
Class-switching Neural Network Ensembles
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Abstract

This article investigates the properties of class-switching ensembles composed of
neural networks and compares them to class-switching ensembles of decision trees
and to standard ensemble learning methods, such as bagging and boosting. In a
class-switching ensemble, each learner is constructed using a modified version of the
training data. This modification consists in switching the class labels of a fraction of
training examples that are selected at random from the original training set. Exper-
iments on 20 benchmark classification problems, including real-world and synthetic
data, show that class-switching ensembles composed of neural networks can obtain
significant improvements in the generalization accuracy over single neural networks
and bagging and boosting ensembles. Furthermore, it is possible to build medium-
sized ensembles (≈ 200 networks) whose classification performance is comparable
to larger class-switching ensembles (≈ 1000 learners) of unpruned decision trees.

Key words: Ensembles of classifiers, Neural Networks, Class-switching, Bagging,
Boosting, Decision Trees

1 Introduction

Ensemble methods in machine learning attempt to induce a collection of di-
verse predictors which are both accurate and complementary, so that, when the
decisions of the different learners are combined, better prediction accuracy on
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previously unseen data is obtained. The goal is to generate from a given train-
ing dataset a collection of diverse predictors whose errors are uncorrelated.
Ensembles built in this manner often exhibit significant performance improve-
ments over a single predictor in many regression and classification problems.
Ensembles can be built using different base classifiers: decision stumps [27]
decision trees [11,25,3,4,27,22,2,9,26,6], neural networks [14,31,23,28,22,26,8],
support vector machines [17,29,30], etc.

To create diversity, ensemble methods introduce perturbations at some stage
in the generation of individual predictors. These modifications, which often
involve injecting some amount of randomness, can be either in the algorithm
that is used to build the base learners or in the training data used as input
for the induction process. The motivation for introducing an aleatory element
in the base learning algorithm is that different executions of the randomized
training algorithm on the same instance of a learning problem should generate
diverse classifiers. For example, in randomization [18], the base learners are
decision trees generated with a modified tree construction algorithm. This al-
gorithm computes the best 20 splits for every internal node and then chooses
one of them at random. Another algorithm of this type consists in generating
diverse neural networks using different random initializations of the synaptic
weights. This simple technique is sufficient to generate fairly accurate ensem-
bles [22].

Perturbations in the training dataset can be introduced in different ways: using
bootstrap samples from the training data, modifying the empirical distribution
of the data (either by resampling or reweighting examples), manipulating the
input features or altering the output targets, etc. Bagging [3], one of the most
widespread methods for ensemble learning, belongs to this group of techniques.
In bagging, each individual classifier is generated using a surrogate training set
of the same size as the original one. This surrogate set is obtained by random
resampling with replacement from the original training data. In boosting [11],
the empirical distribution is modified by reweighting the training examples
depending on the performance of the generated classifiers on those examples.
Initially, the weights of the training examples are equal. At each iteration of
the boosting process, the weights of the training data are updated according to
whether the classification produced by the classifier generated in the previous
iteration is correct or not. The weights of correctly classified examples are
decreased, and the weights of incorrectly classified ones are increased. In this
manner, the subsequent base learner tends to focus on examples that are
harder to classify. A weighted voting scheme, where the contribution made by
predictors obtained later in the ensemble generally decreases, is finally used
to combine the decisions of the individual learners.

Another strategy consists in manipulating the input features. For instance,
one can randomly eliminate features of the input data before constructing
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each individual classifier. In random subspaces [15], each base learner is gen-
erated using a different random subset of the input features. Another data
randomization strategy consists in modifying the class labels. In particular, in
classification problems with multiple classes, one can build each classifier in
the ensemble using a different coding of the class labels [10,12].

