ARM Software
Development Toolkit

Version 2.50

User Guide

ARM

Copyright © 1997 and 1998 ARM Limited. All rights reserved.
ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this book.

Change History

Date Issue Change

Dec 1996 A Internal release

Jan 1997 B First release for SDT 2.10
June 1997 C Updated for SDT 2.11
Nov 1998 D Updated for SDT 2.50

Proprietary Notice
ARM, Thumb, StrongARM, and the ARM Powered |logo are registered trademarks of ARM Limited.

Angel, ARMulator, EmbeddedI CE, Multi-ICE, ARM7TDMI, ARM9TDMI, and TDMI are trademarks of
ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
al warrantiesimplied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Preface

This preface introduces the ARM Software Devel opment Toolkit and its user
documentation. It contains the following sections:

About this book on page iv

Further reading on page vi
Typographical conventions on page viii
Feedback on page ix.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Preface

About this book

Organization

This book provides user information for the ARM Software Development Toolkit. It
describes the major graphical user interface components of the toolkit, and provides
tutorial information on important aspects of developing applications for ARM
processors.

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM Software Devel opment
Toolkit version 2.5, and detail s of the changes that have been made since
version 2.11a

Chapter 2 ARM Project Manager

Read this chapter for information on the graphical user interface to the
ARM tools. APM runs under Windows 95 and NT, and provides a
graphical user interface to configure the ARM devel opment tools and
manage your software development projects.

Chapter 3 ARM Debuggers for Windows and UNIX
Read this chapter for a description of the ARM graphical user interface
debuggers for Windows and UNIX.

Chapter 4 Command-Line Development
Read this chapter for a brief overview of developing programsin a
command-line environment.

Chapter 5 Basic Assembly Language Programming

Read this chapter for tutorial information on writing ARM assembly
language, including information about effectively using the directives
and pseudo-instructions provided by the assembler.

Chapter 6 Using the Procedure Call Sandards

Read this chapter for a description of how to use the ARM and Thumb
procedure call standards when writing mixed assembly language and C
or C++,

Chapter 7 Interworking ARM and Thumb

Read this chapter for information on how to interwork code devel oped to
run in Thumb state and code developed to run in ARM state.

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Appendix A

Preface

Mixed Language Programming

Read this chapter for information on devel oping mixed C, C++, and
ARM assembly language programs, and for information onwritinginline
assembly language code within your C or C++ program.

Handling Processor Exceptions

Read this chapter for instructions on how to write exception handlers for
the ARM processor exceptions.

Writing Code for ROM

Read this chapter for tutorial information on writing codethat is designed
to run from ROM. This chapter includes information on using the scatter
loading facilities of the ARM linker.

Benchmarking, Performance Analysis, and Profiling

Read this chapter for a description of how to analyze the performance of
your ARM targeted programs.

ARMulator

Read this chapter for an introduction to the ARM processor emulator.

Angel

Read this chapter for a description of how to use the Angel debug
monitor. This chapter also providesinformation on porting Angel to your
own hardware.

FlexLM License Manager

Read this appendix for instructions on using the FlexLM License
Manager. FlexLM is used to manage licenses for the ARM Debugger for
UNIX.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Preface

Further reading

ARM publications

Other publications

This section lists publications from both ARM Limited and third parties that provide
additional information on developing for the ARM processor, and general information
on related topics such as C and C++ devel opment.

This book contains reference information that is specific to the ARM Software
Development Toolkit. For additional information, refer to the following ARM
publications:

. ARM Software Development Toolkit Reference Guide (ARM DUI 0041)
. ARM Architectural Reference Manual (ARM DUI 0100)

. ARM Reference Peripheral Specification (ARM DDI 0062)

. ARM Target Development System User Guide (ARM DUI 0061)

. the ARM datasheet for your hardware device.

This book is not intended to be an introduction to the C or C++ programming languages,
It does not try to teach programming in C or C++, and it is not a reference manual for
the C or C++ standards. The following texts provide general information:

ARM architecture
. Furber, S.ARM System Architecture (1996). Addison Wesley Longman, Harlow,
England. ISBN 0-201-40352-8.

ISO/IEC C++ reference

. ISO/IEC JTC1/SC2Final CD (FCD) Ballot for CD 14882: Information
Technology - Programming languages, their environments and system software
interfaces - Programming Language C++.

This is the December 1996 version of the draft ISO/IEC standard for C++. It is
referred to hereafter as tbeaft Sandard.

C++ programming guides

The following books provide general C++ programming information:

Vi

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Preface

. Ellis, M.A. and Stroustrup, BThe Annotated C++ Reference Manual (1990).
Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN
0-201-51459-1.

This is a reference guide to C++.

. Stroustrup, B.The Design and Evolution of C++ (1994). Addison-Wesley
Publishing Company, Reading, Massachusetts. ISBN 0-201-54330-3.
This book explains how C++ evolved from its first design to the language in use
today.

. Meyers, S.Effective C++ (1992). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-56364-9.
This provides short, specific, guidelines for effective C++ development.

. Meyers, S.More Effective C++ (1996). Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-63371-X.
The sequel t&ffective C++.

C programming guides

The following books provide general C programming information:

. Kernighan, B.W. and Ritchie, D.MTI'he C Programming Language (2nd edition,
1988). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.
This is the original C bible, updated to cover the essentials of ANSI C.

. Harbison, S.P. and Steele, G.A.C Reference Manual (second edition, 1987).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.
This is a very thorough reference guide to C, including useful information on
ANSI C.

. Koenig, A,C Traps and Pitfalls, Addison-Wesley (1989), Reading, Mass. ISBN
0-201-17928-8.

This explains how to avoid the most common traps and pitfalls in C programming.
It provides informative reading at all levels of competence in C.

ANSI C reference

. ISO/IEC 9899:1990C Standard

This is available from ANSI as X3J11/90-013. The standard is available from the
national standards body (for example, AFNOR in France, ANSI in the USA).

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. vii

Preface

Typographical conventions

The following typographical conventions are used in this book:

typewriter

typewiter

typewiter

italic

bold

typewriter

Denotestext that may be entered at the keyboard, such as commands, file
and program names, and source code.

Denotes a permitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or option
name.

italic

Denotes arguments to commands and functions where the argument isto
be replaced by a specific value.

Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

Highlights interface elements, such as menu names. Also used for
emphasisin descriptive lists, where appropriate, and for ARM processor
signal names.

bol d
Denotes language keywords when used outside example code.

viii

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Feedback

Preface

ARM Limited welcomes feedback on both the Software Devel opment Toolkit, and the
documentation.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

the document title

the document number

the page number(s) to which you comments apply
a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Software Development Toolkit

If you have any problems with the ARM Software Development Kit, please contact your
supplier. To help us provide a rapid and useful response, please give:

details of the release you are using

details of the platform you are running on, such as the hardware platform,
operating system type and version

a small stand-alone sample of code that reproduces the problem

a clear explanation of what you expected to happen, and what actually happene
the commands you used, including any command-line options

sample output illustrating the problem

the version string of the tool, including the version number and date.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ix

Preface

X Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Contents

User Guide

Chapter 1

Chapter 2

Chapter 3

Preface
About this book
Further reading
Typographical conventions

[=T<To | o F= o] QPRSI ix
Introduction
11 About the ARM Software Development TOOIKItccoocvveriieeiiiiieeniieee 1-2
1.2 Supported platforms
1.3 WRAL IS NEW? .t et e e e seb e e e e neeeas

ARM Project Manager
2.1 About the ARM Project Manager

2.2 Getting startedccccoeviiiieiieiiiieen.

2.3 The APM dESKIOP ...ueiiiiiiiieie et

2.4 Additional APM fUNCLIONSooiiiiiiiiiiciie e

25 Setting preferences

2.6 Working wWith SOUrCe fil€Soooiiiiiiiiii e

2.7 Viewing object and executable filescccoiiiiiiii 2-38
2.8 Working with project templatescoooiiiiiiiiiiii e 2-40
2.9 BUIld StEP PALLEINS ...ttt 2-48
2.10 UsiNg APM WIth CH oot 2-53

ARM Debuggers for Windows and UNIX
3.1 About the ARM Debuggers

3.2 Getting startedcocveeviiieniieeiene

3.3 ARM Debugger desktop WINAOWScceeeviiierniieeiiiee it
34 Breakpoints, watchpoints, and stepping

35 Debugger further detailscccceeiiiiiiiieiiiiee,

3.6 Channel viewers (Windows only)

3.7 Configurationscccccvevviviiniieeniieene

3.8 ARM Debugger With CH ..o

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. Xi

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Command-Line Development
4.1 The hello World eXample ... 4-2
4.2 =100 01T PO PPPRUPR PRI 4-6

Basic Assembly Language Programming

51 INEFOAUCTION ...t ee s
5.2 Overview of the ARM architecture

5.3 Structure of assembly language modules

5.4 Conditional executionccccvvveveiiieeennneeninee.

5.5 Loading constants iNt0 reQISIErSccceiiieiiiieeiiee e

5.6 Loading addreSSes iNt0 rEQISLErScoiuuieeieeiiiiieie et

5.7 Load and store multiple register instructions

5.8 USING MACTOS ...eiiiiiiiiiieee ettt e e e ettt e e e e ettt ee e e e sstbbe e e e e e snbbeeee e s eanbeeeeesaaneneeens

5.9 Describing data structures with MAP and # directivesccccecvvveinneen. 5-45

Using the Procedure Call Standards

6.1 About the procedure call standardsccccoveiiiiiiiniiceii e
6.2 Using the ARM Procedure Call Standardccccocveviniriiniiee e
6.3 Using the Thumb Procedure Call Standard

6.4 Passing and returning StHUCIUIESceveiiiiiiiiiieciieeee e

Interworking ARM and Thumb

7.1 ADOUL INTEIWOTKING ..eivtiiiiiiice et

7.2 Basic assembly language interworking

7.3 C and C++ interworking and VENEerscccccoecvveeeeeninnnn.

7.4 Assembly language interworking using veneers

7.5 ARM-Thumb interworking with the ARM Project Managercccccouve.. 7-25

Mixed Language Programming

8.1 Using the inline assembIErs ..o

8.2 Accessing C global variables from assembly code

8.3 Using C header files from C++ccccoiviiiiiiiiiieeice

8.4 Calling between C, C++, and ARM assembly languagecccccocuveeeenne 8-18

Handling Processor Exceptions
9.1 OVEIVIEW ..ttt ettt ettt ettt e e ettt e e e ettt e e e e e b bt e e e e eanbbe e e e e anntbeeeas

9.2 Entering and leaving an exception

9.3 Installing an exception handler ...

9.4 SWIhandlerscoccoeiieieiiiiiie e

9.5 INErruUPt NANAIEIS ..o e

9.6 RESEL hANIEIS ..o

9.7 Undefined instruction handlers ...

9.8 Prefetch abort handler ...

9.9 Data abort handlerccccce......

9.10 Chaining exception handlers

9.11 Handling exceptions on Thumb-capable processorscccccvvveeviiveennne. 9-41

Xii

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 10

Chapter 11

Chapter 12

Chapter 13

9.12

SYSIEIM MOUE ..ciiiieiii et sebaeee e s 9-46

Writing Code for ROM

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11

About writing code for ROM
Memory map considerations

INItializing the SYSIEM ...oo.viiiiiii e
Example 1: Building a ROM to be loaded at address Occcceeveneen. 10-10
Example 2: Building a ROM to be entered at its base address 10-19
Example 3: Using the embedded C libraryccocccieeeiiiiiiiiniiiniiiiee e

Example 4: Simple scatter loading example
Example 5: Complex scatter load example

Scatter loading and long-distance branchingcccccovveiieniiiieniins
Converting ARM linker ELF output to binary ROM formats
Troubleshooting hints and tiPSccceoiviiiiiiiinie e

Benchmarking, Performance Analysis, and Profiling

111 About benchmarking and profiling

11.2 Measuring code and data SiZeccccceeeeiiiiiiiieeeenn.

11.3 Performance benchmarkingccccconiieiinninnnn.

11.4 Improving performance and Code SIZecccceeeiiiiiieiii i 11-16
115 PrOfiliNg .. 11-20
ARMulator

12.1 ADbOUt the ARMUIALOTvviiiiiiiee e 12-2
12.2 ARMUIALOr MOEISeiiiiiiiiiieeee e 12-3
12.3 Tracer

12.4 PrOFIEE ..o

125 Windows Hourglass

12.6 Watchpointscccceeee..

12.7 Page table manager

12.8 armflat ...

12.9 AIMFASE L.
12,20 AIIMIMEAP coiiiiiieieeiee e et e e e e et e e e e e et n e e e e e annrnee e e e nenrees
12.11 Dummy MMU

1212 ANQEL oo

12.13 Controlling the ARMulator using the debugger

12.14 A sample memory MOAE|c..ooiveiiiiiiiiiie e

12.15 Rebuilding the ARMUIALOrcooiiiiiiiiiiiiie e

12.16 Configuring ARMulator to use the exampleccccovveeiiiieiniieniieeeiees
Angel

131 ADOUL ANGEL i

13.2 Developing applications with Angel

13.3 ANQGEl IN OPEraAtIONeeiiiiii it

134 Porting Angel to NeW hardwareccccceiiiiiiiiiiiniieeee e

135 Configuring ANGEL ...ooeeeieiiee e

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. Xiii

13.6
13.7
13.8
13.9

Angel communications architeCtureccoccoeeieiiiiiie e 13-71

Angel C library support SWIScooiiiiiiiiiieee e 13-77
Angel debug agent interaction SWIScccoceeiiiieiniiiniiee e 13-92
The Fusion IP stack for ANGeloocueviiiiiiiie e 13-96

Appendix A FlexLM License Manager

Al
A.2
A3
A4
A5
A.6
A7
A.8
A9
A.10

About liCENSE MANAGEMENToiiiiiiiiiiie et A-2
Obtaining your license fileccooviiiiiiiiiii e A-4
What to do with your license file ... A-5
Starting the server software............cccccceviieeeeens

Running your licensed software

Customizing your license filecccccooienieeninenn.

FINAING @ lICEBNSE......eiiiiiie i
Using FlexLM with more than one productcccceeeviiieniieeniiee e A-12
FlexLM license management Utilities.............ccooiiiiiiiiiieiiniiiie e A-14
Frequently asked questions about licensing...........cccccvniiiiiiiiiiiieee e A-18

Xiv Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 1
Introduction

This chapter introduces the ARM Software Devel opment Toolkit version 2.50 and
describes the changes that have been made since SDT version 2.11a. It contains the
following sections:

. About the ARM Software Devel opment Toolkit on page 1-2
. Supported platforms on page 1-5
. What is new? on page 1-6.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved.

1-1

Introduction

1.1 About the ARM Software Development Toolkit

The ARM Software Development Toolkit (SDT) consists of a suite of applications,
together with supporting documentation and examples, that enable you to write and
debug applications for the ARM family of RISC processors.

You can usethe SDT to develop, build, and debug C, C++, or ARM assembly language
programs.

111 Components of the SDT

The ARM Software Development Toolkit consists of the following major components:
. command-line development tools

. Windows development tools

. utilities

. supporting software.

These are described in more detail below.

Command-line development tools
The following command-line development tools are provided:

armcc The ARM C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI or PCC source
into 32-bit ARM code.

tec The Thumb C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI or PCC source
into 16-bit Thumb code.

armasm The ARM and Thumb assembler. This assembles both ARM assembly
language and Thumb assembly language source.

armlink The ARM linker. This combines the contents of one or more object files
with selected parts of one or more object libraries to produce an
executable program. The ARM linker creates ELF executable images.

armsd The ARM and Thumb symbolic debugger. This enables source level
debugging of programs. You can single step through C or assembly
language source, set breakpoints and watchpoints, and examine program
variables or memory.

1-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

Windows development tools
The following windows devel opment tools are provided:

ADW The ARM Debugger for Windows. This provides a full Windows
environment for debugging your C, C++, and assembly language source.

APM The ARM Project Manager. Thisisagraphical user interface tool that
automates the routine operations of managing source files and building
your software development projects. APM helps you to construct the
environment, and specify the procedures needed to build your software.

Utilities
Thefollowing utility tools are provided to support the main development tools:

fromELF The ARM image conversion utility. This accepts ELF format input files
and converts them to avariety of output formats, including AlF, plain
binary, Extended Intellec Hex (IHF) format, Motorola 32-bit S record
format, and Intel Hex 32 format.

armpr of The ARM profiler displays an execution profile of a program from a
profile data file generated by an ARM debugger.

armlib The ARM librarian enables sets of AOF filesto be collected together and
maintained in libraries. You can pass such alibrary to the linker in place
of several AOF files.

decaof The ARM Object Format decoder decodes AOF files such as those
produced by armasm and armcc.

decaxf The ARM Executable Format decoder decodes executable files such as
those produced by armlink.

topcc The ANSI to PCC C Trandlator helpsto translate C programs and headers
from ANSI C into PCC C, primarily by rewriting top-level function
prototypes.

topcc isavailable for UNIX platforms only, not for Windows.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-3

Introduction

1.1.2

Supporting software

The following support software is provided to enable you to debug your programs,
either under emulation, or on ARM-based hardware.

ARMulator The ARM core emulator. This providesinstruction accurate emul ation of
ARM processors, and enables ARM and Thumb executable programsto
be run on non-native hardware. The ARMulator is integrated with the
ARM debuggers.

Angel The ARM debug monitor. Angel runs on target development hardware
and enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either
ARM state or Thumb state.

Components of C++ version 1.10

ARM C++ isnot part of the base Software Development Toolkit. It is available
separately. Contact your distributor or ARM Limited if you want to purchase ARM
C++.

ARM C++ version 1.10 consists of the following major components:

armepp Thisisthe ARM C++ compiler. It compilesdraft-conforming C++ source
into 32-bit ARM code.

tepp This isthe Thumb C++ compiler. It compiles draft-conforming C++
source into 16-bit Thumb code.

support software

The ARM C++ release provides a number of additional components to
enable support for C++ in the ARM Debuggers, and the ARM Project
Manager.

Note

The ARM C++ compilers, libraries, and enhancements to the ARM Project Manager
and ARM Debuggers are described in the appropriate sections of the ARM Software
Development Toolkit User Guide and Reference Guide.

1-4

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

1.2 Supported platforms

Thisrelease of the ARM Software Devel opment Toolkit supports the following
platforms:

. Sun workstations running Solaris 2.5 or 2.6
. Hewlett Packard workstations running HP-UX 10
. IBM compatible PCs running Windows 95, Windows 98, or Windows NT 4.

The Windows development tools (ADW and APM) are supported on IBM compatible
PCs running Windows 95, Windows 98, and Windows NT 4.

The SDT isno longer supported on the following platforms:
. Windows NT 3.51

. Sun0OS 4.1.3

. HP-UX 9

. DEC Alpha NT.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-5

Introduction

1.3 What is new?
This section describes the major changes that have been made to the Software
Development Toolkit since version 2.11a. The most important new features are:
. Improved support for debug of optimized code.
. Instruction scheduling compilers.
. Reduced debug data size.
. New supported processors. ARMulator now supports the latest ARM processors.
. ADW enhancements. SDT 2.50 provides a new ADW capable of remote

debugging with Multi-ICE, and able to accept DWARF 1 and DWARF 2 debug
images.

The preferred and default debug table format for the SDT is now DWARF 2. The ASD
debug table format is supported for this release, but its use is deprecated and support for
it will be withdrawn in future ARM software development tools.
The preferred and default executable image format is now ELF. Refer to the ELF
description inc: \ ARM250\ PDF\ specs for details of the ARM implementation of
standard ELF format.
Demon-based C libraries are no longer included in the toolkit release, and RDP is no
longer supported as a remote debug protocol.
The following sections describe the changes in more detail:
. Functionality enhancements and new functionality on page 1-7
. Changes in default behavior on page 1-12
. Obsolete and deprecated features on page 1-16.

1-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

13.1 Functionality enhancements and new functionality

Thisrelease of the ARM Software Devel opment Toolkit introduces numerous
enhancements and new features. The major changes are described in:

. Improved support for debug of optimized code on page 1-7
. Instruction scheduling compilers on page 1-8

. Reduced debug data size on page 1-8

. New supported processors on page 1-9

. ADW enhancements on page 1-9

. Interleaved source and assembly language output on page 1-10
. New assembler directives and behavior on page 1-10

. Long long operations now compileinline on page 1-11

. Angel enhancements on page 1-11

. ARMulator enhancements on page 1-11

. New fromELF tool on page 1-12

. New APM configuration dialogs on page 1-12.

Improved support for debug of optimized code

Compiling for debug-(g), and the optimization level ¢), have been made orthogonal
in the compilers.

There are 3 levels of optimization:
-0 Turns off all optimization, except some simple source transformations.

-01 Turns off structure splitting, range splitting, cross-jumping, and
conditional execution optimizations. Also, no debug data for inline
functions is generated.

-2 Full optimization.
The- Q0 option gives the best debug view, but with the least optimized code.

The- O1 option gives a satisfactory debug view, with good code density. By default no
debug data is emitted for inline functions, so they cannot be debugged. With DWARF1
debug tables @war f 1 command-line option), variables local to a function are not
visible, and it is not possible to get a stack backtrace.

The- @2 option emits fully optimized code that is still acceptable to the debugger.
However, the correct values of variables are not always displayed, and the mapping o
object code to source code is not always clear, because of code re-ordering.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-7

Introduction

A new pragma has been introduced to specify that debug dataisto be emitted for inline
functions. The pragmais#pr agma [no] debug_i nl i nes. You can usethis pragmato
bracket any number of inline functions. It can be used regardless of the level of
optimization chosen.

Impact

Any existing makefiles or APM projectsthat use—g+—gxo will now get the behavior
defined by —g+-O1 . The SDT 2.11aoption -g+ -gxr isstill supported by SDT 2.50,
and has the same functionality asin SDT 2.11a, but will not be supported by future
releases.

Instruction scheduling compilers

The compilers have been enhanced to perform instruction scheduling. Instruction
scheduling involves the re-ordering of machine instruction to suit the particular
processor for which the codeisintended. Instruction scheduling in this version of the C
and C++ compilersis performed after the register all ocation and code generation phases
of the compiler.

Instruction scheduling is of benefit to code for the StrongARM 1 and ARM9 processor
families:

. if the - pr ocessor option specifies any processor other than the StrongARM1,
instruction scheduling suitable for the ARM 9 is performed

. if - processor StrongARM is specified, instruction scheduling for the
StrongARM1 is performed.

By default, instruction scheduling is turned on. It can be turned off with the
-zpno_opti m ze_schedul i ng command-line option.

Reduced debug data size

In SDT 2.50 and C++ 1.10, the compilers generate one set of debug areas for each input
file, including header files. The linker is able to detect multiple copies of the set of
debug areas corresponding to an input file that is included more than once, and emits
only one such set of debug areas in the final image. This can result in a considerable
reduction in image size. This improvement is not available when ASD debug data is
generated.

In SDT 2.11a and C++ 1.01 images compiled and linked for debug could be
considerably larger than expected, because debug data was generated separately for
each compilation unit. The linker emitted all the debug areas, because it was unable to
identify multiple copies of debug data belonging to header files that were included more
than once.

1-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

Impact

Existing makefiles and APM projects generate smaller debug images, and therefore the
images load more quickly into the debugger. This feature cannot be disabled.

New supported processors

ARMulator models for the ARM9TDMI, ARM940T, ARM920T, ARM710T,
ARM740T, ARM7TDMI-S, ARM7TDI-S, and ARM7T-S processors have been added
to SDT 2.50. These are compatible with the memory model interfaces from the SDT
2.11a ARMulator.

These processor names (and those of all other released ARM processors) are now
permitted as argumentsto the —processor command-line option of the compilers and
assembler.

ADW enhancements

ADW has been enhanced to provide the following additional features:

Support for remote debug using Multi-ICE.
Support for reading DWARF 2 debug tables.

The command-line options supported by armsd that are suitable for a GUI
debugger are now understood on the ADW command line. This enables you, for
example, always to start ADW in remote debug mode. The available
command-line options are:

. -synbol s

. -li, -bi

. - ar nul

. -adp —linespeed baudr at e -port

[s= serial _port[,p= parallel_port]]|
[e= et her net _addr ess]

A delete all breakpoints facility.
Save and restore all window formats. Windows retain the format they were given.

Breakpoints can be set as 16-bit or 32-bit. The dialog box for setting a breakpoint
has been modified to enable breakpoints to be set either as ARM or Thumb
breakpoints, or for the choice to be left to the debugger.

The display of low-level symbols can be sorted either alphabetically or by address
order (sorting was by address order only in SDT 2.11a). You can choose the orde
that is used.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-9

Introduction

. Locals, Globals, and Debugger Internals windows format is now controlled by
$int_format, $uint_format, $fl oat _format, $sbyte_ format,
$ubyt e_format, $string_f or mat , $conpl ex_f or mat . These formats are
available by selectin@hange Default Display For mats from theOptions
menu.

. The Memory window now hasalfword andbyte added to its display formats.

. Value fields in editable windows (for example, Variable windows and Memory
windows) are novedit in place, rather than using a separate dialog box for
entering new values.

A copy of ADW is also supplied in a file nameOw exe to maintain backwards
compatibility with the Multi-ICE release.

Interleaved source and assembly language output

The compilers in SDT 2.50 and C++ 1.10 have been enhanced to provide an assembly
language listing, annotated with the original C or C++ source that produced the
assembly language. Use the command-line opt®rsés to get interleaved source

and assembly language.

Thisfacility isnot available if ASD debug tables are requested (-g+ -asd).

Thisfacility isonly easily accessible from the command line, and is not integrated with
APM.

New assembler directives and behavior

The SDT 2.11a assemblers (armasm and tasm) have been merged into asingle
assembler, called armasm, that supports both ARM code and Thumb code. In addition,
it provides functionality previously supported only by tasm, such as the CODE16and
CODE3Xirectives, andthe-16 and-32 command-lineoptions. The assembler startsin
ARM state by default. A tasm binary is shipped with SDT 2.50 for compatibility
reasons, however this binary only invokes armasm —16 .

The assembler now supports the following FPA pseudo-instructions:
. LDFS fp-register, =fp-constant
. LDFD f p-regi ster, =fp-constant
. LDFE f p-register, =fp-constant

and the new directiveBCWJ andDCDU.

1-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

Long long operations now compile inline

In the C and C++ compilers, the implementation of thel ong | ong datatype has been
optimized to inline most operators. Thisresultsin smaller and faster code. In particular:

long long res = (long long) x * (long long) v;

translates to asingle SMULL instruction, instead of acall to al ong | ong multiply
function, if x and y are of typei nt .

Angel enhancements

Angel has been enhanced to enable full debug of interrupt-driven applications.

ARMulator enhancements

The following enhancements have been made to the ARMulator:

Total cycle counts are always displayed.
Wait states and true idle cycles are counted separately if a map file is used.
F bus cycle counts are displayed if appropriate.

Verbose statistics are enabled by thediment er s=Tr ue in thear mul . cnf file.
For cached cores, this adds counters for TLB misses, write buffer stalls, and cach
misses.

The instruction tracer now supports both Thumb and ARM instructions.

A newfast memory model is supplied, that enables fast emulation without cycle
counting. This is enabled usimgf aul t =Fast in thear mul . cnf file.

Trace output can be sent to a file or appended to the RDI log window.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-11

Introduction

New fromELF tool

The fromELF trangdlation utility isanew tool in SDT 2.50. It can translate an ELF
executable file into the following formats:

. AlF family

. Plain binary

. Extended Intellec Hex (IHF) format
. Motorola 32 bit S record format

. Intel Hex 32 format

. Textual Information.

This tool does not have a GUI integrated with APM. It can be called directly from the
command line, or by editing your APM project to call fromELF after it calls the linker.

New APM configuration dialogs

The Tool Configurer dialog boxes have been modified to reflect:
. the new features available in the compilers, assembler, and the linker
. the new default behavior of these tools.

Each selectable option on the dialog boxes now has a tool tip that displays the
command-line equivalent for the option.

1.3.2 Changes in default behavior

The changes that have been made to the default behavior of the SDT are described in:
. Sack disciplines on page 1-12

. Default Procedure Call Sandard (APCSand TPCS) on page 1-13

. Default debug table format on page 1-13

. Default image file format on page 1-14

. Default processor in the compilers and assembler on page 1-14

. RDI 1.0 and RDI 1.5 support on page 1-14

. Register names permitted by the assembler on page 1-15.

Stack disciplines

The ARM and Thumb compilers now adjust the stack pointer only on function entry and
exit. In previous toolkits they adjusted the stack pointer on block entry and exit. The
new scheme gives improved code size.

1-12 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

Default Procedure Call Standard (APCS and TPCS)

The default Procedure Call Standard (PCS) for the ARM and Thumb compilers, and
the assembler in SDT 2.50 and C++ 1.10 is now:

-apcs 3/ 32/ nof p/ noswst/ narrow softfp

Note

The new default PCSwill not perform software stack checking and does not use aframe
pointer register. This generates more efficient and smaller code for use in embedded
systems.

The default procedure call standard for the ARM (not Thumb) compiler in SDT 2.11a
was - apcs 3/32/fp/swst/w de/softfp.

The default procedure call standard for the ARM (not Thumb) assembler in SDT 2.11a
was-apcs 3/32/fp/swst.

Impact

Existing makefilesand APM project fileswherethe PCSwas not specified will generate
code that does not perform software stack checking and does not use a frame pointer
register. Thiswill result in smaller and faster code, because the default for previous
compilerswasto emit function entry code that checked for stack overflow and set up a
frame pointer register.

Default debug table format

In SDT 2.50 and C++ 1.10 the default debug table format is DWARF 2. DWARF 2 is
required to support debugging C++, and to support the improvements in debugging
optimized code.

Thedefault debug table format emitted by the SDT 2.11acompilersand assemblerswas
ASD.

If DWARF debug table format was chosen, the SDT 2.11a compilers and assemblers
emitted DWARF 1.0.3.

Impact

Existing makefilesand APM project fileswhere debugging information was requested
will now result in DWARF 2 debug data being included in the executable image file.
Previous behavior can be obtained from the command line by specifying - g+ - asd or
-g+ -dwarf 1, or by choosing these from the appropriate Tool Configuration dialog
boxesin APM.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-13

Introduction

Default image file format

The default image file format emitted by the linker has changed from AlF to ELF.

Impact

Existing makefilesin which no linker output format was chosen, and existing APM
project filesin which the Absolute Al F format was chosen, will now generate an ELF
image. If you require an AlF format image, use - ai f on your armlink command line,
or choose Absolute Al F onthe Output tab of the APM Linker optionsdialog box. This
will then generate awarning from the linker. AIF images can also be created using the
new fromELF tool.

Note

When the ARM debuggers load an executable AlF image they switch the processor
mode to User32. For ELF, and any format other than executable AlF, the debuggers
switch the processor mode to SV C32. This means that, by default, images now start
running in SV C32 mode rather than User32 mode. This better reflects how the ARM
core behaves at reset.

C codethat performsinline SWIs must be compiled with the - f z option to ensure that
the SVC mode link register is preserved when the SWI is handled.

Default processor in the compilers and assembler

The default processor for the SDT 2.11a ARM (not Thumb) compilers was ARMSG. In
SDT 2.50 and C++ 1.10 this has been changed to ARM7TDMI. The default processor
for the assembler has changed from -cpu generic —arch 3 to -cpu ARM7TDMI .

Impact

Existing makefiles and APM project files where the processor was not specified (with
the -processor option) will generate code that uses halfword loads and stores
(LDRHSTRH where appropriate, whereas such instructions would not previously have
been generated. Specifying -arch3 on the command line prevents the compilersfrom
generating halfword loads and stores.

RDI 1.0 and RDI 1.5 support

A new variant of the Remote Debug Interface (RDI 1.5) isintroduced in SDT 2.50. The
version used in SDT 2.11awas 1.0.

The debugger has been modified so that it will function with either RDI 1.0 or RDI 1.5
client DLLs.

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

Impact

Third party DLLswritten using RDI 1.0 will continue to work with the versions of
ADW and armsd shipped with SDT 2.50.

Register names permitted by the assembler

In SDT 2.50, the assembler pre-declares all PCS register names, but also allows them
to be declared explicitly through an RN directive.

InSDT 2.11atheprocedurecall standard (PCS) register namesthat the assembler would
pre-declare were restricted by the variant of the PCS chosen by the - apcs option. For
example, - apcs / noswst would disallow use of sl as aregister name.

Impact

Any source filesthat declared PCS register names explicitly will continue to assemble
without fault, despite the change to the default PCS.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-15

Introduction

1.3.3 Obsolete and deprecated features

The features listed below are either obsolete or deprecated. Obsolete features are
identified explicitly. Their useisfaultedin SDT 2.50. Deprecated features will be made
obsolete in future ARM toolkit releases. Their useiswarned about in SDT 2.50. These
features are described in:

. AIF, Binary AlF, IHF and Plain Binary Image formats on page 1-16

. Shared library support on page 1-17

. Overlay support on page 1-17

. Frame pointer calling standard on page 1-17

. Reentrant code on page 1-18

. ARM Symbolic Debug Table format (ASD) on page 1-18

. Demon debug monitor and libraries on page 1-18

. Angel asa linkable library, and ADP over JTAG on page 1-18

. ROOT, ROOT-DATA and OVERLAY keywordsin scatter |oad description on page
1-19

. Automatically inserted ARM/Thumb interworking veneers on page 1-19

. Deprecated PSR field specifications on page 1-19

. ORG no longer supported in the assembler on page 1-19.

AlF, Binary AlF, IHF and Plain Binary Image formats

Because the preferred (and default) image format for the SDT is now ELF, the linker
emits a warning when instructed to generate an AlF image, a binary AlF image, an IHF
image or a plain binary image.

Impact

Any makefiles with a link step ofai f,-ai f -bin,-ihf, or-bi n now produce a

warning from the linker. For existing APM projects where an Absolute AIF image has
been requested on the Linker configurat@utput tab, there will be no warning.

However, an ELF image is created instead, because this is the new default for the linker.

The preferred way to generate an image in an deprecated format is to create an ELF
format image from the linker, and then to use the new fromELF tool to translate the ELF
image into the desired format.

Future release

In a future release of the linker, these formats will be obsolete, and their use will be
faulted.

1-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

Shared library support

Thisfeature is obsolete. The Shared Library support provided by previous versions of
the SDT has been removed for SDT 2.50. The linker faults the use of the - shi
command-line option.

Impact

Any makefile or APM project file that uses the Shared Library mechanism will now
generate an error from the linker. The SDT 2.11alinker can be used if thisfacility is
required.

Future release

A new Shared Library mechanism will be introduced in a future release of the linker.

Overlay support

Useof the - over | ay option to the linker and use of the OVERLAY keyword in a scatter
load description file are now warned against by the linker.

Impact

Any makefile, APM project file, or scatter load description file that uses the overlay
mechanism will now generate awarning from the linker.

Future release

A future release of the linker will subsume the overlay functionality into the scatter
loading mechanism.

Frame pointer calling standard

Use of aframe pointer call standard when compiling C or C++ code is warned against
inthe SDT 2.50 and ARM C++ 1.10 versions of the compilers.

Impact

Any makefile or APM project file that uses aframe pointer call standard (- apcs / f p)
will now generate awarning from the compilers.

Future release

A new procedure call standard will beintroduced with afuture release of the compilers.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-17

Introduction

Reentrant code

Use of the reentrant procedure call standard when compiling C or C++ code is warned
against in the SDT 2.50 and ARM C++ 1.10 versions of the compilers.

Impact

Any makefileor APM project filethat usesthe reentrant procedure call standard (- apcs
/ reent) will now generate awarning from the compilers.

Future release
A new procedure call standard will be introduced with afuture release of the compilers.

ARM Symbolic Debug Table format (ASD)

Becausethe preferred (and default) debug table format isnow DWARF 2, the compilers
and assembler will warn when asked to generate ASD debug tables.

Impact

Any makefiles with a compiler or assembler command-line option of -g+ —asd ~ will
now produceawarning. For existing APM projectsin which debugging information has
been requested, there will be no warning and DWARF 2 debug tables will be emitted
instead, because thisis the new default for the compilers and assembler.

Future release

In afuture release of the compilers and assembler, ASD will be made obsolete, and its
use will be faulted.

Demon debug monitor and libraries

Thisfeatureis obsolete. The Demon Debug monitor is now obsolete and support for it
has been removed from the SDT. Thereisno longer aremote_d.dll selectableasa
remote debug connection in ADW, and Demon C libraries are not supplied with SDT

2.50.

Angel as a linkable library, and ADP over JTAG

Thisfeatureis obsolete. Full Angel isno longer available as alibrary to be linked with
aclient application. Theversion of Angel that runs on an EmbeddedI CE and acts as an
ADP debug monitor (adpjtag.rom) isalso no longer available.

1-18

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Introduction

ROOT, ROOT-DATA and OVERLAY keywords in scatter load description

Inthe SDT 2.11 manuals, use of the ROOT, ROOT- DATA and OVERLAY keywordsin a
scatter load description file was documented, and a later Application Note warned
against its use. The linker now warns against use of these keywords.

Impact

Any existing scatter load descriptions that use ROOT, ROOT- DATA or OVERLAY
keywords will now generate a warning, but the behavior will be as expected.

Future release
In afuture release of the linker, use of ROOT, ROOT- DATA and OVERLAY will be faulted.

Automatically inserted ARM/Thumb interworking veneers

In SDT 2.114, the linker warned of calls made from ARM code to Thumb code or from
Thumb codeto ARM code (interworking calls) when the destination of the call was not
compiled for interworking with the - apcs /i nt er wor k option. In spite of the
warning, an interworking return veneer was inserted.

In SDT 2.50, the linker faults inter-working calls to code that cannot return directly to
the instruction set state of the caller, and creates no executable image.

Impact

Existing code that caused the interworking warning in SDT 2.11ais now faulted
becausethe return veneersinserted by the SDT 2.11alinker can causeincorrect program
behavior in obscure circumstances.

Deprecated PSR field specifications
The assembler now warns about the use of the deprecated field specifiers CPSR,
CPSR_flg, CPSR_ctl, CPSR_all, SPSR, SPSR_flg, SPSR_ctl, and SPSR_all.

ORG no longer supported in the assembler

The ORGdirective is no longer supported in the assembler. Its use conflicts with the
scatter loading mechanism supported by the linker.

Impact

Existing assembly language sources that use the ORG directive will no longer assemble.
The effect of the ORG directive can be obtained by using the scatter loading facility of
the linker.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 1-19

Introduction

1-20 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 2
ARM Project Manager

This chapter describes the ARM Project Manager, and contains the following sections:
. About the ARM Project Manager on page 2-2

. Getting started on page 2-4

. The APM desktop on page 2-16

. Additional APM functions on page 2-21

. Setting preferences on page 2-32

. Working with source files on page 2-35

. Viewing object and executable files on page 2-38
. Working with project templates on page 2-40

. Build step patterns on page 2-48

. Using APM with C++ on page 2-53.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-1

ARM Project Manager

2.1 About the ARM Project Manager

211 Online help

The ARM Project Manager (APM) isagraphical user interface tool that automates the
routine operations of managing source files and building your software development
projects.

APM helps you to construct the environment and specify the procedures necessary to
build your software. APM builds derived files as directed by your choice of project
template but you have full control over the options passed to the build tools.

APM schedules the calling of development tools such as compilers, linkers, and your
own custom tools. Thisis particularly helpful when you need to perform a sequence of
operations frequently and consistently.

APM uses the concept of a project to maintain information about the system you are
building. You specify what to build and how to build it. When you have described your
system as a project, you can build al of it or just part of it. If the project output isan
image, you can execute it or debug it by calling the ARM Debugger for Windows
(ADW), or athird party debugger such as XRAY, directly from APM.

Whenyou createaproject with APM, all thetool syou need for your work are accessible
through the APM graphical interface (the APM desktop).

When you have started APM, you can display online help giving detailsrelevant to your
current situation, or navigate your way to any other page of APM online help.

F1key Pressthe F1 key on your keyboard to display help, if available, on the
currently active window.

Help button Many APM windows contain aHelp button. Click this button to display
help on the currently active window.

Help menu Select Contents from the Help menu to display a Help Topics screen
with Contents, Index, and Find tabs. The tab you used last is selected.
Click either of the other tabs to select it instead.

Select Sear ch from the Help menu to display the Help Topics screen with
the Index tab selected.

Under Contents, click on a closed book to open it and see alist of the
topicsit contains. Click on an open book to closeit. Select atopic and
click the Display button to display online help.

2-2

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Under Index, either scroll through the list of entries or start typing an
entry to bring into view the index entry you want. Select an index entry
and click the Display button to display online help.

Under Find, follow theinstructionsto search all the available online help
text for any keywords you specify. The first time you undertake a Find
operation asuitable databasefile is constructed, and is then availablefor
any later Find operations.

Select Using Help from the Help menu to display a guide to the use of
on-screen help.

Hypertext links

Most pages of online help include highlighted text that you can click on
to display other relevant online help. Clicking on highlighted text
underscored with a broken line displays a popup box. Clicking on
highlighted text underscored with a solid line jumps to another page of
help.

Browse buttons

Most pages of online help include a pair of browse buttons that enable
you to step through a sequence of related help pages.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-3

ARM Project Manager

2.2 Getting started

This section explains various APM concepts and offers you some hands-on experience
creating a simple project. In doing so you make use of some APM features that are
described more fully in later sections of this chapter. This section covers:

. starting and stopping APM
. projects and sub-projects
. building a project

. correcting problems

. project output.

2.2.1 Starting and stopping APM

Start APM in any of the following ways:

. if you are running Windows 95 or Windows 98, click on &M Project
Manager icon in the ARM SDT v2.50 Program folder or sel&&M Program
Manager from the program menu

. if you are running Windows NT4, double click on thBM Project M anager
icon in the ARM SDT V2.50 Program group or selsiztrt — Programs —
ARM SDT v2.50 -~ ARM Project Manager.

When APM starts, the last file or project you accessed is loaded.

SelecExit from theFile menu to stop APM. The source files and projects you currently
have open will be re-opened the next time you start APM.

2.2.2 Projects and sub-projects

An APM project is a description of how you build something, such as an image or object
library, and a list of the files you need, such as source files, include files, and any
sub-projects.

APM describes what you are building and how you build it by means of a project
template. A template consists of a series of build step patterns that define the build steps
used to construct the output of your project.

A sub-project is simply an APM project that has been added to another project. For
example if you have a project that builds a library, it could become a sub-project of
another project that makes an image using routines from that library.

2-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Project files

A project manages source files, and derived files created from source files by the build
tools.

Source filesform the basis of a project. Symbolsin the Project window indicate various
types of source file, as shown in the following list. The source file types recognized by
the standard templates are:

€] CorC++sourcefile

ARM assembly language file

[x] includefile

sub-project (thisis also atype of sourcefile, contributing its own project

output to the current project)
[} fileof atype unknownto APM.

When you add a source fileto a project, it is not copied or moved from its original
location in the file system. Itslocation is referenced from the project file. Whenever
possible APM refersto files relative to the project directory structure rather than
absolutely. You can set the variable $$Dept hOf Dot APJBel owPr oj ect Root to
increase the scope of the directories that are considered a part of the project. Refer to
Variables on page 2-27 for more information.

—— Note

If you move a project, you must keep the directory structure containing its files the
same. If you change the directory structure, the files required to build the project will
not be found.

Derived files are created as the result of a build step, such as a compile or alink.
An object file
A library
™ AnARM executable image.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-5

ARM Project Manager

Creating a new project
Follow these steps to create a new project:

1. Select New from the File menu or click the New button. The New dialog is
displayed (Figure 2-1).

C/C++ source Cancel
C/C++include file

Assembler source
C++ source

Figure 2-1 New dialog
2. Select Project from the scroll box.

3. Click OK. The New Project dialog is displayed (Figure 2-2).

New Project

— Template Descripton——————————————— oK
Build and debug an ARM executable image
made from C and ARM Assembly Language Cancal
source files and ARM Object Libraries. The

DebugRel variant compiles smaller, faster Help
code that can be debugged. tested and
released unchanged. You can build your
ohject libraries using sub-projects

|

Type:
IARM Executahle Image j

Project Name:
fpetlo

Project Directany:

|C:\examp|esf\ Browse...

Figure 2-2 New Project dialog

4. Select the template Type that you want to use for the project. The template
description is displayed. For this example select ARM Executable Image.

2-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Enter a Project name, such ashel | o. Thisisused for the project file and the
project output.

Modify the Project Directory to c: \ ar n250\ Exanpl es\ hel | o. When you
build the project, the directories containing derived files (variant directories) are
created within this directory.

Click OK.

If you have specified a directory that does not currently exist, you are prompted
to confirm that you want a new project directory created. The new project fileis
created in the project directory and the Project window is displayed.

Creating a new source file

For the hel | o project you created in the previous section, follow these steps to create
anew source file from within APM:

1

2
3.
4

Click the New button or select New from the File menu. The New dial og appears.
Select C/C++ source from the scroll box.
Click OK. An Edit window is displayed.

Enter the following code, deliberately omitting the semicolon at the end of the
printf() functioncal:

#i ncl ude <stdi o. h>

int main(void)

{
printf("Hello World\n")
return O;

}

Save the code in asource file by selecting Save or Save As... from the File menu
or by clicking the Save button. Enter hel | 0. ¢ when you are prompted for a
filename.

Close the Edit window by selecting Close from the File menu. You are now
returned to the Project window with the hel | o project loaded.

The source files and files inferred by the build steps are organized in a project using
partitions (as described under Partitions on page 2-25). APM uses variants to create
different versions of your project output. By default the following variants are defined:

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-7

ARM Project Manager

DebugRel Thisvariant isdesigned for projectswhereyou intend to rel ease the same
code that you are debugging. It provides an adequate debug view,
together with good optimization. This variant sets the debug and
optimization command-line optionsto - g+ - OL.

Debug This variant is designed for projects where you intend to have separate
debug and release builds of your code. It contains the debug version of
your project and provides maximum debug information at the expense of
optimization. Thisvariant setsthe debug and optimization command-line
optionsto - g+ - Q0.

