.1-0.3 higher.

Table 3 shows the lowest test error for every dataset
in boldface. In all cases the improvement over bagging is
statistically significant (p-value under 10−7 in a two-sided
paired Student’s t-test). Margin Distance Minimization is
the most efficient method in eight of the tested domains and
is very close to the best result in the Diabetes and Breast W.
problems. Complementariness is the best method in these
two sets and obtains results similar to Reduce-Error method
in the other sets (except for Twonorm).

In table 3 we observe that the proposed methods gen-
erally reduce the classification error of the whole bagging
ensemble for the studied datasets. This improvement is
achieved for a large range of pruning values. The gener-
alization error usually goes below the asymptotic bagging
error starting with small subensembles, which contain less
than 10% of the classifiers. Another important aspect is
that, in general, the method that exhibits better generaliza-
tion errors (Margin Distance Minimization with 20% of the
classifiers) does not coincide with the method with the best
training accuracy (Reduce-Error with 10% of the classi-
fiers). As an extreme example note that in the Heart dataset

Table 3. Average test error in % for ensembles of 10%, 20% and 40% classifiers. Best method is shown in bold face. Results
having standard deviations higher than bagging are shown in italics.

Bagging Reduce-Error Complementariness Distance (p = 0.075)
Ensemble size 100% 10% 20% 40% 10% 20% 40% 10% 20% 40%
Breast W. 4.6±1.6 4.1 4.0 4.0 3.8 4.0 4.1 3.9 3.9 4.3
Diabetes 25.1±1.9 24.3 24.3 24.3 24.1 24.0 24.3 24.2 24.1 24.2
German 25.3±2.1 24.1 23.9 24.0 23.9 23.7 23.8 24.0 23.6 24.0
Heart 19.7±4.7 19.8 18.7 18.5 19.0 18.4 17.8 19.4 17.7 17.3
Ringnorm 10.2±1.9 9.2 8.9 8.8 9.0 8.6 8.5 8.3 7.9 8.4
Segment 9.7±1.7 8.1 8.0 8.2 8.5 8.3 8.4 7.8 7.8 8.4
Thyroid 7.3±3.2 6.4 6.3 6.2 6.2 6.2 6.1 5.9 5.6 5.8
Twonorm 8.4±2.7 9.0 7.8 7.4 9.6 8.6 8.2 7.8 7.4 7.9
Waveform 22.2±2.1 20.5 20.0 20.0 20.3 19.7 19.7 20.1 19.2 19.7
Wine 6.7±4.2 6.1 5.9 6.4 5.8 6.0 5.9 5.2 3.8 4.1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 20 40 60 80 100 120 140 160 180

E
rr

or

Number of classifiers

waveform train

Bagging
Reduce-error

Complementariness
Distance p=0.075

Figure 1. Train error against number of classifiers for the
presented methods in Waveform (averaged over 100 runs).

the worst training error figure (Margin Distance Minimiza-
tion with 40% of the classifiers) corresponds to the lowest
test error. Conversely, the pruning method leading to the
lowest training error (Reduce-Error with 10% of the classi-
fiers) exhibits the largest error on the test set. These results
indicate that a method such as Reduce-Error, based exclu-
sively on the reduction of the training error does not fully
exploit the cooperation among different classifiers.

Figures 1 and 2 display the training and test error,
respectively, as a function of the number of classifiers in
the subensemble for the Waveform dataset. The different
curves correspond to different aggregation orderings: The
solid line corresponds to the initial (random) ordering from
bagging. The discontinuous lines correspond to orderings
based on the Reduce-error, Complementariness and Margin
Distance Minimization (p = 0.075) procedures. These fig-
ures illustrate the typical dependence of the classification
error on the number of bagged predictors. As expected,
for randomly ordered ensembles the test error diminishes

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 20 40 60 80 100 120 140 160 180

E
rr

or

Number of classifiers

waveform test

Bagging
Reduce-error

Complementariness
Distance p=0.075

Figure 2. Test error against number of classifiers for the
presented methods in Waveform (averaged over 100 runs).

monotonically as the number of classifiers in the subensem-
ble is increased, until it reaches asymptotically a constant
error level. In contrast, ensembles ordered by the ranking
procedures based on the complementary action of the clas-
sifiers lead to test error curves that exhibit a minimum for
intermediate numbers of classifiers. For all but the small-
est subensembles, the test error curves displayed in figure
2 lie below the asymptotic bagging error, making it easy
to select a subensemble that outperforms the original bag-
ging ensemble. In general, as can be seen from figures 1
and 2 and tables 2 and 3 training error minima tend to oc-
cur for smaller subensembles than test error minima. This
introduces some difficulty in the selection of the pruning
percentage that leads to the best generalization error.