The ensemble method analyzed in this work belongs to this last group of
techniques. It is based on randomly modifying the class label of a fraction of
instances of the training set to generate each classifier. This type of ensem-
ble learning algorithms were introduced in [5] (flipping) and further analyzed
in [19,13] (class-switching). In [19] it is shown that class-switching ensembles
composed of a sufficiently large number of unpruned decision trees trained
on data where a fairly large fraction of the class-labels are switched exhibit
good generalization performance in a large number of benchmark classification
problems. Typically, these class-switching ensembles obtain accuracies equiv-
alent or better than boosting and much better than bagging [19]. In [13], the
performance of the class-switching algorithm using neural networks as the base
learners is analyzed. Because of the different properties of neural networks and
decision trees, several modifications of the procedure described in [19] need to
be made to generate efficient class-switching ensembles composed of neural
networks. In particular, it is found that, in contrast with class-switching en-
sembles of decision trees, one should not attempt to train the base learners
to provide an exact fit of the perturbed training data. Instead, the number of
hidden units for the individual networks should be determined using standard
architecture selection techniques. Another difference with class-switching en-
sembles of decision trees is that, when neural networks are used as base learn-
ers, the best overall results are obtained with relatively low class-switching
rates (p̂ = 1/5 or p̂ = 2/5).

In this work, we extend the analysis of class-switching ensembles of neural net-
works presented in [13] and compare their performance with class-switching
ensembles of decision trees, bagging and boosting in 20 benchmark classi-
fication tasks. When the base learners are neural networks, class-switching
ensembles significantly outperform bagging and boosting ensembles in most
of the classification tasks investigated. Comparing class-switching ensembles
of neural networks and of decision trees, a smaller number of networks (around
200 networks) need to be aggregated in the ensembles to achieve the lowest
possible (asymptotic) error level. This has the advantage that the memory
requirements to store the ensemble are lower than with ensembles of decision
trees, which typically need around 1000 trees to converge.

The article is organized as follows: Section 2 introduces the class-switching al-
gorithm and the modifications that are necessary to build accurate ensembles
composed of neural networks. Section 3 presents the results of experiments
that compare the classification performance of a single neural network, bag-
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ging, boosting and class-switching ensembles in twenty datasets. Finally, the
conclusions of this research are summarized in Section 4.

2 Class-switching Ensembles

Switching the class labels to generate ensembles of classifiers was first proposed
by Breiman [5]. A modification of the initial flipping algorithm, denominated
class-switching, was proposed and analyzed in [19] using decision trees as base
learners. Class-switching ensembles are built by generating each classifier in
the ensemble using different perturbed versions of the original training set.
To generate a perturbed version of the training set, a fixed fraction p of the
examples of the original training set are selected at random and the class
label of each of these selected examples is randomly switched to a different one.
The class label randomization can be characterized by a transition probability
matrix

Pj←i = p/(K − 1) for i 6= j

Pi←i = 1 − p ,
(1)

where Pj←i is the probability that an example whose label is i becomes labeled
as belonging to class j and K is the number of classes in the problem.

The class-flipping procedure proposed by Breiman [5] is designed to ensure
that, on average, the class proportions of the original training set are main-
tained in the modified training sets. In [19], it was shown that, for several
benchmark problems in which the training data exhibits an imbalanced distri-
bution of classes, the ensembles generated with class-flipping do not perform
well. By contrast, class-switching ensembles composed of decision trees, where
the class labels are switched at random, without attempting to maintain the
original distribution of classes, are competitive with bagging and boosting en-
sembles for a large range of balanced and unbalanced classification tasks [19].
In order for class-switching to work, the fraction of examples whose class label
is changed, p, should be small enough to ensure that, for any given class and
for every region in the attribute space, there is still a majority of correctly
labeled examples (i.e. examples whose class labels have not been switched).
This condition is fulfilled on the training set (on average) if Pj←i < Pi←i.
Hence, using (1), the switching rate p should fulfill

p < (K − 1)/K . (2)
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¿From this equation, the ratio of the class-switching probability to its maxi-
mum value is defined as

p̂ = p/pmax = pK/(K − 1) . (3)

Using values of p over this limit would generate, for some regions in feature
space, a majority of examples incorrectly labeled and, in consequence, those
regions would be incorrectly classified by the ensemble.