Release This variant is designed for projects where you intend to have separate
debug and release builds of your code. It contains the release version of
your project. It provides maximum optimization at the expense of debug
information. This variant turns off debug table generation and sets the
optimization command-line option to - C2.

Adding files to a project
Follow these steps to add the newly created file to your project:

1. Selectthehel | o project asthe current project.

2. Select Add Filesto Project from the Project menu. The Open File dialog box is
displayed.
3. Moveto the correct directory, if necessary, and select hel | o. c.

4. Click Open. Thefileis added to the project.

Note

If the project directory is still your current directory, that is where the source fileis
stored by default. You can, however, store source filesin any accessible directory, and
add source files from any directory to a project.

2-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Viewing the project

When you have added files to your project, you may want to view the project in more
detail. To expand alevel of the project hierarchy, click on the plus (+) symbol next to
that level. Figure 2-3 shows how the Project View looks if you expand the first three

levelsof hel | 0. apj .

C:\exampl i M=

[— % Sources
@ hello.c
$ IncdudedFiles

M hello.axf

Miscellanea

[z — g =]
oo b Riglease

1o o

Build DebugRel

Figure 2-3 Expanded view

You can see that hel | o. c, the file you added to the project, is now in the Sources
partition. Thefileshel | 0. o and hel | 0. axf have been added to the Objects and

I mage partitions. Thesearethe derived filesthat are the anticipated output of the project
build steps. The work in progress symbol indicates that they have not yet been built.

Other options for viewing a project are discussed in Changing the way a project is
displayed on page 2-18.

Note

APM displays nested source dependencies only if the compiler and assembler are
invoked with the - MD- command-line option. This option instructs the assembler and
compiler to output source dependencies to the Project Manager. The project templates
shipped with APM specify this option in the build step pattern.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-9

ARM Project Manager

2.2.3

Build

[0

Either abuild or aforce build processes the source files of aselected variant through the
defined build steps to create the project output. A build executes a build step only if
someinput to it is newer than its outputs. A force build executes all build steps.

The actions performed in the various build steps and the type of project output are
determined by the project template. The project template also partialy determines the
build order to ensure, for example, that compilation takes place before linking.

When you have added the necessary filesto aproject, you can build that project. As
your project isbeing built, the progress indicator at the bottom of the project window is
updated and any diagnostic information generated is displayed in the build log.

The simplest way to turn source files into project output is to build the entire project.
You can aso process asingle sourcefile, force build an entire project, or select multiple
variants to be built.

Building a project

After you have added the example source filesto your project you can build it. Click
the Build button or select Build project-name from the Project menu. When you start
the build, the buttonin the status area changesto Stop Build, and abuild statusindicator
appears next to the button. M essages from the build toolsare displayed in the build log.
Thebuild logisopened by APM if itisnot already open. Figure 2-4 on page 2-11 shows
the APM desktop when the build is complete.

2-10

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

examplesihello.apj
BB ARM Executable Image

[10] %]

E'b DebugRel
Saources
(S T e
coenennn Ry IncludedFiles
SRy Objcts
@) Bl
% SubProjects
-8 Libraries
% Image
e G el 2t
oSy Miscellanea
b Debug
[ST EYE A
[« | LlJ
YError: “stdio.h”; line 150 expected ';' or ',’ - inserted ;'
! Serious Error:“stdio.h”; line 151 duplicate definition of 'size_t' =
I Error: "stdio.h”; line 151 prototype and old-style parameters,
N : : : - LlJ

Build DebugRel

Figure 2-4 Built project with error in source

You can see from the messagesin the build log that the build was not successful. The
red X nexttohel | o. c inthe Project view indicates that there is an error in the

hel | 0. ¢ sourcefile. The section headed Correcting problems on page 2-13 explains
how APM can help you to resolve problemsin building your project.

Building from a single source file

You can perform abuild step from a single source file if the file is associated with a

project and has been opened asapart of aproject. If thefile can be processed (compiled
or assembled, for example), the appropriate menu item in the Project menu is enabled
and labeled with the name of the build step pattern that isused to perform the build step.
If the project template does not define a build step for the selected file type, the Build

menu item and the Build button are disabled.

APM performs the actions associated with the build step and displays the resultsin the

build log pane.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

2-11

ARM Project Manager

Force building a project

Select ForceBuild to build all of the output filesin your project for the sel ected variant,
regardless of whether they have been changed since the last build. If you first select
APM ... from the Tools menu and check-mark the Build also builds sub-projects
option, Force Build also builds any associated sub-projects (see APM preferences on

page 2-32).
Force build a project in either of the following ways:
. selectForce Build projectname.apj variant from theProject menu

El . click theForce Build button.

Note
If you move your project to a new location, you must rebuild it uSorge Build.

Building variants

When you build a project only the selected variant is built. To build all variants of your
project, selecBuild Variants from theProject menu.

Build steps

A build step is a step in the build process that contributes to the project output. Usually,
a build step generates one file or a group of related files.

The actions performed in a build step are defined by a build step pattern within the
project template. The build step pattern also defines what type of source file each build
step acts upon. Typical build steps include:

. compiling or assembling source files
. linking object files and libraries
. building sub-projects.

Build step patterns

A build step pattern:

. associates a tool or tools, suchaasicc or armlink, with a build step within a
project template

. defines the inputs and outputs associated with a build step

. associates the file types conventionally used and generated by a tool with the
partitions used to organize the project

. defines the command-line options to be used by the tools when the build step is
executed during the building of the project.

2-12 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

|

ARM Project Manager

Stopping a build

You can stop abuild at the end of its current step by clicking the Stop build toolbar
button or by clicking the Stop Build variant button in the status area at the bottom of
the Project Window.

2.2.4 Correcting problems

When you build your project, you may find errors and problems. Asthe build
progresses, messages are written to the build log (see Project window on page 2-16) that
appearsin thelower pane of the Project window. These may beinformational messages
or diagnostic messages from the tools that are invoked by the project template.

When the build is complete, you can double click on any error message that relatesto
an editable source file (such as a compile error with afile line tag) and APM takes you
to the location where the error was detected. In the case of a compile error, thisisthe

line of code listed in thelog. If aline relates to a sub-project, the project isloaded into
the Project Window. You can also locate errors by selecting Next Error and Previous
Error from the View menu.

To find and correct the problem inthe hel | 0. ¢ source filein your sample project, and
rebuild the project:

1. Doubleclick onthe seriouserror line, indicated by a solid red exclamation mark,
in the build log. The Edit window displays the appropriate source file, with the
line that was being processed when the error was detected highlighted.

2. Inthiscase, the error is due to the missing semicolon at the end of the previous
line:
printf("Hello World\n")
should read
printf("Hello Wrld\n");

Note
Often an error in alineis detected only when the next line is being processed.

3. Correct the error and click the Build button. When you rebuild the project:
. APM prompts you to save the file if you have not already done so
. the Project window becomes the current window
. the build takes place and messages are written to the build log.

Figure 2-5 on page 2-14 shows the APM Desktop when the build is complete.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-13

ARM Project Manager

Blue checkmarks appear by all three files and an informational message in the

ifr build log showsthat the project isup to date. This meansthat the project was built
successfully and that the output of every project build step involved was created
after the most recent change to any of its inputs. You can now execute or debug
your project.

i C:\exampleshhello.apj !EIE
.-R0 ARM Executable Image
E!” DehugRel
E% Sources
[— e
-8y IncludedFiles
% Objects
[— T
% SubProjects

o B el ad
- $y Miscellanea

armlink... % reduction 0.00% 4
i Information: “C:\examples\hello.apj": Project is up to date

@ Warnings, 0 Errors JZI
q | »

Build DebugRel

Figure 2-5 Successful project build

2.2.5 Project output

The output of aproject istypically asinglefile or aclosely related group of files, such
as aprogram image or an object library.

The output is determined by one or more of the build step patterns in the project
template. A different version of the project output is created for each variant built. For
example, output can be built for a debug-and-release version, a debug version, and a
release version.

Using the project output

When your project has been successfully built, you can either execute or debug it to see
how it works. Usethe ARM Debugger for Windows (see ARM Debuggersfor Windows
and UNIX on page 3-1 for more information).

2-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Bl

8|

ARM Project Manager

Executing an image

Click the Execute button or select Execute project.apj from the Project menu, to load
the image in to the ARM Debugger for Windows and commence execution. If you
executethe hel | 0. apj project, ‘Hello World’ appears in the Console Window.

SelectExit from theFile menu when you have finished executing the image.

Debugging an image

When you click théebug button or seleddebug project.apj from theProject menu,

again the image is loaded into the ARM Debugger for Windows, but the debugger is
halted at the start of the program. You can then debug the image as necessary, using t
features of the Debugger.

—— Note

Whether you Execute or Debug your image, if the project output is older than its source
it is rebuilt before it is sent to the Debugger.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-15

ARM Project Manager

2.3 The APM desktop
If you have followed the steps to build the example hello world project in Getting
started on page 2-4 you have already used some features of the APM desktop. This
section gives further details of APM, and includes descriptions of:
. the Project window
. how to change the way a project is displayed
. the Edit window
. the View window.
2.3.1 Project window
The Project window contains a pane showing the project view, a pane showing the build
log, and a status area. Figure 2-6 shows an example of the project window. The
following sections describe the parts of the project window.
Chexamplesihello_apj M=l E3
-3 ARM Executahle Image
E‘b DebugFel
: E% Sources
[S—— I [
S IncludedFiles
-8y Objects
@ hello.o
-y BubProjects
Sy Libranies ~]
L« | ' oo |
------ Build DebugRel variant ------ -
i Information: “C:\examplesihello.apj”; Executin
‘hello.c’
armcc -o C:\examples\DebugRel\hello.o -¢ -MD- C:
! Serious Error:"hello.c”; line 1 Expecting <decla
U Error: "stdie.h”; line 99 prototype and ¢
I Error: "stdio.h”; line 99 function protot
‘int' assumed
U Error: "stdio.h"; line 150 expected ';' o~
< | »
Build DebugRel
Figure 2-6 Project window
2-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Project view

The project view occupies the upper pane and displays the project hierarchy. The
following symbols are used to denote variants and partitions. File symbols are defined
in Project files on page 2-5:

b variant
% partition.

You can use the project view to examine various aspects of your project and select
elementsfor action. For example, you can select apartition in which you want to add a
file, or select asourcefile for abuild.

Build log

The build log occupies the lower pane and is displayed each time you perform a build.
The build log contains messages from the tools used to build your project. You can
double click on many of these messagesto display the linewhere an error was detected.
Thefollowing symbolsin the build log indicate the type of diagnostic message:

Y=l =falem | -

Informational (blue)
Warning (blue)

Error (red)

Serious Error (red)

-ﬁ- Fatal Error (black)

Status area

The status area at the bottom of the Project window displays:

a button for starting or stopping a build

a progress display

a status bar that displays the current status information, or describes the currentl
selected user interface component, such as a menu option.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-17

ARM Project Manager

2.3.2 Changing the way a project is displayed
You can change the level of detail displayed in the Project Window in several ways:

. Click theView Dependencies button to show or hide the lower level dependency
files. These are indicated by a plus sighriext to the source filename.

Click theView Build L og button to toggle the display of the build log in the lower
pane of the Project window. The build log is always displayed by APM when you
build from a single source or build an entire project.

. Hold the Tab key and click the mouse on a point in the project view where you
want to set a tab to control the spacing of the project hierarchy. All levels of the
hierarchy are spaced evenly based on the position you have selected.

. Selectvariantsfrom theView menu to toggle the display of the project variants.
When you do so, partitions and their files are still displayed.

. SelectToolbar or Status Bar from theView menu to toggle the display of the
toolbar and status bar.

When you display the contents and structure of a project, various arrow keys and
numeric keypad keys act gsortcut keys. Shortcut keys enable you to expand or
collapse your view of the levels of the project. See Table 2-1 for a list of shortcut keys.

Table 2-1 Shortcut keys

Action required Shortcut key
Move up the tree Up arrow
Move down the tree Down arrow
Expand the current level by onelevel Numeric keypad +

or Right arrow
Expand fully the current and all lower levels Numeric keypad *
Collapse the current level Left arrow
Collapse the current and all lower levels Numeric keypad -

2-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

2.3.3 Edit window

Use the Edit window to create or modify a sourcefile, such asacodefile or an include
file. This window is opened when you:

. double click on a code or include file in the Project View
. open an existing code or include file
. selectNew from theFile menu and create a source or include file.

Figure 2-7 shows an example of the Edit window. The Edit window provides a fully
functional editor in which you can copy, paste, search, and replace using the appropriat
toolbar buttons or the menu selections inEdé menu.

B C\examples\abc.c H=] 3 I

#include "any.h"

#ifndef REG

#define REG
#% REG becomes defined as empty *
/% 1.e. no register variables *®7
#endif
gxtern int Int_Glohb;

extern char Ch_1 Glaob:

Proc_6 (Enum_Val_Par, Enum_Ref Par)
/*********************************/

/% gpyeciuted once #/

% Enum_Val_Par == Ident_3, Enum_Ref Par hecomes Ident_ 2 =~

Enumeration Enum_Val_Par:
Enumeration *Enum_PRef Par:
{
#Enum_Ref Par = Enum_Wal_ Par;
if (! Func_3 (Enum_Wal_Par))
#% then, not executed =~
*Enum_Fef Par = Ident_4;
switch (Enum WVal_ Par) -

1] | v

Figure 2-7 Edit window

If you are editing a source file as a component of a project, you can perform a build
@ using that source file from the Edit window by clicking Beefor m Build Step button.
You are prompted to save the file if you have not already done so. The Project window
is displayed and the results of the build appear in the build log.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-19

ARM Project Manager

Note

To build from asingle source file, you must access the file as part of a project because
APM uses the project template to determine how to processthefile.

2.3.4 View window

The View window is used to display the contents of a binary file, such as an object,
library or image file, using a utility such as decaof, decaxf, or armlib. Figure 2-8 shows
an example of the View window.

B C:\examples\DebugRel\hello.o [_ (O x|

*% Header (file C:“examples™DebugRel“hello.o)

AOQF file type: Little-endian, Relocatable object code
A0F Version: 311
Mo of areas: 12
No of symbols: 11

** Areg 0 CSScode, Alignment 4, Size 32 (0x0020), 1 relocations
Attributes: Code{32bit NoSWStackCheck}: Read only
EXPORT main

main
0z000000: =92d4000 .@-. : STMDB rl13l, {rl4}
0x000004: =28f0£02 : ADD rO,pe,#5 5 #0x14
0z000008: ehfffffe @ BL _printf
0z00000c: e=3a00000 ... @ MOV ri,#0
0x000010: e8kdB8000 ... : LDMIA rl13l, {pe}

So12

25litpoolsl

0z000014: 6BoAch548 Hell @ STOVEL pS.ch, [rl2], #-02120

0x000018: G&L57206f o Wo @ SWIVS O0xz57206f
x5litponl_e50-023

N=NNAN1~- MNNR4R-T? +1d - RERFN rh rd 7 ROR +17 -
4| | v

Figure 2-8 View window

2-20 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

2.4 Additional APM functions

This section describes:

. configuring tools

. force building a project

. adding a new variant to a project
. building selected variants

. changing the name of a project

. converting old projects

. stopping a build.

24.1 Configuring tools

You can change how a tool, such as a compiler or assembler, is executed by changin
its configuration within the Project Manager. You can change either the system-wide
configuration (sedlaking system-wide configuration changes on page 2-23), or
project-specific configuration (sééaking project-specific configuration changes on

page 2-23).

Tool configuration can be associated with:

. the whole project

. a project variant (a particular version of the project
. a partition (all files of the same kind)

. an individual file.

When a tool configuration is associated with a file, it is associated with that file as an
input to a build step, not with that file as an output from a build step. For example, if
you select an image you can change the debugger configuration but not the linker
configuration. Linker configuration is associated with object files.

The Tool Configuration dialog

The appearance of the Tool Configuration dialog varies with the tool you are
configuring. Tools that are APM compliant, such as armcc, tcc, armcpp, tcpp, armasm,
and armlink, respond by displaying their configuration interface. For most ARM tools
this consists of sets of property sheets. Figure 2-9 on page 2-22 shows the configuratio
dialog for the ARM C compiler.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-21

ARM Project Manager

Compiler Configuration I

Target |Warnings| C++—SpecificWamings| ErrorHandIingl Language and Debugl Inclucle F 4 | L4

—Bute Sex — Floating Point Processor
& Little Endian -
® Eiig Bl Inone (software library) j
—Choose —AFCS3 Options
Processor ™ Software stack check
" Architecture ™ Erame pointer
ARM7TOMI j ¥ F P erguments pessedin
FF registers
I Arm/Thumb interworking

—Equivalent Command Line

-0z

Ok | Cancel Help

Figure 2-9 Compiler Configuration dialog

When you change the settings, the modifications are reflected in the Equival ent
Command Line box near the bottom of the dialog.

Note

If atool DLL isnot in the directories searched by Windows, or if afound tool isnot a
DLL with APM compliant entry points, an error will bereported because thetool cannot
be configured graphically. You can take any of the following actions:

. install the product containing the missing APM compliant tool DLL (for example

C++ projects will needr ncpp. di | which is part of C++ 1.10 for SDT 2.50)

. specify command-line options in the command-line box in the Failed to Locate

the Tool dialog

. selectEdit Project Template... Project menu and enter the command-line
options in the Command Lines field of the appropriate Build step pattern (see
Working with project templates on page 2-40)

. use the Edit Paths dialog to specify the correct location of the tool DLL (see
Editing a path on page 2-44).

2-22

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Making system-wide configuration changes
System-wide configuration changes to atool affect all projects that invoke the tool.
Follow these steps to make system-wide configuration changes:

1. Select Configurefrom the Tools menu, and select the tool to configure. You are
given awarning message about the effects of such a configuration change.

2. Confirm that you want to proceed. The appropriate Tool Configuration dialog is
displayed, showing current settings.

3. Makeany required changes.

4. Select one of the following:
. click OK to save the changes and close the dialog
. click Apply to save the changes and keep the dialog open
. click Cancel to ignore all changes not applied and close the dialog.

Making project-specific configuration changes

Project-specific configuration can affect an entire project, or specific entities or scope
within a project. For example, you can change how a particular source file is compiled,
or you can change how all the source for a specific partition is compiledPrhect

menu itemTool Configuration for reflects the scope that is affected by the change.

1. Click on one or more entities, such as the Debug variant in the Project window, to
specify the scope of a configuration change. Hold down the Shift or Ctrl keys
while clicking to select several entities or a range of entities.

2. Selecflrool Configuration for from theProject menu to display a submenu of
the tools used.

3. Select the tool you want to configure. The Tool Configuration submenu is
displayed.

4. Click Set. The appropriate Tool Configuration dialog is displayed, showing
current settings and allowing you to make changes.

5. Make any required changes.

6. Select one of the following:
. click OK to save the changes and close the dialog
. click Apply to save the changes and keep the dialog open
. click Cancel to ignore all changes not applied and close the dialog.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-23

ARM Project Manager

Resetting tool configuration

You can return the configuration of atool to the settings of its parent (see Project
hierarchy on page 2-26) asfollows:

1

Click on one or more entities, for example the Debug variant, in the Project
window to select the scope for the configuration change.

Select Tool Configuration for from the Project menu, then select the tool to be
configured. The Tool Configuration submenu is displayed. If thereisa
configuration setting for the selected scope, the Unset menu item is enabled.

Select Unset to reset the configuration to the settings of that tool at the next higher
level of hierarchy.

Reading compiler options from a file

There are two options that allow you to read additional command-line options from a
file. These options must be specified on the Extra command line arguments text box of
the Configuration Dialog:

-via filenane

Opens afile and reads additional command-line options from it. For
example:

arncpp -via input.txt options source.c

Theoptions specifiedin f i | enane areread at the sametime asany other
command-line options are parsed. If - vi a is specified in the Extra
command line arguments text box of the APM Compiler Configuration
dialog, the command-line options are immediately read into the tool
configuration settings.

You can nest - vi a callswithin - vi a files.

-latevia filenane

Thisoptionissimilarto - vi a. Inthecase of - | at evi a thefileisread
immediately before compilation begins, not when other command-line
options are parsed.

If -1 at evi a isspecified, the command-line options are not read in until
the compiler is executed. This means that files specified with the

-l at evi a option stay in the text box, and can be changed more easily
than files specified with the - vi a option.

Callsto - | at evi a files cannot be nested. If - | at evi a is specified
withina- | at evi afile, it isignored. However, you can nest - vi a
optionswithin -1 at evi a files.

2-24

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

2.4.2 Partitions

Partitions enable you to organize the various files that make up your project in asimilar
way to placing them in adirectory structure. Partitions exist only within APM, as an
organizational convenience. Your files are not copied or moved when you add them to
apartition. They remain where you normally keep them.

Partitions help to control the effect of adding afile to a project. The partitions created
for aproject are determined by the project template. The partitions used by standard
APM templates include:

Sour ces Contains source files used to build the project output. Other source
partitions may be added depending on the template, such as Thumb-C,
ARM-C, ASM-Sources.

IncludedFiles
Contains any files included by the sources used by the project.

Objects Contains the object files built from the sources.

SubProjects Contains other projects that are to be used in the construction of the
project output. If the project output from a sub-project isalibrary, the
library fileis built in the Libraries partition.

Libraries Containsany librariesthat are to be used by the project.

Image Contains the project output of your build as specified in the project
template.

Miscellanea Anything else you want to add to a project.

Note
You can use other names for partitions, thislist is only an example.

2.4.3 Project templates

A project template defines how to build a particular type of project output. In a project
template, build step patterns describe the necessary processes, their input files, and their
output files.

Project templates give you great flexibility when you build your project output. You can
select atemplate from those supplied with APM or you can construct your own. You
can modify a project template by adding tools and changing the way they are executed
whilebuilding the project. You can modify variablesat any level inthe project hierarchy
to change the way specific files are handled. You can also create additional variants.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-25

ARM Project Manager

APM includes standard templatesthat you can copy and modify to suit your own needs.
If you have installed the ARM C++ Compiler you will have some additional templates
that you can use (see Using APM with C++ on page 2-53).

A template can exist in two distinct forms:

. A blank template, as describedBlrank templates supplied with APM on page
2-42. The standard templates supplied with APM are blank templates. Each one
contains the necessary project configuration information needed to create a
particular type of project, such as a Thumb executable image, but has no source
or output filenames assigned.

. A project template. A blank template becomes a project template when you create
a new project based on the template, and add files to it.

Normally you have one blank template for each type of project that you might want to
create, and you accumulate an increasing number of project templates. Each project
template is based on one of the blank templates, but now uniquely defines the build steps
for one particular project.

In most of this chapter, editing a template or any of its elements (details, variables,
paths, build steps) implies editing a project template, not editing one of the blank
templatesCreating a new template on page 2-46 describes how to create and edit new
blank templates.

2.4.4 Project hierarchy

A typical project hierarchy defines the structure of a project as follows:

System

Proj ect ny_pr oj

Variant For examplePebugRel , Debug, orRel ease.

Partition For exampleTar get , Dependenci es, or Sour ce

Source For examplesub-proj . apj,ny_file.c,ny_file.o,sub-proj.o

When you build a project using different tool configurations or variable values, project
settings take precedence over system-wide settings, variant settings take precedence
over project settings, partition settings take precedence over variant settings, and file
settings take precedence over partition settings.

2-26 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

2.45 Variables

ARM Project Manager

A variable holds a value used either by APM or by a build step pattern to specify a
changeabl e aspect of your project, such as afilename or directory path.

A variable prefixed with $ isread-only, avariable prefixed with $$ can affect the actions
of APM. A variable containing a$, such as pat h$Debug, has a standard purpose
defined by APM.

You can set variables for any level of the project hierarchy.
The standard variables are:

$$Dept hOf Dot APJBel owPr oj ect Root

Affects how the location of afile isresolved in the directory structure of
the project.

$$Pr oj ect Nanme
When you create aproject, thisvariableissetto " " and the name of the
project is contained in $pr oj ect name. When you change the value of
thisvariable, $pr oj ect nane is set to the new value.

$pr oj ect nane

You cannot change the value of thisvariabledirectly. It containsthe name
of the project as assigned when you created the project or whenever it is
saved. Thisvalueis also changed if the variable $$Pr oj ect Name is set
to a non-empty value.

pat h$vari ant

The path specifying the directory of avariant, created as a sub-directory
below the directory that holds the project file. You can change the value
of thisvariable if necessary.

conf i g$t ool

This variable stores an encoding of the configuration of atool, or the
command-line arguments for atool that is not configurable.

—— Note
User-defined variables cannot begin with $

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-27

ARM Project Manager

2.4.6

Variants

You can use variants to create different versions of your project output from the same
source files. Typically you use variants to create a debug-release version, or separate
debug and release versions of your project output.

You can change variant level variablesto control how the project output for the variant
is built. The derived files for each variant, such as object files and project output, are
created in asubdirectory of the project directory. You specify the project directory when
you create the project.

Note
You cannot add a source file to only one variant of your project.

Adding a new variant to a project
Follow these steps to add a new variant to your project template:

1. Select Add Variant from the Project menu. The Add Variant dialog is displayed
(Figure 2-10).

Add Variant x|

AddWariant Like: [0]:8

ok |
Cancel |
[

Help

MNew ariant Name:

Figure 2-10 Add Variant dialog

2. Select avariant from the Add Variant Likelist. Thefiles and variable values
from the original are assigned to the new template.

3. Enter anew variant name. The variant name cannot contain spaces.

4. Click OK.

2-28

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Building selected variants
Follow these steps to build a variant or variants:

1. Select Build Variants from the Project menu. The Build Variants dialog is
displayed (Figure 2-11).

Build Variants

%]
Select Variants to build:

DebugFel
Dobug Cancel |

Felaase
Help

™ Force build regardless of imestamps

Figure 2-11 Build Variants dialog
2. Select one or more variants from the Select Variantsto build box.

3. If youwant toforce build the selected variants, check Force build regar dless of
timestamps.

4, Click OK toinitiate the build.

2.4.7 Changing a project name

There are two options for changing the name of a project:
. changing the name of the project output only
. changing the names of both the project file and the project output.

In both cases the original files remain.

Changing the name of the project output only
Follow these steps to change the name of the project output only:

1. Selectdit Variablesfor projectname.apj from theProject menu. The Edit
Variables dialog is displayed (Figure 2-12 on page 2-30).

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-29

ARM Project Manager

Edit Variables for hello_apj [%]

MNarne: 0
Ibuild_target

Delete

$$DepthOfDotAP JBelowProjectRoot -
$$Projectiame
$Project™ame

Cancel

Help

dudls

Apply

Walue:

<$projectnarme>. axf

Figure 2-12 Edit Variables dialog
2. Select thevariable $$Pr oj ect Nane.
3. Enter the new name in the Value text box.

4, Click the OK button.

Changing the names of both the project file and the project output
Follow these steps to change the name of both the project file and the project output:
1. Select Save Asfrom the File menu. The Save Asdialog is displayed.

2. Savethefilewith the new name.

3. Rebuild the project.

Note

Thevalue of $$Pr oj ect Nane must be" " otherwisethe project output retainsthe name
stored in that variable.

Thevalue of $pr oj ect name isupdated by APM. See Variables on page 2-27 for more
information on variables.

2-30

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

2.4.8 Converting old projects

If you open a project that was created with an earlier version of the ARM Project
Manager, you are asked to confirm that you want to convert the project to the current
format. After you convert a project file to alater format, you can no longer read it with
the earlier version of APM.

Follow these steps to convert an old project to the current format:

1
2.

Open the project. The Project Conversion Wizard starts (Figure 2-13).

Confirm that the conversion should proceed, and that the old file can be
overwritten.

Click the Next button to proceed.

Project file conversion - output

The old project was intended to produce
alittle endian AR M AIF executable

zallzd DHRY i D2 harm2115E samplasi Dyt

The converted praject wil build
dhir. axf
Converted Project Hame:

by, 3p]

Converted Froject Direct ony:

ID:\almZTIHEHampIes\Dhry\ Erowse . |

< Back I Weut = I Cancel |

Figure 2-13 Project Conversion wizard

Examine, and change if necessary, the project name and directory, then click the
Next button.

Verify the source files that are to be added to the project, and click the Next
button. By default all filesbelonging to the original project are carried over to the
new project file.

Confirm that you want to proceed with the conversion by clicking the Finish
button. If you elected to overwrite the existing file, the conversion cannot be
reversed.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-31

ARM Project Manager

2.5 Setting preferences
This section describes and explains how to set:
. APM preferences
. Editor preferences.
25.1 APM preferences
Follow these steps to set APM preferences:
1. SelectAPM... from theTools menu. The APM Preferences dialog is displayed
(Figure 2-14).
" Eorce averwriting of existing project files
™ Save changed files quietly Cancel |
v Cantinue building even if errors are found Help |
Iv Betain partition selection after adding files
™ Build also builds sub-projects
I¥ {Force Build also farce builds sub-projects
I~ Echo command lines verhosely
Create New Projects from Templates found in:
CAARM Template' Browse... |
Figure 2-14 APM Preferences dialog
2. Select the preferences you require. An item is check-marked when selected. The
options are:
Force overwriting of existing project files
If you create a new project with an existing filename, the original
project file is overwritten without a request for confirmation.
Save changed files quietly
Save changed files without prompting when the project is closed.
Continue building even if errors arefound
If an error is detected do not stop, but continue building and ignore any
files that depend on erroneous components.
2-32

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Retain partition selection after adding files

After adding afile to a partition, retain the focus for the next file
addition. Thisisuseful when afiletype can be stored in more than one
partition.

Build also builds sub-projects

Check all filesin all sub-projects and perform all the builds necessary
to bring the project up to date. Thissetting isuseful whentheinterfaces
of library filesare unstable and the build time of amain project will be
impacted by changes to the implementation of the libraries built by
sub-projects. (Changes to shared interfaces force rebuilding anyway.)
A sub-project can be built separately before building the main project
if required.

Force Build also force builds sub-pr oj ects

Force Build buildsfilesin al sub-projects.

Echo command lines ver bosely

Command lines that invoke tools are echoed in full in the build log.
Thisis useful for understanding or auditing project build behavior.
Echoing command lines verbosely shows the result of merging tool
configurations at the tool, project, variant, partition, and file level.

Create New Projects from Templatesfound in:

Specifiesthelocation of the project template definitions. Thedefault is
the Tenpl at e subdirectory below the main ARM installation
directory.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-33

ARM Project Manager

25.2 Editor preferences

The Editor Preferences dialog allows you to choose which editor to use when you edit
source and include files, and to modify the behavior of that editor.

Follow these steps to select a source editor:

1. Select Editor... from the Tools menu to display the Editor Preferences dialog
(Figure 2-15).

Editor Preferences

r—Internal Editor
Tab Stops Cancal
IB Font...
Help
— Codewright

™ Use Premia Codewright 4 / Codewright 5

Location:
IC‘\CW32\CW32.E><E Browsa...

L

Figure 2-15 Editor Preferences dialog
2. Select the options you require:

Internal Editor - Tab Stops
Changes the tab stops used in the Edit Window.

Font Displays a standard font dialog.

Use Premia CodeWright 4/CodeWright 5

Use Premia CodeWright 4/5, if it isavailable on your machine, instead
of the APM built-in editor.

Location Thelocation of CodeWright, if different from the standard installation.

2-34 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

2.6

26.1

ARM Project Manager

Working with source files

You can use APM to edit your C and assembly language sourcefiles, and C header files.
You can use Premia Codewright version 4 or version 5, or the APM built-in editor. You
select your editor using the Editor Preferences dialog (see Editor preferences on page
2-34).

If you have selected the file from the Project View, you can build the output from your
source file from within the editor. Any messages from the build tool are written to the
build log. You can edit files that are not associated with a project, but until they are
added to a project, APM has no information on how the file should be processed.

Creating a new source file with APM

Follow these steps to create a new source file:

1. Select New from the File menu or click the New button. The New dialog is
displayed (Figure 2-16).

F t
CfC++ source
C/C++ include file
Assembler source
C++ source

Figure 2-16 New dialog

2. Selectthe New filetype, for example C/C++ sourceor C/C++ includefile, from
the scroll box.

3. Click OK.

— Note

If you create anew sourcefile and at the sametime you have an open project, the source
fileis not automatically added to the open project.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-35

ARM Project Manager

2.6.2 When a file type is associated with multiple partitions

If thefiletypeisassociated with toolsin multiple partitions, the Files Matched Multiple
Partitions dialog is displayed (Figure 2-17).

Files Matched Multiple Fartitions

First zelect a partition in the tree wiew.
Theh sslect filzs in the list below and add again.

Add

Cancel

i

Help

Figure 2-17 Files Matched Multiple Partitions dialog
Follow these steps to add the file to the correct partition:
1. Select the correct partition in the Project window.

2. Select thefileor files to add to the selected partition from the Files Matched
Multiple Partitions dialog.

3. Click Add.
4. Repeat for each file that is displayed in the dialog.

Note

You can use the Retain partition selection settings on the APM Preferences dialog to
keep the default partition set to the one last used.

Project templ ates supplied with APM have a Miscellanea partition, where files of types
not associated with other partitions are placed. If the Miscellanea partition does not
exist when you add afile not associated with a partition, the Unable to Add Files
message box appears. To add thefileto the project, you must associate thefile typewith
apartition.

If you have afile type that is associated with more that one partition, you can select the
partition to receive the file before you add the file to the project. Follow these steps to
select the partition:

2-36 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

2.6.3

ARM Project Manager

Select the partition from the project view.
Select Add Filesto partition from the Project menu.
Select the files to be added to the project using the Add Files to partition dialog.

A W bdpoPR

Click OK.

Performing a single build step

You can process and generate output from asinglefileif it is associated with a project
and if the file has been opened as a part of that project. If abuild step can be performed
on thefile (if it can be compiled or assembled, for example) the appropriate menu item
in the Project menu is enabled and labeled with the name of the build step pattern for
the build step. If the project template does not define a build step for the selected file

type, the menu item and the button are disabled.

For example, if you have several sourcefilesin your hel | o project, and select
hel | 0. ¢ from the Release variant, the item on the Project menu would read:

Conpil e hello.c "Rel ease”

Note

Compileisaterm specified within thetemplate. Any build typetool can be used to build
an output filefrom a source file. See Adding a build step pattern on page 2-52 for more
information on assigning tools to atemplate.

Follow these steps to perform a build step on a single source file:

1. Select hel | o. ¢ from the Project Window.

@l 2. Click the Perform Build Step button (the tool tip reflects which build step is

executed) or select Compile hello.c " Release” from the Project menu.

3. Theactions associated with the Compile build step are executed and the results
are displayed in the build log pane.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-37

ARM Project Manager

2.7 Viewing object and executable files

You can view the contents of a binary file (object, library, or image) using one of the
ARM decoders, decaof, decaxf, or armlib. For example, to display the contents of
hel | 0. o:

1. Select hel | 0. o from the Project View.

2. Select Contentshello.ofrom the View menu. The appropriate Viewing dialog for
the trandator is displayed (Figure 2-18).

Viewing hello.o

decacf Cornmand Line Options

B

Ok I Cancel

Figure 2-18 Viewing dialog

3. Usethe default command-line option, - ¢ to display disassembled code areas
(other options are listed in the online help).

4. Click OK. Theinformationisdisplayedin the specified format in aView window
(Figure 2-19).

B C:\examples\DebugRel\hello.o | _ (O] x|

** Header (file C:sezamples~DebugRel>hello.a)

A0F file type: Little-endian, Relocatable ohject code
AQOF Version: 311
No of areas: 12
No of symbols: 11

** Areps 0 C5Scode, Alignment 4, Size 32 (0xz0020), 1 relocations
Attributes: Code{32bit, HoSWStackCheck]l: Read only
EXPORT main
main

0z000000: e92d4000 .@-., : SIMDE rl13l,{rl4}
0z000004: e28f0f02 : ADD r0,pe, #8 ; #0x14
0x000008: ehfffffe : BL _printf
0z00000e: e3a00000 ... @ MOV r0,#0
0xz000010: e8hd5000 : LDMIA rl13l, {pe}

$512

x51litpoolsO

0x000014: bHecheh548 Hell @ STCVSL po,ch, [r12],#-0x120

0x000018: Bf57206f o Wo @ SWIVS 0=57206f
x5litpool_eS0-0x3

M AN Te - NMARAR-7? +1d = RESHRFN rh Td r? RAR +17 i
4| | v

Figure 2-19 View window

2-38 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

2.7.1 decaof

2.7.2 decaxf

ARM Project Manager

The ARM Object Format (AOF) file decoder, decaof, decodes AOF files such as those
produced by armasm and armcc.

For afull specification of AOF and afull description of decaof, refer to the ARM
Software Development Toolkit Reference Guide.

The ARM Executable Format (A XF) file decoder, decaxf, decodes executablefiles such
as those produced by armlink.

For afull description of decaxf, refer to the ARM Software Devel opment Tool kit
Reference Guide.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-39

ARM Project Manager

2.8 Working with project templates

This section gives further details of project templates and how they are used within
APM. It also discusses how you can modify various components of atemplate.

2.8.1 General information

This section explains:

. what a project template is

. how to use a template to create a project
. how to modify a project template.

What is a project template?

The following elements make up a project template:
. build step patterns

. tools

. partitions
. variants
. variables.

Build step patterns

Tools

Partitions

Variants

A build step pattern controls how a specific tool works within the project
environment and it specifies how a particular file type is handled within
that environment. It controls how a tool transforms its input into output
as an intermediate step in building the output of your project.

A build step pattern has a global effect within a project. However, you can
use variables to change the effect at the source, partition, or variant level
of the project hierarchy. Build step patterns are discussdilid step
patterns on page 2-12.

Tools are the programs used by a build step pattern to transform a source
file into a derived file. Tool configuration is discussemnfiguring
tools on page 2-21.

Partitions are a construct of APM used to organize the source and derived
files in your project, in the same way that you might use a directory
structure. The partitions used by your project are determined by the build
step patterns.

Variants define different versions of the project output created from the
same set of source files. Variants are discuss@ddimg a new variant
to a project on page 2-28.

2-40 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Variables Variables are used within the definition of build steps to change how a
tool isused in the various|evels of aproject hierarchy. For example, you
could use a variable to change the configuration settings for armcc, so
that a single source, or a particular set of sourcesin a separate partition,
iscompiled in one way and the rest of the source is compiled in another.
See Editing a variable on page 2-43.

Using a template to create a project

To create a new project, select an existing blank template that defines the tools to be
used, the organization of project files into partitions, and the variants that can be built.
Add your source files to the blank template and save it as the new project template. A
project template helps you to build your project output repeatedly and consistently.

See Creating a new project on page 2-6 for more information.

Modifying a project template

You can modify a project template after the project has been created or you can create
your own blank templates.

After creating aproject you can add new tools, remove unused tools, and edit the build
step patternsto suit your needs. These changes have aglobal effect across your project,
but do not affect the blank template you used when you created your project.

If you need finer control, for exampleto compile asubset of your sourcesin aparticular
way, you can use tool configuration settings and/or variables to change the handling of
asingle source or a group of sources. For example, you could create an additional
source partition. You could then configure the tool used on source files differently,
depending on the partition used. You could even use a different compiler.

Finally, to create anumber of projectsthat require aframework that isnot supported by
the supplied blank templates, you can create your own blanks. To create a blank
template, take an existing blank template, saveit to anew filein the Tenpl at es
directory, then make the required changes. The new template appearsin the list
presented when you create a new project.

Note

You are advised to create new templates based on the current APM templates, rather
than modifying the blank templates supplied with APM.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-41

ARM Project Manager

2.8.2 Blank templates supplied with APM

You can use the following APM templates to create both executable images and ARM
libraries:

ARM Executable Image

Build and debug an ARM executable image made from C and ARM
assembly language source filesand ARM object libraries. You can build
your object libraries using sub-projects.

Thumb Executable Image

Build and debug a Thumb executabl e image made from C and
Thumb/ARM assembly language sourcefilesand Thumb object libraries.
You can build your object libraries using sub-projects. You can compile
some C sources for ARM state by setting the cc Project variable to

ar nce for just those source files (see Editing a variable on page 2-43).

ARM Object Library

Build alibrary of ARM object filesfrom C and ARM assembly language
source files. You can use the library as a component in Projectsto build
ARM executable images.

Thumb Object Library

Build alibrary of Thumb object files from C and Thumb/ARM assembly
language sourcefiles. You can use the library as acomponent in Projects
to build Thumb executable images. You can compile some C sources for
ARM state by setting the cc Project variable to ar ncc for just those
source files.

Thumb-ARM Interworking Image
Build and debug a Thumb-ARM interworking image made from:
. Thumb C source files
. ARM C source files
. Thumb/ARM assembly language source files
. Thumb object libraries
. ARM obiject libraries.

You can build your object libraries using sub-projects.

Blank template

A blank template from which to make your own templates. Change the
description using the Details dialdgditing project template details on
page 2-47). This template defines DebugRel, Debug, and Release
variants and the Miscellanea partition.

2-42 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

2.8.3 Editing a variable

A variable holds a value used by either APM or by a build step pattern to specify a
changeabl e aspect of your project, such as afilename or directory path. You can set
variablesfor any level of the project hierarchy. For example, you could set the variable
specifying the C compiler (cc) to be one tool for the entire project (cc=ar ntc) and
create a special configuration for a particular source file (cc=t cc).

Follow these steps to edit the variables for a particular level of the project hierarchy:
1. Select an element from the Project view (for example the Debug variant).

2. Select Edit Variable from the Project menu. The Edit Variables dialog is

displayed (Figure 2-20). Thetitle of the dialog box reflects the scope of the
changes that are being made.

Edit Variables for hello.apj

asm

%]

Ibuild_target

Delete |
$3DepthODotAP JBelowFrojectRoat -~
$4FrojectMame Cancel |
$Projecttame
adw |
arrilink Fitlle

Apply

Walue:

<$projectname>.ax

Figure 2-20 Edit Variables dialog
3. Select avariable from the scroll box or type the variable name.

4. Typethe new Value.

5. If you have additional variables to modify, click Apply to save the change and
modify another variable.

6. When you have completed your changes, exit the dialog:
. click OK to save the changes and exit the dialog
. click Cancel to abandon any changes not yet applied and exit the dialog.

The following restrictions apply:

. Variables prefixed bg are read-only and cannot be modified or deleted.
. Variables prefixed bg$ are reserved for use by APM, but can be modified.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-43

ARM Project Manager

. Variables containing & (for examplepat h$Debug) have a standard purpose

defined by APM.

. Use caution when editingpnf i g$xxx variables, especially if these contain

symbols. These are the internal representation of tool configurations created by

the tools.
2.8.4 Editing a path
Follow these steps to use a tool in your project that is not on the Windows search path:
1. Selectdit Paths from theProject menu. The Edit Paths dialog is displayed
(Figure 2-21).
Name Ok
Ibui\d_target
$$DepthOfDotAP JBelowProjectRoot -~ ﬁl
$3ProjectName Bzl |
Help |
Apply |
Walue:
<$projectname>.axf
Figure 2-21 Edit Paths dialog
2. Select a tool from the scroll box.
3. Change the path as required in Hukt Path field.
4. If you have additional tool paths to modify, cliakply to save the change and
go on to modify another path.
5. When you have completed your changes, exit the dialog:
. click OK to save the changes and exit
. click Cancel to abandon any changes not yet applied and exit.
Note
Do not edit paths if your tools are on your Windows search path. Editing paths can make
your project difficult to use on another machine or with other versions of the software.
The Windows search path is the preferred method for locating tool DLLs. The primary
reason to edit a path is to experiment with a different version of a tool DLL.
2-44 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

2.8.5 Editing a project template

When you edit a project template, you change the options used by APM when it builds
the project.

Follow these steps to edit a project template:

1. Select Edit Project Template from the Project menu. The Project Template
Editor dialog is displayed (Figure 2-22).

Project Template Editor | x|

Select Build Step Pattern :

Assemble Edit.. |
Build

Cormpile M

Debug BW...
Execute

Link Delete
Misc

Edlit Details...

Help

el |

Close

Figure 2-22 Project Template Editor dialog

2. You can now do one or more of the following:

. select a build step pattern and clietit to modify it (seeediting a build
step pattern on page 2-50) dDelete to remove it

. click New to add a new build step pattern (¢elling a build step pattern
on page 2-52)

. click Edit Detailsto change the title and/or description of the template (see
Editing project template details on page 2-47).

3. Click Close to close the dialog.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-45

ARM Project Manager

2.8.6 Creating a new template

If you have anumber of similar project outputs to produce that do not fit the templates
provided with the ARM Project Manager, you can create your own blank template to
use as a basis for new project templates. You can use an existing blank template or
project template as a basis for your new blank template.

Follow these steps to create a new blank template:

1. Select asuitable model in one of the following ways:
. create a new project (s€eeating a new project on page 2-6), selecting a
suitable blank template
. open a suitable existing project.

2. Selectdit Project Template from theProject menu.

3. Click theEdit Details button and modify th&itle and theDescription of the
template (se&diting project template details on page 2-47).

4. SelectSave as Template from theFile menu. The Save As... dialog is displayed.

5. Locate the file in the directory specified in the APM Preferences dizdtimg
preferences on page 2-32) and give it a unique name.

6. Click Save. The new project has now been created and is the currently active
project.

7. Modify the build step patterns listed for the template, adding or deleting build step
patterns as necessary (&miting a build step pattern on page 2-50).

8. Edit any variables as necessary (Sditing a variable on page 2-43).
9. Edit any tool paths as necessary (Sdiging a path on page 2-44).
10. Save the project.

The new template is displayed (sorted by filename) if yipe list of theNew Pr oj ect
dialog the next time you create a new project.

2-46 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

2.8.7 Editing project template details

Project template detail s consist of ashort project name (for example, ARM Executable

Image) and a description providing more details of the project.

Follow these steps to edit the details of atemplate:

1. Select Edit Project Template from the Project menu. The Project Template

Editor is displayed.