5 Conclusions and perspectives

We propose to use aggregation ordering to select an opti-
mal subset of classifiers from an ensemble. If classifiers are

ordered by rules that take into account their complemen-
tariness, the graph of the generalization error (estimated
on an independent test set) as a function of the number of
aggregated classifiers exhibits a characteristic shape with
a minimum. This minimum corresponds to a subensem-
ble with fewer classifiers and a lower generalization error
than the whole ensemble. We present the results obtained
for three different ordering rules: Reduce-Error ordering,
Complementariness measure, and Margin Distance Mini-
mization. These rules should be useful in ensembles where
predictors do not have a prescribed aggregation ordering;
i.e., they should work for bagging [2, 3], random forests
[18], iterated growing and pruning ensembles [19], etc. but
not for boosted ensembles.

Rules that order classifiers based on some character-
istic of the individual classifiers, such as individual train-
ing error, do not lead to any improvement over bagging.
This is because these ranking procedures do not take into
account the complementariness among classifiers for con-
structing the ensemble. This feature is addressed explicitly
in the proposed methods: the Margin Distance Minimiza-
tion aims to make the margins for each of the examples in
the training set positive. Complementariness measure se-
lects classifiers based on their joint action. The experiments
carried out show that the Margin Distance Minimization
with 80% percent pruning achieves a good average perfor-
mance, better in most cases than the other methods consid-
ered.

We have also observed that the ordered ensembles ex-
hibit a generalization error that is lower than the full bag-
ging test error for a large range of pruning rates. This
means that with the proposed methods a smaller and better-
performing ensemble can be easily obtained and conse-
quently, their use in bagging is advisable. Nevertheless,
since the training set error seems to underestimate the size
of the subensemble where the generalization error mini-
mum occurs, further work is needed to determine the op-
timal subensemble size.

References

[1] Y. Freund and R.E. Schapire, A decision-theoretic
generalization of on-line learning and an application
to boosting, Proc. 2nd European Conference on Com-
putational Learning Theory, 1995, 23–37

[2] J. Quinlan, Bagging, boosting, and C4.5, Proc. 13th
National Conference on Artificial Intelligence, Cam-
bridge, MA, 1996, 725–730

[3] L. Breiman, Bagging predictors, Machine Learning,
24(2), 1996, 123–140

[4] L. Breiman, Arcing classifiers, The Annals of Statis-
tics, 26(3), 1998, 801–849

[5] R. Schapire, Y. Freund, P. Bartlett and W. Lee, Boost-
ing the margin: A new explanation for the effective-

ness of voting methods, The Annals of Statistics,
12(5), 1998, 1651–1686

[6] E. Bauer and R. Kohavi, An empirical comparison of
voting classification algorithms: Bagging, boosting,
and variants, Machine Learning, 36(1-2), 1999, 105–
139

[7] A.J.C. Sharkey, Combining Artificial Neural Nets:
Ensemble and Modular Multi-Net Systems, (London,
Springer-Verlag, 1999)

[8] T.G. Dietterich, An experimental comparison of
three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization, Ma-
chine Learning, 40(2), 2000, 139–157

[9] G. Rätsch, T. Onoda and K.R. Müller, Soft margins
for AdaBoost, Machine Learning, 42(3), 2001, 287–
320

[10] C. Tamon and J. Xiang, On the boosting pruning
problem, Proc. 11th European Conference on Ma-
chine Learning, 2000, 404–412

[11] D.D. Margineantu and T.G. Dietterich, Pruning adap-
tive boosting, Proc. 14th International Conference on
Machine Learning, 1997, 211–218

[12] C.L. Blake and C.J. Merz, UCI repos-
itory of machine learning databases
[http://www.ics.uci.edu/∼mlearn/mlrepository.html]
(1998)

[13] Z.H. Zhou, J. Wu and W. Tang, Ensembling neural
networks: Many could be better than all, Artificial
Intelligence, 137(1-2), 2002, 239–263

[14] Z.H. Zhou and W. Tang, Selective ensemble of de-
cision trees, Lecture Notes in Artificial Intelligence
2639, 2003, pp.476-483, Berlin: Springer, 2003

[15] A.L. Prodromidis and S.J. Stolfo, Cost complexity-
based pruning of ensemble classifiers, Knowledge
and Information Systems, 3(4), 2001, 449–469

[16] L. Breiman, J.H. Friedman, R.A. Olshen and C.J.
Stone, Classification and Regression Trees, (New
York, Chapman & Hall, 1984)

[17] L. Breiman, Bias, variance, and arcing classifiers,
Technical Report 460, Statistics Department, Univer-
sity of California, 1996

[18] L. Breiman, Random forests, Machine Learning,
45(1), 2001, 5–32

[19] G. Martı́nez-Muñoz and A. Suárez, Using all data
to generate decision tree ensembles, IEEE Transac-
tions on Systems, Man and Cybernetics C, accepted
for publication, 2003