Ref. [19] describes the conditions under which class-switching can generate
accurate ensembles composed of C4.5 decision trees. In that investigation it
was found that large ensembles of unpruned decision trees trained on data with
fairly large class-switching rates p̂ (but sufficiently small so that the perturbed
problem bears a statistical resemblance to the original problem) exhibit a
good generalization performance over a large range of benchmark classification
tasks. Empirically, a value of p̂ ≈ 3/5 produced excellent results in all the
classification tasks investigated [19]. The use of unpruned decision trees instead
of pruned trees is motivated by their better performance when combined in
the ensemble. Note that, provided that there are no training examples with
identical attributes values belonging to different classes, an unpruned decision
tree achieves perfect classification (0 error rate) on the perturbed training set:
Each individual tree exhibits a large amount of overfitting. A consequence
of using models that perfectly fit the perturbed training sets is that it is
necessary to combine a large number of trees in the ensemble (≈ 1000) to
ensure that the injected noise is averaged out and that the patterns of the
original classification task are amplified by the aggregation of the individual
learners.

Preliminary experiments were performed to check whether the prescription
used for decision trees (i.e. 0 training error of the trees on the perturbed sets,
large ensembles and high values of p̂) can be directly applied to neural networks
[13]. Note that the architecture and the weights of the neural network have
to be finely tuned for each problem in order to obtain neural models with
≈ 0 error rates in the modified training sets. This is a drawback with respect
to decision trees, where constructing 0-error models for the training data is
straightforward and problem independent: it is sufficient to grow a decision
tree until perfect classification is achieved.

Figure 1 displays the value of the generalization error (averaged over 10 ex-
ecutions) as a function of the number of base classifiers for class-switching
ensembles composed of neural networks (solid lines) and for decision trees
(trait lines) in the Waveform dataset [7]. In these experiments, the architec-
ture and the connection weights of the network are chosen to achieve 0-error
in the perturbed versions of the training data. In particular, networks with a
single layer of 28 hidden units, trained over 1000 epochs are used. The bot-
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Fig. 1. Average test errors for class-switching ensembles composed of neural net-
works (solid lines) and decision trees (trait lines) using p̂ = 3/5 (bottom curves)
and p̂ = 4/5 (top curves) for the Waveform dataset.

tom curves correspond to a p̂ value of 3/5 and the top curves correspond to
p̂ = 4/5. The leaning curves displayed in this figure show that the general-
ization errors of the class-switching neural ensembles generated in this way
are similar to those produced by class-switching ensembles of decision trees.
However, since the baseline performance given by a single decision tree is dif-
ferent from the performance of a neural net, the conclusions for ensembles
composed of decision trees and for ensembles of neural networks are different.
The improvement obtained by decision tree class-switching ensembles over
a single tree is substantial (the generalization error of a single decision tree
is ≈ 30%). Hence, for decision trees, the strategy of generating 0-error base
learners seems to perform well. The simple decision boundaries produced by
single trees, which are based on making partitions parallel to coordinate axes
in attribute space, evolve to more complex and convoluted boundaries when
the decisions of the individual trees are combined in the ensemble. In con-
trast, class-switching ensembles composed of complex neural networks trained
to classify the training data without errors do not significantly improve the
generalization performance of a single network. In particular, for the Wave-
form problem single neural networks built with standard training algorithms
(average of 5.2 hidden units and 570 training epochs), achieve an average error
rate of around 20.0%. Class-switching ensembles composed of 1000 networks,
each of which is designed and trained to achieve zero error rates on the per-
turbed training sets, obtain an improvement of only about one percent point
(19.0%) when the class-switching rate is p̂ = 4/5. The results are slightly bet-
ter (generalization errors of approximately 17.7%) when the class-switching
rates are lower (p̂ = 2/5 or p̂ = 3/5). By contrast, class-switching ensembles
with class-switching rates p̂ = [0/5, 1/5, 2/5, 3/5] composed of 200 neural nets
trained in the same conditions as the single network obtain average gener-
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alization errors around ≈ 16.5%, which represents a significant improvement
over configurations that use more complex nets and larger ensembles, at a
lower computational cost. Note that a neural net with this smaller number
of hidden units does not necessarily obtain a 0-error model on the modified
training data.