2. Click Edit Details. The Edit Template Details dialog is displayed (Figure 2-23).

Edit Template Details

Description

ARM Assembly Language source files and ARM

can build your objectlibraries using sub-projects.

0K | Cancel

Build and debug an ARM executable image made from Cand

Ohject

Libraries. The DebugRel variant compiles smaller, faster code
that can be debugged, tested and released unchanged. Yau

Help

Figure 2-23 Edit Template Details dialog

3. Changethe Title and/or Description as needed.
4. Click OK.

5. Click Closeto close the Project Template Editor dialog.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved.

2-47

ARM Project Manager

2.9 Build step patterns

This section explains how to:

. specify input and output patterns in a build step
. edit a build step pattern

. add a new build step pattern.

29.1 Specifying input and output patterns in a build step pattern

A build step pattern uses simple pattern expressions to describe:

. the inputs to which it can be applied

. the outputs it generates

. the command-line options that are used to generate those outputs.

When you add a file to a project, APM searches for an input pattern expression to match
the filename. If a match is found, the pattern variables used in the input pattern become
defined and are used to generate output filenames. When the project is built, the same
pattern variables are used to generate command-lines for the tools invoked by the build
step pattern.

Input pattern expressions

An input pattern can contain three kinds of pattern element:

Variable written as<nane>, that matches any sequence of characters not
containing the next literal.

Literal written as is, that matches only itself.

Conditional literal
written as<nane| | i t er al > that either:
. matches angname> takes on the value of the literal
. fails to match angnane> takes on the valué" (null).

Patterns match from right to left, ahdn a pattern matchésor\ in the filename.
For example, the input pattern element:

<pat h><sl ash|/><file>.c

supplied with the string

nyfile.c

sets the variables to the following values:

2-48 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

path = ""
slash = ""
file = "nyfile"

and the same input pattern element supplied with the string:
c:\projdir\nmyproj\nmyfile.c

sets the variables to the following values:

path = "c:\projdir\myproj"

slash = "\"
file = "nyfile"

Note

Aninput pattern element <pat h>\ <fi | e>. ¢ does not recognize the string
nyfil e.c becausethe string does not contain the specified literal \ .

Output and command-line pattern expressions

An output or command-line pattern can use a mixture of pattern variables, conditional
literals and literals. The variables are those matched in the input pattern expressions or
defined within the project.

For example, the output pattern element <pat h| - | ><pat h> consists of the pattern
variable and conditional literal - 1 (defined only if the pattern variable <pat h> is
non-empty) followed by the pattern variable <pat h> value.

When given with thefilenamenyfi | e. c thisexpressionresolvesto" " (anull string).
When given with the fully qualified filename-1 c:\projdir\nyproj\nyfile.c
the expression resolvesto - | ¢: \ proj di r\ nypr oj becausein thefirst case the input
pattern variable <pat h>issetto" ", so the output pattern element <pat h| - | ><pat h>
becomes:

<" ul >

which produces:

resulting in afinal value of:

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-49

ARM Project Manager

In the case of the fully qualified filename, the input pattern variable <pat h> is set to
"c:\projdir\nyproj", sotheoutput pattern element <pat h| - | ><pat h> becomes:

<"c:\projdir\nyproj"|-1>"c:\projdir\nyproj"
resulting in afinal value of:
"-lc:\projdir\myproj".

Outputs and command-lines can refer to variables not used in an input pattern. A typical
exampleis:

<tool> -0 <file> o0 ... <TOOLFLAGS> ...

If the variable <TOOLFLAGS> is defined within the project, its value is used, otherwise
it isignored.

A more typical output expressionis:
<file> o

A command-line expression might be{ pat h| <pat h| - | ><pat h>} denoting the set of
values accumulated from the expression discussed above.

Note

Thefirst variable on acommand-lineistreated differently. Its default valueisits name.
APM insists that the name of atool must be avariable. So, if you want to call armcc,
you must enter <ar ncc>.

2.9.2 Editing a build step pattern

Note

A build step pattern can use one or more tools, process one or more input files, and can
produce one or more outputs.

Follow these steps to edit a build step pattern:
1. Select the Build Step Pattern from the Project Template Editor dialog.
2. Click Edit. TheBuild Step Pattern dialog isdisplayed (Figure 2-24 on page 2-51).

2-50

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Edit Build Step Pattern

Build Step Fattern Narme : IBuiId

Delete

Type in the boxes below and press the Add or Replace button to editthe above list. s
ISumejems I(path)(sl\,l)(prj) apj Replace
— Output Partition Pattern
Libraries <path><s><pri> alf Delete

Type inthe boxes below and press the Add or Replace buttan to editthe abowe list. Add

| Replace

Command Lines:

build <path»<zl><prz.apj

o JELE e B

0K Cancel Help | Apply I

Figure 2-24 Edit Build Step Pattern dialog

3. Edit the build step pattern as required, possibly deleting, editing, or adding
input/output patterns, as follows:

Deleting an input/output pattern

a Select the pattern line from the list in the Input or Output Partition box.
The selected pattern is loaded on the edit line.

b. Click Delete to remove the pattern.
Editing an input/output pattern

a Select the pattern line from the list in the I nput or Output Partition box.
The selected pattern is loaded on the edit line.

b. Edit the pattern as required (see Specifying input and output patternsin a
build step pattern on page 2-48).

c. Click Replaceto change the pattern.

Adding a new input/output pattern
a. Enter anInput or Output Partition.

b. Enter the pattern for the partition.
c. Click Add.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-51

ARM Project Manager

4. Change the Command Line as required.
5. Click OK to save the changes and exit the dialog.

6. Click Closeto close the Project Template Editor dialog.

Note

If you do not click Add, Replaceor Deletein step 3, you are prompted to save or cancel
your changes before exiting this dialog.

You can have more than one Edit Build Step Pattern dial og open at onetime, so that you
can copy from one build step pattern to another easily using Ctrl+Insert (to copy text)
and Shift+Insert (to paste text).

2.9.3 Adding a build step pattern

Follow these steps to add a new build step pattern:

1. Select Edit Project Template from the Project menu.
2 Click New.

3. Enter the name of the new build step pattern.

4

Click OK. The Edit Build Step Pattern dialog is displayed (see Edit Build Sep
Pattern dialog on page 2-51).

5. Specify Input and Output Partition information.

6. Enter aPartition name. If the partition does not exist, it is created.
7. Enter the Pattern.

8. Click Add.

9. Enter acommand-line in the Command L ines edit box.

10. Click OK.

11. Click Closeto close the Project Template Editor dialog.

If you are debugging with ADW or ADU, you can usethe - ar gs optionina
command-line to introduce any arguments you may want to supply to the program you
are about to debug. For example:

I aunch <adw> -exec <any>.asf -args exO0.eqgn

See Writing Code for ROM on page 10-1 for an example showing how to add a
FromELF build step pattern.

2-52

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

2.10 Using APM with C++

This section describes how to use APM with ARM C++. It also describes the APM
templates distributed with ARM C++.

2.10.1 APMtemplates for C++

ARM C++ provides additional project templates to enable you to build C++ projectsin
APM. The C++ project templates are based on the corresponding C project templates
for the Software Development Toolkit. The templates provide options for producing
C++ executable images and object libraries from within APM.

By default, the templates are installed in the\ t enpl at e directory of your SDT
installation directory. If you installed SDT in the default location, this will be
c:\arnR50\t enpl at e.

The C++ APM templates are:

ARM C++ Executable Image

Thistemplate builds an ARM C++ executable image from C, C++, and
ARM assembly language source files, and ARM object libraries.

Thumb C++ Executable Image

This template builds a Thumb C++ executable image from C, C++, and
Thumb/ARM assembly language source files, and Thumb object
libraries.

ARM C++ Object Library

Thistemplate builds an ARM object library filefrom C, C++, and ARM
assembly language source files. You can use the library as a component
in other projects to build ARM executable images.

Thumb C++ Object Library

Thistemplate builds a Thumb object library file from C, C++, and
Thumb/ARM assembly language sourcefiles. You can usethelibrary as
acomponent in other projects to build Thumb executable images.

Thumb/ARM C++ Interworking I mage
This template builds an ARM/Thumb C++ interworking image from:
. Thumb C and C++ source files
. ARM C and C++ source files
. Thumb/ARM assembly language source files
. Thumb object libraries
. ARM obiject libraries.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-53

ARM Project Manager

2.10.2 Using the ARM Project Manager C++ Templates

The APM C++ templates provide a number of options for creating C++ source files,
header files, and projects.

This section describes how to create new projects based on the C++ project templates.
The following general points apply to the templates:

. All templates that produce ARM executable images or ARM object libraries are
configured to use armcpp to compile C++ source files.

. All templates that produce Thumb executable images or Thumb object libraries
are configured to use tcpp to compile C++ source files.

. All templates that produce executable images use the ARM Debugger for
Windows (ADW) as their debugger.

. You can convert a non-interworking project to an interworking project by
following the instructions iARM-Thumb interworking with the ARM Project
Manager on page 7-25. Substitué ncpp for ar nce, andt cpp fort cc.

. Libraries must contain either ARM code only, or Thumb code only.

Creating new projects
Follow these steps to create a new C++ project:

1. SelectNew... from theFile menu. The New dialog is displayed (Figure 2-25).

New E
OK.
C£C++ SOUrCE Cancel
C/C++include file

Assembler source
C++ 50UrCE

Figure 2-25 The APM New dialog

2. Selectroject from the list of options and clicdRK . The New Project dialog is
displayed (Figure 2-26 on page 2-55).

2-54

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Project Manager

Libraries. The DebugRel variant compiles Help
smaller, faster code that can be debugged,
tested and released unchanged. You can
build wour object libraries using sub-projects.

New Project |]
— Template Description oK I
Build and debug an ARM executable image
made fram G, C++ and ARM Assembly Cancel |
Language source files and ARM Ohject |

Froject Mame:

Iprojecﬂ

Froject Directony:

IC:\exampIes\ Browse. . |

Figure 2-26 The APM New Project dialog

3. Select thetype of project you want to create. In addition to the standard options
availablein SDT 2.50, you can create a project based on the new C++ templates.
These are:

. ARM C++ Executable Image

. Thumb C++ Executable Image

. ARM C++ Object Library

. Thumb C++ Object Library

. Thumb/ARM C++ Interworking Image.

4. Enter a project name and project directory for the new project.

5. Click OK. A new project is created for the type of image or library you have
chosen.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2-55

ARM Project Manager

2-56 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 3
ARM Debuggers for Windows and UNIX

Thischapter describesthe ARM Debugger for Windows (ADW) and ARM Debugger for
UNIX (ADU). These are two versions of the same debugger, adapted to run under
Windows and UNIX respectively. ADW is part of the ARM Software Devel opment
Toolkit. ADU is an extra-cost addition that requires SDT 2.11a or greater.

ADW and ADU screensdiffer slightly in appearance. Your screens might look different
from the figuresin this chapter.

If you have purchased the ARM C++ compiler, the C++ installation process adds extra
features to the ARM Debuggers to support debugging C++. Refer to ARM Debugger
with C++ on page 3-62 for details.

This chapter contains the following sections:

. About the ARM Debuggers on page 3-2

. Getting started on page 3-7

. ARM Debugger desktop windows on page 3-14

. Breakpoints, watchpoints, and stepping on page 3-26
. Debugger further details on page 3-36

. Channel viewers (Windows only) on page 3-49

. Configurations on page 3-51

. ARM Debugger with C++ on page 3-62.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-1

ARM Debuggers for Windows and UNIX

3.1

3.1.1

Online help

About the ARM Debuggers

The ARM Debuggers enable you to debug your ARM-targeted image using any of the
debugging systems described in Debugging systems on page 3-5.

You can a'so use the ARM Debugger to benchmark your application.

Refer to the documentation supplied with your target board for specific information on
setting up your system to work with the ARM Software Devel opment Toolkit, and the
EmbeddedI CE interface, Angel, and so on.

Most of this chapter applies to both the Windows and the UNIX version of the ARM
Debugger. The term ARM Debugger refers to whichever version you are using,
depending on your operating system. If a section appliesto one version only, that is
indicated in the text or in the section heading.

When you have started ADW or ADU, you can display online help giving details
relevant to your current situation, or navigate your way to any other page of ADW/ADU
online help.

F1 key Pressthe F1 key on your keyboard to display help, if available, on the
currently active window.

Help button Many APM windows contain aHelp button. Click this button to display
help on the currently active window.

Help menu Select Contents from the Help menu to display a Help Topics screen
with Contents, Index, and Find tabs. The tab you used last is selected.
Click either of the other tabs to select it instead.

Select Sear ch fromthe Help menu to display the Help Topics screen with
the Index tab selected.

Under Contents, click on a closed book to open it and see alist of the
topicsit contains. Click on an open book to closeit. Select a topic and
click the Display button to display online help.

Under Index, either scroll through the list of entries or start typing an
entry to bring into view the index entry you want. Select an index entry
and click the Display button to display online help.

Under Find, follow theinstructionsto search all the available online help
text for any keywords you specify. The first time you undertake a Find
operation adatabasefileis constructed, and isthen availablefor any later
Find operations.

3-2

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Select Using Help from the Help menu to display a guide to the use of
on-screen help.

Hypertext links

Most pages of online help include highlighted text that you can click on
to display other relevant online help. Clicking on highlighted text
underscored with a broken line displays a popup box. Clicking on
highlighted text underscored with a solid line jumps to another page of
help.

Browse buttons

Most pages of online help include a pair of browse buttons that enable
you to step through a sequence of related help pages.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-3

ARM Debuggers for Windows and UNIX

3.1.2 Debugging an ARM application
The ARM Debuggers work in conjunction with either a hardware or a software target
system. An ARM Development Board, communicating through an EmbeddedI CE
interface, Multi-ICE, or Angel, is an example of a hardware target system. The
ARMulator is an example of a software target system.
You debug your application using anumber of windows that give you various viewson
the application you are debugging.
To debug your application you must choose:
. a debugging system, which can be:
. hardware-based on an ARM core
. software that emulates an ARM core.
. a debugger, such as ADW, ADU, and armsd.
Figure 3-1 shows a typical debugging arrangement of hardware and software:
Host/ADWY R EmbeddedCE
JTAG
ARM head
board
PID board
Figure 3-1 A typical debugging set-up
3-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.1.3 Debugging systems

Thefollowing debugging systems are available for applications devel oped to run on an
ARM core:

. the ARMulator
. the EmbeddedICE interface or Multi-ICE
. the Angel Debug Monitor.

These systems are described in the following sections.

The ARMulator

The ARMulator is a collection of programs that emulate the instruction sets and
architecture of various ARM processors. The ARMulator:

. provides an environment for the development of ARM-targeted software on the
supported host systems

. enables benchmarking of ARM-targeted software.

The ARMulator is instruction-accurate, meaning that it models the instruction set
without regard to the precise timing characteristics of the processor. It can report the
number of cycles the hardware would have taken. As a result, the ARMulator is well
suited to software development and benchmarking.

EmbeddedICE and Multi-ICE

EmbeddedICE and Multi-ICE are JTAG-based debugging systems for ARM
processors. EmbeddedICE and Multi-ICE provide the interface between a debugger an
an ARM core embedded within an ASIC. These systems provide:

. real-time address and data-dependent breakpoints
. single stepping

. full access to, and control of the ARM core

. full access to the ASIC system

. full memory access (read and write)

. full /O system access (read and write).

EmbeddedICE and Multi-ICE also enable the embedded microprocessor to access ho
system peripherals, such as screen display, keyboard input, and disk drive storage.

SeeEmbeddedI CE configuration on page 3-60 for information on configuration
options.

Refer to the Multi-ICE documentation for detailed information on Multi-ICE.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-5

ARM Debuggers for Windows and UNIX

Angel

Angel isadebug monitor that allows rapid devel opment and debugging of applications
running on ARM-based hardware. Angel can debug applicationsrunningin either ARM
state or Thumb state on target hardware. Angel runs alongside the application being
debugged on the target platform.

You can use Angel to debug an application on an ARM Development Board or on your
own custom hardware. See Chapter 13 Angel for more information.

3.14 Debugger concepts

This section introduces some of the concepts of that you need to be aware when
debugging program images.

Debug agent

A debug agent isthe entity that performs the actions requested by the debugger, such as
setting breakpoints, reading from memory, or writing to memory. It is not the program
being debugged, or the ARM Debugger itself. Examples of debug agentsinclude the
EmbeddedI CE interface, Multi-1CE, the ARMulator, and the Angel Debug Monitor.

Remote debug interface

The Remote Debug Interface (RDI) is a procedura interface between a debugger and
the image being debugged, through a debug monitor or controlling debug agent. RDI
gives the debugger core a uniform way to communicate with:

. a controlling debug agent or debug monitor linked with the debugger
. a debug agent executing in a separate operating system process

. a debug monitor running on ARM-based hardware accessed through a
communication link

. a debug agent controlling an ARM processor through hardware debug support.

3-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.2 Getting started

This section explains the main features of the debugger desktop and gives you enough
information to start working with the debugger. Additional features are described in
Debugger further details on page 3-36. This section describes:

. The ARM Debugger desktop on page 3-7

. Sarting and closing the debugger on page 3-9

. Loading, reloading, and executing a program image on page 3-10

. Examining and setting variables, registers, and memory on page 3-12.

3.21 The ARM Debugger desktop

The main features of the ARM Debugger desktop are:

. A menu bar, toolbar, mini toolbar, and status bar. For detailsleaebar,
toolbar, mini toolbar and status bar on page 3-8.

. A number of windows that display a variety of information as you work through
the process of debugging your executable image. For detat&beBebugger
desktop windows on page 3-14.

. A window-specific menu that is available for each window, as described in
Window-specific menus on page 3-25.

Figure 3-2 on page 3-8 shows the ARM Debugger with the Execution, Console, Globals
and Locals windows, in the process of debugging the sample DhiRye

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-7

ARM Debuggers for Windows and UNIX

i, ARM Debugger - C:\arm\dhry\ Debug\ dhry.axf - [O] %]

File Edit Search Miew Cx+ Execute Options Window Help

@ 0| glsd| B = [o] BB B3¢ 0] @ J\ARM /5= = EIE R NE =
" Locals !E[E i ARM - Executlng dhry_1.c !EI. =

[Tnt_1_Loc [0zDO0DOODOD

Int_2z Loc |0z00000000 gg REG Ehar . o Infex'

Int_3 Loc [0x0000alcO jumeraticn punm_Loc

54 Str_30 Str_1_Loc;
Ch_Index 0z0001145¢

a5 Str_ 30 Str 2 Log;
Enum_Loc Ident_1 -

86 REZ int Fun_Indez: _I
str_L Loc 87 REG int Humber_0f_R
=tr 2 Loc a6 in umber_Ut_ku
Fun_Index 0z0000a1c0 s % Tnitializat)

q +||ox00000000 i nitializations

. Globals !E[91 Witiext_Ptr Glob = (Rec_Pointer) mall
| TTEE— 92 Ptr_03lob = (REec_Pointer] malloc (s
| stdin 93

—stdout 94 Ptr_Glob->Ptr Comp

stderr 95 Ptr_Glob->Discr

Int_Gloh Dx00000000 -

96 Ptr_Glob-»variant.wvar_l.Enum_Comp
Ch_1 Glob 0x00000000

97 Ptr_Glob-»variant.var_Ll.Int_Comp
Ptr_Glob Dx00000000
ezt Ptr Clob |0z00000000 98 strepy (Ptr_Glob-»variant.var_l.35t

T 99 "DHRYSTONE PROGREAM, SOME S
BOO]‘—G]'Ob DXDDDDDDDD]_DD ctrerir (St 1 T A NMHDVSTOANE 'I:l'l:ll"ﬁl"‘v
Ch_2_Glob 0z00000000 || q | v
[-]Console Window
Program compiled without 'register' attribute —
Please give the number of runs through the benchmark:

q | »
|Executing |armulate [Default 4

Figure 3-2 A typical ARM Debugger desktop display

Menu bar, toolbar, mini toolbar and status bar

The menu bar is at the top of the ARM Debugger desktop. Click on a menu name to
display the pull down menu.

If you haveinstalled the ARM C++ compiler, a C++ menu appears between the View
and Execute menus that provides options relevant only to C++ program debugging .
C++ also adds its own mini toolbar. See ARM Debugger with C++ on page 3-62 for
more information.

Underneath the menu bar is the toolbar. Position the cursor over an icon and a brief
description is displayed. A processor-specific mini toolbar is also displayed. The
menus, the toolbar, and the mini toolbar are described in greater detail in the online help.

At the bottom of the desktop isthe status bar. This provides current statusinformation
or describes the currently selected user interface component.

3-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.2.2 Starting and closing the debugger

Start and close the ADW or ADU as follows.

Starting the ARM Debugger

Start the ARM Debugger for Windows (ADW) in any of the following ways:

. if you are running Windows 95 or Windows 98, click onARM Debugger for
Windows icon in the ARM SDT v2.50 Program folder

. if you are running Windows NT4, double click on thBM Debugger for
Windows icon in the ARM SDT v2.50 Program group or selgeirt —
Programs — ARM SDT v2.50 - ARM Debugger for Windows

. if you are working in the ARM Program Managetr, click the ARM Debugger
button or seledbebug project from theProject menu

. launch ADW from the DOS command-line, optionally with arguments.

Start the ARM Debugger for UNIX (ADU) in either of the following ways:

. from any directory type the full path and name of the debugger, for example,
/opt/arm adu

. change to the directory containing the debugger and type its name, for example,
./ adu

The possible arguments (which must be in lower case) for both ADW and ADU are:

- debug I mageNanme
Load/ rageNane for debugging.

-exec | nageNane
Load and runl mageNane.

-reset Reset the registry settings to defaults.
- nol ogo Do not display the splash screen on startup.
- nowar n Do not display the warning when starting remote debugging.

- nomai nbr eak
Do not set a breakpoint emi n() on loading image.

-script ScriptName

Obey theScr i pt Nane on startup. This is the equivalent of typitey
Scri pt Name as soon as the debugger starts up.

-synbol s Load only the symbols of the specified image. This is equivalent to
selectingLoad Symbols only...from the File menu.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-9

ARM Debuggers for Windows and UNIX

-li, -bi Start thedebugger in LIttle-endian or Blg-endian mode.
-ar mul Start the debugger using the ARMulator.

-adp -1inespeed baudrate [-port [s=serial port[,p=parallel port]]
| [e=et her net address]]

Start the debugger using Remote_A, if available in the current RDI
connection list.

Youcanuse- | i nespeed baudr at e only in conjunction with - adp, to
specify the baud rate of the connection.

You can use - por t only in conjunction with - adp, to specify the
connection to the device.

For example, to launch ADW from the command-line and load sort s. axf for
debugging, but without setting a breakpoint on mai n() , type:

adw -debug sorts. axf -nomai nbreak

To launch ADW (with arguments) from APM, select Project - Edit Variables — adw
and enter the arguments after adw in the Value box. Refer to Specifying command-line
arguments for your program on page 3-46 for more information on specifying
command-line options.

When you start the ARM Debugger, the windows you were using last time are again
displayed. These usually include the Console, Command, and Execution windows, and
you can load your executable image.

Closing the ARM Debugger

Select Exit from the File menu to close down the ARM Debugger.

3.2.3 Loading, reloading, and executing a program image

| &,

You must |oad a program image before you can execute it or step through it.

Loading an image
Follow these steps to load a program image:

1. Select Load Image from the File menu or click the Open File button. The Open
File dialog is displayed.

2. Select the filename of the executable image you want to debug.

3. Enter any command-line arguments expected by your image.

3-10

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

4. Click OK. The program is displayed in the Execution window as disassembled
code.

A breakpoint is automatically set at the entry point of theimage, usually thefirst
line of source after the mai n() function. The current execution marker, a green
bar indicating the current line, is located at the entry point of the program.

If you haverecently loaded your required image, your file appearsasarecently usedfile
on the File menu. If you load your image from the recently used filelist, the ARM
Debugger loads the image using the command-line arguments you specified in the
previous run.

Reloading an image

After you have executed an image you must reload it before you can execute it again.

To reload an executable image, select Reload Current image from the File menu or
click the Reload button on the toolbar.

Jees

Executing an image

To run your program in the ARM Debugger, select Go from the Execute menu or click
the Go button to execute the entire program. Execution continues until:

. a breakpoint halts the program at a specified point
. a watchpoint halts the program when a specified variable or register changes
. you stop the program by clicking ti8eop button.

Alternatively, selecBtep from theExecute menu or click thétep button to step
through the code a line at a time. Refe®tpping through an image on page 3-34 for
more information on stepping through code.

] |

While the program executes:
. the Console window is active, provided semihosting is in operation
. the program code is displayed in the Execution window.

To continue execution from the point where the program stoppedaieeStep.

— Note
If you want to execute your program again, you must reload it first.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-11

ARM Debuggers for Windows and UNIX

3.2.4 Examining and setting variables, registers, and memory

You can usethe ARM Debugger to display and modify the contents of the variablesand
registers used by your executableimage. You can also examine the contents of memory.

Variables

You can display and modify both local and global variables. Follow these steps to
display and modify avariable:

1

Display either the Locals or Globals window:

a Select View — Variables — Local or click the L ocals button on the toolbar
to display alist of local variables.

b. Select View - Variables - Glabal to display alist of global variables.

2. Doubleclick onthevalueyou want to changein theright pane of thewindow. The
Memory window is displayed, showing the area around your selected location.

3. Doubleclick on the value to change it.

4. Press Return when you have set the variable to the required value.

Registers

To display alist of registers for the current processor mode, click the Current
Register s button on the toolbar. Follow these steps to display and modify registers for

a selected processor mode:

1
2.

Select the Register s submenu from the View menu.

Select the required processor mode from the Register s submenu. The registers
are displayed in the appropriate Registers window.

Double click on the register you want to modify. The Memory window is
displayed, showing the area around your selected location.

Double click on the value to changeit.

Press Return when you have set the variable to the required value.

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Memory

Follow these steps to display the contents of a particular area of memory:

1

Select Memory from the View menu or click on the Memory button. The
Memory Address dialog is displayed.

Enter the address as a hexadecimal value (prefixed by 0x) or as adecimal value.

Click OK. The Memory window opens and displays the contents of memory
around the address you specified.

When you have opened the Memory window you can:

display other parts of the current 4KB area of memory by using the scrollbar
display more remote areas of memory by entering another address

right click anywhere in the window to display the Memory window menu,
allowing you to display the contents as words, half words, or bytes with ASCII
characters.

Follow these steps to enter another address:

1.

2.
3.

SeleciGoto from theSearch menu or seledBoto Address from the Memory
Window menu. The Goto Address dialog is displayed.

Enter an address as a hexadecimal value (prefixed)byr as a decimal value.

Click OK.

SeeSaving or changing an area of memory on page 3-44 for more information on
working with areas of memory.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-13

ARM Debuggers for Windows and UNIX

3.3 ARM Debugger desktop windows

The first time you run ADW or ADU, you see the:
. Execution window

. Console window

. Command window.

The following additional windows are available from ¥iew menu:
. Backtrace window

. Breakpoints window

. Debugger Internals window
. Disassembly window

. Expression window

. Function Names window

. Locals/Globals window

. Low Level Symbols window
. Memory window

. Registers window

. RDI Log window

. Search Paths window

. Source Files List window

. Source File window

. Watchpoints window.

Some windows become available only after you have loaded an image.

You may change the format of displayed windows, and the format of each window is
automatically saved for future use. Whatever arrangement of windows you have when
you quit the Debugger is displayed again the next time you start the Debugger.

The following sections describe the purpose of each window.

3-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

3.3.1 Main windows

ARM Debuggers for Windows and UNIX

This section describes the Execution, Console, and Command windows.

Execution window

The Execution window (Figure 3-3) displays the source code of the program that is

currently executing.

0z000080=4
0z000080e8
0xz000080ec
Proc_7

0z000080f4
0z000080£8
0z000080fe
0z00008100
0z00008104
Proc_8

0z0000810c
0z00008110
0z00008114
0z00008118
0z0000811e
0z00008120
0z00008124
0z00008128
0z0000812¢
0z00008130
0z00008134
0z00008138
0z0000813c
0z00008140

4

& ARM - Execution Window

julsits r0,#0 -

ldmia rl13l,{r4,r5,pc}

ded 0z00011430 0... —

julsits r3,r0

add rlz,r3,#2

add ri,rl,rl2

str r0,[r2,#0]

julsits r0,#0

julsits pe,rld

stmdh rl13l,{r4,r5,r14}

julsits rl4,r0

add r4,r2,#5

str ri,[rl4,r4,1sl #2]

ldr ri,[rl4,r4,1s1l #2]

add rlz,rl4,r4,1sl #2

str ri,[rl2,#4]

add ri,rl4,r4,1s1 #2

str r4,[r0,#0x78]

julsits r5,r4

add ri,r4,#1

cmp r0,r5

byge 0z8148 : (Proc_8 + O:

b 02815 ; (Proc_8 + (i
| o

Use the Execution window to:

Figure 3-3 Execution window

. execute the entire program or step through the program line by line
. change the display mode to show disassembled machine code interleaved with

high level C or C++ source code

. display another area of the code by address

. set, edit, or remove breakpoints.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved.

3-15

ARM Debuggers for Windows and UNIX

Console window

The Console window (Figure 3-4) alows you to interact with the executing program.
Anything printed by the program, for example a prompt for user input, is displayed in
thiswindow and any input required by the program must be entered here.

Information remains in the window until you select Clear from the Console window
menu. You can al so save the contents of the Console window to disk, by selecting Save
from the Console window menu.

[=] Console Window !IEI!E
Frogram complled without 'register' attribute -

Flease give the number of runs through the benchmark: 10000

Execution starts, 10000 runs through Dhrystone
Execution ends

Final walues of the variables used in the benchmark:

Int_Glob:

should hbe:
Bool_Gloh:

should hbe:
Ch_1_Glohb:

should hbe:
Ch_2_Glohb:

should hbe:
lArr_ 1 Glob[8]:

should hbe:
Brr_2_Gloh[B][7]: 10010

should he: Mumber_0Of_ FEuns + 10
Ptr_Gloh-: hd
1] | 4

i I el = B e

Figure 3-4 Console window

Initially the Console window displaysthe startup messages of your target processor, for
example the ARMulator or ARM Development board.

Note

When input is required from the debugger keyboard by your executable image, most
ARM Debugger functions are disabled until the required information has been entered.

3-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Command window

Use the Command window (Figure 3-5) to enter armsd instructions when you are
debugging an image.

[=] Command Window !IEI!E
Debug: help -
help [<keyword:]

Display help information on one of the following commands:
Registers Fpregisters Coproo CRegisters
CWrite Step Istep Examine

Ouit Ohey Go RETurn
Inbreak Watch UMWatch Print

oLt IN WHere Bicktrace
SYmbols LSym LEt Arguments
Help Type Call WHIle

LOad LOG RELoad REAdsyms
Fltfile GEtfile LOCalvar COMment
LOADConfiyg SElectconfiyg LISTConfiyg LOADAgent
FROFOFE PROFClear PROFWrite CCin
PROCessor SYS

HELP * giwves helps on all available commands. To print the b
command to record the helwp output into a filel& wrint the f£iT
[vl

Figure 3-5 Command window

See Using command-line debugger instructions on page 3-46 for further details about
the use of the Command window. Type hel p at the Debug prompt for information on
the avail able commands or refer to Chapter 7 ARM Symbolic Debugger in the ARM
Software Development Toolkit Reference Guide.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-17

ARM Debuggers for Windows and UNIX

3.3.2 Optional windows

The windows described in this section are all available by selecting appropriate options
in the View menu.

Backtrace window

The Backtrace window displays current backtraceinformation about your program. Use
the Backtrace window to:

. show disassembled code for the current procedure
. show a list of local variables for the current procedure
. set or remove breakpoints.

Breakpoints window

The Breakpoints window displays a list of all breakpoints set in your image. The actual
breakpoint is displayed in the right-hand pane. If the breakpoint is on a line of code, the
relevant source file is shown in the left-hand pane.

Use the Breakpoints window to:
. show source/disassembled code
. set, edit, or remove breakpoints.

Debugger Internals window

The Debugger Internals window displays some of the internal variables used by the
ARM Debugger. You can use this window to examine the values of the following
variables, and to change the values of those not marked read-only:

$cl ock Contains the number of microseconds elapsed since the application
program began execution. This value is based on the ARMulator clock
speed setting, and is unavailable if that speed is set to 0.00 (see also
ARMulator configuration on page 3-57). This variable is read-only.

$cmdl i ne Contains the argument string for the image being debugged.

$echo Non-zero if commands frombeyed files should be echoed (initially set
to 0).

Obeyed files are text files that contain lists of armsd commands. Refer to
the description of thebey command in Chapter ARM Symbolic

Debugger in theARM Software Devel opment Tool kit Reference Guide for

more information.

3-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

$exanmi ne_l i nes

Containsthe default number of linesfor theexanmi ne command (initialy
et to 8).

$int_format
Contains the default format for displaying integer values.

$ui nt _f or mat
Contains the default format for displaying unsigned integer values.

$f | oat _f or mat
Contains the default format for displaying floating-point values.

$sbyt e f or mat
Contains the default format for displaying signed byte values.

$ubyt e_f or mat
Contains the default format for displaying unsigned byte values.

$string_fornmat
Contains the default format for displaying string values.

$conpl ex_f or mat
Contains the default format for displaying complex values.

$f presul t Containsthe floating-point value returned by last called function (junk if
none, or if afloating-point value was not returned). $f pr esul t returns
aresult only if the image has been build for hardware floating-point. I
theimageisbuilt for softwarefloating-point, it returns zero. Thisvariable
isread-only.

$i nput base Contains the base for input of integer constants (initially set to 10).

$list _lines

Containsthe default number of linesfor thel i st command (initially set
to 16).

$pr_linelength

Contains the default number of characters displayed on asingle line
(initially set to 72).

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-19

ARM Debuggers for Windows and UNIX

$rdi _|l og SetsRDI logging (see Table 3-1).

Table 3-1 RDI logging

Bitl Bit0 Meaning

0 0 Off

0 1 RDI on

1 0 Device Driver Logging on

1 1 RDI and Device Logging on

You can set these bits of the $r di _| og internal variable from the
Debugger Internalswindow. For more information see RDI Log window
on page 3-24 and Remote debug information on page 3-41.

$resul t Contains the integer result returned by last called function (junk if none,
or if aninteger result was not returned). Thisvariableis read-only.

$sour cedi r Contains the directory name of the directory containing source code for
the program being debugged.

$statistics
Contains any statistics that the ARMulator has been keeping. You can
examine the contents of thisvariable by clickingonst ati sti cs inthe
Debugger Internals window. This variable is read-only.

$statistics_inc
Not availableinthe debugger internal swindow. Thisvariable can be used
in the command window.

$statistics_inc_w
Similarto $st ati sti cs, but outputs the difference between the current
statisticsand the point at which you asked for the$st ati stics_i nc_w
window. To createa$st at i sti cs_i nc_wwindow, select thisitem,
right click to display the pop-up menu, and select I ndirect through item.
Thisvariableis read-only and is not available in the command window.

$t op_of _nmenory
If you are using an EmbeddedI CE interface, set this variable to the total
amount of memory normally on your development board. If you add
more memory to the board, change thisvariableto reflect the new amount
of memory.

3-20

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

$type_lines
Contains the default number of linesfor thet ype command (initially set
to 10).

$vect or _catch

Appliesto ARMulator and Embedded| CE only. It setsthe exceptionsthat
result in control passing back to the debugger. The default valueis
9RUs PDAI f E. An uppercase |etter indicates an exception is intercepted:

reset

undefined instruction

SwWi

prefetch abort

data abort

address

normal interrupt request (IRQ)
fast interrupt request (FIQ)
unused

mmT™ — >» O 7T wCXD

Disassembly window

The Disassembly window displays disassembled code interpreted from aspecified area
of memory. Memory addresses are listed in the left-hand pane and disassembled code
is displayed in the right-hand pane. You can view ARM code, Thumb code, or both.

Use the Disassembly window to:

. go to another area of memory

. change the disassembly mode to ARM, Thumb, or Mixed
. set, edit, or remove breakpoints.

Note
More than one Disassembly window can be active at a time.

For details of displaying disassembled code Bisplaying disassembled and
interleaved code on page 3-40.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-21

ARM Debuggers for Windows and UNIX

Expression window
The Expression window displays the values of selected variables and/or registers.

Use the Expression window to:

. change the format of selected items, or all items

. edit or delete expressions

. display the section of memory pointed to by the contents of a variable.

For more information on displaying variable information, Aéeking with variables
on page 3-37.

Function Names window

The Function Names window lists the functions that are part of your program.

Use the Function Names window to:
. display a selected function as source code
. set, edit, or remove a breakpoint on a function.

Locals/Globals window

The Locals window (Figure 3-6) displays a list of variables currently in scope. The
Globals window displays a list of global variables. The variable name is displayed in
the left-hand pane, the value is displayed in the right-hand pane.

locals M|
[Int_1Loc]

Int_2_Loc 0z00000ooo
Int_3_Loo Oz0000a 10
Ch_Index O0z0001145¢
Enum_Loc Ident_1

Str_1 Loc e

Str_ 2 Loc

Run_Index |0x0000a1cO
Fumber_ Of_ Eu [0x400000k0

KT —

Figure 3-6 Locals window

Use the Locals/Globals window to:
. change the content of a variable (double click on it)
. display the section of memory pointed to by a variable

. change the format of the values displayed by line, or for the entire window (if the
format of a line is changed, it is no longer affected by changing the format of the
window)

3-22

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

. set, edit, or remove a watchpoint on a variable

. double click on an item to expand a structure (the details are displayed in anothel
variable window).

As you step through the program, the variable values are updated.

For more information on displaying variable information, \&eking with variables
on page 3-37.

Low Level Symbols window

The Low Level Symbols window displays a list of all the low level symbols in your
program.

Use the Low Level Symbols window to:
. display the memory pointed to by the selected symbol
. display the source/disassembled code pointed to by the selected symbol

. set, edit, or remove a breakpoint on the line of code pointed to by the selected
symbol.

You can display the low level symbols in either name or address order. Right click in
the window to display the Low Level Symbols window menu and s&tettSymbols
by... to toggle between the two settings.

Memory window

The Memory window displaysthe contents of memory at aspecified address. Addresses
are listed in the |left-hand pane, and the memory content is displayed in the right-hand
pane.

Use the Memory window to:

. display other areas of memory by scrolling or specifying an address
. set, edit, or remove a watchpoint

. change the contents of memory (double click on an address).

You can have multiple Memory windows open at any time.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-23

ARM Debuggers for Windows and UNIX

Registers window

The Registers window displays the registers corresponding to the mode named at the
top of the window, with the contents displayed in the right-hand pane. You can double
click on an item to modify the valuein the register.

Use the Registers window to:

. display the contents of the register memory

. display the memory pointed to by the selected register
. edit the contents of a register

. set, edit, or remove a watchpoint on a register.

Note

Multiple register mode windows can be open at any one time, but you cannot open more
than one window for each processor mode. For example, you can open no more than
one FIQ register window at a time.

RDI Log window

The RDI Log window displays the low level communication messages between the
ARM Debugger and the target processor.

Note

This facility is not normally enabled. It must be specifically enabled when the RDI is
compiled. In addition, the debugger internal varighléi _| og must be non-zero.

For more information on RDI, sé&emote debug information on page 3-41.

Search Paths window

The Search Paths window displays the search paths of the image currently being
debugged. You can remove a search path from this window using the Delete key.
Source Files List window

The Source Files List window displays a list of all source files that are part of the loaded
image.

Use the Source Files List window to select a source file that is displayed in its own
Source File window.

3-24

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Source File window

The Source File window displays the contents of the source file named at the top of the
window. Line numbers are displayed in the |eft-hand pane, code in the right-hand pane.

Use the Source File window to:

. search for a line of code by line number

. set, edit, or remove breakpoints on a line of code
. toggle the interleaving of source and disassembly.

For more information on displaying source files, ¥éeking with sourcefiles on page
3-36.

Watchpoints window

The Watchpoints window displays a list of all watchpoints.

Use the Watchpoints window to:
. delete a watchpoint
. edit a watchpoint.

Window-specific menus

Each of the ARM Debugger desktop windows displays a window-specific menu when
you click the secondary mouse button over the window. The secondary button is
typically the right mouse button. Item-specific options require that you position the
cursor over an item in the window before they are activated.

Each of the window-specific menus is described in the online help for that window.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-25

ARM Debuggers for Windows and UNIX

3.4 Breakpoints, watchpoints, and stepping
You use breakpoints and watchpoints stop program execution when a selected line of
codeisabout to be executed, or when a specified condition occurs. You can also execute
your program step by step. This section contains the following subsections:
. Smple breakpoints on page 3-26
. Smple watchpoints on page 3-29
. Complex breakpoints on page 3-30
. Complex watchpoints on page 3-32
. Backtrace on page 3-33
. Sepping through an image on page 3-34.
34.1 Simple breakpoints
A breakpointis a point in the code where your program is halted by the ARM Debugger.
When you set a breakpoint it is marked in red in the left pane of the breakpoints window.
There are two types of breakpoint:
. a simple breakpoint that stops at a particular point in your code
. a complex breakpoint that:
. stops when the program has passed the specified point a number of times
. stops at the specified point only when an expression is true.
You can set a breakpoint at a point in the source, or in the disassembled code if it is
currently being displayed. To display the disassembled code, either:
. selectToggle I nterleaving from theOptions menu to display interleaved source
and assembly language in the Execution window
. selectDisassembly... from theView menu to display the Disassembly window.
You can also set breakpoints on individual statements on a line, if that line contains
more than one statement.
You can set, edit, or delete breakpoints in the following windows:
. Execution
. Disassembly
. Source File
. Backtrace
. Breakpoints
. Function Names
. Low Level Symbols
. Class View (if C++ is installed).
3-26 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Setting a simple breakpoint

There are two methods you can use to set a simple breakpoint:

Method 1

1. Double click on the line where you want to set the breakpoint.

2. Click the OK button in the dialog box that appears.

Method 2

1. Position the cursor in the line where you want to set the breakpoint.

2. Setthe breakpoint in any of the following ways:
. selectToggle Breakpoint from theExecute menu
. click the Toggle breakpoint button
. press the F9 key.

A new breakpoint is displayed as a red marker in the left pane of the Execution window,
the Disassembly window, or the Source File window.

In a line with several statements you can set a breakpoint on an individual statement, &
demonstrated in the following example:

int main()

hel lo(); world();

return O;

}

If you position the cursor on the wordr | d and click theloggle breakpoint button,
hel | o() is executed, and execution halts befasel d() is executed.

To see all the breakpoints set in your executable image Bebsttpoints from the
View menu.

To set a simple breakpoint on a function:

1. Display a list of function names in the Function Names window by selecting
Function Names from theView menu.

2. Selecfroggle Breakpoint from the Function Names window menu or click the
Toggle breakpoint button.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-27

ARM Debuggers for Windows and UNIX

The breakpoint is set at the first statement of the function. This method al so works for
theLow Level Symbolswindow, but the breakpoint isset to thefirst machineinstruction
of the function, that is, at the beginning of its entry sequence.

Removing a simple breakpoint

There are several methods of removing a simple breakpoint:

Method 1

1. Double click on aline containing a breakpoint (highlighted in red) in the
Execution window.

2. Click the Delete button in the dialog box that appears.
Method 2

1. Singleclick onalinecontaining abreakpoint (highlighted in red) in the Execution
window.

2. Right click ontheline.
3. Select Toggle breakpoint from the pop-up menu that is displayed.
Method 3

1. Singleclick onaline containing abreakpoint (highlightedin red) inthe Execution
window.

2. Click the Toggle breakpoint button in the toolbar, or pressthe F9 key.
Method 4

1. Select Breakpointsfrom the View menu to display alist of breakpointsin the
Breakpoint window.

2. Select the breakpoint you want to remove.
3. Click the Toggle breakpoint button or press the Delete key.
Method 5

1. Select Delete All Breakpoints from the Execute menu to delete all breakpoints
that are set in the currently selected image. Delete All Breakpointsis also
available in relevant window menus.

3-28

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.4.2 Simple watchpoints

[=

Inits simplest form, awatchpoint halts a program when a specified register or variable
is changed. The watchpoint halts the program at the next statement or machine
instruction after the one that triggered the watchpoint.

There are two types of watchpoints:

. a simple watchpoint that stops when a specified variable changes

. a complex watchpoint that:
. stops when the variable has changed a specified number of times
. stops when the variable is set to a specified value.

— Note

If you set a watchpoint on a local variable, you lose the watchpoint as soon as you leav
the function that uses the local variable.

Setting a simple watchpoint
Follow these steps to set a simple watchpoint:
1. Select the variable, area of memory, or register you want to watch.

2. Set the watchpoint in any of the following ways:
. selectToggle Watchpoint from theExecute menu
. selectToggle Watchpoint from the window-specific menu
. click theWatchpoint button.

SelectWatchpoints from theView menu to see all the watchpoints set in your
executable image.

Removing a simple watchpoint

Remove a simple watchpoint by using either of the following methods:
Method 1

1. SelecWatchpoints from theView menu to display a list of watchpoints in the
Watchpoint window.

2. Select the watchpoint you want to remove.

3. Remove the selected watchpoint in either of the following ways:
. click the Toggle watchpoint button on the toolbar
. press the Delete key.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-29

ARM Debuggers for Windows and UNIX

Method 2

1. Position the cursor on avariable or register containing a watchpoint and right
click.

2. Select Toggle Watchpoint from the pop-up menu.

Note

If you set awatchpoint on alocal variable, you lose the watchpoint as soon asyou leave
the function that uses the local variable.

3.4.3 Complex breakpoints

When you set a complex breakpoint, you specify additional conditionsin the form of
expressions entered in the Set or Edit Breakpoint dialog (Figure 3-7).

Set or Edit Breakpoint |]
File Breakpoint Size
IExecution “Wind ow 1EBit
Location C 32Bit
IDxDDBDm & Automatic

IV Setas Default
Expression Count
I 1 out of |1
Cancel | Delete |

Figure 3-7 Set or Edit Breakpoint dialog
This dialog contains the following fields:
File The source file that contains the breakpoint. Thisfield is read-only.

L ocation The position of the breakpoint within the source file. This positionisa
hexadecimal address for assembler code. For C or C++ code, it is shown
as afunction name, followed by a line number, and if the line contains
multiple statements, a column position. Thisfield is read-only.

Expression An expression that must betruefor the programto halt, in addition to any
other breakpoint conditions. Use C-like operators such as:
i <10
i 1=
i 1= +k

3-30 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Count The program halts when al the breakpoint conditions apply for the nth

time.

Breakpoint Size

You can set breakpoints to be 32-bit (ARM) or 16-bit (Thumb) size, or
allow the debugger to make the appropriate setting. A checkbox allowsto
make your selection the default setting.

Setting or editing a complex breakpoint

You can set complex breakpoints on:

a line of code
a function
a low level symbol.

Follow these steps to set or edit a complex breakpoint on a line of code:

1.

Double click on the line where you want to set a breakpoint, or on an existing
breakpoint position. The Set or Edit Breakpoint dialog is displayed.

Enter or alter the details of the breakpoint.

Click OK. The breakpoint is displayed as a red marker in the left-hand pane of
the Execution, Source File, or Disassembly window. If the line in which the
breakpoint is set contains several functions, the breakpoint is set on the function
that you selected in step 1.

Follow these steps to set or edit a complex breakpoint on a function:

1.
2.
3.

4.

Display a list of function names in the Function Names window.
SelectSet or Edit Breakpoint from the Function Names window menu.

The Set or Edit Breakpoint dialog is displayed. Complete or alter the details of the
breakpoint.

Click OK.

Follow these steps to set or edit a breakpoint on a low-level symbol:

1.

2
3.
4

Display the Low Level Symbols window.
SelectSet or Edit Breakpoint from the window menu.
Complete or alter the details of the breakpoint.

Click OK.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-31

ARM Debuggers for Windows and UNIX

3.4.4

Complex watchpoints

When you set a complex watchpoint, you specify additional conditions in the form of
expressions entered in the Set or Edit Watchpoint dialog.

Set or Edit Watchpoint E

ltem
I_Stdin

Cancel
I Delete

Exprassion Count

Target Yalue

I 1 outof |1

Figure 3-8 Set or Edit Watchpoint dialog

This dialog contains the following fields:

[tem

The variable or register to be watched.

Target Value The value of the variable or register that isto halt the program. If this

Expression

Count

value is not specified, any change in the value of the item halts the
program, dependent on the other watchpoint conditions.

Any expression that must be true for the program to halt, in addition to
any other watchpoint conditions. Aswith breakpoints, use C-like
operators such as:

i <10

N

i 1= +k

The program halts when @l the watchpoint conditions apply for the nth
time.

Setting and editing a complex watchpoint

Follow these steps to set a complex watchpoint:

1. Select the variable or register to watch.

2. Select Set or Edit Watchpoint from the Execute menu. The Set or Edit
Watchpoint dialog is displayed.

3. Specify the details of the watchpoint.

4. Click OK.

3-32

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

3.4.5

Backtrace

ARM Debuggers for Windows and UNIX

Follow these steps to edit a complex watchpoint:

1. Select Watchpoints from the View menu to display current watchpoints.
2 Double click the watchpoaint to edit it.

3. Modify the details as required.

4 Click OK.

When your program has halted, typically at a breakpoint or watchpoint, backtrace
information is displayed in the Backtrace window to give you information about the
procedures that are currently active.

The following example shows the backtrace information for a program compiled with
debug information and linked with the C library:

#DHRY _2: Proc_6 line 42

#DHRY 1:Proc_1 line 315

#DHRY 1:main line 170

PC = 0x0000eb38 (_nmain + 0x5e0)
PC = 0x0000ae60 (__entry + 0x34)

This backtrace provides you with the following information:

Lines1-3 Thefirst line indicates the function that is currently executing. The
second line indicates the source code line from which this function was
caled, and the third line indicates the call to the second function.

Lines4-5 Line4showstheposition of thecall tothe Clibrary inthe main procedure
of your program, and thefinal line showsthe entry point in your program
made by the call to the C library.

Note

A simple assembly language program assembled without debug information and not
linked to a C library would show only the pc values.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-33

ARM Debuggers for Windows and UNIX

3.4.6 Stepping through an image
To follow the execution of a program more closely than breakpoints or watchpoints
allow, you can step through the code in the following ways:
Step to the next line of code

Step to the the next line of code in either of the following ways:

= . selectStep from theExecute menu
{} . click the Step button.
—
The program moves to the next line of code, which is highlighted in the Execution
window. Function calls are treated as one statement.
If only C code is displayedtep moves to the next line of C. If disassembled code is
shown (possibly interleaved with C sourc@pp moves to the next line of disassembled
code.
Step in to a function call
Step in to a function call in either of the following ways:
- . selectStep In from theExecute menu
H - click the Step In button.
—
The program moves to the next line of code. If the code is in a called function, the
function source appears in the Execution window, with the current line highlighted.
Step out of a function
Step out of a function in either of the following ways:
5 . selectStep Out from theExecute menu
i} . click the Step Out button.
—

The program completes execution of the function and halts at the line immediately
following the function call.

Run execution to the cursor

Follow these steps to execute your program to a specific line in the source code:

1. Position the cursor in the line where execution should stop.

+{} 2. SelecRun to Cur sor from theExecute menu or click th&kun to Cursor button.
e

This executes the code between the current execution and the position of the cursor.

3-34 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Note
Be sure that the execution path includes the statement selected with the cursor.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-35

ARM Debuggers for Windows and UNIX

3.5 Debugger further details
Various debugger windows are described in ARM Debugger desktop windows on page
3-14. This section gives more details of some of those windows, and describes other
information that is also available to you during a debugging session.
The topics covered in this section are:
. Working with sourcefiles on page 3-36
. Working with variables on page 3-37
. Displaying disassembled and interleaved code on page 3-40
. Remote debug information on page 3-41
. Using regular expressions on page 3-42
. High level and low level symbols on page 3-43
. Profiling on page 3-43
. Saving or changing an area of memory on page 3-44
. Foecifying command-line arguments for your program on page 3-46
. Using command-line debugger instructions on page 3-46
. Changing the data width for reads and writes on page 3-47
. Flash download on page 3-48.
351 Working with source files
The debuggers provide a number of options that enable you to:
. view the paths that lead to the source files for your program
. list the names of your source files
. examine the contents of specific source files.
The following sections describe these options in detail.
Search paths
To view the source for your program image during the debugging session, you must
specify the location of the files. A search path points to a directory or set of directories
that are used to locate files whose location is not referenced absolutely.
If you use the ARM command-line tools to build your project, you may need to edit the
search paths for your image manually, depending on the options you chose when you
built it.
If you move the source files after building an image, use the Search Paths window to
change the search paths set up in the ARM DebuggeSéarsh paths on page 3-36).
3-36 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

To display source file search paths select Search Paths from the View menu. The
current search paths are displayed in the Search Paths window.

Follow these steps to add a source file search path:

1. Select Add a Search Path from the Optionsmenu. The Browsefor Folder dialog
is displayed.

2. Browsefor the directory you want to add and highlight it.

3. Click OK.

Follow these steps to delete a source file search path:

1. Select Search Pathsfrom the View menu. The Search Pathswindow isdisplayed.
2. Select the path to delete.

3. Pressthe Delete key.

Listing source files
Follow these steps to examine the source files of the current program:

1. Display thelist of sourcefilesby selecting Sour ce Filesfromthe View menu. The
Source Files List window is displayed.

2. Select asourcefileto examine by double clicking on itsname. Thefileis opened
in its own Source File window.

Note
You can have more than one source file open at atime.

3.5.2 Working with variables

To display alist of local or global variables, select the appropriate item from the View
menu. A Local §Global swindow isdisplayed. You can a so display the value of asingle
variable, or you can display additional variable information from the Locals/Globals
window.

Follow these steps to display the value of asingle variable:
1. Select View - Variables - Expression.
2. Enter the name of the variable in the View Expression dialog.

3. Click OK. Thevariable and its value are displayed in the Expression window.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-37

ARM Debuggers for Windows and UNIX

Alternatively:

1. Highlight the name of the variable.

.@ 2. Select View - Variables - Immediate Evaluation, or click the Evaluate
B Expression button. The value of the variable is displayed in a message box and
in the Command window.

Note
If you select alocal variable that is not in the current context, an error messageis
displayed.

Changing display formats

If the currently active window is the Locals, Globals, Expressions, or Debugger
Internals window, you can change the format of avariable.

Follow these steps to change the format of avariable:

1. Rightclick onthevariable and select the Change line for mat from the Locals or
Globals window menu. The Display Format dialog is displayed.

2. Enter thedisplay format. Use the same syntax asapri nt f () format stringin C.
Table 3-2 lists the valid format descriptors.

3. Click OK.
Table 3-2 Display formats
Type Format Description
i nt Only use thisif the expression being printed yields an integer:
%l Signed decimal integer (default for integers)
% Unsigned integer
U Hexadecimal (lowercase | etters)
char Only usethisif the expression being printed yields a char:
% Character
char* % Pointer to character. Only use this for expressions that
yield a pointer to anull terminated string.
voi d* %p Pointer (same as % 8x), for example, 00018abc. This

is safe with any kind of pointer.

3-38 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Table 3-2 Display formats (Continued)

fl oat Only use this for floating-point results:
% Exponent notation, for example, 9. 999999e+00
o% Fixed-point notation, for example, 9. 999999
% General floating-point notation, for example, 1. 1,
1. 2e+06
—— Note

If you change asingle line, that line is not affected by global changes.

Leave the Display Format dialog empty and click OK to restore the default display
format. Use this method to revert aline format change to the global format.

Theinitial display format of avariabledeclared aschar [] = isspecia. Thewholestring
is displayed, whereas normally arrays are displayed as ellipses (...). If the format is
changed it reverts to the standard array representation.

Variable properties

If you have a list of variables displayed in a Locals/Globals window, you can display
additional information on a variable by selecti?rgperties from the window-specific
menu (see Figure 3-9). To display the window-specific menu, right click on an item.
The information is displayed in a dialog.

‘wariahle Properties

General |

Yariahle narme: Ch_1_Glok
Twpe: Linsigned ste (character)
Yalue: 000000000

Figure 3-9 Variable Properties dialog

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-39

ARM Debuggers for Windows and UNIX

Indirection

Select Indirect through item from the Variables menu to display other areas of
memory.

If you select avariable of i nt eger type, the valueis converted to a pointer. Sign
extension is used if applicable, and the memory at that location is displayed. If you
select apointer variable, the memory at the location pointed to is displayed. You cannot
select avoi d pointer for indirection.

3.5.3 Displaying disassembled and interleaved code

|

You can display disassembled code in the Execution window or in the Disassembly
window. Select Disassembly from the View menu to display the Disassembly window.

You can a'so choose the type of disassembled code to display by selecting the
Disassembly mode submenu from the Optionsmenu. ARM code, Thumb code, or both
can be displayed, depending on your image.

To display interleaved C or C++ and assembly language code:

1. Select Togglelnterleaving from the Options menu to display interleaved source
and assembly language in the Execution window. Disassembled codeis displayed
in grey. The C or C++ codeis displayed in black.

Follow these steps to display an area of memory as disassembled code:

1. Select Disassembly from the View menu, or click the Display Disassembly
button. The Disassembly Address dialog is displayed.

2. Enter an address.

3. Click OK. The Disassembly window displaysthe assembler instructions derived
from the code held in the specified area of memory. Use the scroll barsto display
the content of another memory area, or:

a Select Goto from the Search menu.
b. Enter an address.
C. Click OK.

3-40

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Specifying a disassembly mode

The ARM debugger tries to display disassembled code as ARM code or Thumb code,
as appropriate. Sometimes, however, the type of code required cannot be determined.
This can happen, for example, if you have copied the contents of a disk file into
memory.

When you display disassembled code in the Execution window you can choose to
display ARM code, Thumb code, or both. To specify the type of code displayed, select
Disassembly mode from the Options menu.

3.54 Remote debug information

The RDI Log window displays the low level communication messages between the
debugger and the target processor.

Thisfacility is not normally enabled. It must be specially turned on when the RDI is
compiled.

To display remote debug information (RDI) select RDI Protocol L og from the View
menu. The RDI Log window is displayed.

Usethe RDI Log Level dialog, obtained by selecting Set RDI Log L evel from the
Options menu, to select the information to be shown in the RDI Log window:

Bit 0 RDI level logging on/off
Bit 1 Device driver logging on/off
—— Warning

The RDI log level isused internally within ARM to assist with debugging. This level
should be changed only if you have been requested to do so by ARM.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-41

ARM Debuggers for Windows and UNIX

3.55 Using regular expressions

Regular expressions are the means by which you specify and match strings. A regular

expression is either:

. a single extended ASCII character (other than the special characters described

below)

. a regular expression modified by one of the special characters.

You can include low level symbols or high level symbols in a regular expression (see

High level and low level symbols on page 3-43 for more information.)

Pattern matching is done following the UNiXgexp(5) format, but without the

special symbols, ands.

The following special characters modify the meaning of the previous regular

expression, and work only if such regular expression is given:

* Zero or more of the preceding regular expressions. For example,
would matchB, AB, andAAB.

? Zero or one of the preceding regular expression. For exaagis,
matchesAB andACB but notACCB.

+ One or more of the preceding regular expression. For exangiB,
matchesACB andACCB, but notAB.

The following special characters are regular expressions in themselves:

\ Precedes any special character that you want to include literally in an
expression to form a single regular expression. For exakniplaatches
a single asterisk § and\\ matches a single backslash.(The regular
expression x is equivalent td x as the characteris not a special
character.

) Allows grouping of characters. For examplep2) * matches
202202202 (as well as nothing at all), agdC?B) + looks for sequences
of AB or ACB, such a®\BACBAB.

Exactly one character. This is different frann that the period. () is a
regular expression in itself, s& matches all, while* is invalid. Note
that. doesnot match the end-of-line character.

[] A set of characters, any one of which can appear in the search match. For
example, the expressiofi 23] would match strings2 andr 3. The
expression a- z] would match all characters betweeandz.

3-42 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.5.6 High level and low level symbols

3.5.7 Profiling

A highlevel symbol for aprocedure refersto the address of the first instruction that has
been generated within the procedure, and is denoted by the function name shown in the
Function Names window.

A low level symbol for a procedure refers to the address that is the target for a branch
instruction when execution of the procedure is required.

Thelow level and high level symbols can refer to the same address. Any code between
the addressesreferred to by thelow level and high level symbolsgenerally concernsthe
stack backtrace structure in procedures that conform to the appropriate variants of the
ARM Procedure Call Standard (APCS), or argument listsin other procedures. You can
display alist of the low level symbolsin your program in the Low Level Symbols
window.

In aregular expression, indicate high level and low level symbols as follows:
. precede the symbol witto indicate a low level symbol
. precede the symbol withto indicate a high level symbol.

Profiling involves sampling the pc at specific time intervals. This information is used to

build up a picture of the percentage of time spent in each procedure. Using the armprc
command-line program on the data generated by either armsd or the ARM Debugger,
you see where effort can be most effectively spent to make the program more efficien

— Note

Profiling is supported by ARMulator, but not by the EmbeddedICE interface or by
Multi-ICE. Profiling is also supported by Angel, except when used with StrongARM.

To collect profiling information:
Load your image file.
SeleciOptions - Profiling — Toggle Profiling.
Execute your program.

1

2

3

4. When the image terminates, sel@gtions - Profiling - Writeto File.

5 A Save dialog appears. Enter a file name and a directory as necessary.
6

Click Save.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-43

ARM Debuggers for Windows and UNIX

Note

You cannot display profiling information from within the ARM Debugger. You must
capture the data using the Profiling functions on the Options menu, then use the
armprof command-line tool.

After you have started program execution you cannot turn profile collection on.
However, if you want to collect information on only acertain part of the execution, you
can initiate collection before executing the program, clear the information collected up
to a certain point, such as a breakpoint, by selecting Options - Profiling -

Clear Collected, then execute the remainder of your program.

See Chapter 11 Benchmarking, Performance Analysis, and Profiling for more
information on profiling.
3.5.8 Saving or changing an area of memory

You can either:
. copy an area of memory to a disk file
. copy the contents of a disk file to an area of memory.

Follow these steps to save an area of memory to a file on disk:

1. SelectPut File from theFile menu to display the Put file dialog (Figure 3-10).

Put file [21>]
Save in [Debug =1 ck| [=
[o#] clhiry. 2t
|=] dhry_1.0
] clhry_2.0
File name Save |
Sawve as vpe: IAII Files (**) j Cancel

Help

Erom address I

To |

Figure 3-10 Put File dialog
2. Enter the name of the file to write to.
3. Enter a memory area in theom address andTo fields.

4, Click Save.

3-44 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

5. Click OK. The output is saved as a binary file.
Follow these steps to copy afile on disk to memory:

1. Select Get File from the File menu to display the Get file dialog (Figure 3-11).

Get file [2]x]
Loak in |3 Debug =
(=] chry. cud
] chhry_1.0
] chhry_2.0
File name: |&I
Files oftype: A0l Files () = Cancal
Help
Address [e<i000

Figure 3-11 Get File dialog
2. Select the file you want to load into memory.
3. Enter amemory address where the file should be loaded.
4. Click Open.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-45

ARM Debuggers for Windows and UNIX

3.5.9

3.5.10

Specifying command-line arguments for your program

Follow these steps to specify the command-line arguments for your program:

1. Select Set Command Line Args from the Options menu. The Command Line
Arguments dialog (Figure 3-12) is displayed.

Command Line Arguments [x]

Flease enter command line arguments for the
debuggee:

Ok I Cancel |

Figure 3-12 Command Line Arguments dialog
2. Enter the command-line arguments for your program.
3. Click OK.

Refer to Sarting and closing the debugger on page 3-9 for alist of valid command-line
options.

Note

You can a'so specify command-line arguments when you load your program in the
Open File dialog or by changing the Debugger internal variable, $cndl i ne.

Using command-line debugger instructions

If you are familiar with the ARM symbolic debugger (armsd) you may prefer to use
almost the same set of commands from the Command window.

The armsd commands Pause and Qui t are unavailable in the Command window.
Follow these steps to use al other armsd commands from within ADW or ADU:

1. Select Command from the View menu to open the Command window.
The Command window displays a Debug: command-line.
2. Enter ARM command-line debug commands at this prompt. The syntax used is

the same as that used for armsd. Type hel p for information on the available
commands.

Refer to Chapter 4 Command-Line Devel opment, and Chapter 7 ARM Symbolic
Debugger in the ARM Software Development Tool kit Reference Guide, for more
information on armsd.

3-46

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.5.11 Changing the data width for reads and writes

You can use the Command window to enter acommand that reads data from, or writes
data to memory. You must, however, be aware of the default width of dataread or
written, and how to changeit if necessary. By default, aread from or write to memory
in armsd, ADW, or ADU transfers aword value. For example:

| et 0x8000 = 0x01

transfers 4 bytes to memory starting at address 0x8000. In this example the bytes at
0x8001, 0x8002 and 0x8003 are all zero-filled.

To write asingle byte to memory, use an instruction of the form:

let *(char *) Oxaddress = val ue

and to read a single byte from memory, use an instruction of the form:

print /% *(char *) Oxaddress

where / % means display in hexadecimal.

You can a'so read and write halfword shor t valuesin asimilar way, for example:

let *(short *) Oxaddress = val ue
print /% *(short *) Oxaddress

You can aso select View — Variables — Expression to open the View Expression
window, and use that to specify bytesor shortsfor displaying memory. For example, for
bytes, enter * (char *) Oxaddr ess inthe View Expression box, and for shorts, enter
*(short *) Oxaddress intheView Expression box. To display in hexadecimal,
click the right mouse button on the Expression window, select Change Window
Format and enter %x.

— Note

Changes to window formats are saved. Changes to line formats are not saved. If you
select Change Window For mat and |eave the format field blank, the setting defaultsto
the original setting.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-47

ARM Debuggers for Windows and UNIX

3.5.12 Flash download

Use the Flash Download dialog (Figure 3-13) to write an image to the Flash memory
chip on an ARM Development Board or any suitably equipped hardware.

Flazh Download E

Optio:
" Set Ethemet Address
i IE:\AHM250\AngeIPid.rom |

QK I Cancel | Help |

Figure 3-13 Flash Download dialog

Set Ethernet Address
Usethe Set Ethernet Addressoption if necessary after writing animage
to Flash memory. You might do this, for example, if you are using Angel
with ethernet support.
When you click OK, you are prompted for the | P address and netmask,
for example, 193.145.156.78.
You do not need to use this option if you have built your own Angel port
with afixed ethernet address.

Arguments/ Image
Specifies the arguments or image to write to Flash. Use the Browse
button to select the image.

For more information about writing to Flash memory, including details of how to build
your own Flash image, refer to the Target Devel opment System User Guide.

3-48 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.6 Channel viewers (Windows only)

The ARM Debugger for Windows supports the use of Channel Viewersto access debug
communication channels. An example channel viewer is supplied with ADW
(ThumbCv. dI I) or you can provide your own viewer.

Note

The ARM Debugger for UNIX does not support the use of Channel Viewers.

3.6.1 ThumbCV channel viewer

To select a Channel Viewer when running the ARM Debugger for Windows:

1
2.
3.

Select Configure Debugger from the Options menu.
On the Target tab, select Remote_A.

Click the Configure button. The Angel Remote Configuration dialog is
displayed.

Select the Channel Viewer Enabled option. The Add and Remove buttons are
activated.

Click the Add button and alist of . DLLs will be displayed.

Select the appropriate . DLL and click the Open button.

Click the OK button on either the Angel Remote Configuration dialog or the
Debugger Configuration dialog to restart ADW with an active channel viewer.
See Angel remote configuration on page 3-59 for more information on the
Remote_A Configuration dialog box. ThumbCV. DLL providesthe viewer
illustrated in Figure 3-14.

i+ Thumb Comms Channel Yiewer M= E
Contol - Options

Send | Left ko send: OO0

Figure 3-14 Thumb Comms Channel Viewer

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-49

ARM Debuggers for Windows and UNIX

The window has a dockable dialog bar at the bottom that is used to send information
down the channel. Typing information in the edit box and clicking the Send button will
store the information in a buffer. The information is sent when requested by the target.
The Left to send counter displays the number of bytes that are Ieft in the buffer.

Sending information

To send information to the target, type a string into the edit box on the dialog bar and
click the Send button. The information is sent when requested by the target, in ASCI|
character codes.

Receiving information

Theinformation that is received by the channel viewer is converted into ASCI|
character codes and displayed in the window, if the channel viewers are active.
However, if Oxffffffff isreceived, thefollowing word istreated and displayed asa
number.

3-50

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.7 Configurations
You can examine and change the configuration of the:

. Debugger, which includes configuration of the:
. target environment for the image being debugged
. debugger parameters
. startup parameters

. ARMulator
. Angel remote connection

. EmbeddedICE or Multi-ICE.

3.7.1 Debugger configuration

The Debugger Configuration dialog consists of three tabbed screens:
. Target

. Debugger

. Memory Maps.

These are described below. Sel@onhfigure Debugger from theOptions menu to
open the Debugger Configuration dialog.

Target environment

Follow these steps to configure the target environment:

1. Click theTarget tab of the Debugger Configuration dialog (Figure 3-15 on page
3-52).

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-51

ARM Debuggers for Windows and UNIX

Debugger Configuration [x]

Target | Debuggerl temory Maps |

Target Enviranment

Add.. Bemove Configure...

_?l Use the ARM Debugger with the '"ARMulator' Instruction
Set Simulator. This allows vou to execute ARM programs
without physical ARM hardware, by simulating the ARM
instructions in software.

oK, I Cancel Apply Help

Figure 3-15 Configuration of target environment
2. Changethe following configuration options, as required:

Target Environment
The target environment for the image being debugged.

Add Display an Open dialog to add a new environment to the debugger
configuration.

Remove Remove atarget environment.
Configure Display a configuration dialog for the selected environment.
Display amore detailed description of the selected environment.

3. Saveor discard your changes:
. click OK to save any changes and exit
. click Apply to save any changes
. click Cancel to ignore all changes not applied and exit.

Note

Apply is disabled for the Target page because a successful RDI connection must be
made first. When you clic®K an attempt is made to make your selected RDI
connection. If this does not succeed, the ARMulate setting is restored.

3-52 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Debugger
Follow these steps to change the configuration used by the debugger:
1. Click the Debugger tab of the Debugger Configuration dialog (Figure 3-16)

Debugger Configuration [=]

Target Debugger |Memury Mapsl

Endian

Frofile Interval: i« Litle

Source Tab Length: IB Big

Disahle

™ Splash screen

™ Remote Stattup warning

Ok I Cancel | Apply | Help |

Figure 3-16 Configuration of debugger
2. Changethefollowing configuration settings, as required:

Profile Interval

Thisisthetime between pc sampling in microseconds. It isapplicable
to ARMulator and Angel only. Lower values have ahigher
performance overhead, and slow down execution. Higher values are
not as accurate as lower values.

Source Tab Length
This specifies the number of space characters used for tabs when
displaying source files.
Endian Determines byte sex of the target.
Little low addresses have the least significant bytes.
Big high addresses have the least significant bytes.

Disable Allowsyou to turn off the following display features:
Splash screen

When selected, stops display of the splash screen (the ARM
Debugger startup box) when the debugger is first loaded.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-53

ARM Debuggers for Windows and UNIX

Remote Startup war ning

Turns on or off the warning that debugging is starting with
Remote_ A enabled. If the warning is turned off and
debugging is started without the necessary hardware
attached, thereisapossibility that the ARM Debugger may
hang. If thewarning is enabled, you have the opportunity to
start in ARMulate.

3. Saveor discard your changes:
. click OK to save any changes and exit
. click Apply to save any changes
. click Cancel to ignore all changes not applied and exit.

Note

When you make changes to the Debugger configuration the current execution is ended
and your program is reloaded.

Memory Maps
Follow these steps to configure Memory Maps:

1. ClicktheMemory Mapstab of the Debugger Configuration dialog (Figure 3-17).

Debugger Configuration [%]

Targetl Debugger Memomy Maps |

— Memory Map

" Global Map File :

lﬁ _I Femave |

" Local Map File :

lﬁ _I Femave |

QK I Cancel | Lppli | Help |

Figure 3-17 Configuration of ARM Debugger memory maps

3-54 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

2. Changethefollowing configuration settings, as required:

Memory Map
Thisallows you to specify amemory map file, containing information
about a simulated memory map that the ARMulator uses. Itis
applicableto ARMulator only. The file includes details of the databus
widths and access times for each memory region in the simulated
system. See Chapter 12 ARMulator for more information.

You can select one of three Memory Map options:

. do not use a memory map

. use a global memory map, which means using the specified
memory map for every image that is loaded during the current
debug session

. use a local memory map, which means using a memory map that
is local to a project.

The three Memory Map options are explained in greater detail as follows:

No Map File
Select this Memory Map option to use the ARMulator default memory
map. This is a flat 4GB bank of ideal 32-bit memory, having no wait
states.

Global Map File

Select this option to use the specified memory map file for every image
loaded during the current debug session.

A box allows you to enter a filename or to select a filename from a pull
down list. Use this box to add new map files to the list, or select a map
file from the list. When you have selected a map file, the debugger
checks that the file exists and is of a valid format. Any file that fails
these checks is removed from the list. The dialog remains, however, so
you can correct an error or select another map file if necessary.

Use theRemove button to remove the currently selected file from the
list.

The browse button allows you to select a memory map file using a
dialog.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-55

ARM Debuggers for Windows and UNIX

Local Map File
Select this option to use a memory map file that islocal to a project.

If alocal memory map fileisrequired when the debugger isinitialized,
the current working directory is searched. If are-initialization occurs
after the debugger has started and loaded an image, the directory
containing the image is searched.

A box alowsyou to enter afilename or to select afilenamefrom apull
down list. Use this box to add new map filesto thelist or select amap
filefromthelist. You must not specify an absolute path name, but you
can specify amemory map file relative to the current image path.

The browse button allows you to select a memory map fileusing a
dialog.

When you have selected afilename, or typed in afilename, the
debugger does not check for the existence of thefile or the validity of
its format. If the format of the fileisfound to be invalid at
re-initialization, the debugger displays an error message. In that case,
or if the file does not exist, the debugger defaults to the No Map File
option and uses the ARMulator default settings.

Use the Remove button to remove the currently selected file from the
list.

Note

Map files are used only at re-initialization, not when a program is loaded. When
you select the Local Map File option, the map file in the working directory of the
current imageis used. If you load a new image, the same map fileis used. To use
amap file that is associated with the new image, you must re-initialize the
debugger by selecting Configure Debugger...from the Options menu and
clicking OK.

Save or discard your changes:

. click OK to save any changes and exit

. click Apply to save any changes

. click Cancel to ignore all changes not applied and exit.

3-56

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.7.2 ARMulator configuration

Use the Armulator Configuration dialog to change configuration settings for the
ARMulator.

Follow these steps to change configuration settings for the ARMulator:
1. Select Configure Debugger from the Options menu.

2 Click on the Tar get tab.

3. Select ARMulatein the Target Environment field.

4

Click onthe Configurebutton. The ARMulator Configuration dialog isdisplayed
(Figure 3-18).

ARMulator Configuration [%]

—Processor

Variant IARM 7TOMI vl

—Clock

 Emulated Speed: I

& Realime

—Optians
v Floating Faint Emulation

Figure 3-18 Configuration of ARMulator
5. Change the following configuration settings, as required:
Variant Processor type required for emulation.

Clock Clock speed to be used for emulation.

If the Emulated radio button is selected then the clock speed used is
the value that you enter into the Speed field.

Values stored in debugger internal variable $cl ock depend on this
setting, and are unavailable if you select Real-time (see Debugger
Internals window on page 3-18).

If the Real-timeradio button is selected then the real -time clock of the
host computer is used and the Speed field is unavailable.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-57

ARM Debuggers for Windows and UNIX

The ARM Debugger clock speed defaults to 0.00 for compatibility
with the defaults of armsd. Selecting Real-timein the ARM Debugger
is equivalent to omitting the - cl ock armsd option on the
command-line. In other words, the clock frequency is unspecified.

For the ARMulator, an unspecified clock frequency is of no

consequence because ARMulator does not need a clock frequency to

be able to ‘execute’ instructions and count cycles§domt i sti cs).
However, your application program may sometimes need to access a
clock, for example, if it contains calls to the standard C function

cl ock() orthe AngeYS_CLOCK SWI, so ARMulator must always

be able to give clock information. It does so in the following way:

. if a clock speed has been specified to the ARM Debugger or
armsd, then ARMulator uses that frequency value for its timing

. if Real-timeis selected (for the ARM Debugger) or unspecified
(for armsd), the real-time clock of the host computer is used by
ARMulator instead of an emulated clock.

In either case, the clock information is used by ARMulator to calculate
the elapsed time since execution of the application program began.
This elapsed time can be read by the application program using the C
functioncl ock() or the AngeBW _cl ock, and is also visible to the
user from the debugger &el ock. It is also used internally by the

ARM Debugger and armsd in the calculatior$oénst at s. The

clock speed (whether specified or unspecified) has no effect on actual
(real-time) speed of execution under ARMulator. It affects the
simulated elapsed time only.

$nenst at s is handled slightly differently because it does need a
defined clock frequency, so that ARMulator can calculate how many
wait states are needed for the memory speed defineciimad. nap

file. If a clock speed is specified andaamsd. map file is present, then
$nenst at s can give useful information about memory accesses and
times. Otherwise, for the purposes of calculating the wait states, an
arbitrary default of 1MHz is used to calculate a core:memory clock
ratio, so thasmenst at s can still give useful memory timings.

Floating-point emulation
Toggles floating-point emulation on and off.
If you are using the software floating-point C libraries, ensure that this

option is off (blank). The option should be on (checked) only if you are
using the floating-point emulator (FPE).

3-58 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

3.7.3 Angel remote configuration

ARM Debuggers for Windows and UNIX

If you are using Angel or EmbeddedI CE, use the Angel Remote Configuration dialog
to configure the settings for the remote connection you are using to debug your

application.

Follow these steps to change configuration settings for Angel:

1
2.

5.

Click on the Tar get tab.

Click on the Configure button.

Angel Remote Configuration E
— Remate Connection
i+ i ¥ Heartheat

Select Configure Debugger from the Options menu.

Select Remote A in the Target Environment field to select ADP (Angel Debug

The Angel Remote Configuration dialog is displayed (Figure 3-19).

Dizabling heartbeat will disable host

I/ Parallel et and packet resend.

 Etherret I

—Pots———————————————— [~ Serial Line Speed

Parallel : ILPT‘I j |1 15200 j

Serial : IEDM2 'l Baud R ate:

i~ Channel Viewer

[~ Enabled
ThumbCy.dl B

Eemove... |

Remote Connection
Chooses either Serial or Serial/Parallel depending on the connections.
For Ethernet, enter either an IP address or the hosthame of the target

Cancel |

Figure 3-19 Configuration of remote connection

Change the following configuration settings, as required:

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-59

ARM Debuggers for Windows and UNIX

Heartbeat

Ensures reliable transmission by sending heartbeat messages. If not
enabled, there is a danger that the host and the target can get into a
deadlock situation, with both waiting for a packet.

Ports Allows the correct serial and parallel devices to be chosen for the
debug connection.
Serial Line Speed

Selects the Baud rate used to transmit data along the serial line.

Channel Viewers

Channel viewers are not supported by the ARM Debugger for UNIX
(ADU).

Inthe ARM Debugger for Windows (ADW) you can enable or disable
the selected channel viewer DLL. See ThumbCV channel viewer on
page 3-49 for more information.

Click the Add... button to add a channel viewer DLL to the displayed
list.

Click the Remove... button to remove the currently selected channel
viewer DLL from the displayed list.

3.7.4 EmbeddedICE configuration

Use the Embedded| CE Configuration dial og to select the settings for an EmbeddedI CE
target. This option is enabled only if you have Embeddedl CE connected to your

machine.

Follow these steps to change the EmbeddedI CE configuration options:

1. Select Configure Embeddedl CE from the Options menu. The configuration
dialog is displayed (Figure 3-20 on page 3-61).

3-60 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

EmbeddedICE Configuration

Embedded CE |

Name:

Wersior: |any

Load Agent... | Load Config... |

oK I Cancel | Loply | Help

Figure 3-20 Configuration of EmbeddedICE target
2. Changethefollowing configuration settings, as required:

Name Name given to the Embedded| CE configuration. Valid options are:
ARMT7DI for use with an ARM7 core with debug extensions and
Embedded| CE macrocell (includes ARM7DMI)
ARMT7TDI

for use with an ARM7 core with Thumb and debug
extensions and Embedded| CE macrocell (includes
ARM7TDMI).

Version Version given to the Embeddedl CE configuration. Specify the specific
version to use or enter any if you do not require a specific
implementation.

L oad Agent

Specify anew Embeddedl CE ROM image file, download it to your
board, and run it. Use this for major updates to the ROM.

L oad Config
Specify an Embedded| CE configuration file to beloaded. Click OK to
run. Use this for minor updates.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-61

ARM Debuggers for Windows and UNIX

3.8 ARM Debugger with C++

This section describes the additions that ARM C++ makesto ADW and ADU. It does
not describe those parts of ADW and ADU that are included in the standard release.
This section covers the following topics:

. About ADW for C++ on page 3-62

. Using the C++ debugging tools on page 3-63

. Debug Format Considerations on page 3-74.
3.8.1 About ADW for C++

ARM C++ provides additions to ADW and ADU to support C++ debugging. A dynamic
link library (adw_cpp. dl |) is installed in the same directoryaasv. exe. The
adw _cpp. dl | adds:

. A C++ menu between théiew andExecute menus in the main menu bar
. Five new buttons in the ADW/ADU toolbar:

El Evaluate Expression
"'_.-,;l View Classes
@l Show Watches
El Hide Watches
Recalculate Watches

Figure 3-21 on page 3-63 shows an example of the ARM Debugger C++ debug
interface and th€++ menu.

3-62 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

+ ARM Debugger - C:\arm\dhryADebug\dhry. axf
File Edit Search Yiew JeEE Execute Options Window Help
EI @l%lwlﬁlml W Ewvaluate Exprassion Cirl+Shift+E H‘ARM ||||@|‘ “El"cl F_a]'@'l
- Wiew Classe Citl+Shift+C
15 ARM Executing dhry] =
an REC Show Watches Ctrl+Shift+
g1 Hide “Watches Ctrl+Shift+H
g2 REG
a3 Becalculate Watches Cirl+Shift+R
a4 Str_30 Str_1 Leoc:
85 Str_30 Str_Z Loc:
g6 REG int Run_Index;
87 REG int Humher Of_ Runs;
a8
g9 <% Initializations =~
90
91 Pext_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type)):
gz Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Tyvpe)):
93
94 Ptr_Glob->Ptr_Comp = Next_Ptr_Glab;
95 Ptr_Glob->Discr = Ident_1;
96 Ptr_Glob-»variant.var_1l.Enum_ Comp = Ident_3;
97 Ptr_Glob-»variant.var_1.Int_Comp = 40;
98 stropy (Ptr_Glob-»variant.var_1.5tr_Comp,
99 "DHREYSTONE PROGRAEM, S0ME STRING")
100 stropy (Str_1_Loc, "DHRYSTOMNE PROGRAM, 1'ST STRING"):
101 .
102 Arr_2 Gloh [B]1[7] = 10; -
| | »
[[armulate [Default i

Figure 3-21 The ARM Debugger C++ interface

3.8.2 Using the C++ debugging tools

The menu itemsin the C++ menu give access to three new debugger windows:

. The Class View window. This window displays the class hierarchy of a C++
program in outline format.

. The Watch View window. This window displays a list of watches. It enables you
to add and remove variables and expressions to be watched, and change the
contents of watched variables.

. The Evaluate Expression window. This window enables you to enter an
expression to be evaluated, and to add that expression to the Watch window.

These windows are described in detail in the sections below.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-63

ARM Debuggers for Windows and UNIX

3.8.3 Using the Class View window

You can use the Class View window to view the class structure of your C++ program.
Classes are displayed in an outline format that allows you to navigate through the
hierarchy to display the member functions for each class. A specia branch of the
hierarchy called Global displays global functions.

You can al so use the Class View window to view function code and set breakpointsfor
aclass.

Displaying the Class View window

Follow these steps to open the Class View window:

1. Select View Classes from the C++ menu, or click on the View Classes button in
the toolbar. A Class View window is displayed that shows the class hierarchy of
your C++ program. Figure 3-22 shows an example of the Class View window.

i Class View

- & Func_1{)

- & Func_2{char*Str_1_Par_Refchar *3tr
- & Func_3{Enumeration Enum_Par_Val)
oy mamo

- % Proc_1(Rec_Fointer Pir_Yal_Par)

- @ Proc_2(One_Fifty “Int_Par_Ref)

- @ Proc_3{Rec_Pointer *Ptr_Ref_Par)

- Proc_d()

- & Proc_b()

- & Proc_BEnumeration Enum_\al_ParE
- & Proc_7(One_Fifty Int_1_Par_\/al.0ne_
- & Proc_B(nt“Ar_1_Par_Refint*Am_2_F

Kl A

Figure 3-22 The Class View window

3-64 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Viewing code from the Class View window
Follow these steps to view the source code for aclass:
1. Display the Class View window.

2. Click theright mouse button on amember function. A Class View window menu
isdisplayed (Figure 3-23).

i Class View

=1 dhry . classes
5@ Global

- & Func_1{)

-~ # Func_2(char S| Per Pefchar'St

= XFunc_J(Enum

oy mamo

- & Proc_1(Rec_P Yiew Source

- @ Proc_2(One_Fifty “Int_Par_Ref)

- @ Proc_3{Rec_Pointer *Ptr_Ref_Par)

- Proc_d()

- & Proc_b()

- & Proc_BEnumeration Enum_\al_ParE

- & Proc_7(One_Fifty Int_1_Par_\/al.0ne_

- & Proc_B(nt“Ar_1_Par_Refint*Am_2_F

Toggle Breakpoint

Kl A

Figure 3-23 The Class View window menu

3. Select View Sourcefromthe Class View window menuto display the source code
for the function.

Note

You can aso double click the left mouse button on amember function to display
the function source.

4. Select Set or Edit Breakpoint... from the Execute menu if you want to add a
breakpoint within the code you are viewing. Refer to the next section for
information on how to set a breakpoint at function entry.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-65

ARM Debuggers for Windows and UNIX

Setting and clearing breakpoints from the Class View window

Follow these steps to toggle a breakpoint that will halt the program when the source for
aclass or function is entered:

1. Display the Class View window.

2. Click the right mouse button on amember function. A Class View window menu
is displayed (Figure 3-23 on page 3-65).

3. Select Toggle Breakpoint from the Class View window menu to set abreakpoint,
or unset an existing breakpoint. Breakpoints are indicated by ared dot to the left
of the function in the Class View window.

Using the Watch window

The Watch window allows you to set watches on variables and expressions. The Watch
window provides similar functionality to the debugger Local and Global windows. In
addition, it provides a C++ interpretation of the data being displayed.

Note

The Watch window is not used to set watchpoints. Select Set or Edit Watchpoint...
from the Execute menu to set watchpoints. Refer to Smple watchpoints on page 3-29
and Complex watchpoints on page 3-32 for more information.

Evaluation of function pointers and member functionsisnot availablein thisversion of
ADW or ADU.

You can specify the contents and format of the Watch window using the Watch window
menu. The following sections describe how to:

. view the Watch window

. display the Watch window menu

. delete and add watch items

. format watch items

. change the contents of watched items
. recalculate watches.

Viewing the Watch window
Follow these steps to view the Watch window:

1. SelecBhow Watch Window from theC++ menu or click on th8how Watches

button in the toolbar. The Watch window displays a list of watched variables and

expressions. Figure 3-24 on page 3-67 shows an example.

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

1 wWatch Window
Yariable | Walue | -
—i 5

— ch 118 —
-2 huf “est”

1 101

— 121 115

13 116

— : =]

Figure 3-24 The Watch window

Expressions that return a scalar value are displayed as an expression-value pair.
Non-scalar values, such as structures and classes, are displayed as a tree of
member variables. If aclassis derived, the base classes are represented by

. : <base cl ass> member variables of the class.

— Note ——

You can also open the Watch window from the Evaluate Expression window. Refer to
Evaluating expressions and adding watches on page 3-71 for more information.

Displaying the Watch window menu

The Watch window menu enables you to add and delete watches, to change the display
format of watches, and to change the contents of watched variables. Follow these steps
to display the Watch window menu:

1. Display the Watch window.

2. Click the right mouse button in the Watch window. The Watch window menu is

displayed. This menu is context sensitive. The menu itemsthat it contains will
depend on:

. whether or not you have clicked on an existing watch item
. the type of watch item you have clicked on.

For example, Figure 3-25 on page 3-68 shows the Watch window menu that is
displayed when the right mouse button is clicked on the charactebafray

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-67

ARM Debuggers for Windows and UNIX

i Watch Window

Wariable | Walue | -
—i g

— ch 118 -
ET—

[Cantract

—m

— 2 Add Item INS

l_ 13 Hide Wwindow ESC

l_ 4] Format 'indow j

Figure 3-25 The Watch window menu

Deleting a watch item
Follow these steps to delete a watch item from the Watch window:
1. Display the Watch window.

2. Either:

. click the right mouse button on the item you want to delete and select
Delete Item from the Watch window menu

. click on the item you want to delete and press the Delete key.

The watch item is deleted from the Watch window.

Adding a watch item
Follow these steps to add a watch item to the Watch window:
1. Display the Watch window.

2. Either:

. click the right mouse button in the Watch window to displajach
window menu and seleétdd Item from the Watch window menu

. press the Insert key.
A Watch Control window is displayed (Figure 3-26 on page 3-69).

3-68 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

Watch Control E

Enter the expreszion that you
wizh to be evaluated :

|
] I Cancel

Figure 3-26 The Watch Control window

3. Enter an expression to add to the Watch window and click OK. Refer to
Evaluating expressions and adding watches on page 3-71 for more information
on the types of expression you can add to the Watch window.

Note

You can a'so add an expression to the Watch window directly from the Evaluate
Expression window. Refer to Evaluating expressions and adding watches on page 3-71
for more information.

Formatting watch items
Follow these steps to change the formatting of values displayed in the Watch window:
1. Display the Watch window.

2. Click theright mouse button in the Watch window to display the Watch window
menul.

3. Select Format Window to format all itemsin the window. The Display Format
window is displayed (Figure 3-27).

Dizplay Format x|

Pleaze zet format string for - ch

Cancel

Figure 3-27 The Display Format window

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-69

ARM Debuggers for Windows and UNIX

4. Enter aformat string for theitem, or itemsin thewindow. You can enter any single

print conversion specifier that is acceptable as an argument to ANSI C
sprintf () asaformat string, except that * cannot be used as a precision. For
example, enter % to format values in hexadecimal, or % to format valuesas a
character string.

5. Click OK to apply the format change.

Changing the contents of watched items
Follow these steps to change the contents of items in the Watch window:
1. Display the Watch window.

2. Click the right mouse button in the Watch window to display the Watch window
menu.

3. Select Edit value from the Watch window menu. The Modify Item window is
displayed (Figure 3-28).

Modify Item E

Pleaze enter new walue for ch

Ok I Cancel

Figure 3-28 The Modify Item window
4. Enter anew vauefor the variable.

5. Click OK to change the contents of the variable.

Recalculating watches

Select Recalculate Watches from the C++ menu or click on the Recalculate Watches
button in the toolbar to reinitialize the Watch window to its original state, with all
structures and classes expanded by one level. This menu item can be used if the value
of any variable may have been changed by external hardware while the debugger is not
stepping through code.