In summary, a small ensemble of simple networks whose architecture is de-
termined by standard procedures is trained much faster and exhibits better
generalization performance than a large ensemble of complex networks trained
to exhibit zero error on the perturbed versions of the training set [13]. This
is the prescription that will be used in the remainder of this work to build
class-switching ensembles of neural networks.

3 Experiments

The performance of class-switching ensembles composed of feedforward neu-
ral networks with one hidden layer is investigated in a variety of classifi-
cation tasks. Experiments are carried out in twenty classification problems
from various fields of application and with different characteristics (number
of classes, number of attributes, distribution of classes): sixteen classification
tasks from the UCI repository [1] and four synthetic datasets (Led24, Ring-
norm, Twonorm and Waveform [7,4]). Table 1 displays the properties of the
selected datasets, the protocol used for testing and the characteristics of the
neural networks used as base learners in the ensemble.

Nominal features are binarized by assigning a different input unit for each label
of each nominal attribute. In addition, all input features are normalized to have
zero mean and unit standard deviation. The weights are randomly initialized
between −0.1 and 0.1. Sigmoidal transfer functions for both the hidden and
the output layers are used. The number of units in the output layer is equal to
the number of classes in the classification task and the networks are trained
to approximate the posterior probability of each class. The parameters of the
network are determined using an improved RPROP batch algorithm [16]. The
optimal architecture and number of training epochs for the neural networks
are estimated for every partition of the data using cross-validation within
the training dataset. The same architecture and number of epochs is used in
bagging, boosting and class-switching ensembles. For the neural networks, the
FANN library [21] implementation is used.

The results given are averages over 100 experiments for each dataset. In the
real-world datasets these experiments consist in the execution of 10 × 10-fold
cross-validation. For the synthetic datasets (Led24, Ringnorm, Twonorm and
Waveform) different independent random samples for the training and testing

7



Table 1
Characteristics of the datasets, testing method, number of input units, average
number (± standard deviation) of hidden units and average number of training
epochs for the neural networks used in the experiments

Dataset Train Test Attrib. Classes Input Hidden Training

units units epochs

Australian 690 10-fold-cv 14 3 42 4.76±1.71 227

Breast W. 699 10-fold-cv 9 2 9 4.12±1.49 328

Diabetes 768 10-fold-cv 8 2 8 5.36±1.62 364

E-coli 332 10-fold-cv 7 8 7 21.11±4.73 175

German 1000 10-fold-cv 20 2 61 4.98±1.65 173

Glass 214 10-fold-cv 9 7 9 25.35±5.09 448

Heart 270 10-fold-cv 13 2 23 4.84±1.70 201

Ionosphere 351 10-fold-cv 34 2 34 20.26±4.47 175

Labor 57 10-fold-cv 16 2 37 4.42±1.54 405

Led24 200 5000 cases 24 10 48 13.8±3.96 112

Liver 345 10-fold-cv 6 2 6 5.36±1.64 282

New-thyroid 215 10-fold-cv 5 3 5 20.32±4.17 522

Ringnorm 300 5000 cases 20 2 20 27.45±3.98 570

Sonar 208 10-fold-cv 60 2 60 5.14±1.46 331

Tic-tac-toe 958 10-fold-cv 9 2 27 4.38±1.50 200

Twonorm 300 5000 cases 20 2 20 4.36±1.61 330

Vehicle 846 10-fold-cv 18 4 18 11.7±3.19 810

Votes 335 10-fold-cv 16 2 48 5.46±1.50 220

Waveform 300 5000 cases 21 3 21 5.18±1.48 570

Wine 178 10-fold-cv 13 3 13 5.76±1.44 428

sets are generated in each experiment. The sizes of these sets are given in
Table 1. Each experiment involves the following steps:

(1) Obtain the training and testing sets from the corresponding cross-validation
fold in the real-world datasets and by random sampling in the synthetic
ones.