3-70

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

3.85 Evaluating expressions

The Evaluate Expression window allows you to enter a simple C++ expression to be
evaluated. The Evaluate Expression window provides similar functionality to the
debugger Expression window, with a C++ interpretation of the data being displayed.

Evaluating expressions and adding watches

Follow these steps to enter an expression to be eval uated:

1. Select Evaluate Expressionsfrom the C++ menu or click on the Evaluate
Expression button in the toolbar. The Evaluate Expression window is displayed
(Figure 3-29).

+ Evaluate Expreszsion E

E spression: %
i Add Wwatch

i<h |

Cloze |

Yariable | Walue |

Figure 3-29 The Evaluate Expression window

2. Enter the expression to be evaluated and press the Enter key, or click on the
Calculate button. The value of the expression is displayed:

. If the expression is a variable, the value of the variable is displayed.

. If the expression is a logical expression, the window displays ‘1’ if the
expression evaluates to true, or ‘0’ if the expression evaluates to false.

. If the expression is a function, the value of the function is displayed.

Member functions of C++ classes cannot be evaluated.

Refer toExpression evaluation guidelines on page 3-72 for more information on
expression evaluation in C++.

3. Click on theAdd Watch button to add the expression to the Watch window.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-71

ARM Debuggers for Windows and UNIX

Expression evaluation guidelines

Note

The following guidelines apply to all areas of ADW or ADU where an expression can
be used, including setting watchpoints and breakpoints, and evaluating expressionsin
the Watch window.

The following rules apply to expression evaluation for C++ :

Member functions of C++ classes cannot be used in expressions.
Overloaded functions cannot be used in expressions.

Only C operators can be used in constructing expressions. Any operators defined
in a C++ class that also have a meaning in C (sugh)asill not work correctly
because ADW and AU use the C operator instead. Specific C++ operators, such
as the scope operator, are not recognized.

Member variables of a class cannot be accessed from the Evaluate Expression
window in a C++ manner, as if they were local variables. To use a member
variable in an expression you must use one of:

o t hi s->menber
. thi s[0] . nerrber
J *t hi s. nenber

If the member variable is defined in a base classtthes- >nmerber will return
the correct results.

In the Expression Evaluation window (and only there) you can access variables
of a class by name. This means thatber gives the same result as
t hi s- >menber . However, if you have more complex expressions such as:

this->menberl * this->nmenber2
you cannot use:
nmenberl * menber?2

3-72

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

. Base classes cannot be accessed in standard C++ notation. For example:
cl ass Base

{
char *nane;
char *A
H
class Derived : public class Base
{
char *nane;
char *B;
voi d do_sth();
H

If you are in methodo_st h() you can access the member variablesane,
andB through thea hi s pointer. For example hi s- >name returns the name
defined in clas®eri ved.

To accessane in classBase, the standard C++ notation is:

voi d Derived::do_sth()
{

Base: : name="val ue"; // sets nane in the base class
/!l to "val ue"

}

However, the expression evaluation window does not accept
t hi s- >Base: : name because ADW and ADU do not understand the scope
operator. You can access this value with:

t hi s->:: Base. nane

. Though it is possible to call member functions in the form
Cl ass: : Menber (. . .), this will give undefined results.

. privat e, publ i c, andpr ot ect ed attributes are not recognized by the ADW or
ADU Evaluate Expression window. This means that private and protected
member variables can be accessed in the Evaluate Expression window because
ADW and ADU treat them as public.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-73

ARM Debuggers for Windows and UNIX

3.8.6

Debug Format Considerations

This section provides information about the debug table formats that can be generated
by the ARM C++ compilers. It aso describes how to change the format of the debug
tables generated.

The debug table format

The ARM C++ compiler provides anumber of options for building debug images. You
can use the Compiler Configuration window in APM to set these options. Figure 3-30
shows an example of the Compiler Configuration window.

Compiler Configuration | %]

Target | Warningsl C++—SpecificWarnings| Error Handling Language and Debug ||nclude Fde | 4

—Debug Takle Format Debug Contral——————— — Optimisation Criterion ——
 dwarf 1 [T Enable debug tabla generation & Default balance

& dwarf 2 IV Include preprocessor symbols " For space

¢ asd (obsoleta) Fartime

— Optimisation Lewel Source language

" MNone (best debug view) IDraﬂ—Canorming C+ j
¢ Most (good debug wiew, good coda)

& Al (poor debug view, hest code);

— Extra command line arguments

—Equivalent Command Line

-02

oK I Cancel Help

Figure 3-30 Compiler configuration window

By default, the C++ compiler produces DWARF2 format debug tables. The available
formats are:

dwarf 2 Thisisthedefault format produced by APM for C++ projects. You should
use this format unless you have specific reasons for using DWARF1.

3-74

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARM Debuggers for Windows and UNIX

dwarf 1 You should usethisformat only if you have specific reasons for doing so.
For example, you may want to use a debugger that does not support
DWARF2.

asd Do not use thisformat for C++. The ASD format cannot represent some

C++ constructs, such as pointers to member functions. Using ASD will
produce unpredictable results.

DWARF1 limitations

The DWARFL1 debug table format has limitations that introduce severe restrictionsto
debugging C++ code. These include:

. DWARF1 provides no support féi ncl ude files. Stepping into member
functions defined i ncl ude files, and setting breakpoints on such functions,
results in incorrect behavior.

. DWARFL1 is less descriptive than DWARF2, and therefore has limited potential
for building optimized debug images and objects.

. DWARF1 produces a much larger debug table than DWARF2. As a result,
DWARF1 images can be significantly slower to load than DWARF2 images.

For these reasons, it is recommended that you use the DWARF2 debug table format.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 3-75

ARM Debuggers for Windows and UNIX

3-76 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 4
Command-Line Development

This chapter gives abrief overview of using the command-line tools. It contains the
following sections:

. The hello world example on page 4-2
. armsd on page 4-6.

Refer to theARM Software Devel opment Toolkit Reference Guide for more information
on the command-line tools.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 4-1

Command-Line Development

4.1 The hello world example
This example shows you how to write, compile, link, and execute a simple C program
that printsHel | o Wor | d and acarriage return on the screen. The codeis created using
atext editor, compiled and linked using armcc, and run using armsd. This section also
provides abrief introduction to armsd. More information is given inarmsd on page 4-6.
arnctc
ETENg
- .c
C source module(s) H —_— — | executable
/
Figure 4-1 Compiling and linking C
41.1 Create, compile, link, and run
Follow these steps to create, compile, link, and run a simple C program:
1. Enter thefollowing code using any text editor:
#i ncl ude <stdi o. h>
int main(void)
{
printf("Hello Wrld\n");
return O;
}
2. Savethefileashel l o. c.
3. Enterarntc hello.c -o hellotocompileand link the code.
The argument to the - o option gives the name of thefile that will hold the fina
output of thelink step. The linker is called by the compiler after compilation. To
prevent the compiler from calling the linker, enter the - ¢ compiler option on the
command-line. Compiler options are case-sensitive.
4. Enterarnsd hel | o to execute the code under software emulation. armsd starts,
loads thefile, and displaysthe ar nsd: prompt.
4-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Command-Line Development

Enter go and press Return. The debugger respondswith Hel | o Wor | d, followed
by a message indicating that the program terminated normally.

To reload and run the program again enter: r el oad and then go at the armsd
prompt.

To quit the debugger, enter: qui t .

4.1.2 Debugging hello.c

Follow these steps to debug hel | o. c at the source level:

1
2.

Quit the debugger if it is still running.

Enter arncc - g+ hello.c -o hel | 02 torecompile the program with
high-level debugging information.

The - g+ option instructs the compiler to include debug information.

Enter ar nsd hel | 02 toload hel | 02 into the debugger.

Enter br eak mai n at the armsd prompt to set a breakpoint on thefirst statement
inmai n().

Enter go to execute the program up to the breakpoint.

The debugger reportsthat it has stopped at breakpoint #1, and displaysthe source
line.

You can enter debugging commands to examine register contents and source
code:

. To display the contents of the registers enteg.
. To list the C source, entdrype.
This displays the whole source file. Tthgpe command can also display

sections of code. For example, entgme 1, 6 to display lines 1 to 6 of
the source.

. To list the assembly code enterst

The assembly code around the current position in the program is shown. You car
also list memory at a given address, for exaniplet 0x8080

Refer toarmsd on page 4-6 or th&RM Software Devel opment Tool kit Reference Guide
for more information on using the command-line debugger.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 4-3

Command-Line Development

4.1.3 Separating the compile and link stages

Follow these steps to separate the compile and link stages:

1
2.

Quit the debugger if it is running.

Enter arntc -c hel | 0. c torecompilehel | 0. ¢ into an object file. No
executable file is produced.

Enterarmlink hello.o -0 hell 03 tolink the object file with alibrary and
generate an executable program.

Enter ar nsd hel | 03 to load the program into the debugger.

hel | 03 containsno C sourcelevel debugging information becausehel | 0. o was
compiled without the - g+ option, so you cannot view the source statements with
thet ype command.

However, you can refer to program locations and set breakpoints on them by using
the @character to reference the low-level symbols. For example, to set a
breakpoint on the first location in nai n() , type: br eak @rai n.

41.4 Generating interleaved C and assembly language

Follow these steps to generate interleaved C and assembly language:

1
2.

Quit the debugger if it is running.

Enterarntc -S -fs hell o. c a the system prompt.

The - S option instructs armec to write out an assembly language listing of the
instructionsthat would usually be compiledinto executable code. The- f s option
instructs the compiler to interleave C and the generated assembly language.

By default, the output file will have the same name as the C sourcefile, but with
the extension . s.

Display thefile hel | 0. s on screen using the appropriate operating system
command, or load it into atext editor. Example 4-1 on page 4-5 shows the
assembly language generated for hel | 0. c.

Note

Your code may differ slightly from Example 4-1, depending on the version of
compiler you are using.

4-4

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Command-Line Development

Example 4-1
| x$codeseg| DATA
N #i ncl ude <stdi o. h>
a2
03 int main (void)
a4
S {
mai n
000000 e52de004 STR Ir,[sp, #-4]!
7.6
o7 printf ("Hello world\n");
000004 e28f0f02 ADD al, pc, #L000014-. -8
000008 ebfffffc BL _printf
7i: 8
09 return O;
00000c e3a00000 MoV al, #0
000010 e49df 004 LDR pc, [sp], #4
L000014
000014 6¢6¢c6548 DCB 0x48, 0x65, 0x6¢c, 0x6C ;T Hell?
000018 ©6f 77206f DCB 0x6f, 0x20, 0x77, Ox6f ;"0 wo'
00001c 0a646c¢c72 DCB 0x72, Ox6¢c, 0x64, Ox0a porld\n?
000020 00000000 DCB 0x00, 0x00, 0x00, 0x00 ;o "\o\o\o\ O’
;5510 }
a1l

END

415 For more information

For adescription of the ARM C compiler options and the ARM linker options, see the
ARM Software Development Toolkit Reference Guide.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 4-5

Command-Line Development

4.2 armsd

The ARM command-line debugger, armsd, enables you to debug your ARM targeted
image using any of the debugging systems described in Debugging systems on page 3-5.

This section describes how to carry out basic tasks such as loading a C language based
image into armsd and setting simple breakpoints. Refer to the ARM Software
Development Tool kit Reference Guide for more detailed instructions on how to use
armsd.

421 Starting armsd and loading an image
To start armsd and load the image you want to debug, enter the command:
arnsd {options} imagenanme {argunents}

You can specify:
. any armsd options before the image name
. any arguments for the image after the image name.

Use the armsd command-line to debug your target.

If you regularly issue the same set of armsd commands, you can run these automatically
by adding them to a text file callednsd. i ni . This file must be in the current

directory, or the directory specified by the environment variddi€. The commands

are run whenever you start armsd.

42.2 Obtaining help on the armsd commands

Help is available from the armsd command-line:
. To display a list of all the armsd commands available emé¢ip.
. To display help on a particular command erttet:p conmand_nane .

hel p can be abbreviated to

4.2.3 Setting and removing simple breakpoints
A breakpoint halts the image at a specified location.
. To set a simple breakpoint on the first statement of a function, entark

function_nane

You can also use the eak command to set breakpoints on the statement
specified by its line number using:

break /ine_nunber

4-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Command-Line Development

. To list all the current breakpoints and their corresponding numberspenteé
without any arguments.

. To remove a breakpoint enter:
unbr eak if only one breakpoint is set

unbreak #n
to delete breakpoint number n

unbreak function_nane

to delete a breakpoint on the first statement of function
function_nane.

You can use any of these methods to remove a breakpoint, regardless of the wa
in which the breakpoint was set.

br eak can be abbreviated bo andunbr eak can be abbreviated tmb.

4.2.4 Setting and removing simple watchpoints
A watchpoint halts the image when a specified variable changes.
. To set a simple watchpoint on a variable, eetch vari abl e

. To list all the current watchpoints and their corresponding numbers wateh
without any arguments.

. To remove a watchpoint enter:
unwat ch if only one watchpoint is set
unwat ch #n
to delete watchpoint numberad
unwat ch vari abl e
to delete a watchpoint on a specified variable.

You can use any of these methods to remove a watchpoint, regardless of the wa
in which it was set.

wat ch can be abbreviated t9 andunwat ch can be abbreviated tow.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 4-7

Command-Line Development

4.2.5 Executing the program
The following commands enable you to control program execution:

. To execute the program entgu

Execution continues until:

. a breakpoint halts the program
. a watchpoint halts the program
. the program exits.

. To stop the execution of a program, press Citrl-C.

. To restart a program that is already loaded, either:
. enterr el oad t ar get nane to reload the target

and then execute the program again with

. enterpc = start_address (typically 0x8000) andPSR =
9 Ft _SVC32, and then typgo.

. To configure your target to run with command-line arguments entsr:
$crmdl i ne = argunents

For example:l et $crmdline = "-high -p -M
These arguments replace any arguments set when armsd was started.

go can be abbreviated tp andr el oad can be abbreviated te! .

4.2.6 Stepping through the program
The following commands enable you to step through your target:
. To execute a single source code line enteep.
. To step into a function call entext ep i n.

. To step out of a function to the line that immediately follows the call to that
function enterst ep out .

This command is useful &t ep i n has been used too often.
. To display your current position in the target eniéer e.

st ep can be abbreviated $q andwher e can be abbreviated td.

4-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Command-Line Development

4.2.7 Exiting the debugger

To exit the debugger type qui t . You are returned to the command-line.

qui t can be abbreviated to q.

4.2.8 Viewing and setting program variables

The following commands enable you to view and set program variables:

To list all the variables defined within the current context, estarbol s
To view the contents of a variable entari nt vari abl e

To view type and context information about a variable enter:i abl e
vari abl e

To set the value of a variable use the commamrd: vari abl e = expressi on

synbol s can be abbreviated $y, pri nt can be abbreviated pg andvari abl e can
be abbreviated to.

429 Displaying source code

If your program has been compiled with tlys- compiler option you can display source
code as follows:

To display C code around the current line entgpe

To display assembly code rather than C source, @ritst:

t ype can be abbreviated tq andl i st can be abbreviated to

4.2.10 Viewing and setting debugger variables

Some features of armsd are specified by the value of the debugger variables. These c:
be viewed and set in the same way as program variables.

For example, the read-write variaBld st _| i nes is an integer value that specifies the
number of lines displayed when thiest command is issued.

— Note
Some armsd variables are read-only.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 4-9

Command-Line Development

4-10

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Chapter 5

Basic Assembly Language Programming

This chapter provides an introduction to the general principles of writing ARM and
Thumb assembly language. It contains the following sections:

. Introduction on page 5-2

. Overview of the ARM architecture on page 5-3

. Sructure of assembly language modules on page 5-10

. Conditional execution on page 5-17

. Loading constants into registers on page 5-22

. Loading addressesinto registers on page 5-27

. Load and store multiple register instructions on page 5-34

. Using macros on page 5-42

. Describing data structures with MAP and # directives on page 5-45.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

5-1

Basic Assembly Language Programming

51 Introduction

This chapter gives abasic, practical understanding of how to write ARM and Thumb
assembly language modules. It also gives information on the facilities provided by the
ARM assembler (armasm). For additional details about armasm, see Chapter 5
Assembler in the ARM Software Devel opment Toolkit Reference Guide.

This chapter does not provide a detailed description of either the ARM instruction set
or the Thumb instruction set. Thisinformation can be found in the ARM Architectural
Reference Manual, or in an appropriate ARM data sheet.

5.1.1 Code examples

There are anumber of code examplesin this chapter. Many of them are supplied in the
exanpl es\ asmdirectory of the Software Development Toolkit.

Follow these steps to build, link, and execute an assembly language file:

1. Typearmasm-g filenane. s atthecommand prompt to assemblethefileand
generate debug tables.

2 Typearm ink filenane.o -o filenanetolink the object file.
3 Typearnsd fil enane toload theimage file into the debugger.
4. Typego at thear nsd: prompt to execute it.
5 Typequit a thearnsd: prompt to return to the command line.
To see how the assembler converts the source code, enter:
decaof -c filenane.o
or run the module in ADW or ADU with interleaving on.
See:
. armsd on page 4-6 for details on armsd.
. Chapter 3ARM Debuggersfor Windows and UNIX for details on ADW and ADU.

. Chapter @.inker in theARM Software Devel opment Toolkit Reference Guide for
details on armlink.

. ARM object file decoder on page 8-10 of thaRM Software Devel opment Tool kit
Reference Guide for additional details on decaof.

5-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.2 Overview of the ARM architecture

This section gives a brief overview of the ARM Architecture. Refer to the ARM
Architectural Reference Manual for a detailed description of the points described here.

The ARM istypical of RISC processorsin that it implements aload/store architecture.
Only load and store instructions can access memory. Data processing instructions
operate on register contents only.

521 Architecture versions

The ARM architecture exists in four major versions. The information and examplesin
this book assume that you are using a processor that implements Architecture 3 or later.
Refer to the ARM Architectural Reference Manual for asummary of the different
architecture versions.

5.2.2 ARM and Thumb state

Versions 4T and 4TxM of the ARM architecture define a 16-bit instruction set called
the Thumb instruction set. The functionality of the Thumb instruction set is a subset of
the functionality of the 32-bit ARM instruction set.

The Thumb instruction set:

. imposes some limitations on register accessThemb instruction capabilities
on page 5-9).

. does not allow conditional execution except for branch instructions (see
Conditional execution on page 5-17)

. does not allow access to the barrel shifter except as a separate instruction.

Refer toThumb instruction set overview on page 5-8 for more information.

A processor that is executing Thumb instructions is said to be operatingnib state.
A Thumb-capable processor that is executing ARM instructions is said to be operating
in ARM state.

ARM processors always start in ARM state. You must explicitly change to Thumb state
using aBX (Branch and exchange instruction set) instruction.
5.2.3 Address space

All processors that implement version 3 or later of the ARM architecture have a 32-bit
addressing range.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-3

Basic Assembly Language Programming

5.2.4 Processor mode
The ARM supports up to seven processor modes, depending on the Architecture
version. These are:
. User
. FIQ - Fast Interrupt Request
. IRQ - Interrupt Request
. Supervisor
. Abort
. Undefined
. System (ARM version 4 architectures only).
Most application programs execute in User mode. The other modes are entered to
service exceptions, or to access privileged resources. Refer to Chidptetlligg
Processor Exceptions for more information.
5.2.5 Registers
The ARM processor has 37 registers. The registers are arranged in partially overlapping
banks. There is a different register bank for each processor mode. The banked registers
give rapid context switching for dealing with processor exceptions and privileged
operations. Refer to ChapteHandling Processor Exceptionsfor a detailed description
of how registers are banked.
The following registers are available in version 3 and later of the ARM architecture:
. 30 general purpose, 32-hit registers.
Fifteen of these are visible at any one time, depending on the current processor
mode, as r0, r1, ... ,r13, r14.
By convention in ARM assembly language r13 is usedstekpointer (sp). The
C compilers always do this.
In User mode, r14 is used aBrak register (Ir) to store the return address when a
subroutine call is made. It can also be used as a general purpose register if the
return address is stored on the stack.
In the exception handling modes, r14 holds the return address for the exception,
or a subroutine return address if subroutine calls are executed within an exception.
r14 can be used as a general purpose register if the return address is stored on the
stack.
5-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

The program counter.

This is accessed as r15 (or pc). It is incremented by one word (four bytes) for eact
instruction in ARM state, or by two bytes in Thumb state. Branch instructions
load the destination address into the program counter. You can also load the
program counter directly using data operation instructions. For example, you can
copy the link register into the program counter using:

MoV pc,Ir

This is the usual way to return from a simple subroutine.

The Current Program Satus Register (CPSR).

The CPSR holds:

. copies of thedrithmetic Logic Unit(ALU) status flags
. the current processor mode

. interrupt disable flags.

On Thumb-capable processors, the CPSR also holds the current processor stat
(ARM or Thumb).

The ALU status flags in the CPSR are used to determine whether or not
conditional instructions are executed. RefeCtmditional execution on page
5-17 for more information.

Five Saved Program Status Registers(SPSRs).

These are used to store the CPSR when an exception is taken. One SPSR is
accessible in each of the exception-handling modes. User mode and System mod
do not have an SPSR because they are not exception handling modes. Refer to
Chapter Handling Processor Exceptions for more information.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-5

Basic Assembly Language Programming

5.2.6

ARM instruction set overview

All ARM instructions are 32 bits long and are stored word-aligned in memory.
Instructions are stored word-aligned, so the bottom two bits of addresses are always set
to zeroin ARM state. These bits are ignored by al ARM instructions that have an
address operand, except the Branch Exchange (BX) instruction. The BX instruction uses
the bottom bit to determine whether the code being branched to is Thumb code or ARM
code. See Chapter 5 Assembler in the ARM Software Devel opment Tool kit Reference
Guide for additional information.

ARM instructions can be classified into a number of functional groups:

Branch instructions

Theseinstructions are used to branch backwards to form loops, to branch
forward in conditional structures, to branch to subroutines, or to change
the processor from ARM state to Thumb state.

Data processing instructions

These instructions operate on the general purpose registers. Generally
they perform operations such as addition, subtraction, or bitwise logic on
the contents of two registers and place the result in athird register. Long
multiply instructions (unavailable in some architectures) give a 64-bit
result in two registers.

Statusregister accessinstructions

These instructions move the contents of the CPSR or an SPSR to or from
ageneral purpose register.

Singleregister load and storeinstructions
Theseinstructions load or store the value of a single register from or to
memory. In ARM architecture version 3 these instructions can load or
store a 32-bit word or an 8-bit unsigned byte. In ARM architecture
version 4 they can also load or store a 16-bit unsigned halfword, or load
and sign extend a 16-bit halfword or an 8-bit byte.

Multipleregister load and storeinstructions

Theseinstructions load or store any subset of the general purpose
registers from or to memory. Refer to Load and store multiple register
instructions on page 5-34 for a detailed description of these instructions.

Semaphoreinstructions
These instructions load and alter a memory semaphore.

5-6

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Coprocessor instructions

These instructions support a general way to extend the ARM
Architecture.

Refer to the ARM Architectural Reference Manual for detailed information on the
syntax of the ARM instruction set.

ARM instruction capabilities
The following genera points apply to ARM instructions:

Conditional execution

All ARM instructions can be executed conditionally on the value of the
ALU status flags in the CPSR. You do not need to use branches to skip
conditional instructions, although it may be better to do so when a series
of instructions depend on the same condition.

You can specify whether a data processing instruction sets the state of
these flags or not. You can use the flags set by one instruction to control
execution of other instructions even if there are many instructionsin
between.

Refer to Conditional execution on page 5-17 for a detailed description.

Register access
In ARM state, all instructions can access rO-r14 and most also allow
access to r15 (pc). The MRS and MSR instructions can move the contents
of the CPSR and SPSRsto a general purpose register, where they can be
manipulated by normal data processing operations. Refer to the ARM
Architectural Reference Manual for more information.

Accessto theinlinebarre shifter

The ARM arithmetic logic unit has a 32-bit barrel shifter that is capable
of very general shift and rotate operations. The second operand to all
ARM data-processing and singleregister data-transfer instructionscan be
shifted, before the data-processing or data-transfer is executed, as part of
the instruction. This supports, but is not limited to:

. scaled addressing

. multiplication by a constant

. constructing constants.

Refer to thd_oading constants into registers on page 5-22 for more
information on using the barrel-shifter to generate constants.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-7

Basic Assembly Language Programming

5.2.7

Thumb instruction set overview

The functionality of the Thumb instruction set, with one exception, is a subset of the
functionality of the ARM instruction set. Theinstruction set is optimized for production
by a C compiler.

All Thumb instructions are 16 bits long and are stored halfword aigned in memory.
Because instructions are stored halfword-aligned, the bottom bit of the address of an
instruction is always set to zero in Thumb state. This bit isignored by all Thumb
instructions that have an address operand except for the Branch Exchange (BX)
instruction.

All Thumb data processing instructions:
. operate on full 32-bit values
. use full 32-bit addresses for data access and for instruction fetches.

In general, the Thumb instruction set differs from the ARM instruction set in the
following ways. Refer to thARM Architectural Reference Manual for detailed
information on the syntax of the Thumb instruction set, and how Thumb instructions
differ from their ARM counterparts:

Branch instructions

These instructions are used to branch backwards to form loops, to branch
forward in conditional structures, to branch to subroutines, and to change
the processor from Thumb state to ARM state. Program-relative
branches, particularly conditional branches, are more limited in range
than in ARM code, and branches to subroutines can only be
unconditional.

Data processing instructions
These operate on the general purpose registers. The result of the
operation is put in one of the operand registers, not in a third register.
There are fewer data processing operations available than in ARM state.
They have limited access to registers r8 to r15.

The ALU status flags in the CPSR are always set by these instructions
except whemV or ADD instructions access registers r8 to r15. Thumb
data processing instructions that access registers r8 to r15 cannot set the
flags.

Statusregister accessinstructions
There are no Thumb instructions to access the CPSR or SPSR.

Singleregister load and storeinstructions

These instructions load or store the value of a single low register from or
to memory. In Thumb state they cannot access registers r8 to r15.

5-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Multipleregister load and storeinstructions
These instructions load from memory or store to memory any subset of
the registersin therangerOto r7.

In addition, the PUSH and POP instructions implement a full descending
stack using the stack pointer (r13) asthe base. PUSH can stack the link
register and POP can load the program counter.

Semaphoreinstructions
There are no Thumb semaphore instructions.

Coprocessor instructions
There are no Thumb coprocessor instructions.

Thumb instruction capabilities
The following general points apply to Thumb instructions:

Conditional execution
The conditional branch instruction isthe only Thumb instruction that can
be executed conditionally on the value of the ALU status flagsin the
CPSR. All data processing instructions set these flags, except when one
or more high registers are specified as operands to the MOV or ADD
instructions. In these cases the flags cannot be set.
You cannot have any data processing instructions between an instruction
that setsacondition and aconditional branchthat dependsonit. You must
use conditional branches over any instructions that you wish to be
conditional.

Register access
In Thumb state, most instructions can access only rO-r7. These are
referred to as the low registers.

Registersr8 to r15 are limited access registers. In Thumb state these are
referred to as high registers. They can be used, for example, as fast
temporary storage.

Refer to the ARM Architectural Reference Manual for acomplete list of
the Thumb data processing instructions that can access the high registers.

Accessto the barré shifter

In Thumb state you can use the barrel shifter only in aseparate operation,
using an LSL, LSR, ASR, or RORinstruction.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-9

Basic Assembly Language Programming

5.3 Structure of assembly language modules
Assembly language is the language that the ARM assembler (armasm) parses and
assembl es to produce object code. This can be:
. ARM assembly language
. Thumb assembly language
. a mixture of both.
The armasm assembler assembles both ARM and Thumb assembly languages. The
obsolete Thumb assembler, tasm, is provided in the Software Development Toolkit for
backwards compatibility only.
5.3.1 Layout of assembly language source files
The general form of source lines in assembly language is:
{l abel} {instruction|directive|pseudo-instruction} {;connment}
Note
Instructions, pseudo-instructions, and directives must be preceded by white space, such
as a space or a tab, even if there is no label.
All three sections of the source line are optional. You can use blank lines to make your
code more readable.
Case rules
Instruction mnemonics can be written in uppercase or lowercase, but not mixed.
Directives must be written in uppercase. Symbolic register names can be written in
uppercase or lowercase, but not mixed.
5-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Line length

To make source files easier to read, along line of source can be split onto several lines
by placing a backslash character at the end of the line. The backslash must not be
followed by any other characters (including spaces and tabs). The backslash/end-of-line
seguence is treated by the assembler as white space.

Note
Do not use the backslash/end-of -line sequence within quoted strings.

The exact limit on the length of lines, including any extensions using backslashes,
depends on the contents of the line, but is generally between 128 and 255 characters.

Labels

Labels are symbols that represent addresses. The address given by alabel is calculated
during assembly.

The assembler cal culates the address of alabel relative to the origin of the areawhere
the label is defined. A reference to alabel within the same area can use the program
counter plus or minus an offset. Thisis called program-relative addressing.

Labels can be defined in a map. See Describing data structures with MAP and #
directives on page 5-45. The origin of the map is usually placed in a specified register
at run time, and references to the label use the specified register plus an offset. Thisis
called register-relative addressing.

Addresses of |abels in other areas are calculated at link time, when the linker has
allocated specific locations in memory for each area.

Local labels

Local labels are a subclass of label. A local label begins with a number in the range
0-99. Unlike other 1abels, alocal label can be defined many times. Local labels are
useful when you are generating labels with a macro. When the assembler finds a
reference to alocal label, it linksit to a nearby instance of the local 1abel.

The scope of local labelsis limited by the AREA directive. You can use the ROUT
directive to limit the scope more tightly.

Refer to Chapter 5 Assembler in the ARM Software Devel opment Toolkit Reference
Guide for details of:

. the syntax of local label declarations
. how the assembler associates references to local labels with their labels.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-11

Basic Assembly Language Programming

Comments

The first semicolon on aline marks the beginning of a comment, except where the
semicolon appears inside a string constant. The end of the line is the end of the
comment. A comment aloneisavalid line. All comments areignored by the assembler.

Constants

Numbers

Strings

Boolean

Characters

Numeric constants are accepted in three forms:
. Decimal. For example, 123.
. Hexadecimal. For example, 0x7b.
. n_xxx where:
. nis a base between 2 and 9
. xxx is a number in that base.

Strings consist of opening and closing double quotes, enclosing
characters and spaces. If double quotes or dollar signs are used within a
string as literal text characters, they must be represented by a pair of the
appropriate character. For example, you mus$gséyou require a

single$ in the string. The standard C escape sequences can be used
within string constants.

The Boolean constanTRUE andFALSE must be written aSTRUE} and
{ FALSE} .

Character constants consist of opening and closing single quotes,
enclosing either a single character or an escaped character, using the
standard C escape characters.

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.3.2 An example ARM assembly language module

Example 5-1 illustrates some of the core constituents of an assembly language module.
The example iswritten in ARM assembly language. It is supplied asar nex. s inthe
exanpl es\ asmsubdirectory of the toolkit. Refer to Code examples on page 5-2 for
instructions on how to assemble, link, and execute the example.

The constituent parts of this example are described in more detail in the following
sections.

Example 5-1

AREA ARMex, CODE, READONLY
; Nane this bl ock of code ARMex.

ENTRY ; Mark first instruction to execute
start MoV ro, #10 ; Set up paraneters

MOV rl, #3

ADD ro, r0, rl cro=r0+r1
stop MoV r0, #0x18 ; angel _SWreason_Report Exception

LDR rl, =0x20026 ; ADP_St opped_Appl i cati onExit

SW 0x123456 ; Angel semi hosting ARM SW

END ; Mark end of file

The AREA directive

ARM Object Format (AOF) areas are independent, named, indivisible sequences of
code or data. A single code areais the minimum reguired to produce an application.

The output of an assembly or compilation usually consists of two or more areas:
. A code area. This is usually a read-only area.
. A data area. This is usually a read-write area.

The linker places each area in a program image according to area placement rules. Are
that are adjacent in source files are not necessarily adjacent in the application image.
Refer to Chapter Binker in theARM Software Development Tool kit Reference Guide

for more information on how the linker places areas. See also Chapteitibg Code

for ROM.

In an ARM assembly language source file, the start of an area is markedARZEthe
directive. This directive names the area and sets its attributes. The attributes are place
after the name, separated by commas. Refer to Chapssefsbler in theARM

Software Devel opment Toolkit Reference Guide for a detailed description of the syntax

of the AREA directive.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-13

Basic Assembly Language Programming

You can choose any name for your areas. However, names starting with any
nonal phabetic character must be enclosed in bars, or ani ssi ng AREA name error is
generated. For example: | 1_Dat aAr ea] .

Certain names are conventional. For example, | C$$code| isused for code areas
produced by the C compiler, or for code areas otherwise associated with the C library.

Example 5-1 defines a single area called ARMex that contains code and is marked as
being READONLY.
The ENTRY directive

The ENTRY directive marks the first instruction to be executed within an application.
Because an application cannot have more than one entry point, the ENTRY directive can
appear in only one of the source modules. In applications containing C code, the entry
point is often contained within the C library initialization code.

Application execution

The application code in Example 5-1 begins executing at the label st art , whereit
loads the decimal values 10 and 3 into registers rO and r1. These registers are added
together and the result placed in rO.

Application termination

After executing the main code, the application terminates by returning control to the
debugger. Thisis done using the Angel semihosting SWI (by default thisis0x123456
in ARM state), with the following parameters:

. rO equal taangel _SW r eason_Report Except i on (by defaultox18)
. rl equal toADP_St opped_Appl i cati onExi t (by defaultox20026)

For additional information on this, see ChapteAbgel.

The END directive

This directive instructs the assembler to stop processing this source file. Every assembly
language source module must finish withEaD directive on a line by itself.

5-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.3.3 Calling Subroutines

To call subroutines in assembly language, use a Branch Link instruction. The syntax is:
BL [abel

where | abel isusualy the label on the first instruction of the subroutine. (It could
alternatively be aprogram-relative or register-relative expression, see Register-relative
and program-relative expressions on page 5-89 of the ARM Software Devel opment
Toolkit Reference Guide.)

The BL instruction:
. places the return address in the link register (Ir)
. sets pc to the address of the subroutine.

After the subroutine code is executed you can wg&/apc, | r instruction to return.
By convention, registers r0-r3 are used to pass parameters to subroutines, and to pas
results back to the callers.

Note

Calls between separately assembled or compiled modules must comply with the
restrictions and conventions defined by the ARM and Thumb Procedure Call Standards
Refer to Chapter Bsing the Procedure Call Sandards for more information.

Example 5-2 shows a subroutine that adds the values of its two parameters and returr
aresultin r0. It is supplied asibr out . s in theexanpl es\ asmsubdirectory of the
toolkit. Refer toCode examples on page 5-2 for instructions on how to assemble, link,
and execute the example.

Example 5-2

ENTRY
start MOV

BL
st op MoV

LDR

S
doadd ADD

END

subrout, CODE, READONLY

; Nanme this bl ock of code.
;. Mark first instruction to execute

r0, #10 ; Set up paraneters.

rl, #3

doadd ; Call subroutine

r0, #0x18 ; angel _SWreason_Report Exception
rl, =0x20026 ; ADP_St opped_Appl i cati onExit
0x123456 ; Angel sem hosting ARM SW.

r0, r0, rl ; Subroutine code.

pc, Ir ; Return from subroutine.

Mark end of file

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-15

Basic Assembly Language Programming

5.3.4 An example Thumb assembly language module
Example 5-3 illustrates some of the core constituents of a Thumb assembly language
module. It isbased on subr out . s. It issupplied ast hunbsub. s in the
exanpl es\ asmsubdirectory of thetoolkit. Refer to Code examples on page 5-2 for
instructions on how to assemble, link, and execute the example.
Example 5-3
AREA ThumbSub, CODE, READONLY ; Nane this block of code
ENTRY ; Mark first instruction to execute
CODE32 ; Subsequent instructions are ARM
header ADR ro, start + 1 ; Processor starts in ARM st at e,
BX ro : so small ARM code header used
; to call Thumb main program
CODE16 ; Subsequent instructions are Thunb.
start
MoV ro, #10 ; Set up paraneters
MoV ri, #3
BL doadd ; Call subroutine
stop
MoV ro, #0x18 ; angel _SWreason_Report Exception
LDR rl, =0x20026 ; ADP_Stopped_ApplicationExit
S 0xAB ; Angel semi hosting Thunb SW
doadd
ADD ro, r0, rl ; Subroutine code
MOV pc, Ir ; Return from subroutine.
END ; Mark end of file
CODE32 and CODEL16 directives
These directives instruct the assembler to assemble subsequent instructions as ARM
(CODE32) or Thumb (CODE16) instructions. They do not assemble to an instruction to
change the processor state at runtime. They only change the assembler state.
The ARM assembler, armasm, assembles ARM instructions until it reaches a CODE16
directive, unlessthe - 16 option is used in the command line.
BX instruction
Thisinstruction is a branch that can change processor state at runtime. The least
significant bit of the target address specifies whether itisan ARM instruction (clear) or
a Thumb instruction (set). In this example, the ADR pseudo-instruction sets this bit, so
start isalabel to a Thumb instruction.
5-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

54 Conditional execution

In ARM state, each data processing instruction has an option to set ALU statusflagsin
the Current Program Status Register (CPSR) according to the result of the operation.

In Thumb state, there is no option. All data processing instructions set the ALU status
flagsin the CPSR, except when one or more high registers are used in MOV and ADD
instructions. MOV and ADD cannot update the status flags in these cases.

Every ARM instruction can be executed conditionally on the state of the ALU status
flagsin the CPSR. See Table 5-1 on page 5-18 for alist of the suffixes to add to
instructions to make them conditional.

In ARM state, you can:
. set the ALU status flags in the CPSR on the result of a data operation
. execute several other data operations without updating the flags

. execute following instructions or not, according to the state of the flags set in the
first operation.

In Thumb state you cannot execute data operations without updating the flags, and
conditional execution can only be achieved using conditional branches. The only
Thumb instruction that can be conditional is the conditional branch instruBjiorhie
suffixes for this instruction are the same as in ARM state. The branch witBLlndr(
branch and exchange instruction ®¢)(instructions cannot be conditional.

54.1 The ALU status flags

The CPSR contains the following ALU status flags:

N Set when the result of the operation was Negative.
z Set when the result of the operation was Zero.

C Set when the operation resulted in a Carry.

\Y Set when the operation caused oVerflow.

A carry occurs if the result of an add, subtract, or compare is greater than or equal to
2%2 or as the result of an inline barrel shifter operation in a move or logical instruction.

Overflow occurs if the result of an add, subtract, or compare is greater than or equal tc
231 or less than 3.

Add an S suffix to an ARM instruction to make it set the ALU status flags in the CPSR.

Do not use the S suffix witbvP, CWN, TST, or TEQ These comparison instructions
always update the flags. This is their only effect.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-17

Basic Assembly Language Programming

5.4.2 Execution conditions

Therelation of condition code suffixesto the N, Z, Cand V flagsis shown in Table 5-1.

Table 5-1 Condition code suffixes

Suffix Flags Meaning
EQ Z st Equal
NE Z clear Not equal
CS/HS Cset higher or same (Unsigned >=)
CCO LO Cdlear lower (Unsigned <)
M N set Negative
PL N clear Positive or zero
VS V set Overflow
VC V clear No overflow
HI Cset and Z clear higher (unsigned >)
LS Cclear and Z set lower or same (unsigned <=
GE Nand V the same signed >=
LT Nand V differ signed <
GT Z clear, Nand V the same signed >
LE Z set, Nand V differ signed <=
Examples
ADD ro, rl, r2 ;r0 ri + r2, don't update fl ags.
ADDS ro, rl, r2 ;ro0 rl + r2 and update fl ags.
ADDEQS r0O, r1, r2 oI f flag set then rO =rl1 + r2,
; and update fl ags.
CWP ro, rl ; update flags based on rO-r1.

5-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.4.3 Using conditional execution in ARM state

You can use conditional execution of ARM instructions to reduce the number of branch
instructions in your code.

Branch instructions are expensive in both code density and processor cycles. Typically
it takesthree processor cyclestorefill the processor pipelineeach timeabranchistaken.
(Thecost islesson ARM processors that have branch prediction hardware.)

Example 5-4: Euclid’s Greatest Common Divisor

The following example uses two implementations of Euclid’s Greatest Common
Divisor algorithm to demonstrate how you can use conditional execution to improve
code density and execution speed. In pseudo-code the algorithm can be expressed a

function gcd (integer a, integer b) : result is integer
while (a <> b) do
if (a>Db) then

a=-a-»b
el se
b=Db-a
endi f
endwhi | e

result = a

You can implement the gcd function with conditional execution of branches only, in the
following way:

gcd
CcwP ro, rl
BEQ end
BLT | ess
SUB rO, r0, rl
B gcd

| ess
SUB rl, rl1, r0
B gcd

end

Because of the number of branches, the code is seven instructions long. Every time &
branch is taken, the processor must refill the pipeline and continue from the new
location. The other instructions and non-executed branches use a single cycle each.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-19

Basic Assembly Language Programming

By using the conditional execution feature of the ARM instruction set, you can
implement the ged function in only four instructions:

gcd
CcwP ro, rl
SUBGT r0, r0, r1
SUBLT rl, r1, r0
BNE gcd

In addition to improving code size, this code executes faster in most cases. Table 5-2
and Table 5-3 show the number of cycles used by each implementation for the case
where r0 equals 1 and rl equals 2. In this case, replacing branches with conditional
execution of all instructions saves three cycles.

The conditional version of the code executesin the same number of cyclesfor any case
where r0 equalsrl. In all other cases the conditional version of the code executesin

fewer cycles.
Table 5-2 Conditional branches only

ro: a rl: b Instruction Cycles

1 2 CW r0, rl 1

1 2 BEQ end 1 (Not executed)

1 2 BLT | ess 3

1 2 SUB r1, r1, rO 1

1 2 B gcd 3

1 1 CW r0, rl1 1

1 1 BEQ end 3

Total =13

5-20 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Table 5-3 All instructions conditional

ro: a rl: b Instruction Cycles

1 2 CW r0, r1 1

1 2 SUBGT r0,r0,r1 1 (Not executed)
1 1 SUBLT r1,r1,r0 1

1 1 BNE gcd 3

1 1 CW ro,r1 1

1 1 SUBGT r0,r0,r1l 1 (Not executed)
1 1 SUBLT r1,r1,r0 1 (Not executed)
1 1 BNE gcd 1 (Not executed)

Total = 10

Converting to Thumb

Because B istheonly Thumb instruction that can be executed conditionally, the Greatest
Common Divisor algorithm in Example 5-4 must be written with conditional branches
in Thumb code.

Like the ARM conditional branch implementation, the Thumb code requires seven
instructions. However, because Thumb instructions are only 16-bits long, the overall
code size is 14 bytes, compared to 16 bytes for the smaller ARM implementation.

In addition, on a system using 16-bit memory the Thumb version runs faster than the
second ARM implementation because only one memory access is required for each
Thumb instruction, whereas each ARM instruction requires two fetches.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-21

Basic Assembly Language Programming

5.5

55.1

Loading constants into registers

Thereisno single ARM instruction that can load an arbitrary 32-bit immediate constant
into aregister without performing a dataload from memory. Thisis because all ARM
instructions are precisely 32 bits long and do not use the instruction stream as data.

Thumb instructions have the same limitation for similar reasons.

A dataload can place any 32-bit value in aregister, but there are more direct and
efficient ways to load many commonly-used constants.

The following sections describe:
. how to use th&Ov andW/N instructions to load a range of immediate values
. how to use th&DR pseudo-instruction to load any 32-bit constant.

Direct loading with MOV and MVN

In ARM state, you can use theV andWN instructions to load a range of 8-bit constant
values directly into a register:

. TheMOv instruction loads any 8-bit constant value, giving a range of 0x0 to Oxff
(0-255).

. TheMNinstruction loads the bitwise complement of these values, giving a range
of Oxffffff00 to Oxffffffff.

In addition, you can use eithev or WN in conjunction with the barrel shifter to
generate a wider range of constants. The barrel shifter can right rotate 8-bit values
through any even number of positions from 2 to 30.

You can us@V to load values that follow the pattern shown in Table 5-4, in a single
instruction. UsewnN to load the bitwise complement of these values. Right rotates by 2,
4, or 6 bits produce bit patterns with a few bits at each end of a 32-bit word.

5-22

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Table 5-4 ARM state immediate constants

Equivalent Step
Decimal values q . between Rotate

Hexadecimal

values

0-255 0-Oxff 1 No rotate
256, 260, 264, ..., 1020 0x100-0x3fc 4 Right by 30 bits
1024, 1040, 1056, ... , 4080 0x400-0xffO 16 Right by 28 bits
4096, 4160, 4224, ... , 16320 0x1000-0x3fcO 64 Right by 26 bits
64 x 224 65x 224 .. 255x 224 0x40000000-0xffO00000 24 Right by 8 bits
4x 2% . 252x2%4+3 0x4000000-0xfc000003 226 1 Right by 6 bits
16x 224, ... 240x 2% + 15 0x10000000-0xf000000f 228 1 Right by 4 bits
64x2%4 .. 192x 2% +63 0x40000000-0xc000003f 230 1 Right by 2 bits

Using MOV and MVN

You do not need to work out how to load a constant using MOV or MUN. The assembler
attempts to convert any constant value to an acceptable form.

This means that you can use MOV and MVN in two wayss:

. Convert the value to an 8-bit constant, followed by the rotate right value. For

example:

MoV r0, #OxFF, 30

= 1020

. Allow the assembler to do the work of converting the value. If you specify the
constant to be loaded, the assembler converts it to an acceptable form if possible

For example:

MoV ro, #O0x3FC

If the constant cannot be expressed as a right rotated 8-bit value or its bitwise
complement, the assembler reports an error.

rg =

1020

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved.

5-23

Basic Assembly Language Programming

Table 5-5 gives an example of how the assembler converts constants. The left-hand
columnliststhe ARM instructionsinput to the assembler. The right-hand column shows
the instruction generated by the assembl er.

Table 5-5 Assembler generated constants

Input instruction Assembled equivalent

MOV r0, #0 MOV rO, #0

MOV r1, #OxFFOO0000 MOV rl, #OxFF, 8

MV r2, #OXFFFFFFFF M/N r2, #0

M/N r3, #1 M/N r3, #1

MOV r 4, #0xFC000003 MOV r4, #OxFF, 6

MOV r5, #OxO03FFFFFC M/N r5, #OxFF, 6

MOV r6, #0x55555555 Error (cannot be constructed)

Direct loading with MOV in Thumb state

In Thumb state you can use the MOV instruction to load constantsin the range 0-255. You

cannot generate constants outside this range because:

. The Thumbwmov instruction does not provide inline access to the barrel shifter.
Constants cannot be right-rotated as they can in ARM state.

. The ThumbwN instruction can act only on registers and not on constant values.
Bitwise complements cannot be directly loaded as they can in ARM state.

If you attempt to use BOV instruction with a value outside the range 0-255, the
assembler generates an error message.

5-24 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.5.2 Loading with LDR Rd, =const

TheLDR Rd, =const pseudo-instruction can construct any 32-bit numeric constant in
asingleinstruction. Use this pseudo-instruction to generate constants that are out of
range of the MOV and MVN instructions.

The LDR pseudo-instruction generates the most efficient code for a specific constant:

. If the constant can be constructed withli¥ or MVN instruction, the assembler
generates the appropriate instruction.

. If the constant cannot be constructed wiltDsl or MN instruction, the assembler:

. places the value inleral pool (a portion of memory embedded in the code
to hold constant values)

. generates anDR instruction with a program-relative address that reads the
constant from the literal pool.
For example:

LDR rn [pc, #offset to literal pool]
; load register n with one word
; fromthe address [pc + offset]

You must ensure that there is a literal pool within range of BiRdnstruction
generated by the assembler. B&ing literal pools for more information.

Refer to Chapter Bssembler in theARM Software Devel opment Toolkit Reference
Guide for a description of the syntax of ther pseudo-instruction.
Placing literal pools

The assembler places a literal pool at the end of each area. These are defined by the
AREA directive at the start of the following area, or byENB directive at the end of the
assembly. TheND directives at the ends of included files do not signal the end of areas.

In large areas the default literal pool may be out of range of one orLbRre
instructions:

. in ARM state, the offset from the pc to the constant must be less than 4KB
. in Thumb state, the offset from the pc to the constant must be less than 1KB.

When anLDR Rd=const pseudo-instruction requires the constant to be placed in a
literal pool, the assembler:

. Checks if the constant is available and addressable in any previous literal pools.
If so, it addresses the existing constant.

. Attempts to place the constant in the next literal pool if it is not already available.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-25

Basic Assembly Language Programming

If the next literal pool is out of range, the assembler generates an error message. In this
case you must use the LTORG directive to place an additional literal pool in the code.
Place the LTORG directive after the failed LDR pseudo-instruction, and within 4KB
(ARM) or 1KB (Thumb). Refer to Chapter 5 Assembler in the ARM Software

Devel opment Toolkit Reference Guide for a detailed description of the LTORG directive.

You must place literal pools where the processor does not attempt to execute them as
instructions. Place them after unconditional branch instructions, or after the return
instruction at the end of a subroutine.

Example 5-5 shows how thisworksin practice. Itissupplied as| oadcon. s in the
exanpl es\ asmsubdirectory of thetoolkit. Theinstructionslisted ascommentsarethe
ARM instructionsthat are generated by the assembler. Refer to Code examples on page
5-2 for instructions on how to assemble, link, and execute the example.

Example 5-5

AREA Loadcon, CODE, READONLY

ENTRY ; Mark first instruction to execute
start BL funcl ; Branch to first subroutine.
BL func2 ; Branch to second subroutine.
stop MoV ro, #0x18 ; angel _SWreason_Report Exception
LDR rl, =0x20026 ; ADP_St opped_Appl i cati onExit
SwW 0x123456 ; Angel sem hosting ARM SW
funcl
LDR r0, =42 ; => MOV RO, #42
LDR rl, =0x55555555 ; = LDR R1, [PC, #offset to
; Literal Pool 1]
LDR r2, =0xFFFFFFFF ;. => WN R2, #0
MOV pc, Ir
LTORG ; Literal Pool 1 contains
; literal Ox55555555.
func2
LDR r3, =0x55555555 ; = LDR R3, [PC, #offset to
; Literal Pool 1]
; LDR r4, =0x66666666 o If this is uncommented it
; fails, because Literal Pool 2
; is out of reach.
MoV pc, Ir
Lar geTabl e
% 4200 ; Starting at the current |ocation,
; clears a 4200 byte area of nenory
; to zero.
END ; Literal Pool 2 is enpty.
5-26 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.6 Loading addresses into registers

It is often necessary toload an address into aregister. You may need to |oad the address
of astring constant, or the start location of ajump table.

Addresses are normally expressed as offsets from the current pc or other register.

This section describes two methods for loading an address into aregister:

. Load the register directly by usimgR or ADRL to construct an address from an
offset and the current pc or other register.

. Load the address from a literal pool usingltb® Rd, =I abel form of theLDR
pseudo-instruction.

5.6.1 Direct loading with ADR and ADRL

The ADR andADRL pseudo-instructions enable you to load a range of addresses without
performing a memory acce$$R andADRL accept either:

. A program-relative expression. A program-relative expression is a label with an
optional offset, where the address of the label is relative to the current pc.

. A register-relative expression. A register-relative expression is a label with an
optional offset, where the address of the label is relative to an address held in a
specified general purpose register. Bescribing data structureswith MAP and
directives on page 5-45 for information on specifying register-relative
expressions.

The assembler converts ADR r n, | abel pseudo-instruction by generating:
. a singleADD or SUB instruction that loads the address, if it is in range
. an error message if the address cannot be reached in a single instruction.

The offset range is 255 bytes for an offset to a non word-aligned address, and 1020 byte
(255 words) for an offset to a word-aligned address.

The assembler converts ADRL r n, | abel pseudo-instruction by generating:
. two data-processing instructions that load the address, if it is in range
. an error message if the address cannot be constructed in two instructions.

The range of aADRL pseudo-instruction is 64KB for a non-word aligned address and
256KB for a word-aligned address.

ADRL assembles to two instructions, if successful. The assembler generates two
instructions even if the address could be loaded in a single instruction.

Refer toLoading addresses with LDR Rd, = label on page 5-31 for information on
loading addresses that are outside the range @iRe pseudo-instruction.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-27

Basic Assembly Language Programming

Note

. The label used withDR or ADRL must be within the same code area. There is no
guarantee that the label will be within range after linking if it is defined in a
different area. The assembler can only fault references to labels that are out of
range in the same area.

. In Thumb stateADR can generate word-aligned addresses only.

. ADRL is not available in Thumb code. Use it only in ARM code.

Example 5-6 shows the type of code generated by the assembler when ass&bRbling
andADRL pseudo-instructions. It is suppliedas | abel . s in theexanpl es\ asm
subdirectory of the toolkit. Refer @ode exampleson page 5-2 for instructions on how
to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions generated by the
assembler.

Example 5-6

AREA adr | abel , CODE, READONLY

ENTRY ; Mark first instruction to execute
Start
BL func ; Branch to subroutine.
stop MoV r0, #0x18 ; angel _SWreason_Report Exception
LDR rl, =0x20026 ; ADP_St opped_Appl i cati onExit
SwW 0x123456 ; Angel sem hosting ARM SW
LTORG ; Create a literal pool.
func ADR r0, Start ; => SUB r0, PC, #offset to Start
ADR rl, DataArea ; = ADD rl1, PC, #offset to DataArea
;. ADR r2, Dat aArea+4300 ; This would fail because the offset
; cannot be expressed by operand2
;. of an ADD.
ADRL r3, DataArea+4300 ; => ADD r2, PC, #offsetl
;. ADDr2, r2, #offset2
MoV pc, Ir ; Return
Dat aAr ea % 8000 ; Starting at the current |ocation,
; clears a 8000 byte area of nenory
; to zero.
END

5-28 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Implementing a jump table with ADR

Example 5-7 on page 5-30 shows ARM code that implements ajump table. It is
supplied asj unp. s inthe exanpl es\ asmsubdirectory of the toolkit. Refer to Code
examples on page 5-2 for instructions on how to assemble, link, and execute the
example.

The ADR pseudo-instruction loads the address of the jump table.

In the example, the function ar i t hf unc takes three arguments and returns aresult in
r0. Thefirst argument determines which operation is carried out on the second and third

arguments:

argument1=0 Result = argument2 + argument3
argument1=1 Result = argument2 — argument3
argument1>1 the same as argument1=0.

The jump table is implemented with the following instructions and assembler

directives:

EQU is an assembler directive. It is used to give a value to a symbol. In this
example it assigns the value 2iton Whennumis used elsewhere in the
code, the value 2 is substituted. Usk@ in this way is similar to using
#def i ne to define a constant in C.

DCD declares one or more words of store. In this example®zzhtores the
address of a routine that handles a particular clause of the jump table.

LDR ThelLDR pc, [r3, r0, LSL#2] instruction loads the address of the

required clause of the jump table into the pc. It:
. multiplies the clause number in rO by 4 to give a word offset
. adds the result to the address of the jump table

. loads the contents of the combined address into the program
counter.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-29

Basic Assembly Language Programming

Example 5-7
AREA Junp, CODE, READONLY Nanme this block of code.
num EQU 2 Nunber of entries in junp table.
ENTRY Mark first instruction to execute
start First instruction to call.
MoV ro, #0 Set up the three paraneters.
MoV rl, #3
MOV r2, #2
BL arithfunc Call the function.
stop MoV ro, #0x18 angel _SWreason_Report Exception
LDR rl, =0x20026 ADP_St opped_Appl i cati onExi t
SwW 0x123456 Angel sem hosting ARM SW
arithfunc Label the function.
cwP r0, #num Treat function code as unsigned
i nteger.
BHS DoAdd If code is >=2 then do operation O.
ADR r3, JunpTabl e Load address of junp table.
LDR pc, [r3,r0, LSL#2] Junp to the appropriate routine.
JunpTabl e
DCD DoAdd
DCD DoSub
DoAdd ADD ro, rl, r2 Qperation 0, >1
MOV pc, Ir Ret urn
DoSub SUB ro, rl, r2 Qperation 1
MoV pc,Ir Return
END Mark the end of this file.
Converting to Thumb
To convert Example 5-7 to Thumb code you must modify the LDR instruction that is
used to implement the jJump. Thisis because you cannot increment the base register of
LDR and STRinstructions in Thumb state. In addition, LDR cannot load avalue into the
pc, or do an inline shift of avalue held in aregister.
The equivalent code to cause the jump to the appropriate routineis:
LSL r0, rO0, #2
LDR r3, [r3,r0]
MOV pc, r3
You must place an ALI GN directive beforethe Junpt abl e label to ensurethat the table
is aligned on a 32-bit boundary.
5-30 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.6.2 Loading addresses with LDR Rd, = label

TheLDR Rd, = pseudo-instruction can load any 32-bit constant into a register. See
Loading with LDR Rd, =const on page 5-25. It also accepts program-relative
expressions such as labels, and labels with offsets.

The assembler convertsan LDR r 0, =/ abel pseudo-instruction by:

. placing the address ofibel in a literal pool (a portion of memory embedded in
the code to hold constant values).

. generating a program-relativ®R instruction that reads the address from the
literal pool.

For example:
LDR rn [pc, #offset to literal pool]

|l oad register n with one word
fromthe address [pc + offset]

You must ensure that there is a literal pool within rangePming literal pools
on page 5-25 for more information.

Unlike theADR andADRL pseudo-instructions, you can udeR with labels that are

outside the current area. If the label is outside the current area, the assembler places
relocation directive in the object code when the source file is assembled. The relocatiol
directive instructs the linker to resolve the address at link time. The address remains
valid wherever the linker places the area containing beand the literal pool.

Example 5-8 on page 5-32 shows how this works. It is suppliedrasbel . s in the
exanpl es\ asmsubdirectory of the toolkit. Refer @ode examples on page 5-2 for
instructions on how to assembile, link, and execute the example.

The instructions listed in the comments are the ARM instructions that are generated by
the assembler.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-31

Basic Assembly Language Programming

Example 5-8
AREA LDRI abel , CODE, READONLY
ENTRY ; Mark first instruction to execute.
start
BL funcl ; Branch to first subroutine.
BL func2 ;. Branch to second subroutine.
stop MoV r0, #0x18 ; angel _SWreason_Report Excepti on
LDR rl, =0x20026 ; ADP_Stopped_ApplicationExit
SW 0x123456 ; Angel semi hosting ARM SW
funcl
LDR r0, =start ; = LDR RO, [PC, #offset to
; Litpool 1]
LDR rl, =Darea + 12 ; = LDR R1,[PC, #offset to
; Litpool 1]
LDR r2, =Darea + 6000 ; = LDR R2, [PC, #offset to
; Litpool 1]
MOV pc,Ir ;. Return
LTORG ; Literal Pool 1
func2
LDR r3, =Darea + 6000 ; = LDR r3, [PC, #offset to
; Litpool 1]
; (sharing with previous literal).
; LDR r4, =Darea + 6004 ; If uncomrented produces an
; error as Litpool 2 is out of range.
MOV pc, Ir ;. Return
Dar ea % 8000 ; Starting at the current |ocation,
; clears a 8000 byte area of menory
; to zero.
END ; Literal Pool 2 is out of range of
; the LDR instructions above.
An LDR Rd, =label example: string copying
Example 5-9 on page 5-33 shows an ARM code routine that overwrites one string with
another string. It usesthe LDR pseudo-instruction to load the addresses of thetwo strings
from a data area. Note the following instructions and directives:
DCB The DCB (Define Constant Byte) directive defines one or more bytes of
store. In addition to integer values, DCB accepts quoted strings. Each
character of the string is placed in a consecutive byte. Refer to Chapter 5
Assembler in the ARM Software Devel opment Toolkit Reference Guide
for more information.
5-32 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

LDR/ STR TheLDRand STRinstructions use post-indexed addressing to update their
address registers. For example, the instruction:

LDRB r2,[r1],#1

loads r2 with the contents of the address pointed to by r1 and then
incrementsrl by 1.

Example 5-9 String copy

ENTRY
start LDR
LDR
BL
st op MoV
LDR
SW
strcopy
LDRB
STRB

BNE

srcstr DCB
dststr DCB
END

StrCopy, CODE, READONLY
; Mark first instruction to execute.

rl, =srcstr ; Pointer to first string

r0, =dststr ; Pointer to second string
strcopy ; Call subroutine to do copy.
r0, #0x18 ; angel _SWreason_Report Exception
rl, =0x20026 ; ADP_St opped_ApplicationExit
0x123456 ; Angel sem hosting ARM SW

r2, [rl],#1 ; Load byte and update address.
r2, [r0], #1 ; Store byte and update address.
r2, #0 ; Check for zero term nator.
strcopy ; Keep going if not.

pc,Ir ;. Return

Strings, DATA, READWRI TE
"First string - source",0
"Second string - destination",0

Converting to Thumb

There is no post-indexed addressing mode for Thumb LDR and STRinstructions.
Because of this, you must use an ADDinstruction to increment the address register after
the LDR and STRinstructions. For example:

LDRB r2, [r1] ; load register 2
ADD rl, #1 ; increment the address in
; register 1.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-33

Basic Assembly Language Programming

5.7 Load and store multiple register instructions

The ARM and Thumb instruction sets include instructions that 1oad and store multiple
registers to and from memory.

Multiple register transfer instructions provide an efficient way of moving the contents
of several registersto and from memory. They are most often used for block copy and
for stack operations for context changing at subroutine entry and exit. The advantages
of using amultiple register transfer instruction instead of a series of single datatransfer
instructions include:

. Smaller code size.

. There is only a single instruction fetch overhead, rather than many instruction
fetches.

. Only one register writeback cycle is required for a multiple register load or store,
as opposed to one for each register.

. On uncached ARM processors, the first word of data transferred by a load or store
multiple is always a nonsequential memory cycle, but all subsequent words
transferred can be sequential memory cycles. Sequential memory cycles are faster
in most systems.

Note

The lowest numbered register is transferred to or from the lowest memory address
accessed, and the highest numbered register to or from the highest address accessed.
The order the of registers in the register list in the instructions makes no difference.

Use the checkr egl i st assembler option to check that registers in register lists are
specified in increasing order. SEemmand syntax on page 5-3 in thARM Software
Development Tool kit Reference Guide.

5-34 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

57.1 ARM LDM and STM Instructions

Theload (or store) multiple instruction loads (stores) any subset of the 16 general
purpose registers from (to) memory, using a single instruction.

Syntax

The syntax of the LDMinstructionsis:

LDM cond} addr ess-node Rn{!}, reg-1ist{"}
where:

cond isan optional condition code. Refer to Conditional execution on page
5-17 for more information.

addr ess- node

specifies the addressing mode of the instruction. See LDM and STM
addressing modes on page 5-36 for details.

Rn isthe base register for the load operation. The address stored in this
register is the starting address for the load operation. Do not specify r15
(pc) as the base register.

! specifies base register write back. If thisis specified, the addressin the
base register is updated after the transfer. It is decremented or
incremented by one word for each register in the register list.

regi ster-1ist
isacomma-delimited list of symbolic register names and register ranges

enclosed in braces. There must be at |east oneregister inthelist. Register
ranges are specified with adash. For example:

{r0,r1,r4-r6, pc}
Do not specify writeback if the baseregister Rnisinregi ster-1i st.
A Do not use this option in User or System mode. For details of itsusein

privileged modes, see Chapter 9 Handling Processor Exceptions and the
ARM Architectural Reference Manual.

The syntax of the STMinstruction corresponds exactly (except for some detailsin the
effect of the” option).
Usage

See Implementing stacks with LDM and STM on page 5-36 and Block copy with LDM
and STM on page 5-38.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-35

Basic Assembly Language Programming

5.7.2

5.7.3

LDM and STM addressing modes

There are four different addressing modes. The base register can be incremented or
decremented by one word for each register in the operation, and the increment or
decrement can occur before or after the operation. The suffixes for these options are:

I A meaning increment after.
IB meaning increment before.
DA meaning decrement after.
DB meaning decrement before.

There areaternative addressing mode suffixesthat are easier to usefor stack operations.
See Implementing stacks with LDM and STM, bel ow.

Implementing stacks with LDM and STM

The load and store multiple instructions can update the base register. For stack
operations, the base register is usually the stack pointer, r13. This means that you can
use load and store multiple instructions to implement push and pop operations for any
number of registersin a single instruction.

The Load and Store Multiple Instructions can be used with several types of stack:

descending or ascending
The stack grows downwards, starting with ahigh addressand progressing
to alower one (a descending stack), or upwards, starting from alow
address and progressing to a higher address (an ascending stack).

full or empty

The stack pointer can either point to the last item in the stack (afull
stack), or the next free space on the stack (an empty stack).

In practice stacks are almost always full, descending. The C compilers produce full,
descending stacks.

To makeit easier for the programmer, stack oriented suffixes can be used instead of the
Increment/Decrement and Before/After suffixes. See Table 5-6 on page 5-37 for alist
of stack oriented suffixes.

5-36

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Table 5-6 Suffixes for load and store multiple instructions

Stack type Push Pop

Full Descending STMFD (DB) LDVFD (1 A)

Full Ascending STMFA (1 B) LDVFA (DA)

Empty Descending STMED (DA) LDVED (1 B)

Empty Ascending STMEA (1 A) LDVEA (DB)

For example:
STMD r13!, {r0-r5} ; Push onto a Full Descendi ng Stack.
LDMFD r13!, {rO0-r5} ; Pop froma Full Descending Stack.
STMFA r13!, {r0-r5} ; Push onto a Full Ascending Stack.
LDMFA r13!, {rO0-r5} ; Pop froma Full Ascending Stack
STMED r13!, {rO-r5} ; Push onto Enpty Descendi ng Stack
LDMED r13!, {rO-r5} ; Pop from Enmpty Descendi ng Stack
STMEA r13!, {rO-r5} ; Push onto Enpty Ascendi ng Stack
LDVEA r13!, {rO-rb5} ; Pop from Enpty Ascending Stack.

Stacking registers for nested subroutines

Stack operationsare very useful at subroutine entry and exit. At the start of asubroutine,
any working registersrequired can be stored on the stack, and at exit they can be popped
off again. In addition, if the link register is pushed onto the stack at entry, additional
subroutine calls can safely be made without causing the return address to be lost. You
can return from a subroutine by popping the pc off the stack at exit, rather than by
popping Ir and then moving that value into the pc.

For example:
subroutine STMFD sp!, {r5-r7,1r} ; Push work registers and Ir
;. code
BL somewher e_el se
code

LDMFD sp!, {r5-r7,pc} ; Pop work registers and pc

— Warning

Use this with care in mixed ARM/Thumb systems. You cannot return to Thumb code
by popping directly into the program counter.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-37

Basic Assembly Language Programming

5.7.4 Block copy with LDM and STM
Example 5-10isan ARM code routine that copies a set of words from a source location
to adestination by copying asingle word at atime. It is supplied aswor d. s inthe
exanpl es\ asmsubdirectory of thetoolkit. Refer to Code examples on page 5-2 for
instructions on how to assemble, link, and execute the example.
Example 5-10: Block copy
AREA Word, CODE, READONLY ; name this block of code.
num EQU 20 ; set nunber of words to be copied.
ENTRY ; mark the first instruction to call
start
LDR r0, =src ; 10 = pointer to source block
LDR rl, =dst ; rl = pointer to destination block
MoV r2, #num ; r2 = nunber of words to copy
wor dcopy LDR r3, [r0], #4 ; load a word fromthe source and
STR r3, [rl], #4 ; store it to the destination.
SUBS r2, r2, #l1 ; decrenent the counter.
BNE wor dcopy ; ... cCopy nore.
stop MoV r0, #0x18 ; angel _SWreason_Report Exception
LDR rl, =0x20026 ; ADP_Stopped_ApplicationExit
SW 0x123456 ; Angel semi hosting ARM SW
AREA Bl ockDat a, DATA, READWRI TE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD o,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
END
This module can be made more efficient by using LDMand STMfor as much of the
copying as possible. Eight isasensible number of wordsto transfer at atime, given the
number of registersthat the ARM has. The number of eight-word multiplesin the block
to be copied can be found (if r2 = number of words to be copied) using:
MOVS r3, r2, LSR #3 ; nunber of eight word nultiples
This value can be used to control the number of iterations through aloop that copies
eight words per iteration. When there arelessthan eight words | eft, the number of words
left can be found (assuming that r2 has not been corrupted) using:
ANDS r2, r2, #7
Example 5-11 on page 5-39 lists the block copy module rewritten to use LDMand STM
for copying.
5-38 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Example 5-11

Basic Assembly Language Programming

num

start

bl ockcopy

oct copy

copywor ds

wor dcopy

st op

src
dst

EQU
ENTRY

LDR
LDR

MOVS
BEQ
STMFD
LDM A
STM A
SUBS
BNE
LDVFD

Bl ock, CODE, READONLY
20

r0, =src

rl, =dst

r2, #num

sp, #0x400
r3,r2, LSR #3
copywor ds
sp!, {r4-r11}
ro!, {r4-r11}
rl!, {r4-r11}
r3, r3, #1
oct copy

sp!, {r4-r11}
r2, r2, #7
stop

r3, [r0], #4
r3, [rl], #4
r2, r2, #1
wor dcopy

r0, #0x18

rl, =0x20026
0x123456

Bl ockDat a, DATA, READWR

1,2,3,4,5,6,7,8,1,2
0,0,0,0,0,0,0,0,0,0

3,4,
0,0

T
5
0

nane this block of code
set nunber of words to be copied
mark the first instruction to call

rO = pointer to source bl ock
rl = pointer to destination bl ock.
r2 = nunber of words to copy.

Set up stack pointer (rl13).
Number of eight word nultiples.
Less than eight words to nove?
Save some working registers.
Load 8 words fromthe source
and put them at the destination
Decrenent the counter

copy nore.
Don’t need these now - restore
originals.

Nunmber of odd words to copy.
No words left to copy?
| oad a word fromthe source and
store it to the destination
Decrenment the counter.

copy nore
angel _SWreason_Report Exception
ADP_St opped_Appl i cati onExi t
Angel semi hosting ARM SW

E
. 6,
0

7,8,1,2,3,4
,0,0,0,0,0,0

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

5-39

Basic Assembly Language Programming

575 Thumb LDM and STM instructions

The Thumb instruction set contains two pairs of multiple register transfer instructions:
. LDMandSTMfor block memory transfers
. PUSH andPOP for stack operations.
LDM and STM
These instructions can be used to load or store any subset of the low registers from or
to memory. The base register is always updated at the end of the multiple register
transfer instruction. You must specify theharacter. The only valid suffix for these
instructions id A.
Examples of these instructions are:

LDM A rl!, {r0,r2-r7}

STMA r4!, {r0-r3}
PUSH and POP
These instructions can be used to push any subset of the low registers and (optionally)
the link register onto the stack, and to pop any subset of the low registers and
(optionally) the pc off the stack. The base address of the stack is held in r13. Examples
of these instructions are:

PUSH {ro-r3}

POP {r0-r3}

PUSH {r4-r7,1r}

POP {r4-r7, pc}
The optional addition of the Ir/pc to the register list provides support for subroutine
entry and exit.
The stack is always Full Descending.
Thumb-state block copy example
The block copy example, Example 5-10 on page 5-38, can be converted into Thumb
instructions. An example conversion can be fountdésck. s in theexanpl es\ asm
subdirectory of the toolkit.
Because the ThumiDMandSTMinstructions can access only the low registers, the
number of words copied per iteration is reduced from eight to four. In addition, the
LDMSTMinstructions can be used to carry out the single word at a time copy, because
they update the base pointer after each accelsBRISTR were used for this, separate
ADD instructions would be required to update each base pointer.

5-40 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Example 5-12

AREA Tbl ock, CODE, READONLY ; Nane this block of code.

num EQU 20 ; Set nunber of words to be copied.
ENTRY ; Mark first instruction to execute.
header ; The first instruction to call.
MoV sp, #0x400 ; Set up stack pointer (rl3).
ADR r0, start + 1 ; Processor starts in ARM st ate,
BX ro ; so small ARM code header used
; to call Thumb nain program
CODE16 ; Subsequent instructions are Thunb.
start
LDR r0, =src ; r0 =pointer to source bl ock
LDR rl, =dst ; rl =pointer to destination block
MoV r2, #num ; r2 =nunber of words to copy
bl ockcopy
LSR r3,r2, #2 ; Nunber of four word nultiples.
BEQ copywor ds ; Less than four words to nove?
PUSH {rd-r7} ; Save some working registers.
quadcopy
LDM A rO!', {r4-r7} ; Load 4 words fromthe source
STMA rl!, {rd-r7} ; and put them at the destination.
SUB r3, #1 ; Decrenent the counter.
BNE quadcopy ; copy nore.
POP {rd-r7} ; Don’t need these nowrestore originals.
copywor ds
MoV r3, #3 ; Bottomtwo bits represent nunber
AND r2, r3 ; ...of odd words left to copy.
BEQ stop ; No words left to copy?
wor dcopy
LDM A ro!, {r3} ; load a word fromthe source and
STM A ri!, {r3} ; store it to the destination.
SUB r2, #1 ; Decrenent the counter.
BNE wor dcopy ; copy nore.
stop MoV ro, #0x18 ; angel _SWreason_Report Exception
LDR rl, =0x20026 ; ADP_St opped_Appl i cati onExit
SwW OxAB ; Angel semihosting Thunmb SW
AREA Bl ockDat a, DATA, READWRI TE
src DCD 1,2,3,4,5/6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD o,o0,0,0,00,0,0,00,0,0,0,0,0,0,0,0,0,0
END

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-41

Basic Assembly Language Programming

5.8 Using macros

A macro definition is ablock of code enclosed between MACRO and MEND directives. It
defines a name that can be used instead of repeating the whole block of code. This has
two main uses:

. to make it easier to follow the logic of the source code, by replacing a block of
code with a single, meaningful name

. to avoid repeating a block of code several times.
SeeMACRO directive on page 5-73 of thaRM Software Devel opment Toolkit
Reference Guide for more details.

5.8.1 Test and branch macro example
A test-and-branch operation requires two ARM instructions to implement.
You can define a macro definition such as this:

MACRO
$l abel Test AndBranch $dest, $reg, $cc

$l abel CWP $reg, #0
B$cc $dest
VEND

The line after th&ACRO directive is theamacro prototype statement. The macro

prototype statement defines the name (TestAndBranch) you use to invoke the macro. It
also defineparameters ($label, $dest, $reg, and $cc). You must give values to the
parameters when you invoke the macro. The assembler substitutes the values you give
into the code.

This is an example of how this macro can be invoked:

t est Test AndBr anch NonZero, r0, NE

NonZer o
After substitution this becomes:

t est CcwP r0, #0
BNE NonZer o

NonZer o

5-42 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.8.2 Unsigned integer division macro example
Example 5-13 shows amacro that performs an unsigned integer division. It takes four
parameters:
. $Bot is the register that holds the divisor.
. $Top is the register that holds the dividend before the instructions are executed.
After the instructions are executed it holds the remainder.
. $Di v is the register where the quotient of the division is placed. It maylbe
(") if only the remainder is required.
. $Tenp is a temporary register used during the calculation.
Example 5-13
MACRO
$Lab Di vMbd $Di v, $Top, $Bot , $Tenp
ASSERT $Top <> $Bot Produce an error message if the
ASSERT $Top <> $Tenp registers supplied are
ASSERT $Bot <> $Tenp not all different.
I F "$Di v <> "
ASSERT $Div <> $Top ; These three only matter if $Div
ASSERT $Div <> $Bot ; is not null ("")
ASSERT $Div <> $Tenp ;
ENDI F
$Lab
MoV $Tenp, $Bot ; Put divisor in $Tenp
CwWP $Tenp, $Top, LSR #1 : double it until
90 MOVLS $Tenp, $Tenp, LSL #1 ;2 * $Tenp > $Top.
cwP $Tenp, $Top, LSR #1
BLS %90 The b nmeans search backwar ds
I F "$Div" <> """ ; Omit next instruction if $Div is null
MoV $Di v, #0 ; Initialize quotient
ENDI F
91 CcwP $Top, $Tenp ; Can we subtract $Tenp?
SUBCS $Top, $Top, $Tenp ; If we can, do so.
I F "$Di v"' <> " Orit next instruction if $Div is null
ADC $Div, $Div, $D v Doubl e $Di v
ENDI F
MoV $Tenp, $Tenp, LSR #1 ; Halve $Tenp,
CwWP $Tenp, $Bot ; and | oop until
BHS %91 | ess than divisor
MEND

The macro checks that no two parameters use the same register. It also optimizes the

code produced if only the remainder is required.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Basic Assembly Language Programming

To avoid multiple definitions of labelsif Di vibd is used more than once in the
assembl er source, the macro uses local labels (90, 91). See Local labels on page 5-28
of the ARM Software Devel opment Toolkit Reference Guide.

Example 5-14 shows the code that this macro producesif it isinvoked as follows:

ratio DivMod r0,r5,r4,r2
Example 5-14
ASSERT r5 <> r4 ; Produce an error if the
ASSERT r5 <> r2 ; registers supplied are
ASSERT r4 <> r2 ; not all different.
ASSERT r0 <> r5 ; These three only matter if $Div
ASSERT r0 <> r4 ; is not null ("")
ASSERT r0 <> r2 ;
ratio
MOV r2, r4 ; Put divisor in $Tenp
CwP r2, r5, LSR #1 ; double it until
90 MOVLS r2, r2, LSL #1 12 * r2 > rb5.
CwP r2, r5, LSR #1
BLS %90 ; The b neans search backwards
MOV ro, #0 ; Initialize quotient
91 CwP r5 r2 ; Can we subtract r2?
SUBCS r5 r5, r2 ; If we can, do so.
ADC r0, r0, r0 ; Double r0
MOV r2, r2, LSR #1 ;. Hal ve r2,
CWP r2, r4 ; and | oop until
BHS %91 ; less than divisor
5-44 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.9 Describing data structures with MAP and # directives

You can use the MAP and # directives to describe data structures. These directives are
always used together.

Data structures defined using MAP and #:

. are easily maintainable

. can be used to describe multiple instances of the same structure
. make it easy to access data efficiently.

The MAP directive specifies the base address of the data structureoSKEAP
directive on page 5-35 of th&RM Software Devel opment Toolkit Reference Guide.

The# directive specifies the amount of memory required for a data item, and can give
the data item a label. It is repeated for each data item in the structutteli®etve on
page 5-31 of thdRM Software Devel opment Toolkit Reference Guide.

—— Note

No space in memory is allocated when a map is defined. Use Define Constant (DC)
directives to allocate space in memory.

5.9.1 Absolute maps

Example 5-15 shows a data structure described u#iR@nd#. It is located at an
absolute (fixed) address, 4096 (0x1000) in this case.

Example 5-15
MAP 4096
consta # 4 ; consta uses four bytes, and is |ocated at 4096
constbh # 4 ; constb uses four bytes, and is |ocated at 5000
X # 8 ; X uses eight bytes, and is |ocated at 5004
y # 8 ; Yy uses eight bytes, and is |ocated at 5012
string # 256 ; string can be up to 256 bytes long, starting at 5020

You can access data at these locations mbEhor STR instructions, such as:
LDR r4, constb

You can only do this if each instruction is within 4KB (in either direction) of the data
item it accesses. See #RM Architectural Reference Manual for details of thé DR and
STRinstructions.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-45

Basic Assembly Language Programming

5.9.2

Relative maps

If you need to access data from more than 4KB away, you can use aregister-relative
instruction, such as:

LDR rd,[r9, of fset]

of f set islimited to 4096, so r9 must already contain avaluewithin 4K B of the address
of the data.

You can access data in the structure described in Example 5-15 from an instruction at
any address. This program fragment shows how:

MoV r9, #4096 ; or #0x1000
LDR r4,[r9,constb - 4096]

The assembler calculates (const b - 4096) for you. However, it is better to redesign
the map description asin Example 5-16.

Example 5-16

const a
consthb
X

y
string

#####%

N oo DO

consta uses four bytes, located at offset 0O
constb uses four bytes, located at offset 4
X uses eight bytes, located at offset 8
; y uses eight bytes, located at offset 16
56 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 5-16, you can access the data structure at the same location
as before;

MoV r9, #4096
LDR rd4,[r9, consthb]

This program fragment assembles to exactly the same machine instructions as before.
The value of each label is 4096 less than before, so the assembler does not need to
subtract 4096 from each label to find the offset. Thelabelsare relativeto the start of the
data structure, instead of being absolute. The register used to hold the start address of
the map (r9 in this case) is called the base register.

Therearelikely to bemany LDR or STRinstructions accessing datain thisdatastructure.
You avoid typing - 4096 repeatedly by using this method. The codeis also easier to
follow.

This map does not contain the location of the data structure. The location of the
structure is determined by the value loaded into the base register at runtime.

5-46

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

The same map can be used to describe many instances of the data structure. These may
be located anywhere in memory.

There are restrictions on what addresses can be |oaded into a register using the MOV
instruction. See Loading addressesinto registerson page 5-27 for details of how to load
arbitrary addresses.

5.9.3 Register based maps

In many cases, you can use the same register as the base register every time you access
adatastructure. You can include the name of the register in the base address of the map.
Example 5-17 shows such a register-based map. The labels defined in the map include

the register.
Example 5-17
VAP 0,r9
consta # 4 consta uses four bytes, located at offset 0 (fromr?9)
consth # 4 ; constb uses four bytes, located at offset 4
X # 8 ; X uses eight bytes, located at offset 8
y # 8 ; Yy uses eight bytes, located at offset 16
string # 256 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 5-17, you can access the data structure wherever it is:

ADR r9,datastart
LDR r4,constb ;o => LDR r4,[r9, #4]

const b contains the offset of the dataitem from the start of the data structure, and also
includesthebaseregister. Inthis case the base register isr9, defined in the MAP directive.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-47

Basic Assembly Language Programming

5.9.4 Program-relative maps

You can use the program counter (r15) as the base register for amap. In this case, each
STMor LDMinstruction must be within 4KB of the dataitem it addresses, because the
offset islimited to 4K B. The data structure must be in the same area astheinstructions,
because otherwise there is no guarantee that the dataitems will be within range after
linking.

Example 5-18 shows aprogram fragment with such amap. It includes adirectivewhich
allocates space in memory for the data structure, and an instruction which accessesiit.

Example 5-18

dat astruc % 280 ; reserves 280 bytes of nmenory for datastruc

VAP datastruc

consta # 4

constb # 4

X # 8

y # 8

string # 256

code LDR r2,consthb ; = LDR r2,[pc, of fset]
In this case, there is no need to load the base register before loading the data as the
program counter already holds the correct address. (Thisis not actually the same asthe
address of the LDR instruction, because of pipelining in the processor. However, the
assembl er takes care of thisfor you.)

5-48 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

595 Finding the end of the allocated data

You can use the # directive with an operand of 0 to label alocation within a structure.
Thelocation is labeled, but the location counter is not incremented.

The size of the data structure defined in Example 5-19 depends on the values of
MaxSt r Len and Ar r ayLen. If these values are too large, the structure overrunsthe end
of available memory.

Example 5-19 uses:
. anEQU directive to define the end of available memory
. a# directive with an operand of 0 to label the end of the data structure.

An ASSERT directive checks that the end of the data structure does not overrun the
available memory.

Example 5-19
Start Of Dat a EQU 0x1000
EndOf Dat a EQU 0x2000

VAP Start Of Dat a
I nt eger # 4
I nt eger 2 # 4
String # MaxStrLen
Array # ArrayLen*8
Bi t Mask # 4
EndCf UsedDat a # 0

ASSERT EndOf UsedDat a <= EndCf Dat a

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-49

Basic Assembly Language Programming

5.9.6 Forcing correct alignment
You are likely to have problems if you include some character variables in the data
structure, asin Example 5-20. Thisis because alot of words are misaligned.
Example 5-20
Start Of Dat a EQU 0x1000
EndOf Dat a EQU 0x2000

VAP Start O Dat a
Char # 1
Char 2 # 1
Char 3 # 1
I nt eger # 4 alignment = 3
I nt eger 2 # 4
String # MaxStrLen
Array # ArrayLen*8
Bi t Mask # 4
EndOf UsedData # 0
ASSERT EndCf UsedDat a <= EndOf Dat a

You cannot use the ALI GN directive, because the ALI GN directive aligns the current
location within memory. MAP and # directives do not allocate any memory for the
structures they define.
You could insert adummy # 1 after Char 3 # 1. However, this makes maintenance
difficult if you change the number of character variables. You must recal cul ate the right
amount of padding each time.
Example 5-21 on page 5-51 shows a better way of adjusting the padding. The example
uses a# directive with a 0 operand to label the end of the character data. A second #
directive inserts the correct amount of padding based on the value of the label. An
: AND: operator is used to calculate the correct value.
The (- EndOf Char s) : AND: 3 expression cal cul ates the correct amount of padding:
0if EndOChars is 0 nod 4,
3 if EndOChars is 1 nod 4
2 if EndOChars is 2 nod 4;
1if EndOChars is 3 nod 4.
Thisautomatically adjuststhe amount of padding used whenever character variablesare
added or removed.

5-50 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Example 5-21
Start Of Dat a EQU 0x1000
EndOf Dat a EQU 0x2000

MAP Start Of Dat a
Char # 1
Char 2 # 1
Char 3 # 1
EndOf Char s # 0
Paddi ng # (- EndOF Chars) : AND: 3
I nt eger # 4
I nt eger2 # 4
String # MaxSt r Len
Array # ArraylLen*8
Bi t Mask # 4
EndOf UsedData # 0

ASSERT EndOF UsedDat a <= EndCOf Dat a

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-51

Basic Assembly Language Programming

5.9.7 Using register-based MAP and # directives

Regi ster-based MAP and # directives define register-based symbols. There aretwo main
uses for register-based symbols:

defining structures similar to C structures

gaining faster access to memory areas described by non-registe bR el
directives.

Defining register-based symbols

Register-based symbols can be very useful, but you must be careful when using them.
As a general rule, use them only in the following ways:

As the location for a load or store instruction to load from or storeltocHt i on

is a register-based symbol based on the register Rb and with numeric offset, the
assembler automatically translates, for examyi®, Rn, Locat i on into LDR

Rn, [Rb, #of f set] .

In anADR or ADRL instruction ADR Rn, Locat i on is converted by the assembler
into ADD Rn, Rb, #of f set.

Adding an ordinary numeric expression to a register-based symbol to get another
register-based symbol.

Subtracting an ordinary numeric expression from a register-based symbol to get
another register-based symbol.

Subtracting a register-based symbol from another register-based symbol to get an
ordinary numeric expression. Do not do this unless the two register-based
symbols are based on the same register. Otherwise, you have a combination of
two registers and a numeric value. This results in an assembler error.

As the operand of aBBASE: or: | NDEX: operator. These operators are mainly of
use in macros.

Other uses usually result in assembler error messages. For example, if yaDRvrite
Rn, =Locat i on, whereLocat i on is register-based, you are asking the assembler to
loadRn from a memory location that always has the current value of the reRigikrs
offset in it. It cannot do this, because there is no such memory location.

Similarly, if you writeADD Rd, Rn, #expr essi on, andexpr essi on is register-based,
you are asking for a singlbD instruction that adds both the base register of the
expression and its offset Rm. Again, the assembler cannot do this. You must use two
ADD instructions to perform these two additions.

5-52

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Setting up a C-type structure

There are two stages to using structuresin C:
. declaring the fields that the structure contains
. generating the structure in memory and using it.

For example, the followingypedef statement defines a point structure that contains
threef | oat fields named x, y and z, but it does not allocate any memory. The second
statement allocates three structures of Bgpeat in memory, named origin, oldloc, and
newloc:

typedef struct Point

{
float x,vy,z;
} Point;

Poi nt origin, ol dl oc, new oc;

The following assembly language code is equivalent toypedef statement above:

Poi nt Base RN ril1
MAP 0, Poi nt Base
Poi nt _x # 4
Poi nt _y # 4
Point_z # 4

The following assembly language code allocates space in memory. This is equivalent t
the last line of C code:

origin % 12
oldloc % 12
newloc % 12

You must load the base address of the data structure into the base register before yol
can use the labels defined in the map. For example:

LDR Poi nt Base, =ori gi n
MoV r0, #0

STR r0, Point_x

MoV r0, #2

STR r0, Point _y

MoV r0, #3

STR r0, Point_z

is equivalent to the C code:

origin.x = 0;
originy = 2;
origin.z = 3;

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-53

Basic Assembly Language Programming

Making faster access possible
To gain faster access to an area of memory:

1. Describe the memory area as a structure.
2. Usearegister to address the structure.

For example, consider the definitions in Example 5-22.

Example 5-22
Start Of Dat a EQU 0x1000
EndOf Dat a EQU 0x2000

VAP Start O Dat a
I nt eger # 4
String # MaxSt rLen
Array # ArrayLen*8
Bi t Mask # 4
EndOf UsedData # 0

ASSERT EndOf UsedDat a <= EndCOf Dat a

If you want the equivalent of the C code:
I nteger = 1;

String = "",;

Bi t Mask = OxAOO0O0O00O0A;

With the definitions as above, the assembly language code could be asin Example 5-23.

Example 5-23
MoV r0, #1
LDR ri, =l nteger
STR ro,[r1]
MoV r0, #0
LDR rl,=String
STRB ro, [r1]
MoV r 0, #0xA0O00000A
LDR r1, =Bi t Mask

STRB ro,[r1]

Example 5-23 uses L DR pseudo-instructions. SeeLoading with LDR Rd, =const on page
5-25 for an explanation of these.

5-54 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Example 5-23 contains separate L DR pseudo-instructions to load the address of each of
the dataitems. Each L DR pseudo-instruction is converted to aseparate instruction by the
assembler. However, it is possible to access the entire data areawith asingle LDR

pseudo-instruction. Example 5-24 shows how to do this. Both speed and code size are

improved.
Example 5-24
AREA data, DATA
Start Of Dat a EQU 0x1000
EndCf Dat a EQU 0x2000
Dat aAr eaBase RN ril
VAP 0, Dat aAr eaBase
Start Of UsedData # 0
I nt eger # 4
String # MaxSt r Len
Array # ArraylLen*8
Bi t Mask # 4
EndOf UsedData # 0
UsedDat aLen EQU EndOf UsedData - Start Of UsedDat a
ASSERT UsedDataLen <= (EndOfData - Start O Data)
AREA code, CODE
LDR Dat aAr eaBase, =St art Of Dat a
MoV ro, #1
STR r0, I nteger
MoV r0, #0
STRB ro, String
MOV r 0, #0xA000000A
STRB r0, Bi t Mask

— Note
The MAP directiveis

MAP 0, Dat aAreaBase,

not

MAP St art O Dat a, Dat aAr eaBase.

The MAP and # directives give the position of the data relative to the DataAreaBase
register, not the absolute position. The LDR Dat aAr eaBase, =St art O Dat a
statement provides the absolute position of the entire data area.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-55

Basic Assembly Language Programming

If you use the same technique for an area of memory containing memory mapped 1/O
(or whose absol ute addresses must not change for other reasons), you must take care to

keep the code maintainable.

One method isto add comments to the code warning maintainers to take care when
modifying the definitions. A better method isto use definitions of the absol ute addresses
to control the register-based definitions.

Using MAP of fset, reg followed by | abel # 0 makes/ abel into aregister-based
symbol with register part r eg and numeric part of f set . Example 5-25 shows this.