(2) Build a single neural network using the whole training dataset. The con-
figuration of the network is estimated using 10-fold cross-validation in
the training data. Different architectures (3, 5, and 7 hidden units) and
different values for the number of epochs (100, 300, 500 and 1000) are
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explored. The configuration that obtains on average the best accuracy on
the separate folds of the training data is employed. For those datasets in
which the cross-validation procedure selected most of the times the max-
imum number of epochs and hidden units, the range of possible hidden
units considered is incremented. In the Led24 and Vehicle datasets it was
necessary to test 7, 11, 15 and 20 hidden units; for E-coli, Ionosphere and
New-thyroid the architectures tested are 11, 15, 20 and 25; for Glass and
Ringnorm networks with 15, 20, 25 and 30 neurons in the hidden layer are
considered. The values of the average number of hidden units and epochs
used for training in the different datasets are displayed in Table 1.

(3) Generate a collection of neural networks to be included in the class-
switching ensemble. Each network in the ensemble is trained on a different
perturbed training set. These sets are obtained from the original training
data using different class-switching rates (p̂ = 0/5, 1/5, 2/5, 3/5 and 4/5).
Note that class-switching with p̂ = 0/5 cannot be considered a class-
switching algorithm: the variability in the ensemble is achieved solely by
the fact that the training process converges to different weight values
because of their different random initializations.

(4) Build bagging and boosting ensembles composed of 200 neural networks.
Boosting is implemented with resampling. The architecture of the net-
works and the number of learning epochs used for the neural networks in
the class-switching, bagging and boosting ensembles is the same as the
configuration selected using cross-validation for training a single neural
network.

(5) As a reference, class-switching ensembles composed of 1000 C4.5 decision
trees [24] with a switching rate of p̂ = 3/5 are built. This configuration
has the best overall results for class-switching ensembles composed of
decision trees in a wide range of problems [19].

(6) The generalization errors of the different classifiers (a single neural net-
work, bagging, boosting and class-switching) are estimated on the corre-
sponding test sets.

Figure 2 displays the evolution of the average generalization error for bag-
ging, boosting and class-switching ensembles as a function of the number of
neural networks aggregated in the ensemble for a representative subset of the
classification problems investigated. As a reference, the average generalization
error of a single net is displayed with a horizontal line in the plots. These
graphs show that the convergence of the error of class-switching ensembles is
related to the fraction of switched examples (i.e. p̂): higher p̂ values result in
slower convergence rates. For most of the ensemble configurations, combining
200 networks seems to be sufficient for the error curves to level off and attain
the asymptotic error rate of the ensemble. However, for some datasets (see for
example the German, Waveform and Wine datasets in Fig. 2) using a high
class-switching probability (class-switching with p̂ = 4/5), 200 does not seem
to be sufficient to reach the asymptotic ensemble error rate. In contrast, ran-
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Fig. 2. Average test error as a function of the number of classifiers for bagging,
boosting and class-switching ensembles for a representative subset of the classifica-
tion problems investigated.

domly initialized neural network ensembles (p̂ = 0/5) reach their asymptotic
error level after combining a fairly small number of networks (≈ 20). In most
of the classification problems investigated the error rate of a single neural
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network is above the asymptotic error level of the different ensembles.

Table 2 presents the test errors averaged over the 100 executions for single
networks, bagging, boosting, class-switching ensembles of neural networks for
the different class-switching rates, p̂, and for class-switching ensembles com-
posed of decision trees using p̂ = 3/5. For each dataset, the generalization
errors that are significantly better than bagging are highlighted in boldface.
The results that are significantly better than boosting are underlined. The test
used to determine whether differences are statistically significant is a paired
t-test with an alpha-value 0.01. The cross-validation procedure used in the
real-world problems tends to produce estimates of the p-values which are too
large [20]. For this reason, a low alpha-value (1% instead of 5%) is used in the
test. For the synthetic datasets the p-values are not biased because the exper-
iments are carried out using independent sampling. The standard deviations
of the values reported are given after the ± signs.