Example 5-25

Start O | QArea EQU
SendFl ag_Abs EQU
SendDat a_Abs EQU

RcvFl ag_Abs EQU
RcvDat a_Abs EQU
| CAr eaBase RN
VAP
SendFl ag #
MAP
SendDat a #
MAP
RcvFl ag #
VAP
RcvDat a #

0x1000000

0x1000000

0x1000004

0x1000008

0x100000C

ril1

(SendFl ag_Abs-Start O | OArea) , | OAr eaBase
0

(SendDat a_Abs-Start Of | OArea), | OAr eaBase
0

(RcvFl ag_Abs-Start O | QArea), | CAr eaBase
0

(RcvDat a_Abs-Start O | QArea), | OQAr eaBase
0

Load the base address with LDR | OAr eaBase, =St art Of | QAr ea. Thisalowsthe
individual locations to be accessed with statements like LDR RO, RcvFl ag and STR

R4, SendDat a.

5-56 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

5.9.8 Using two register-based structures

Sometimesyou need to operate on two structures of the sametype at the sametime. For
example, if you want the equivalent of the pseudo-code:

new oc.x = oldloc.x + (value in r0);
new oc.y = oldloc.y + (value in r1);
new oc.z = oldloc.z + (value in r2);

The baseregister needsto point alternately to the oldloc structure and to the newl oc one.
Repeatedly changing the base register would be inefficient. Instead, use a non-register
based map, and set up two pointersin two different registers asin Example 5-26:

Example 5-26

MAP 0 ; Non-register based relative map used twice, for
Pointx # 4 ; old and new data at ol dl oc and new oc.
Pointy # 4 ; oldloc and newl oc are | abels for
Pointz # 4 ; menory allocated in other areas.

;. code

ADR r8, ol dl oc

ADR r9, new oc

LDR r3,[r8,Pointx] ; load fromoldloc (r8)

ADD r3,r3,r0

STR r3,[r9,Pointx] ; store to new oc (r9)

LDR r3,[r8, Pointy]

ADD r3,r3,rl

STR r3,[r9, Pointy]

LDR r3,[r8, Point z]

ADD r3,r3,r2

STR r3,[r9, Poi nt z]

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-57

Basic Assembly Language Programming

5.9.9 Avoiding problems with MAP and # directives

Using MAP and # directives can help you to produce maintainable data structures.
However, thisis only trueif the order the elements are placed in memory is not
important to either the programmer or the program.

You can have problemsif you load or store multiple elements of astructurein asingle
instruction. These problems arise in operations such as:

. loading several single byte elements into one register

. using a Store Multiple or Load Multiple instructiaggT(4andLDM) to store or load
multiple words from or to multiple registers.

These operations require the data elements in the structure to be contiguous in memory,
and to be in a specific order. If the order of the elements is changed, or a new element
is added, the program is broken in a way that cannot be detected by the assembler.

There are a number methods for avoiding problems such as this.

Example 5-27 shows a sample structure.

Example 5-27

2

r10
0, M scBase

M scBase

3

M scStart
Msc_a
Msc b
Msc_c

M sc_d

M scEndCF Char s
M scPaddi ng
M sc_|

M sc_J
Msc_ K

M sc_data
M scEnd

M sclLen

- I NDEX: M scEndCf Chars) : AND: 3

*20

IR R E R E E E R
ORDMRARA—~ORRRRO

QU M scEnd-M scStart

There is no problem in usindMSTMinstructions for accessing single data elements
that are larger than a word (for example, arrays). An example of this is the 20-word
elementM sc_dat a. It could be accessed as follows:

ArrayBase RN RO
ADR ArrayBase, M scBase
LDM A ArrayBase, {RO-R5}

5-58 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Basic Assembly Language Programming

Thisexample loads thefirst six itemsinthearray M sc_dat a. Thearray isasingle
element and therefore covers contiguous memory locations. It is unlikely that in the
future anyone will split it into separate arrays.

However, for the caseof loadingM sc_I ,M sc_J,andM sc_Kintoregistersr0, rl, and
r2 the following would work, but could cause problems in the future:

ArrayBase RN RO

ADR ArrayBase, M sc_|
LDM A ArrayBase, {RO-R2}

Problems ariseif the order of M sc_I , M sc_J, and M sc_K s changed, or if a new
element M sc_Newis added in the middle. Either of these small changes breaks the
code.

If these elements need to be accessed separately elsewhere, so you do not want to
amalgamate them into a single array element, you must amend the code. The first
remedy isto comment the structure to prevent changes affecting this area:

M sc_|I # 4 ; ==} Do not split/reorder
Msc_J # 4 ; } these 3 elements, STM
Msc_ K # 4 ; ==} and LDMinstructions used.

If the code is strongly commented, no deliberate changes are likely to be made that
would affect the workings of the program. Unfortunately, mistakes can still occur. A
second method of catching these problems would be to add ASSERT directives just
before the STMLDMinstructions to check that the labels are consecutive and in the
correct order:

ArrayBase RN RO

; Check that the structure el enents
; are correctly ordered for LDM
ASSERT (((Msc_J-Msc_l) =4) :LAND: ((Msc_K-Msc_J) = 4))
ADR ArrayBase, M sc_|
LDM A ArrayBase, {R0-R2}

This ASSERT directive stops assembly at this point if the structure is not in the correct
order to be loaded with an LDM Remember that the element with the lowest addressis
always loaded from, or stored to, the lowest numbered register.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 5-59

Basic Assembly Language Programming

5-60 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 6
Using the Procedure Call Standards

This chapter describes how to use the ARM and Thumb Procedure Call Standards to
ensure that separately compiled and assembled modules follow a standard set of rules
for interworking. It contains the following sections:

. About the procedure call standards on page 6-2

. Using the ARM Procedure Call Sandard on page 6-3

. Using the Thumb Procedure Call Standard on page 6-11
. Passing and returning structures on page 6-13.

Refer to theARM Software Development Toolkit Reference Guide for a complete
description of the procedure call standards.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-1

Using the Procedure Call Standards

6.1 About the procedure call standards

Sometimes you will find it necessary to combine C or C++, and assembly language in
the same program. For example, you may wish to hand code performance-critical
routines in assembly language so that they run at optimum speed.

The ARM Software Development Toolkit enables you to generate object files from C,
C++, and assembly language source, and then link them with one or more libraries to
produce an executable file, as shown in Figure 6-1.

[
.S
ASM source module(s J—» \2

C library > —| executable

C source module(s) U L» /.:

Figure 6-1 Mixing C or C++ and assembly language

Irrespective of the language in which they are written, routines that make callsto other
modules must observe a common convention of argument and result passing. For the

ARM and Thumb instruction sets, these are:

. the ARM Procedure Call Standard (APCS)

. the Thumb Procedure Call Sandard (TPCS).

This chapter introduces these standards, and discusses their role in ARM assembly
language for passing and returning values and pointers to structures for use by C and
C++ routines.

6-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards

6.2 Using the ARM Procedure Call Standard

APCSisaset of rules governing calls between functions in separately compiled or
assembled code fragments.

The APCS defines:

. constraints on the use of registers

. stack conventions

. argument passing and result return.

Code produced by compilers is expected to adhere to the APCS at all times. Such cod
is said to bestrictly conforming. Handwritten code is expected to adhere to the APCS
only when making calls to externally visible functions. Such code is said to be
conforming.

The APCS comprises a family of variants. Each variant is exclusive. Code that conforms
to one variant cannot be used with code that conforms to another.

— Note
The reentrant APCS variants are obsolete.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-3

Using the Procedure Call Standards

6.2.1 APCS register names and usage

Table 6-1 and Table 6-2 on page 6-5 summarize the names and roles of integer and
floating-point registers under the APCS.

Note

Not all ARM systems support floating-point. Refer to Chapter 11 Floating-point
Support in the ARM Software Devel opment Toolkit Reference Guide for more
information.

Table 6-1 APCS registers

Register APCS name APCS role

r0 al argument 1/scratch register/result

rl a2 argument 2/scratch register/result

r2 a3 argument 3/scratch register/result

r3 a4 argument 4/scratch register/result

r4 vl register variable

5 v2 register variable

ré v3 register variable

r7 v4 register variable

r8 v5 register variable

r9 sh/vb static base/register variable

r10 siv7 stack limit/stack chunk handle/register variable
rll fp/v8 frame pointer/register variable

r12 ip scratch register/new -sb in inter-link-unit calls
rl3 sp lower end of the current stack frame

rl4 Ir link register/scratch register

ri5 pc program counter

6-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards

Table 6-2 APCS floating-point registers

Name Number APCS Role

fo 0 FP argument 1/FP result/FP scratch register
fl 1 FP argument 2/FP scratch register

f2 2 FP argument 3/FP scratch register

f3 3 FP argument 4/FP scratch register

f4 4 floating-point register variable

f5 5 floating-point register variable

f6 6 floating-point register variable

f7 7 floating-point register variable

To summarize:

al-a4, [fO-f3]

v1-v8, [f4-f7]

These are used to pass arguments to functions. al is also used to
return integer results, and fO to return FP results. These registers
can be corrupted by a called function.

These are used as register variables. They must be preserved by
called functions.

sb, dl, fp, ip, sp, Ir, pc

These have a dedicated role in some APCS variants, though
certain registersmay beused for other purposesevenwhen strictly
conforming to the APCS. In some variants of the APCS some of
these registers are avail able as additional variable registers. Refer
to A more detailed look at APCSregister usage on page 6-10 for
more information.

Hand coded assembly language routines that interface with C or C++ must conformto
the APCS. They are not required to conform strictly. This means that any register that
isnot used in its APCS role by an assembly language routine (for example, fp) can be
used as aworking register, provided that its value on entry is restored before returning.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-5

Using the Procedure Call Standards

6.2.2 An example of APCS register usage: 64-bit integer addition

This exampleillustrates how to use ARM assembly language to code a small function
so that it can be used by C modules.

The function performs a 64-bit integer addition. It uses atwo-word data structure to
store each 64-bit operand. We will consider the following stages:

. writing the function in C

. examining the compiler output

. modifying the compiler output

. looking at the effects of the APCS
. revisiting the first implementation.

Writing the function in C

In ARM assembly language, you can code the addition of double-length integers by
using the Carry flag from the low word addition in the high word addition. However, in
C there is no way of specifying the Carry flag. Example 6-1 shows a workaround.

Example 6-1

voi d add_64(int64 *dest, int64 *srcl, int64 *src2)
{ unsigned hibitl=srcl->lo0 >> 31, hibit2=src2->l0 >> 31, hibit3;
dest->l o=srcl->l o0 + src2->lo;
hi bi t 3=dest->l 0o >> 31;
dest - >hi =src1->hi + src2->hi +
((hibitl & hibit2) || (hibitll= hibit3));
return;

The highest bits of the low words in the two operands are calculated (shifting them into
bit 0, while clearing the rest of the register). These bits are then used to determine the
value of the carry bit (in the same way as the ARM itself does).

Examining the compiler output

If the addition routine were to be used a great deal, an implementation such as this
would probably be inadequate. To consider the quality of the implementation, examine
the code produced by the compiler. Follow these steps to produce an assembly language
listing:

6-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards

1. Copy file exanpl es/ candasn add64_1. c to your current working directory.
Thisfile contains the C code in Example 6-1.

2. Compileit to ARM assembly language source as follows:
arncc -li -S add64_1.c
The - S flag tells the compiler to produce ARM assembly language source
(suitable for armasm) instead of object code.

Example 6-2 showsthe assembly language output infileadd64_1. s. It revealsthat this
is an inefficient implementation (instructions may vary between compiler releases).

Example 6-2

add_64
STMDB sp!,{vl,Ir}
LDR vl, [a2, #0]
MOV a4, v1, LSR #31
LDR ip,[a3, #0]
MoV Ir,ip, LSR #31
ADD ip,vi,ip
STR ip,[al, #0]
MOV ip,ip, LSR #31
LDR a2, [a2, #4]
LDR a3, [a3, #4]
ADD a2, a2, a3
TST a4, lr

CVWPEQ a4,ip
MOVNE a3, #1
MOVEQ a3, #0

ADD a2, a2, a3
STR a2, [al, #4]!
LDM A sp!,{vil, pc}

Modifying the compiler output

Because you cannot specify the Carry flag in C, you must get the compiler to produce
almost the right code, and then modify it by hand. Start with (incorrect) code that does
not perform the carry addition, asin Example 6-3 on page 6-8.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-7

Using the Procedure Call Standards

Example 6-3

voi d add_64(int64 *dest, int64 *srcl, int64 *src2)
{ dest->lo=srcl->l0 + src2->|o;

dest - >hi =srcl1->hi + src2->hi;

return;

}

Copy fileexanpl es/ candasn add64_2. ¢ (which containsthe codein Example 6-3)
to your current working directory.

Compileit to ARM assembly language source as follows:
arncc -li -S add64_2.c

You can find the assembly language produced by the compiler in the fileadd64_2. s.

Example 6-4

add_64
LDR a4, [a2, #0]
LDR ip,[a3, #0]
ADD a4, a4d,ip
STR a4, [al, #0]
LDR a2, [a2, #4]
LDR a3, [a3, #4]
ADD a2, a2, a3
STR a2, [al, #4]
MOV pc,Ir

Comparing thisto the C source, you can see that the first ADD instruction produces the
low order word, and the second produces the high order word. To correct this, get the
carry from the low to high word by changing:

. the firstADD to ADDS (add and set flags)
. the secondDD to anADC (add with carry)
You can find this modified code in the direct@yanpl es/ candasmasadd64_3. s.

6-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards

Looking at the effects of the APCS

The most obvious effect of the APCS on the example code is the change in register
names:

. al holds a pointer to the destination structure.
. a2 and a3 hold pointers to the operand structures.

. a4 and ip are used as temporary registers that are not preserved. The condition:
under which ip can be corrupted are discusseédnore detailed look at APCS
register usage on page 6-10.

This is a simple leaf function that uses few temporary registers, so none are saved to tf
stack and restored on exit. Therefore you can use a siglec, | r to return.

If you wish to return another result, such as the carry out from the addition, you must
load it into al prior to exit. You can do this as follows:

Change the secomdD to ADCS (add with carry and set flags).

Add the following instructions to load al with 1 or 0 depending on the carry out from
the high order addition.

MOV al, #0
ADC al, al, #0

Change the return type of function declarationaftd- 64() fromvoi d toi nt .

Revisiting the first implementation

Although the first C implementation is inefficient, it shows more about the APCS than
the hand-modified version.

You have already seen a4 and ip being used as non-preserved temporary registers.
However, here v1 and Ir are also used as temporary registers. v1 is preserved by beir
stored (together with Ir) on entry. Register Ir is corrupted, but a copy is saved onto the
stack and reloaded into pc when vl is restored. This means that there is still only a sing|
exit instruction, but now it is:

LDM A sp!,{vl, pc}

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-9

Using the Procedure Call Standards

6.2.3 A more detailed look at APCS register usage

Although sb, I, fp, ip, sp and Ir are dedicated registers, the example in Example 6-2 on
page 6-7 showsip and Ir being used as temporary registers. Sometimes these registers
are not used for their APCS roles. The details given below will enable you to write
efficient and safe code that uses as many of the registers as possible, and avoids
unnecessary saving and restoring of registers:

ip Is used only during function calls, so it is not preserved across function
calls. It is conventionally used as alocal code generation temporary
register. At other timesit can be used as a corruptible temporary register.
ip is not preserved in either its dedicated or non-dedicated APCSrole.

Ir Holds the address to which control must return on function exit. It can be
(and often is) used as atemporary register after pushing its contents onto
the stack. This value can be loaded directly into the program counter
when returning. Irisnot preserved in either its dedi cated or non-dedicated
APCSrole.

sp Isthestack pointer. Itisalwaysvalid in strictly conforming code, but need
only be preserved in handwritten code. Note, however, that if any
handwritten code makes use of the stack, or if interrupts can use the user
mode stack, sp must bevalid. Initsnon-dedicated APCSrole, sp must be
preserved. sp must be preserved on function exit for APCS conforming

code.

d Isthe stack limit register. If stack limit checking is enabled sl must be
valid whenever spisvalid. In its non-dedicated APCS role, sl must be
preserved.

fp Is the frame pointer register. In the obsolete APCS variants that use fp,

thisregister contains either zero, or a pointer to the most recently created
stack backtrace data structure. As with the stack pointer, the frame
pointer must be preserved, but in handwritten code it does not need to be
availableat every instant. However, it must bevalid whenever any strictly
conforming function is called. fp must always be preserved.

sb Isthe static base register. This register is used to access static data. If sb
isnot used, it isavailable as an additional register variable, v6, that must
be preserved across function calls. sb must always be preserved.

6-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards

6.3 Using the Thumb Procedure Call Standard

The Thumb Procedure Call Sandard (TPCS) isaset of rules that govern inter-calling
between functions written in Thumb code. The TPCSis essentially a cut-down APCS.

There arefewer optionswith TPCSthan withthe APCS. Thisreflectsthe different ways
in which ARM and Thumb code are used, and also reflects the reduced nature of the
Thumb instruction set.

Specifically, the TPCS does not support:

digoint stack extension (stack chunks)

Under the TPCS, the stack must be contiguous. However, this does not
prohibit the use of multiple stacksto implement co-routines, for example.

reentrancy Reentrant code is code that callsthe same entry point with different sets
of static data.

You can implement reentrancy by placing in ast r uct all variables that
must be multiply instantiated, and passing each function a pointer to the
struct.

har dwar e floating-point
Thumb code cannot access floating-point instructions without switching
to ARM state. Floating-point is supported indirectly by defining how FP
values are passed to and returned from Thumb functions in the Thumb
registers.

Refer to the ARM Software Development Toolkit Reference Guide for the full
specification of the TPCS.

6.3.1 TPCS register names and usage

The Thumb register subset has:

. eight visible general purpose registers (r0-r7), callediaveegisters
. a stack pointer (sp) (a full descending stack is assumed)

. a link register (Ir)

. a program counter (pc).

In addition, the Thumb subset can access the other ARM registers (r8-r12, called the

high registers) singly using a set of special instructions. Refer fsRieArchitectural
Reference Manual for details.

In the context of the TPCS, each Thumb register has a special name and function as

shown in Table 6-3 on page 6-12.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-11

Using the Procedure Call Standards

Table 6-3 TPCS registers

Register TPCS name TPCS role

r0 al argument 1/scratch register/result

rl a2 argument 2/scratch register/result

r2 a3 argument 3/scratch register/result

r3 a4 argument 4/scratch register/result

r4 vl register variable

5 v2 register variable

r6 v3 register variable

r7 va/wr register variable/work register in function entry/exit

r8 (v5) (ARM v5 register, no defined role in Thumb)

r9 (v6) (ARM v6 register, no defined role in Thumb)

r10 g (v7) stack limit

rll fp (v8) frame pointer (not usually used in Thumb state)

ri2 (ip) (ARM ip register, no defined role in Thumb. May be used
as atemporary register on Thumb function entry/exit.)

rl3 p stack pointer (full descending stack)

rl4 Ir link register

r15 pc program counter

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards

6.4 Passing and returning structures

This section describes:

. the default method for passing structures to and from functions
. cases in which passing structures is automatically optimized

. telling the compiler to returnst r uct value in several registers.

6.4.1 The default method

Unless special conditions apply (as detailed in following sections), C structures are
passed in registers that, if necessary, overflow onto the stack and are returned througt
pointer to the memory location of the result.

For struct-valued functions, a pointer to the location wheretthact result is to be
placed is passed in al (the first argument register). The first argument is then passed |
a2, the second in a3, and so on. Itis as if:

struct s f(int x)
were compiled as:

void f(struct s *result, int Xx)

Example 6-5

typedef struct two_ch_struct

{
char chi;
char ch2;
}
two_ch;

two_ch max(two_ch a, two_ch b))

{
}

return (a.chl > b.chl) ? a: b;

Example 6-5 is available in the fikxanpl es/ candasni t wo_ch. c, and can be
compiled to produce assembly language source using:

arncc -S two_ch.c -1li

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-13

Using the Procedure Call Standards

Example 6-6 shows the code armcc produces (the version of armcc supplied with your
release may produce output slightly different from that listed here).

Example 6-6

max
STMDB sp!,{al-a3}
LDRB a3, [sp, #4]
LDRB a2, [sp, #8]
awP a3, a2
ADDLE a2, sp, #8
ADDGT a2, sp, #4

LDR a2, [a2, #0]
STR a2, [al, #0]
ADD sp, sp, #0xc
MoV pc,Ir

The STMVDB instruction saves the arguments onto the stack. Registers a2 and a3 are used
as temporary registers to hold the required part of the structures passed, and al isa
pointer to an areain memory in which the resulting structure is placed.

6.4.2 Returning integer-like structures
The APCS specifies different rulesfor returning integer-like structures. An integer-like
structure:
. is no larger than one word in size
. has addressable subfields, all of which have an offset of 0.
The following structures are integer-like:
struct
{
unsigned a:8, b:8, c¢:8, d:8;
}
uni on pol ynor phi c_ptr
{
struct A *a,
struct B *b;
int *i;
}
whereas the structure used in Example 6-5 is not:
struct { char chl, ch2; }
6-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards

Aninteger-like structure hasits contentsreturned in al. Thismeansthat al isnot needed
to pass a pointer to aresult structure in memory, and is instead used to pass the first
argument. Example 6-7 demonstrates this.

Example 6-7

typedef struct hal f_words_struct
{ unsi gned fiel dl: 16;

unsi gned fi el d2: 16;
}hal f _words;

hal f _words max(hal f_words a, half_words b)
{ hal f_words x;
x = (a.fieldl > b.fieldl) ? a : b;
return x;

Argumentsa and b are passed inregistersal and a2, and becausehal f _wor d_st r uct
isinteger-like, you would expect al to return the result structure directly, rather than a
pointer to it.

Thiscodeisavailablein thefileexanpl es/ candasm hal f _str. ¢, and can be
compiled to produce assembly language source using:

arncc -S half _str.c -1li

Example 6-8 shows the code armcc produces. The version of armcc supplied with your
release may produce output slightly different from that listed here.

Example 6-8

max
MoV a3, al, LSL #16
CcwP a3, a2, LSL #16
MOVLS al, a2
MoV pc,Ir

From thisyou can seethat the contents of thehal f _wor ds structureisreturned directly
in al as expected.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-15

Using the Procedure Call Standards

6.4.3

Returning non integer-like structures in registers

There are occasions when a function must return more than one value. The usual way
to achievethisisto define astructure that holds all the valuesto be returned, and to pass
apointer to the structure back in al. The pointer is then dereferenced, allowing the
valuesto be stored.

For applications in which such afunction is time-critical, the overhead involved in
wrapping and then unwrapping the structure can be significant. In this case, you can tell
the compiler that a structure should be returned in the argument registers al - a4, by
using the keyword __val ue_i n_r egs.

Thisisonly useful for returning structures that are no larger than four words.

Returning a 64-bit result

Toillustrate how to use __val ue_i n_r egs, consider afunction that multiplies two
32-bit integers together and returns a 64-hit result.

To make such a function work, you must split the two 32-bit numbers (a, b) into high
and low 16-bit parts (a_hi ,a_l o, b_hi, b_I 0). You then perform the four
multiplicationsa_l o * b_l 0,a_hi *b_lo,a_l o* b_hi,a_hi * b_I o and add the
results together, taking care to deal with carry correctly.

Since the problem involves manipulation of the Carry flag, writing this functionin C
does not produce optimal code (see An example of APCSregister usage: 64-hit integer
addition on page 6-6). Therefore you must code the function in ARM assembly
language. Example 6-9 on page 6-17 shows code that implements the algorithm.

6-16

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Using the Procedure Call Standards

Example 6-9

On entry al and a2 contain the 32-bit integers to be multiplied (a, b)
On exit al and a2 contain the result (al bits 0-31, a2 bits 32-63)

mul 64

ip,
a4,
al,
az,
a3,
az2,
al,
a4,
ip,
a4,
al,
az2,

pc,

al,
az2,
al,
az,
al,
ip,
a4,
ip,
az,
a4,
a3,
a4,
Ir

mlo + (mnmnd<<16)
mhi’ + (mmd>>16) + carry

LSR #16 ; Ip = a_hi

LSR #16 ; a4 = b_hi

ip, LSL #16 ; al = a_lo

a4, LSL #16 ; a2 = b_lo

a2 ;a3 =a_lo* b_lo(mlo)

a2 ; a2 = a_hi * b_lo(mmdl)
al ; al = a_lo * b_hi(mmd2)
a4 ;a4 = a_hi * b_hi(mhi)

al ;ip = mmdl + mmd2(m.md)
#&10000 ;a4 = mhi + carry(mhi’)

ip, LSL #16 ; al
ip, LSR #16 ; a2

— Note

On processors with a fast multiply unit such asthe ARM7TDMI and ARM7DMI this
example can be recoded using the UMULL instructions.

Example 6-9 is fine for use with assembly language modules, but to use it from C you
must tell the compiler that this routine returns its 64-bit result in registers. You can do
this by making the following declarations in a header file.

typedef struct int64_struct

{
unsi gned int |o;
unsi gned int hi;
}
i nt 64;

__value_in_regs extern int64 nul 64(unsi gned a, unsigned b);

The above assembly language code and declarations, together with atest program, are
in the directory exanpl es/ candasmasthefilesnul 64. s, mul 64. h,i nt 64. h and
mul test. c.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6-17

Using the Procedure Call Standards

To compile, assembl e, and link these to produce an executableimage suitable for armsd,
copy them to your current directory, and then execute the following commands:

armasmnmul 64.s -0 nmul64.0 -1i
arncc -c¢c nultest.c -1li
armink mul64.0 nultest.o -o multest

where-|i can be omitted if armcc and armasm (and armsd, below) have been
configured with it as a default.

Follow these step to run mul t est under armsd:

1. Enterarnsd -1i nultest toloadtheimageinto armsd. The armsd prompt is
displayed:
ar nmsd:

2. Typego at the armsd prompt to run the program. The following lineis displayed:
Enter two unsigned 32-bit nunbers in hex eg. (100 FF43D)

3. Type12345678 10000001
The following lines are displayed:

Least significant word of result is 92345678

Most significant word of result is 1234567

Programterm nated nornally at PC = 0x00008418
0x00008418: Oxef 000011 : > sw Angel

ar msd:
4. Typequit atthearmsd prompt to exit ar nsd.

Toconfirmthat__val ue_i n_r egs isbeing used, removeit fromnul 64. h, recompile
mul t est . c, relink mul t est, and rerun armsd. Thistimethe answers returned will be
incorrect, because the result is no longer being returned in registers, but in ablock of
memory.

6-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 7
Interworking ARM and Thumb

Thischapter explains how to change between ARM state and Thumb state when writing
code for processors that implement the Thumb instruction set. It contains the following
sections:

. About interworking on page 7-2

. Basic assembly language interworking on page 7-4

. C and C++ interworking and veneers on page 7-13

. Assembly language interworking using veneers on page 7-21

. ARM-Thumb interworking with the ARM Project Manager on page 7-25.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-1

Interworking ARM and Thumb

7.1 About interworking

You can mix ARM and Thumb code as you wish, provided that the code conformsto
the requirements of the ARM and Thumb Procedure Call Standards. The ARM
compilers always create code that conformsto these standards. If you are writing ARM
assembly language modules you must ensure that your code conforms. See Chapter 6
Using the Procedure Call Standards for detailed information.

The ARM linker detectswhen ARM and Thumb code is being mixed, and can generate
small code segments called veneers. These veneers perform an ARM-Thumb state
change on function entry and exit whenever an ARM function is called from Thumb
state, or a Thumb function is called from ARM state.

7.1.1 When to use interworking

When you write code for a Thumb-capable ARM processor, you will probably write
most of your application to run in Thumb state, because this provides the best possible
code density and performance with 8-bit or 16-bit memory. However, you may want
parts of your application to runin ARM state for reasons such as:

Speed Some parts of an application may be highly speed critical. These sections
may be more efficient runningin ARM statethanin Thumb state, because
in some circumstances asingle ARM instruction can do more than the
equivalent Thumb instruction.

Some systemsinclude a small amount of fast 32-bit memory from which
ARM code can be run, without the overhead of fetching each instruction
from 8-bit or 16-bit memory.

Functionality

Thumb instructions are |ess flexible than their ARM equivalents. Some
operations, such as accessing the program statusregistersdirectly, are not
possible in Thumb state. This means that a state changeis required in
order to carry out these operations.

Exception handling

The processor automatically enters ARM state when a processor
exception occurs. This means that the first part of an exception handler
must be coded with ARM instructions, evenif it re-enters Thumb state to
carry out the main processing of the exception. At the end of such
processing, the processor must be returned to ARM state to return from
the handler to the main application.

Refer to Handling exceptions on Thumb-capable processors on page
9-41 for more information.

7-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

Standalone Thumb programs
A Thumb-capable ARM processor always startsin ARM state. To run
simple Thumb assembly language programs under the debugger, add an
ARM header that carries out astate change to Thumb state and then calls
the main Thumb routine. See Example ARM header on page 7-6 for an
example.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-3

Interworking ARM and Thumb

7.2 Basic assembly language interworking

The simplest method of interworking between ARM and Thumb state isto use
hand-coded assembly language. In this case, it is up to you to make sure that register
usage is compatible between any interworking routines.

To interwork between ARM and Thumb state you must:
. change the processor state with the Branch Exch&xyénstruction

. instruct the assembler to generate the correct code for the processor state with the
CODE32 andCODE16 directives.

The following section describes these steps in more detail.
Refer toAssembly language interworking using veneers on page 7-21 for information
on using linker-generated interworking veneers from assembly language.

7.2.1 The Branch Exchange instruction

TheBX instruction branches to the address contained in a specified register. The value
of bit O of the branch address determines whether execution continues in ARM state or
Thumb state.

Bit 0 of an address can be used in this way because:

. All ARM instructions are word-aligned. This means that bits 0 and 1 of the
address of any ARM instruction are ignored because these bits refer to the
halfword and byte part of the address.

. All Thumb instructions are halfword-aligned. This means that bit O of the address
of any Thumb instruction is ignored because it refers to the byte part of the
address.

TheBX instruction is implemented on Thumb-capable ARM processors only.

7-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

Syntax
The syntax of BX is one of:
Thumb BX Rn
ARM BX{ cond} Rn
where:
Rn isaregister in the range rO to r15 that contains the address to branch to.
The value of bit 0 in this register determines the processor state:
. if bit O is set, the instruction at the branch address is executed in
Thumb state
. if bit O is clear, the instruction at the branch address is executed in
ARM state.
cond is an optional condition code. Only the ARM versiorBgfcan be

executed conditionally.

Usage

. You can also usexX for branches that do not change state. You can use this to
execute branches that are out of range of the normal branch instructions. Becaus
BX takes a 32-bit register operand it can branch anywhere in 32-bit memory. The
B andBL instructions are limited to:

. 32 MB in ARM state, for both conditional and unconditioBandBL

instructions
. 4 MB in Thumb state, for unconditionBlandBL instructions
. -128 to +127 instructions in Thumb state, for the conditi@naktruction.
— Note

TheBX instruction is only implemented on ARM processors that are Thumb-capable. If
you useBX to execute long branches your code will fail on processors that are not
Thumb-capable. The result oBa instruction on a processor that is not Thumb-capable
is unpredictable.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-5

Interworking ARM and Thumb

Changing the assembler mode

The ARM assembler can assemble both Thumb code and ARM code. By defaullt, it
assembles ARM code unlessit isinvoked with the - 16 option.

Because all Thumb-capable ARM processors start in ARM state, you must use the BX
instruction to branch and exchange to Thumb state, and then use the CODE16 directive
to instruct the assembler to assemble Thumb instructions.

Refer to the ARM Software Devel opment Tool kit Reference Guide for moreinformation
on these directives.

Example ARM header

Example 7-1 on page 7-7 implements a short header section of ARM code that changes
the processor to Thumb state.

The header code uses:

. An ADRinstruction to load the branch address and set the least significant bit. The
ADR instruction generates the address by loading r2 with the pelus f set .
SeeDirect loading with ADR and ADRL on page 5-27 for more information on
the ADR instruction.

. A BX (Branch exchange) instruction to branch to the Thumb code and change
processor state.

The main body of the module is prefixed bg@E16 directive that instructs the
assembler to treat the following code as Thumb code. The Thumb code adds the
contents of two registers together.

The code section labelet op uses the Thumb Angel SWI to exit. The SWI reports an
exception reason, specified in r1, to the debugger. In this case it is used to report normal
application exit. Refer to Chapter ABgel for more information on Angel.

Note

The Thumb Angel semihosting SWI is, by default, a different number from the ARM
semihosting SWI (OxAB rather than 0x123456).

7-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

Example 7-1
AREA AddReg, CODE, READONLY
; Nanme this block of code.
ENTRY ; Mark first instruction to call.
mai n
ADR r2, ThunbProg + 1 ; CGenerate branch target address
; and set bit 0, hence arrive
at target in Thunb state.
BX r2 Branch exchange to ThunbPr og.
CCDE16 ; Subsequent instructions
;are Thunb.
ThunbPr og
MOV r2, #2 Load r2 with val ue 2.
MOV r3, #3 ; Load r3 with value 3.
ADD r2, r2, r3 r2 =r2 +r3
stop MOV r0, #0x18 ; angel _SWreason_Report Exception
LDR r1, =0x20026 ; ADP_St opped_ApplicationExit
SW 0xAB ; Angel semi hosting Thunb SW
END ; Mark end of this file.

Building the example

To build and execute the example:

1

2
3
4,
5

o

Enter the code using any text editor and save the file asaddr eg. s.
Typeasm -g addr eg. s at the command prompt to assemble the sourcefile.
Typearnl i nk addreg. o -o addreg tolink thefile.

Typearmsd addr eg to load the module into the command-line debugger

Typebreak @tart atthearmsd command prompt to set a breakpoint on the
label start.

Type go to execute the program.

When the breakpoint is hit, type st ep to single step through the rest of the
program. Typer eg to display the registers after each step and watch the processor
enter Thumb state. Thisis denoted by the T in the Current Program Status
Register (cpsr) changing from alowercase "t" to an uppercase " T".

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-7

Interworking ARM and Thumb

7.2.2

Implementing interworking assembly language subroutines

To implement a simple subroutine call in assembly language you must:
. store the return address in the link register
. branch to the address of the required subroutine.

In the case of non-interworking subroutine calls, you can carry out both operations in a
singleBL instruction.

In the interworking case, where the subroutine is coded for the other state, you must
allow for state changes both when calling the subroutine, and when returning from the
subroutine.

To call the subroutine and change the processor stateB¥dasruction as described
in The Branch Exchange instruction on page 7-4.

Unlike theBL instruction,BX does not store the return address in the link register. You
must ensure that the link register is loaded with the return address before youBXse the
instruction. If the call is from Thumb code to ARM code you must also set bit O in the
link register to ensure that the processor executes in Thumb state when the subroutine
returns.

Calling an ARM subroutine from Thumb

The simplest way to carry out a Thumb-to-ARM interworking subroutine callgs to
to an intermediate Thumb code segment that execut&Xthstruction. TheBL
instruction loads the link register immediately beforeBKénstruction is executed.

In addition, the Thumb instruction set versiorBbfsets bit 0 when it loads the link
register with the return address. When a Thumb-to-ARM interworking subroutine call
returns using 8X | r instruction, it causes the required state change to occur
automatically.

If you always use the same register to store the address of the ARM subroutine that is
being called from Thumb, this segment can be used to send an interworking call to any
ARM subroutine. The _cal | _vi a_r 4 procedure in Example 7-2 demonstrates this
technique.

Note

You must use &BX | r instruction at the end of the ARM subroutine to return to the
caller. You cannot use thV pc, | r instruction to return in this situation because it
does not cause the required change of state.

7-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

If you do not use aBL instruction to call the BX instruction then you must ensure that the
link register is updated and that bit O is set, either by the calling Thumb routine or by
the called ARM routine.

Calling a Thumb subroutine from ARM

When carrying out an ARM-to-Thumb interworking subroutine call you do not need to
set bit O of the link register because the routineis returning to ARM state. In this case,
you can store the return address by copying the program counter into the link register
withaMoV | r, pc instruction immediately before the BX instruction.

Remember that the address operand to the BX instruction that calls the Thumb
subroutine must have bit 0 set so that the processor executes in Thumb state on arrival.

Aswith Thumb-to-ARM interworking subroutine calls, you must use a BX instruction
to return.
Interworking subroutine call examples

Example 7-2 on page 7-10 has an ARM code header and a Thumb code main routine.
The program sets up two parameters (r0 and r1), and makes an interworking call to an
ARM subroutine that adds the two parameters together and returns.

To build the example:

1. Typeasm-g ar nadd. s at the system command prompt to assemble the module.
2. Typearmink armadd. o -o armadd tolink the object file.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-9

Interworking ARM and Thumb

Example 7-2

AREA Ar mAdd, CODE, READONLY
; nane this block of code.

ENTRY ; Mark 1st instruction to call.
; Assenbler starts in ARM node.

mai n

ADR r2, ThunbProg + 1
; CGenerate branch target address and set bit O,
; hence arrive at target in Thunb state.

BX r2 ; Branch exchange to ThunbProg.
CODE16 ; Subsequent instructions are Thunb.
ThumbPr og
MOV r0, #2 ; Load rO with val ue 2.
MV rl, #3 ; Load r1 with value 3.
ADR r4, ARMSubroutine ; CGenerate branch target address, leaving bit 0
; clear in order to arrive in ARM state.
BL __call viar4 ; Branch and link to Thunb code segment that will

; carry out the BX to the ARM subrouti ne.
; The BL causes bit 0 of Ir to be set.

St op ; Term nate execution.

MOV r0, #0x18 ; angel _SWreason_Report Exception

LDR r1, =0x20026 ; ADP_St opped_Appl i cati onExi t

SW 0xAB ; Angel semi hosting Thunmb SW
_call_via_r4 ; This Thunmb code segrment will

; BX to the address contained in r4.

BX r4 ; Branch exchange.

CODE32 ; Subsequent instructions are ARM
ARNMSubr out i ne

ADD r0, r0, r1 ; Add the nunbers together

BX LR ; and return to Thunb call er

; (bit 0 of LR set by Thunb BL).

END ; Mark end of this file.

7-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

Example 7-3isamodified form of Example 7-2. The main routineisnow in ARM code
and the subroutine is in Thumb code. Notice that the call sequenceis now a MOV
instruction followed by a BX instruction.

Example 7-3

AREA ThurbAdd, CODE, READONLY;

ENTRY

mai n
MOV rO,
MOV r1,

ADR 14,

MV |1,
BX r4

St op
MOV r O,
LDR r1,

#2
#3

ThunmbSub + 1

pcC

#0x18
=0x20026

SW 0x123456

CODEL6
ThunbSub

ADD r 0,

BX LR

END

ro, rl

Nane this bl ock of code.

Mark 1st instruction to call.
Assenbl er starts in ARM node.

Load rO with val ue 2.
Load r1 with val ue 3.

Generate branch target address and set bit O,
hence arrive at target in Thunmb state.

Store the return address.

Branch exchange to subroutine ThunmbSub.

Term nate execution.

angel _SWreason_Report Exception
ADP_St opped_Appl i cati onExi t

Angel semi hosting ARM SW
Subsequent instructions are Thunb.

Add the nunbers together
and return to ARMcal l er.

Mark end of this file.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-11

Interworking ARM and Thumb

7.2.3

Data in Thumb code areas

You must use the DATA directive when you define data within a Thumb code area.

When the linker relocates alabel in a Thumb code area, it assumes that the |abel
represents the address of a Thumb code routine. Consequently it sets bit O of the label
so that the processor is switched to Thumb stateif the routine is called with a BX
instruction.

The linker cannot distinguish between code and data within a code area. If the |abel
represents a data item, rather than an address, the linker adds 1 to the value of the data
item.

The DATA directive marks alabel as pointing to data within a code area and the linker
does not add 1 to its value. For example:

AREA code, CODE
Thunb_fn -
MV pc, Ir
Thunb_Data DATA

DCB 1, 3, 4,

Note that the DATA directive must be on the same line as the symbol. Refer to the
description of the DATA directive in the ARM Software Devel opment Toolkit Reference
Guide for more information.

7-12

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

7.3 C and C++ interworking and veneers

You can freely mix C and C++ code compiled for ARM and Thumb, but small code
segments called veneer s are needed between the ARM and Thumb code to carry out
state changes. The ARM linker generates these interworking veneers when it detects
interworking calls.

7.3.1 Specifying APCS options

By default, the APCS options for the ARM assembler and compilers are the same for
ARM and Thumb. The default options are:

/ nof p/ noswst ackcheck

If your code is compiled with other options, for example with software stack checking
enabled (/ swst ackcheck), then you must ensure that all ARM modules and Thumb
modules are compiled to the same standard if they are to be interworked.

If you do not do this, the linker informs you where the incompatibilities occurred by
generating warning messages of the form:

Attribute conflict between AREA object(area) and inmage code.
(attribute difference = {NO_SW STACK CHECK})

Refer to Chapter 6 Using the Procedure Call Sandardsfor moreinformation on APCS.

Refer to the ARM Software Devel opment Toolkit Reference Guidefor moreinformation
on command-line options to the assembler and compilers.

7.3.2 Compiling code for Interworking

The-apcs /i nterwork compiler option enablesal ARM and Thumb C and C++
compilersto compile modules containing routines that can be called by routines
compiled for the other processor state:

tcc -apcs /interwork
arncc -apcs /interwork
tcpp -apcs /interwork
arncpp -apcs /interwork

Modulesthat are compiled for interworking generate slightly (typically 2%) larger code
for Thumb and marginally larger code for ARM.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-13

Interworking ARM and Thumb

For aleaf function, (that is, afunction whose body contains no function calls), the only
change in the code generated by the compiler istoreplaceMOV pc, | r withBX | r . For
non-leaf functions, the Thumb compiler must replace, for example, the single
instruction:

POP {r4,r5, pc}
with the sequence:

POP {r4,r5}
POP {r3}
BX r3

This has acorrespondingly small effect on performance. It is not necessary to compile
all source modulesfor interworking, only those that contain subroutines called through
interworking calls.

In addition, the- apcs /i nt er wor k option sets the interwork attribute for the code
areainto which the modules are compiled. The linker detects this attribute and inserts
the appropriate veneer. The sizes of the veneers are:

. Eight bytes for each called routine for calls from Thumb to ARM. This consists
of:

. a ThumbBX instruction
. a halfword of padding for alignment
. an ARM branch instruction.

. Twelve bytes for each called routine for calls from ARM to Thumb. This consists
of:
. an ARMLDR instruction to get the address of the function being called
. an ARMBX instruction to execute the call
. a word to hold the address of the function.

Note

ARM code compiled for interworking cannot be used on ARM processors that are not
Thumb-capable because these processors do not implemBHRtitiséruction.

Use thearnl i nk -i nfo total option to find the amount of space taken by the
veneers. The interworking veneers are included ie#¢het dat a column of the
object totals. See Figure 7-1 on page 7-15 for an example.

7-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

hj ect totals
Li brary totals
Gand totals

code inline inline ’
size data strings
32 0 92
6924 1516 532
6956 1516 624

Debug Area Optimzation Statistics

I nput debug total (excluding | ow | evel debug a

Qut put debug total
% reduction

const’
dat a
20

24

reas)

RW

dat a
0
264
264

O-lnit

dat a

0
1104
1104

2224 (2.17Kb)
2224 (2.17Kb)
0. 00%

debug
dat a

0
2224
2224

Figure 7-1 Total code sizes

Usethearnlink -i nf o si ze option to see more detail. The space taken by the
veneersis displayed as an <anon> row entry at the top of the table. See Figure 7-2 for

an example.
object file code inline inline 'const’ RW O-Init debug
si ze data strings dat a dat a dat a dat a
armo 8 0 36 0 0 0 0
t hunb. o 24 0 56 0 0 0 0
<anon> 0 0 0 20 0 0 0

Figure 7-2 Interworking veneer sizes

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

7-15

Interworking ARM and Thumb

Simple C interworking example

The two modulesin Example 7-4 can be built to produce an application where mai n()
isaThumb routine that carries out an interworking call to an ARM subroutine. The
subroutine call itself makes an interworking call to the Thumb library routine,

printf().

Example 7-4

/**********************

* thumb. ¢ *
**********************/

#i ncl ude <stdi o. h>

extern void arm function(void);
int main(void)

{
printf("Hello from Thunb World\n");
arm function();
printf("And goodbye from Thunb World\n");
return (0);
}

/**********************

* armc *
**********************/

#i ncl ude <stdio. h>
voi d arm function(void)

{
}

printf("Hello and Goodbye from ARM worl d\n");

To compile and link these modules:

1

Typetcc -c -apcs /interwork -o thunb.o thunb. c at the system
prompt to compile the Thumb code for interworking.

Typearncc -c -apcs /interwork -o armo arm c tocompilethe ARM
code for interworking.
Typearm i nk -0 hello thunb. otolink the object files.

Alternatively, typear ml i nk -info size thunb. o arm o toview thesizeof
the interworking veneersin the <anon> column (see Figure 7-2 on page 7-15).

7-16

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

7.3.3 Simple rules for interworking
Thefollowing rules apply to interworking within an application:

. You must use theapcs /i nt erwor k command-line option to compile any C
or C++ modules that contain functions that are called by interworking calls.

. You may compile modules that are never called by an interworking call without
the- apcs /i nterwor k option. These modules may make interworking calls,
but may not be called by interworking calls.

. Never make indirect calls, such as calls using function pointers, to
non-interworking code from code in the other state.

. By default, the linker selects the appropriate interworking ANSI C or C++ library
based on the area definitions in the code generated by the compilers.
If you specify a library explicitly on the linker command line you must ensure that
it is an appropriate interworking library. The library should match the state in
which themai n() function executes. Refer fthe C and C++ interworking
libraries on page 7-19 for further details.

These rules are summarized in Figure 7-3 on page 7-18.

—— Note

You must take great care when using function pointers in applications that contain bott
ARM and Thumb code. The linker cannot generate warnings about illegal indirect calls,
and the code will fail at runtime.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-17

Interworking ARM and Thumb

Non-interworking < No calls possible » | Non-interworking

Thumb code ARM code

Non-interworking to
Thumb-Thumb calls interworking ARM-ARM calls

permitted ARM/Thumb calls permitted

SN\

Interworking < ARM/Thumb calls > Interworking
Thumb code permitted ARM code

Figure 7-3 Interworking using direct calls

7.3.4 Detecting interworking calls

Thelinker generatesan error if it detectsadirect ARM-Thumb interworking call where
the called routine is not compiled for interworking. You must recompile the called
routine for interworking.