The best generalization error for neural based algorithms for each dataset is
marked with an asterisk. Considering only neural network ensembles, class-
switching ensembles exhibit the best results in fourteen of the twenty problems
analyzed. Bagging has the best performance in five classification problems,
boosting in three and ensembles with p̂ = 0/5 in two. The performance of a
single neural network is suboptimal in all the classification tasks analyzed and
is generally poorer than most of the ensemble methods investigated. Table 2
also shows that most configurations of class-switchingneural network ensem-
bles reach similar generalization errors in many datasets. In particular, nearly
the same results (within 0.2 points) are achieved in Diabetes, E-coli, German,
Tic-tac-toe, Twonorm, Votes, Waveform and Wine by class-switching with
p̂ = 1/5, 2/5 and 3/5. The p̂ = 4/5 configuration exhibits significantly worse
results in several datasets (namely German, Glass, Ionosphere, Labor, Ring-
norm, Vehicle). In some cases this is due to the fact that larger ensembles
ought to have been used.

The relative performance of neural network and decision tree ensembles is
problem dependent. The differences between the generalization errors of the
two types of class switching ensembles are significant in many classification
tasks. In Australian, Glass, Ionosphere and New-thyroid, class-switching en-
sembles of decision trees outperform all the configurations of neural network
ensembles. By contrast, in Heart and Vehicle, and to a lesser extent in Labor
and Twonorm, the decision tree ensembles are inferior to ensembles of neural
networks.

Table 3 shows win/draw/loss records. The numbers displayed in each cell cor-
respond to the number of datasets in which the algorithm displayed in the
leftmost column wins/draws/losses when compared to the algorithm displayed
in the top row. A difference is considered to be significant when a paired t-test
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Table 2. Average generalization errors

Datasets NN Bag Boost Class-Switching (p̂ =) CS(trees)
0/5 1/5 2/5 3/5 4/5 3/5

Australian 15.8±4.0 14.7±3.7 15.5±4.0 14.7±4.0 14.7±3.8 14.5±3.7 14.0±3.7 *13.9±3.5 12.5±3.7
Breast W. 3.9±2.5 3.9±2.4 4.3±2.5 3.8±2.4 3.8±2.4 3.7±2.2 *3.3±2.3 *3.3±2.3 3.1±2.1
Diabetes 25.9±4.7 24.9±4.6 27.6±4.5 24.8±4.7 24.9±4.5 24.8±4.2 24.8±4.4 *24.6±4.7 25.3±3.9
E-coli 15.7±5.9 14.6±5.3 14.7±5.3 14.3±5.4 13.7±5.3 13.8±5.3 13.8±5.2 *13.6±5.1 13.7±5.0
German 26.2±5.4 *24.7±5.9 25.2±5.3 25.0±6.2 24.8±5.9 24.9±5.9 24.7±6.0 25.7±6.4 24.5±2.5
Glass 31.7±9.6 28.9±8.4 27.0±8.3 27.5±8.8 26.7±8.7 26.6±9.0 *26.3±8.3 29.4±8.9 21.0±9.2
Heart 17.3±7.0 *15.6±7.5 18.5±7.1 16.0±7.2 16.1±7.3 *15.6±6.8 16.3±7.0 17.0±7.0 20.4±7.2
Ionosphere 8.1±5.1 7.9±4.6 8.3±4.7 7.1±4.6 *7.0±4.2 7.5±4.4 7.8±4.0 9.3±4.2 6.0±3.7
Labor 8.6±11.9 8.4±11.9 *6.3±11.2 7.2±10.7 6.6±11.1 7.5±12.0 10.8±14.6 14.5±16.5 11.0±12.6
Led24 40.0±3.4 *30.8±1.9 35.1±2.1 *30.8±1.8 31.0±1.8 32.2±2.0 34.6±2.0 39.6±2.1 34.2±2.0
Liver 31.4±8.3 29.8±8.3 29.1±6.9 30.0±8.3 29.2±7.7 *28.4±8.3 28.7±7.8 28.7±7.5 29.5±7.2
New-thyroid 5.3±4.7 5.1±4.8 *3.6±3.5 4.7±4.3 4.0±3.8 3.9±3.7 4.2±3.9 4.8±4.6 2.9±3.6
Ringnorm 15.7±1.5 10.7±2.0 4.6±0.8 10.6±1.5 4.4±1.3 *3.4±1.0 3.8±0.7 6.2±0.9 5.3±0.6
Sonar 23.5±8.8 20.2±8.7 *18.7±8.4 21.3±8.4 21.0±8.5 21.1±9.2 21.6±9.3 23.2±9.6 21.6±8.3
Tic-tac-toe 2.2±1.8 1.8±1.3 2.0±1.3 1.9±1.4 1.8±1.3 1.8±1.2 *1.7±1.2 7.7±5.5 2.2±1.7
Twonorm 3.8±0.7 3.1±0.4 3.4±0.5 3.5±0.6 3.1±0.4 *2.9±0.4 *2.9±0.5 3.3±1.1 3.9±0.3
Vehicle 19.2±3.6 17.0±3.9 17.5±4.0 16.1±3.9 *15.9±3.6 17.1±3.5 18.4±3.5 20.9±3.9 23.2±3.6
Votes 5.2±3.3 *4.2±3.3 4.9±3.0 4.5±3.0 4.8±3.3 5.0±3.4 5.0±3.4 5.5±3.5 4.2±2.7
Waveform 20.0±4.1 *16.4±1.0 16.7±0.9 *16.4±1.0 16.5±1.0 16.5±0.9 16.7±1.0 18.4±1.2 16.9±0.8
Wine 4.1±4.1 2.1±3.7 2.6±3.8 2.0±3.4 1.5±2.8 *1.4±2.6 1.6±3.0 2.1±3.5 1.4±2.8
average 16.2±5.0 14.2±4.7 14.3±4.4 14.1±4.6 13.6±4.4 13.6±4.5 14.1±4.6 15.6±5.1 14.1±4.2
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Table 3. Win/draw/loss records for ensembles composed of pruned trees (the significance of the differences in performance is measured
using a paired t-test with an alpha-value of 0.01)

NN Bag Boo class-switching (p̂ =) CS-DT Total
0/5 1/5 2/5 3/5 4/5

NN X 0/5/15 1/8/11 0/2/18 0/3/17 0/4/16 0/6/14 4/7/9 2/8/10 7/43/110
Bag 15/5/0 X 8/9/3 2/15/3 1/13/6 2/12/6 4/10/6 10/6/4 6/8/6 48/78/34
Boo 11/8/1 3/9/8 X 4/9/7 1/8/11 1/7/12 3/8/9 9/6/5 6/8/6 38/63/59
0/5 18/2/0 3/15/2 7/9/4 X 1/14/5 2/11/7 5/9/6 8/8/4 5/10/5 49/78/33
1/5 17/3/0 6/13/1 11/8/1 5/14/1 X 2/15/3 5/11/4 11/7/2 8/9/3 65/80/15
2/5 16/4/0 6/12/2 12/7/1 7/11/2 3/15/2 X 5/14/1 14/5/1 7/10/3 70/78/12
3/5 14/6/0 6/10/4 9/8/3 6/9/5 4/11/5 1/14/5 X 11/9/0 5/11/4 56/78/26
4/5 9/7/4 4/6/10 5/6/9 4/8/8 2/7/11 1/5/14 0/9/11 X 3/8/9 28/56/76
CS-DT 10/8/2 6/8/6 6/8/6 5/10/5 3/9/8 3/10/7 4/11/5 9/8/3 X 46/72/42

13



has a p-value smaller than 0.01. For each column, the record with the largest
value of wins − losses is highlighted in bold face. These results show that,
for most of the datasets investigated, the ensembles considered have signifi-
cantly better classification accuracies than single neural networks. The best
performance with respect to a single neural network is the randomly initialized
neural network ensemble: eighteen significant wins and no significant losses.
Single Neural Networks significantly outperform boosting in one dataset, class-
switching with p̂ = 4/5 four times and class-switching ensembles of decision
trees in two problems.

Neural network ensembles generated with class-switching rates of p̂ = 1/5 and
p̂ = 2/5 obtain the best overall results. These configurations rarely perform
significantly worse than bagging and they perform better than bagging six
times. Class-switching with p̂ = 3/5 and p̂ = 4/5 improve the results of bag-
ging in several datasets but also perform significantly worse than bagging in
other datasets. The performance of randomly initialized neural network en-
sembles (p̂ = 0/5) is very similar to the performance of bagging: both methods
draw in 15 out of the 20 datasets. This observation confirms the results ob-
tained by Optiz and Maclin [22]. The comparison of class-switching ensembles
of neural networks with respect to boosting is more favorable. Class-switching
with p̂ = 1/5 and p̂ = 2/5 is significantly worse than boosting only in one
dataset and they outperform boosting 11 and 12 times, respectively. In ad-
dition, it can be observed that boosting combined with neural nets is not as
effective as boosting of decision trees: for the investigated datasets bagging
significantly outperforms boosting eight times and looses three times. This
observation confirms previously observed results [22] and indicates that using
standard boosting algorithms to combine strong learners is less effective than
boosting weak learners. For class-switching ensembles composed of decision
trees the results are problem dependent: Decision tree ensembles perform bet-
ter than bagging and boosting in 6 problems and worse also in 6 problems. The
comparison with class-switching ensembles of neural networks is less favorable
for decision tree ensembles (8 significant losses and 3 wins with respect to the
p̂ = 1/5 neural network ensemble). According to the experiments performed,
the best overall method (see last column of Table 3) is class-switching with
p̂ = 2/5: It wins in 70 out of 160 comparisons, draws 78 times and looses only
on twelve occasions.

The relative classification speeds of class-switching ensembles composed of
decision trees or of neural networks also vary for different problems: even
though ensembles of neural networks are smaller, this advantage can be offset
by the complexity of the classification process in the networks, which can be
larger than in decision trees. The learning process in individual networks can
also be slow. This implies that, regarding training speed, there is no clear
overall advantage for any of the two types of class-switching ensembles.
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4 Conclusions

Class-switching ensembles generate a diversity of classifiers using different per-
turbed versions of the training set [5,19]. To generate each perturbed set, a
fraction of examples is randomly selected and their class labels are switched
also at random to a different value. The prescription used for decision trees
(generate individual classifiers that achieve 0-error in the perturbed training
datasets) is found not to be the appropriate configuration for neural network
ensembles constructed with class-switching [13]. Combining neural networks
whose architecture is designed by standard architecture selection techniques
(and that therefore do not necessarily achieve 0 error in the perturbed train-
ing datasets) produces significantly better results than ensembles composed
of more complex nets that do achieve 0 error in the perturbed datasets. Since
the networks in the ensemble are not constructed to have zero error on the
perturbed training sets, they seem to avoid overfitting to the noise injected,
at least to a certain extent, and perform well in the original unperturbed
problem. As a consequence, the number of base learners needed for the con-
vergence of the ensembles errors to their asymptotic values is smaller than in
class-switching ensembles composed of unpruned decision trees.

The classification accuracy of class-switching neural network ensembles is bet-
ter or equivalent to bagging and better than boosting and single nets in
the problems investigated. Ensembles generated with a class-switching rate
of p̂ = 1/5 or 2/5 obtain the best overall results. These configurations (i.e.
p = 1/5, 2/5) rarely obtain generalization errors significantly worse than bag-
ging or boosting. This is not the case for other values of p̂ (that is, p̂ = 0/5, 3/5
and 4/5), where results both better and worse than boosting and bagging have
been observed.

The question of whether to use neural networks or decision trees as base
learners in a class-switching ensemble has an answer that is problem depen-
dent both in terms of accuracy and of classification speed. Nevertheless, both
types of ensembles have demonstrated an excellent overall performance in the
classification tasks investigated. This establishes that class-switching can be
a useful randomization mechanism for the creation of ensembles of classifiers
with very different characteristics, such as decision trees and neural networks.
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