For example, Figure 7-4 shows the errors that are produced if the ARM routine in
Example 7-2 on page 7-10 is compiled without the - apcs /i nt er wor k option.

Error: Unsupported call from Thunb code to ARM synbol _printf in thunb. o(C$$code).
Error: Unsupported call from Thunb code to ARM synbol arm function in

t hurmb. o(C$$code) .

Error: Unsupported call from Thunb code to ARM synmbol _printf in thunb. o(C$$code).

Figure 7-4 Interworking errors

Thesetypes of errorsindicate that an ARM-to-Thumb or Thumb-to-ARM interworking
call has been detected from the object module object to the routine symbol, but the
called routine has not been compiled for interworking. You must recompile the module
that contains the symbol and specify - apcs /i nt er wor k.

7-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

7.3.5 Using two copies of the same function

You may wishto includetwo functionswith the same name, one compiled for ARM and
the other for Thumb.

Duplicate definitions can be useful, for example, if you have a speed-critical routinein
asystem with 16-bit and 32-bit memory where the overhead of the interworking veneer
would degrade the performance too much.

Thelinker allows duplicate definitions provided that each definition is of a different
type. That is, one definition defines a Thumb routine and the other defines an ARM
routine. The linker generates a warning message if there is a duplicate definition of a
symbol:

Both ARM & Thunb versions of synbol present in inage

Thisisawarning to advise you in case you accidentally include two copies of the same
routine. If that is what you intended, you can ignore the warning.

Note

When both versions of an identically-named routine are present in an image, and acall
is made through a function pointer, it is not possible to determine which version of the
routinewill be called. Therefore, if you are using function pointersto call such routines,
you must compile both routines, and the routine making the call, for interworking.

7.3.6 The C and C++ interworking libraries

Two variants of the Thumb C libraries are provided with the Toolkit:
. compiled for interworking (armlib_i.16l and armlib_i.16b)
. not compiled for interworking (armlib.161 and armlib.16b).
Use the non-interworking set only if your application consists solely of Thumb code.

Only a non-interworking variant of the ARM C library is provided (armlib.32| and
armlib.32b). Interworking versions of the ARM library are not supplied. They are
typically of little use, because only ARM routines are likely to call ARM library
routines.

For example, it is unlikely that you will want a Thumb routine running from 16-bit
memory to use an ARM library routine that takes up more memory and takes longer tc
execute than the Thumb library equivalent. If you want to build interworking versions
of the ARM library, refer tcARM Software Development Toolkit Reference Guide for

details of how to rebuild the libraries.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-19

Interworking ARM and Thumb

Remember that if interworking takes place within an application, you must use an
interworking main library. See Smple rules for interworking on page 7-17.

If you need to select the ARM or Thumb version of astandard C library routine
explicitly, or if you want to include both ARM and Thumb versions of aroutine, you
can force the inclusion of specific modules from alibrary.

To forceinclusion of alibrary module, put the name of the modulein parentheses after
the library name. Ensure that there are no spaces between the library name and the
opening parenthesis. You can specify more than one module by separating module
names with a comma. Ensure that there are no spaces in the list of module names.

Examples

To force the use of the ARM version of st r| en() and take all other routines from the
interworking Thumb library enter:

armink -o prog thunb.o armo armib. 32l (strlen.o) armib_i.16l

To force the inclusion of both ARM and Thumb versions of all functions starting with
str and take all other routines from the interworking Thumb library enter:

armink -o prog thunb.o armo armib. 16l (str*) armib. 32l (str*)
armib_i. 16l

Note

On UNIX platforms, depending on the command shell you are using, you may need to
put the characters (,) and * in quotesin order to enter them on the command line.

7-20

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

7.4 Assembly language interworking using veneers

The assembly language ARM-Thumb interworking method described in Basic
assembly language interworking on page 7-4 carried out all the necessary intermediate
processing. Therewas no need for thelinker to insert interworking veneers, and no need
to set the | NTERWORK attribute that the linker uses to decide whether to add an
interworking veneer.

This section describes how you can make use of interworking veneers to:
. interwork between assembly language modules
. interwork between assembly language and C or C++ modules.

74.1 Assembly-only interworking using veneers

You can write assembly language ARM-Thumb interworking code to make use of
interworking veneers generated by the linker. To do this, you write:

. the caller routine just as any non-interworking routine, usilg iastruction to
make the call

. the callee routine usinggx instruction to return, and set theTERWORK attribute
for the area in which it is located.

Example of assembly language interworking using veneers

Example 7-5 sets registers r0 to r2 to the values 1, 2, and 3 respectively. Registers r0
and r2 are set by the ARM code. Register rl is set by the Thumb code. Note that:

. the | NTERWORK attribute is set in the area definitiontdfunb. s
. aBX | r instruction is used to return, instead of the ust&l pc, I r.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-21

Interworking ARM and Thumb

Example 7-5

* k k k%
1

, arms

* k k k%
1

AREA
I MPORT ThunbPr og
ENTRY

ARMPr 0g

MOV 10, #1
BL ThunbProg
MOV 12, #3

MOV r0Q, #0x18
LDR r1, =0x20026
SW O0xAB

END

Ar m CODE, READONLY ; Nanme this bl ock of code.
; Mark 1st instruction to call.

; Set r0O to show in ARM code.

; Call Thunb subroutine.

; Set r2 to show returned to ARM

;. Term nat e execution.

; angel _SWreason_Report Excepti on
; ADP_Stopped_ApplicationExit
; Angel semi hosting Thunb SW

*kkkkkk*k
’

; thunb.s

*kkkkKkk

AREA Thunb, CODE, READONLY, | NTERWORK

; Nanme this block of code.

CODE16 ; Subsequent instructions are Thunb.
EXPORT ThunbPr og
ThumbPr og
MOV rl, #2 ; Set rl to show reached Thumb code.
BX Ir ; Return to ARM subrouti ne.
END ; Mark end of this file.
Follow these stepsto build and link the modul es, and examine theinterworking veneers:
1. Typearmasm arm s to assemble the ARM code.
2 Typearmasm - 16 t hunb. s to assemble the Thumb code.
3 Typearm ink armo thunmb.o -o count tolink the two object files.
4. Typearnsd count toload the code into the debugger.
5 Typelist 0x8000 at the armsd command prompt to list the code. Figure 7-5
shows an example.
7-22 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

armsd: |ist 0x8000
Arm
+0000 0x00008000: 0xe3a00001 nov r0, #1
+0004 0x00008004: 0xeb000005 bl 0x8020 ; (ThunmbProg + 0x4)
+0008 0x00008008: 0xe3a02003 nov r2, #3
+000c 0x0000800c: 0xe3a00018 nov r0, #0x18
+0010 0x00008010: 0xe59f 1000 | dr r1, 0x00008018 ; = #0x00020026
+0014 0x00008014: Oxef0000ab ... SWi Oxab
+0018 0x00008018: 0x00020026 &.. dcd 0x00020026 &..
ThumbPr og
+0000 0x0000801c: 0x2102 .! nmov rl, #2
+0002 0x0000801e: 0x4770 pG bx rl4
+0004 0x00008020: 0xe59fc000 ... | dr r12, 0x00008028
;= #ThunbPr og+0x1
+0008 0x00008024: Oxel2fffic . bx rl2
+000c 0x00008028: 0x0000801d andeq r8,r0,r13,1sl r0
_edata
+0000 0x0000802c: 0xe800e800 st nda r0,{r11, r13-pc}

Figure 7-5 Example veneer

7.4.2 C, C++, and

You can see that the linker has added the required ARM-to-Thumb interworking
veneer. Thisis contained in locations 0x8020 to 0x8028. L ocation 0x8028
contains the address of the routine being branch-exchanged to, with bit 0 set.

Note
The addresses may vary depending on the version of the toolkit you are using.

assembly language interworking using veneers

C and C++ code compiled to run in one state can call assembly language code designed
to run in the other state, and vice versa. To do this, write the caller routine as any
non-interworking routine and, if calling from assembly language, use a BL instruction
to make the call. Then:

. if the callee routine is in C, compile it usingpcs /i nt erwor k

. if the callee routine is in assembly language, set FTERWORK attribute and
return usingsXx | r.

Note

Any assembly language code used in this manner must conform to the APCS where

appropriate.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-23

Interworking ARM and Thumb

Example 7-6

/**********************

* thumb. ¢ *
**********************/

#i ncl ude <stdi o. h>

extern int armfunction(int);
int main(void)

{
int i = 1;
printf("i = 9%\n", i);
printf("And nowi = %\n", armfunction(i));
return (0);
}
; * k k k%
; arms

*kkk*k

AREA Arm CODE, READONLY, | NTERWORK
; Name this block of code.
EXPORT arm function
arm function

ADD r0,ro, #4 ; Add 4 to first paraneter.
BX LR . Return
END

Follow these steps to build and link the modules:
1. Typetcc -c thunb. ctocompilethethumb code.
2. Typearmasm ar m s to assemble the arm code.

3. Typearmlink armo thunb.o -o add tolink the two object files.

7-24 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

7.5 ARM-Thumb interworking with the ARM Project Manager

The ARM Project Manager (see Chapter 2 ARM Project Manager) uses templatesto
define the tools and command-line optionsthat are used to build aproject. All templates
supplied with APM that build executable images can support interworking.

The Thumb-ARM Interworking Image template specifically allows an interworking
application to be created. It assumesthat ar masm - 16 isused for all assembly language
sources, and that the assembler directives CODE16 and CODE32 are used to switch
between Thumb and ARM instruction sets. C and C++ sources are compiled using the
appropriate ARM or Thumb compiler.

Additionally, projects created from either the ARM Executable Image template or
Thumb Executable Image template may be easily modified to support interworking
with Thumb or ARM code respectively. For example, an ARM-only application can
easily be made into an ARM-mostly project and a Thumb-only project can easily be
made into a Thumb-mostly project.

A Thumb application written only in C that must implement exception handlerswill, by
architectural necessity, have these in ARM assembly code and should probably be
created using the Thumb Executable Image templ ate.

7.5.1 Choosing atemplate
Follow these steps to choose a template:
1. Within APM select New from the File menu.

2. Inthe New dialog select Project and click OK. The New Project dialog is
displayed.

3. Select atemplate from the Type box. A descriptions of the template is displayed
in the field Template description when you make a selection.

For interworking it is best to choose the Thumb-ARM interworking image or the
Thumb-ARM C++ Interworking image and follow the instructionsin Using the
Thumb-ARM interworking image project on page 7-26.

Refer to Modifying a project to support interworking on page 7-27 for
information on converting an existing Thumb or ARM project to an interworking
project.

4. Enter aProject Nameand aDirectory in which to create it and click OK. An
empty project based on the template is created in the directory you specified.
The project tree view is displayed:
. press * on the numeric keypad to expand all branches

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-25

Interworking ARM and Thumb

. press + to expand the selected branch
. press - to collapse the selected branch.

Alternatively, click the mouse on the plus/minus icons in the tree view. Double
clicking on an item toggles expansion.

7.5.2 Using the Thumb-ARM interworking image project

This section describes how to use the Thumb-ARM interworking image project to start
a new interworking project.

Adding files
Follow these steps to add files to the project:

1. Select the appropriate partition before adding the file:

. If the file is C or C++ source that should be compiled to Thumb code, select
the Thumb-Sources partition and then sedatd filesto Thumb-Sour ces
from theProject menu.

. If the file is C or C++ source that is to be compiled to ARM code, select the
ARM-Sources partition and then seléatd filesto ARM -Sour ces from
theProject menu.

. If the file is assembly language source, select the ASM-Sources partition
and then selecidd filesto ASM-Sour ces from theProject menu.

The Add Files to Project dialog is displayed.

2. Inthe Add Files to Project dialog, find the directory containing the files to be
added.

3. Select the required file or files and cli®ken. The files are added to the selected
partition.

After adding files you may have to expand branches of the tree to make them visible.
Branches containing subtrees havelautton. If you added assembly language files to
the ASM-Source partition that do not conta®E32 directives perform the steps listed

in Configuring the assembler to read ARM assembly source below.

Configuring the assembler to read ARM assembly source

By default, the interworking templates call the assembler withitB@ption to instruct

the assembler to assemble Thumb code. The templates assume that assembly language
source useSODEL6 andCODE3?2 directives to switch between Thumb and ARM

assembly where required.

7-26 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Interworking ARM and Thumb

If you have ARM assembly language files that do not use CODE32 directives you can
configure the assembl er to avoid changing the assembly language source.

Follow these steps to change the assembler configuration for an individual sourcefile:

1

In the Project View, expand the ASM-Sources partition and select the ARM
assembler source, for example, ar ner _ker| . s

Choose Tool configuration for armer_kerl.s— asm - Set from the Project
menu. The Compiler Configuration dialog is displayed.

Click the Tar get tab and select the ARM radio button in the Initial state group.

Select the Call Standard tab and ensure that the APCS3 radio button is selected
in the APCS3 Qualifiers group.

Click OK to save the configuration.

7.5.3 Modifying a project to support interworking

This section describes how to modify an existing project to support interworking.

Converting an ARM executable image to an ARM-Thumb interworking
project

Follow these steps for each file in the Sources partition that you want to be compiled
with tcc rather than armec:

1.

Select the C file to be compiled into Thumb code from the Sources partition, for
example, f oo. c.

Select Edit variablefor foo.c from the Project menu. The Edit Variables dialog
box is displayed.

Typecc inthe Namefield and t cc in the Value field and click OK.
Configure the Thumb compiler for interworking for thisfile:

a SeecttheCfilefrom step 1.

b. Select Tool Configuration for foo.c - cc - Set from the Proj ect menu. The
Compiler Configuration dialog is displayed.

c. Click the Target tab and ensure that the check box for Arm/Thumb
Interworking in the APCS3 Qualifiers group is selected.
Modify the other APCS3 options if necessary.
Click OK to save the configuration.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-27

Interworking ARM and Thumb

Note

To revert to armcc set the Value from step 3 to an empty string, and perform step 4
clicking Unset. This may remove any other per file options you had set.

Converting a Thumb executable image to a Thumb-ARM interworking
project

Follow these steps for each file in the Sources partition that you want to be compiled
with armcc rather than tcc:

1. SelectaCfileinthe partition Sourcesthat isto be compiled into ARM code, for
example, f oo. c.

2. Select Edit Variablefor foo.c from the Project menu. The Edit Variables dialog
is displayed.

3. Typecc inthe Namefield, and ar ncc in the Valuefield.
4. Configure the ARM compiler for interworking for thisfile:

a Selectthe Cfilefrom step 1.

b. Select Tool Configuration for foo.c - cc - Set fromthe Proj ect menu. The
Compiler Configuration dialog is displayed.

c. Click the Target tab and ensure that the check box for Arm/Thumb
Interworking in the APCS3 Qualifiers group is sel ected.
Modify the other APCS3 optionsif necessary.
Click OK to save the configuration.

Note

Torevert to tce, set the Value from step 3 to an empty string, and perform step 4 clicking
Unset. This may remove any other per file options you had set.

7.5.4 C library usage and the ARM Project Manager
In certain circumstances, you may not require the default ANSI C library, for example,
if you are implementing an RTOS with its own stack and heap management.
Follow these steps to link with your own libraries:
1. Select the project root.
2. Select Tool Configuration for project.apj —armlink — Set from the Proj ect
menu. The Linker Configuration dialog is displayed.
7-28 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

5.

Interworking ARM and Thumb

Click the General tab and ensure that the Search standard libraries check box
is not selected.

Click the Listings tab and add any libraries you want to link with to the Extra
command-line arguments field.

Click OK to save the configuration.

Asdescribed in The C and C++ interworking libraries on page 7-19, you may
sometimes need to force the inclusion of a specific module from a particular library.
Follow these steps to do this when using ARM Project Manager:

1
2.

Select the project root.

Select Tool configuration for project.apj — armlink - Set from the Proj ect
menu. The Linker Configuration dialog is displayed.

Click the Listingstab and enter the library modules that you want to be forcibly
included in the Extra command line arguments field. For example, to force the
inclusion of strcpy() andstrcnp()

c:\arnR50\lib\armib. 32l (strcpy. o)
c:\arnR50\lib\armib. 32l (strcnp. 0)

This can al so be written within quotesto override the normal meaning of spaceas
an argument separator.

Alternatively, you can use a pattern for the name of the modules:
c:\arnR50\lib\armib. 32l (strc*)

Click OK to save the configuration.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 7-29

Interworking ARM and Thumb

7-30 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 8
Mixed Language Programming

This chapter describes how to write mixed C, C++, and ARM assembly language code.
It al so describes how to usethe ARM inline assemblersfrom C and C++. It containsthe
following sections:

. Using theinline assemblers on page 8-2

. Accessing C global variables from assembly code on page 8-15

. Using C header filesfrom C++ on page 8-16

. Calling between C, C++, and ARM assembly language on page 8-18.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-1

Mixed Language Programming

8.1

8.1.1

Using the inline assemblers

Theinline assemblers enable you to use most ARM assembly language instructions
within a C or C++ program. You can use the inline assembler to:

. use features of the target processor that cannot be accessed from C
. achieve more efficient code.

The inline assembler supports very flexible interworking with C and C++. Any register
operand may be an arbitrary C or C++ expression. The inline assembler also expands
complex instructions and optimizes the assembly language code.

Note

Inline assembly language is subject to optimization by the compiler if optimization is
enabled either by default, or with thel or- &2 compiler options.

The armcc and armcpp inline assemblers implement the full ARM instruction set,
including generic coprocessor instructions, halfword instructions and long multiply.
The tcc and tcpp inline assemblers implement the full Thumb instruction set.

The inline assembler is a high-level assembler. Some low-level features that are
available to armasm, such as branching by writing to pc, are not supported.

Invoking the inline assembler

The ARM C compilers support inline assembly language with the mspecifier.

The ARM C++ compilers support thsmsyntax proposed in the Draft C++ Standard,
with the restriction that the string literal must be a single string. For example:

asn("instruction[;instruction]");

Theasmsyntax is supported by the C++ compilers when compiling both C and C++.
Theasmstatement must be inside a C or C++ function. Do not include comments in the
string literal. Anasmstatement can be used anywhere a C or C++ statement is expected.

In addition to theasmsyntax, ARM C++ supports the C compilerasmsyntax when
used with bottasmand__asm

The inline assembler is invoked with the assembler specifier, and is followed by a list
of assembler instructions inside braces. For example:

8-2

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

asm

{

instruction [; instruction]

[instruction]

}

If two instructions are on the same line, you must separate them with a semicolon. If an
instruction is on multiple lines, line continuation must be specified with the backslash
character (\). C or C++ comments may be used anywhere within an inline assembly
language block.

String copying example

Example 8-1 on page 8-4 shows how to use label s and branchesin astring copy routine.
The syntax of labelsinside assembler blocksisthe sameasin C. Function callsthat use
BL from inline assembly language must specify theinput registers, the output registers,
and the corrupted registers. In this example, theinputsto ny_st rcpy arer0 and rl,

there are no outputs, and the default APCS registers {r0-r3, r12, Ir, PSR} are corrupted.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-3

Mixed Language Programming

Example 8-1

#i ncl ude <stdio. h>

void nmy_strcpy(char *src, char *dst)
{
int ch;
asm

{
| oop:
#i fndef __thunmb
/1 ARM ver si on
LDRB ch, [src], #1
STRB ch, [dst], #1

#el se
/1 Thunb version
LDRB ch, [src]
ADD src, #1
STRB ch, [dst]
ADD dst, #1
#endi f
CwP ch, #0
BNE | oop
}
}
int main(void)
{
char a[] = "Hello world!'";
char b[20];
__asm
{
MoV RO, a
MoV R1, b
} BL ny_strcpy, {RO, Ri}, {}, {}
printf("Original string: %\n", a);
printf("Copied string: %\n", b);
return O;
}

8-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

8.1.2 ARM and Thumb instruction sets

The ARM and Thumbinstruction setsare described in the ARM Architectural Reference
Manual. All instruction opcodes and register specifiers may be written in either
lowercase or uppercase.

Operand expressions

Any register or constant operand may be an arbitrary C or C++ expression, so that
variables can be read or written. The expression must be integer assignable, that is, of
typechar, short, orint.Nosign extension is performed on char and short types.
You must perform sign extension explicitly for thesetypes. The compiler may add code
to evaluate these expressions and allocate them to registers.

When an operand i s used as a destination, the expression must be assignable (an lvalue).
When writing codethat uses both physical registersand expressions, you must take care
not to use complex expressionsthat requiretoo many registersto evaluate. The compiler
issues an error message if it detects conflicts during register alocation.

Physical registers

Theinline assemblers alow restricted access to the physical registers. It isillegal to
write to pc. Only Branches using B or BL are allowed. In addition, it isinadvisable to
intermix inline assembler instructionsthat use physical registersand complex C or C++
EXPressions.

The compiler usesr12 (ip) for intermediate results, and rO-r3, r12 (ip), r14 (Ir) for
function calls while evaluating C expressions, so these cannot be used as physical
registers at the same time.

Physical registers, like variables, must be set before they can be read. When physical
registersare used the compiler saves and restores C/C++ variabl esthat may be all ocated
to the same physical register. However, the compiler cannot restore sp, 9, fp, or sbin
calling standards where these registers have a defined role.

Constants

The constant expression specifier (#) isoptional. If it is used, the expression following
it must be constant.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-5

Mixed Language Programming

Instruction expansion

The constant in instructions with aconstant operand is not limited to the values allowed
by the instruction. Instead, such an instruction is translated into a sequence of
instructions with the same effect. For example:

ADD r0, r0O, #1023
may be translated into:

ADD r0, r0, #1024
SUB r0, r0, #1

With the exception of coprocessor instructions, all ARM and Thumb instructions with
a constant operand support instruction expansion.

In addition, the MUL instruction can be expanded into asequence of adds and shiftswhen
the third operand is a constant.

The effect of updating the CPSR by an expanded instructionis:
. Arithmetic instructions set the NZCV flags correctly.

. Logical instructions:
. set the NZ flags correctly
. do not change the V flag
. corrupt the C flag.

. MRS sets the NZCV flags correctly.

Labels

C and C++ labels can be used in inline assembler statements. C and C++ labels can be
branched to by branch instructions only in the form:

B{ cond} | abel

You cannot branch to labels usiBg.

Storage declarations

All storage can be declared in C or C++ and passed to the inline assembler using
variables. Therefore, the storage declarations that are supported by armasm are not
implemented.

8-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

SWI and BL instructions

SWIs and branch link instructions must specify exactly which calling standard is used.
Three optional register lists follow the normal instruction fields. The register lists

specify:

. the registers that are the input parameters

. the registers that are output parameters after return

. the registers that are corrupted by the called function.

For example:

SW { cond} swi _num {input_regs}, {output_regs}, {corrupted_regs}
BL{ cond} function, {input_regs}, {output_regs}, {corrupted_regs}

An omitted list is assumed to be empty, excepBfgmwhich always corrupts r0-r3, ip,
and Ir.

The register lists have the same syntaxfandSTMregister lists. If the NZCV flags
are modified you must specify PSR in the corrupted register list.
8.1.3 Differences between the inline assemblers and armasm

There are a number of differences between the assembly language accepted by the
inline assemblers and the assembly language accepted by the ARM assembler. For tl
inline assemblers:

. You cannot get the address of the current instruction using dot notation (.) or
{PC}.

. TheLDR Rn, =expr essi on pseudo-instruction is not supported. ¥ Rn,
expr essi on instead (this may generate a load from a literal pool).

. Label expressions are not supported.
. The ADR andADRL pseudo-instructions are not supported.

. The& operator cannot be used to denote hexadecimal constants. Os@théx
instead. For example:

__asm {AND x, y, OxF00}
. The notation to specify the actual rotate of an 8-bit constant is not available in

inline assembly language. This means that where an 8-bit shifted constant is usec
the C flag should be regarded as corrupted if the NZCV flags are updated.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-7

Mixed Language Programming

8.14 Restrictions
The following restrictions apply to the use of the inline assemblers:

. Physical registers, such as r0-r3, ip, Ir, and the NZCV flags in the cpsr must be
used with caution. If you use C or C++ expressions, these may be used as
temporary registers and NZCV flags may be corrupted by the compiler when
evaluating the expression.

. LDMandSTMinstructions only allow physical registers to be specified in the
register list.

. TheBX instruction is not implemented.

. You can change processor modes, alter the APCS registers fp, sl, and sb, or alter
the state of coprocessors, but the compiler is unaware of the change. If you change
processor mode, you must not use C or C++ expressions until you change back to
the original mode.

Similarly, if you change the state of an FP coprocessor by executing FP
instructions, you must not use floating-point expressions until the original state
has been restored.

8.1.5 Usage
The following points apply to using inline assembly language:

. Comma is used as a separator in assembly language, so C expressions with the
comma operator must be enclosed in parentheses to distinguish them:

_—asm{ADD x, y, (f(), 2)}

. If you are using physical registers, you must ensure that the compiler does not
corrupt them when evaluating expressions. For example:

asm

{
MOV r0, Xx
ADD y, r0, x / vy /1l (x /1 y) overwites r0
/1 with the result.

}

Because the compiler uses a function call to evaluatey, it:
. corrupts r2, r3, ip, and Ir

. updates the NZCV flags in the cpsr

. alters rO and r1 with the divident and modulo.

8-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

ThevalueinrQislost. You can work around this by using a C variable instead of
ro:

nov var, X
add y, var, x [/ vy

The compiler can detect the corruption in many cases, for example when it needs
atemporary register and the register is already in use:

__asm

{
MV ip, #3
ADDS x, X, #0x12345678 // this instruction is expanded
ORR x, X, ip

}

The compiler usesip as atemporary register when it expands the ADDinstruction,
and corruptsthe value 3inip. An error message is issued.

. Do not use physical registers to address variables, even when it seems obvious
that a specific variable is mapped onto a specific register. If the compiler detects
this it either generates an error message or puts the variable into another registe
to avoid conflicts:

int bad_f(int x) /1 xinrO0
{
__asm
{
ADD r0, r0O, #1 // wongly asserts that x is
/] still inr0
}
return x; /!l x inr0

}

This code returns unaltered. The compiler assumes thand rO are two

different variables, despite the fact thas allocated to rO on both function entry
and function exit. As the assembly language code does not do anything useful, i
is optimized away. The instruction should be written as:

ADD x, Xx, #1
. Do not save and restore physical registers that are used by an inline assembler.

The compiler will do this for you. If physical registers other than cpsr and spsr are
read without being written to, an error message is issued. For example:

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-9

Mixed Language Programming

8.1.6 Examples

int f(int x)
{
__asm
{
STMFD sp!, {r0} // save r0 - illegal:

/1l before wite
ADD r0, x, 1
EOR x, r0, x
LDMFD sp!, {r0} // restore r0O -
}

return Xx;

r ead

not needed.

The following examples demonstrate some of the ways in which you can useinline
assembly language effectively.

Enabling and disabling interrupts

Interrupts are enabled or disabled by reading the cpsr flags and updating bit 7. Example
8-2 on page 8-11 shows how this can be done by using small functions that can be

inlined. These functionswork only in a privileged mode, because the control bits of the
cpsr and spsr cannot be changed while in User mode.

8-10

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Mixed Language Programming

Example 8-2

__inline void enabl e_| RQ voi d)

{ .
int tnp;
__asm
{
MRS t nmp, CPSR
BIC tnp, tnp, #0x80
MSR CPSR c, tnp
}
}
__inline void disable_|I RQ)void)
{ .
int tnp;
__asm
{
MRS t nmp, CPSR
ORR tnp, tnp, #0x80
MSR CPSR c, tnp
}
}
int main(void)
{
di sable_I RY);
enabl e_| RY);
}

Dot product

Example 8-3 on page 8-12 calculates the dot product of two integer arrays. It
demonstrates how inline assembly language can interwork with C or C++ expressions
and data types that are not directly supported by the inline assembler. Theinline
functionm al () isoptimized to asingle SMLAL instruction. Usethe- S-f s compiler
option to view the assembly language code generated by the compiler.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-11

Mixed Language Programming

Example 8-3

#i ncl ude <stdio. h>

#define | 064(a) (((unsigned*) &a)[0]) /1 low 32 bits of a long |ong
#define hi64(a) (((int*) &)[1]) /1 high 32 bits of a long |ong

_inline __int64 mMal(__int64 sum int a, int b)

{
#if !defined(__thunb) && defined(__TARGET FEATURE_MULTI PLY)

__asm
{
SMLAL | 064(sum, hi64(sum, a, b
}
#el se
sum+= (__int64) a * (__int64) b;
#endi f
return sum
}
__int64 dotprod(int *a, int *b, unsigned n)
{
__int64 sum= 0;
do
sum = nml al (sum *a++, *b++);
while (--n 1= 0);
return sum
}
int a[10] ={ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int b[10] ={ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
int main(void)
{
printf("Dotproduct %1d (should be %d)\n", dotprod(a, b, 10), 220);
return O;
}

8-12 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

Long multiplies

You can use theinline assembler to optimize long multiplies on processors that support
MULL instructions. Example 8-4 shows a simple long multiply routinein C.

Example 8-5 shows how you can useinline assembly language to generate optimal code
for the same routine. You can use the inline assembler to write the high word and the
low word of the | ong | ong separately. The compiler optimization routines detect this
case and optimize the code as if the address of r es was not taken.

—— Note
Thisworks only at the highest compiler optimization level (- G2 compiler option).

Theinline assembly language code depends on the word ordering of | ong | ong types,
because it assumes that the low 32 bits are at offset 0.

Example 8-4
Writing the multiply routinein C:

/1 long multiply routine in C
long long smull (int x, int vy)

{
}

return (long long) x * (long long) vy;

The compiler generates the following code:

MOV a3, al
MOV al, a2
MOV a2, a3
SMULL ip, a2, al, a2
MOV al,ip
MV pc, |r

Example 8-5
Writing the same routine using inline assembly language:

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-13

Mixed Language Programming

long long smull (int x, int y)

{
long |l ong res;
_asm{ SMULL ((int*)&res)[0],
return res;

}

((int*)&es)[1],

X,

y}

The compiler generates the following code:

MOV a3, al
SMULL al, a2, a3, a2
MOV pc, |r

8-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Mixed Language Programming

8.2 Accessing C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a
global variable, usethel MPORT directiveto import the global and then load the address
into aregister. You can access the variable with load and store instructions, depending
onitstype.

For unsi gned variables use:

. LDRB/STRB for char

. LDRH/STRH for shor t (LDRB/STRB for Architecture 3)

. LDR/STRfori nt .

Forsi gned variables, use the equivalent signed instruction, sucbR&B andLDRSH.

Small structures of less than eight words can be accessed as a wholeDuismy!
instructions. Individual members of structures can be accessed by a load/store
instruction of the appropriate type. You must know the offset of a member from the start
of the structure in order to access it.

Example 8-6 loads the address of the integer glgbabvar into rl, loads the value
contained in that address into r0, adds 2 to it, then stores the new value back into
gl obvar.

Example 8-6

AREA gl obal s, CODE, READONLY

EXPORT asnsubroutine
I MPORT gl obvar

asmsubrouti ne
LDR r1, =gl obvar ; read address of globvar into
; rl fromliteral pool

LDR r0, [r1]
ADD r0, r0, #2
STR r0, [r1]
MV pc, Ir
END

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-15

Mixed Language Programming

8.3 Using C header files from C++
This section describes how to use C header files from your C++ code. C header files
must be wrapped in ext er n "C" directives before they are called from C++.

8.3.1 Including system C header files

To include standard system C header files, such asst di 0. h, you need do nothing
special. The standard C header files already contain the appropriate ext ern "C"
directives. For example:

/| C++ code

#i ncl ude <stdio. h>

int main()
{
/...
return O;
}

The C++ standard specifies that the functionality of the C header filesis available
through C++ specific header files. Thesefilesareinstalled inc: \ ar r250\ i ncl ude,
together with the standard C header files, and may be referenced in the usual way. For
example:

/1 C++ code

#i ncl ude <cstdi o>

int main()
{
/1
return O;
}

In ARM C++, these headers simply #i ncl ude the C headers.

Note

Both the C and C++ standard header files are available as precompiled headersin the
compilersin-memory file system. Refer to Chapter 2 The ARM Compilersin the ARM
Software Development Toolkit Reference Guide for more information.

8-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

8.3.2 Including your own C header files

To include your own C header files, you must wrap the #i ncl ude directivein an
ext ern "C" statement. You can do thisin two ways:

. When the file igti ncl uded. This is shown in Example 8-7.

. By adding thext er n "C" statement to the header file. This is shown in Example
8-8.

Example 8-7

/1 C++ code

extern "C'{
#i ncl ude "ny-headerl. h"
#i ncl ude "ny-header2. h"

}

int main()

{
/1
return O;

Example 8-8

/* C header file */

#i fdef __cpl uspl us /* Insert start of extern C construct */
extern "C' {
#endi f

/* Body of header file */

#i fdef __cpl uspl us /* Insert end of extern C construct */
} /* The C header file can now be */
#endi f /* included in either C or C++ code. */

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-17

Mixed Language Programming

8.4 Calling between C, C++, and ARM assembly language

This section provides exampl esthat may help youto call C and assembly language code
from C++, and to call C++ codefrom C and assembly language. It also describescalling
conventions and data types.

You can mix calls between C and C++ and assembly language routines provided you
follow the appropriate procedure call standard. For more information on the APCS and
TPCS, see Using the Procedure Call Sandards on page 6-1.

Note

Theinformation in this section isimplementation dependent and may changein future
toolkit releases.

8.4.1 General rules for calling between languages
The following general rules apply to calling between C, C++, and assembly language.

You should not rely on the following C++ implementation details. These
implementation details are subject to change in future releases of ARM C++:

. the way names are mangled

. the way the implicit hi s parameter is passed

. the way virtual functions are called

. the representation of references

. the layout of C++ class types that have base classes or virtual member functions
. the passing of class objects that arephain old data (POD) structures.

The following general rules apply to mixed language programming:
. Use C calling conventions.

. In C++, non-member functions may be declareagaser n "C" to specify that
they have C linkage. In this release of the ARM Software Development Toolkit,
having C linkage means that the symbol defining the function is not mangled. C
linkage can be used to implement a function in one language and call it from
another. Note that functions that are declaseder n "C" cannot be overloaded.

. Assembly language modules must conform to the appropriate ARM or Thumb
Procedure Calls Standard.

The following rules apply to calling C++ functions from C and assembly language:

. To call a global (non-member) C++ function, declakxiter n "C" to give it C
linkage.

8-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

. Member functions (both static and non-static) always have mangled names. You
can determine the mangled symbol by usiagaof - smon the object file that
defines the function. Refer to Chaptefddlkit Utilities in the ARM Software
Development Toolkit Reference Guide for information on decaof.

. C++ inline functions cannot be called from C unless you ensure that the C++
compiler generates an out-of-line copy of the function. For example, taking the
address of the function results in an out-of-line copy.

. Non-static member functions receive the implidit s parameter as a first
argument in r0, or as a second argument in rl if the function returns a non int-like
structure. Static member functions do not receive an imphéis parameter.

8.4.2 C++ specific information

The following applies specifically to C++.

C++ calling conventions
ARM C++ uses the same calling conventions as ARM C with the following exceptions:

. When an object of typst r uct orcl ass is passed to a function and the type has
an explicit copy constructor, the object is passed by reference and the called
function makes a copy.

. Non-static member functions are called with the implibits parameter as the
first argument, or as the second argument if the called function returns a non
int-like st ruct .

C++ datatypes

ARM C++ uses the same data types as ARM C with the following exceptions and
additions:

. C++ objects of typst r uct orcl ass have the same layout as would be expected
from the ARM C compiler if they have no base classes or virtual functions. If such
ast ruct has neither a user-defined copy assignment operator, or a user-definec
destructor, it is @lain old data (POD) structure.

. References are represented as pointers.

. Pointers to data members and pointers to member functions occupy four bytes.
They have the same null pointer representation as normal pointers.

. No distinction is made between pointers to C functions and pointers to C++
(non-member) functions.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-19

Mixed Language Programming

Symbol name mangling

ARM C++ mangles external names of functions and static data members in a manner
similar to that describedin section 7.2c of Ellis, M.A. and Stroustrup, B., The Annotated
C++ Reference Manual (1990). The linker, decaof, and decaxf unmangle symbols.

C names must be declared as ext er n "C" in C++ programs. Thisis done aready for
the ARM ANSI C headers. Refer to Using C header files from C++ on page 8-16 for
more information.

8.4.3 Examples
The following code examples demonstrate how to:
. call assembly language from C
. call C from assembly language
. call C and assembly language functions from C++
. call C++ functions from C and assembly language
. call a non-static, non-virtual C++ member function from C or assembly language
. pass references between C and C++ functions.
The examples assume a no software stack checking and no frame pointer APCS variant.
Example 8-9 shows a C program that uses a call to an assembly language subroutine to
copy one string over the top of another string.
Example 8-9 Calling assembly language from C
#i ncl ude <stdi o. h>
extern void strcopy(char *d, char *s);
int main()
{ char *srcstr = "First string - source ";
char *dststr = "Second string - destination ";
printf("Before copying:\n");
printf(" 9%\n %\n",srcstr,dststr);
strcopy(dststr,srcstr);
printf("After copying:\n");
printf(" 9%\n %\n",srcstr,dststr);
return (0);
}
The ARM assembly language module that implements the string copy subroutine:
8-20 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

EXPORT
st rcopy

LDRB
STRB
cwP
BNE
MoV
END

SCopy, CODE, READONLY

strcopy

r2, [rl],#1 ;
r2, [r0],#1 ;
r2, #0
strcopy

pc,Ir

r0 points to destination string.
rl points to source string.

Load byte and update address.
Store byte and update address.
Check for zero termninator

Keep going if not.

Ret urn.

Example 8-9 islocated in the exanpl es\ asmsubdirectory of your installation
directory asstrtest. c and scopy. s. Follow these steps to build the example:

1. Typearmasm scopy. s a the command line to build the assembly language

source.

2. Typearntc -c strtest. c tobuildthe C source.

3. Typearmink strtest.o scopy.o -0 strtest tolink the object files

4. Typearnsd strtest toloadthefilesinto the command-line debugger, and type
go at the debugger command line to execute the example.

Example 8-10 shows how to call C from assembly language.

Example 8-10 Calling C from assembly language
Define the function in C to be called from the assembly language routine;

int g(int a, int b,

int c, intd inte) {returna+b+c+d+e; }

In assembly language:

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-21

Mixed Language Programming

;int f(int i) { return -g(i, 2*i, 3*i, 4*i, 5%i); }

EXPORT f

AREA f, CODE, READONLY

I MPORT ¢

STR Ir, [sp, #-4]! ; preserve Ir

ADD r1, r0O, rO ; conpute 2*i (2nd param
ADD r2, r1, rO ; compute 3*i (3rd param
ADDr3, rl, r2 ; conpute 5%i

STR r3, [sp, #-4]! ; Bth param on stack

ADD r3, ri, rl ; conpute 4*i (4th param
BL g ; branch to C function
ADD sp, sp, #4 ; renpove 5th param

RSB r0, r0, #0 ; negate result

LDR pc, [sp], #4 ; return

END

Example 8-11 Calling a C function from C++
Declare and call the C function in C++:

struct S { /'l has no base cl asses
/1 or virtual functions
S(int s) : i(s) {}
int i;
b
extern "C' void cfunc(S *); // declare the C function to
/1 be called from C++

int f(){
S s(2); /1 initialize s’
cfunc(&s); /1 call ’cfunc’ so it can change 's’

return s.i * 3;

Define the function in C:

8-22 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

struct S {
int i;
b
void cfunc(struct S *p) { /* the definition of the C */
/* function to be called from C++ */
p->i += 5;

Example 8-12 Calling assembly language from C++
Declare and call the assembly language function in C++:

struct S { /'l has no base cl asses
/1 or virtual functions

S(int s) : i(s) {}

int i;
b
extern "C' void asnfunc(S *); /1 declare the Asm function
/1 to be called
int f() {
S s(2); /1 initialize s’
asnfunc(&s); /1 call "asnfunc’' so it
/1 can change ’'s’
return s.i * 3;
}

Define the function in ARM assembly language:

AREA Asm CODE
EXPORT asnf unc

asnf unc ; the definition of the Asm
LDR r1, [rO] ; function to be called from C++
ADD r1, rl, #5
STR r1, [rO]
MV pc, Ir
END

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-23

Mixed Language Programming

Example 8-13 Calling C++ from C
Define the function to be called in C++:

struct S { /1 has no base cl asses or
/1 virtual functions
S(int s) : i(s) {}
int i;
3
extern "C' void cppfunc(S *p) { /1 Definition of the C++
p->i += 5; // function to be called from
} /!l C. The function is
/1l written in C++, only the
/1 linkage is C
Declare and call the function in C:
struct S {
int i;
b
extern void cppfunc(struct S *p); /* Declaration of the C++ */
/* C++ function to be */
/* fromC */
int f(void) {
struct S s;
s.i = 2; /* initialize 's' */
cppfunc(&s); /* call ’"cppfunc’ so it */
/* can change 's’ */

return s.i * 3;

8-24

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

Example 8-14 Calling a C++ function from assembly language
Define the function to be called in C++:

struct S { /1 has no base cl asses
S(int s) : i(s) {} /1 or virtual functions
int i;
b
extern "C' void cppfunc(S * p) { /1 Definition of the C++
p->i += 5; // function to be called from
} /1 Asm The body is C++, only

/1 the linkage is C

In ARM assembly language, import the name of the C++ function and use a Branch
with link instruction to call it:

AREA Asm CODE
| MPORT cppfunc ; inmport the nane of the C++

; function to be called from Asm
EXPORT f

STMDB sp!,{lr}

MoV ro, #2

STR ro, [sp, #-4]! cinitialize struct

MoV ro, sp ; argument is pointer to struct

BL cppfunc ; call "cppfunc’ so it can change
; the struct

LDR ro, [sp], #4

ADD rO, r0, rO,LSL #1

LDM A sp!, {pc}

END

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-25

Mixed Language Programming

Example 8-15 Calling a C++ member function from C or assembly language

The following code demonstrates how to call a non-static, non-virtual C++ member
function from C or assembly language.

In C++:

struct T {
T(int i) @ t(i) { }
int t;
int f(int i);

}s

int T::f(int i) { returni +1t; } /1 Definition of the C++
// function to be called
/l fromC.

extern "C' int cfunc(T*); /1 declaration of the C
/1 function to be called
[l from C++

int f() {
T t(5); /1 create an object of type T

return cfunc(é&t);

InC:

struct T;

extern int f__1TFi (struct T*, int);
/* the mangl ed nane of the C++ */
/* function to be called */

int cfunc(struct T t) { /* Definition of the C */
/* function to be called from*/
[* G+, */

return 3 * f__1TFi (t, 2); /* like "3 * t->f(2)" */

Or, implementing cf unc() in ARM assembly language:

8-26

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Mixed Language Programming

EXPORT cfunc
AREA cfunc, CODE
IMPORT f__ 1TFi

STMDB sp!,{Ir} ;
MOV rl, #2

BL f__1TFi

ADD r0, r0O, r0, LSL #1 ;
LDM A sp!, {pc}

END

r0 already contains the
obj ect pointer

multiply by 3

Example 8-16 Passing a reference between C and C++ functions

In C++:

extern "C' int cfunc(const int&);

extern "C'" int cppfunc(const int&r) {

return 7 * r;

/! Declaration of the C
/!l function to be called
/] from C++

/!l Definition of the C++
/!l to be called fromC

}
int f() {
int i = 3;
return cfunc(i); /| passes a pointer to 'i’
}
InC:
extern int cppfunc(const int*); /* declaration of the C++ */
/* to be called fromC */
int cfunc(const int* p) { /* definition of the C*/
/* function to be called */
/* from C++ */
int k =*p + 4
return cppfunc(&k);
}

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8-27

Mixed Language Programming

8-28 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 9
Handling Processor Exceptions

This chapter describes how to handle the varioustypes of exception supported by ARM
processors. It contains the following sections:

. Overview on page 9-2
. Entering and leaving an exception on page 9-5

. Installing an exception handler on page 9-9
. SWM handlers on page 9-14
. Interrupt handlers on page 9-23

. Reset handlers on page 9-34

. Undefined instruction handlers on page 9-35

. Prefetch abort handler on page 9-36

. Data abort handler on page 9-37

. Chaining exception handlers on page 9-39

. Handling exceptions on Thumb-capable processors on page 9-41
. System mode on page 9-46.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-1

Handling Processor Exceptions

9.1 Overview

During the normal flow of execution through a program, the program counter increases
sequentially through the address space, with branches to nearby labels or branch and
links to subroutines.

Processor exceptions occur when thisnormal flow of execution isdiverted, to allow the
processor to handl e events generated by internal or external sources. Examples of such
events are:

. externally generated interrupts
. an attempt by the processor to execute an undefined instruction
. accessing privileged operating system functions.

Itis necessary to preserve the previous processor status when handling such exceptions,
so that execution of the program that was running when the exception occurred can
resume when the appropriate exception routine has completed.

Table 9-1 shows the seven different types of exception recognized by ARM processors.

Table 9-1 Exception types

Exception Description

Reset Occurs when the processor reset pin is asserted. This exception isonly
expected to occur for signalling power-up, or for resetting asif the
processor has just powered up. A soft reset can be done by branching
to the reset vector (0x0000).

Undefined Instruction Occurs if neither the processor, or any attached coprocessor,
recognizes the currently executing instruction.

Software I nterrupt Thisis a user-defined synchronous interrupt instruction that allows a
(SwWi) program running in user mode, for example, to request privileged
operations that run in supervisor mode, such as an RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an instruction that has
prefetched from an illegal address, that is, an address that the memory
management subsystem has determined isinaccessible to the processor
in its current mode.

Data Abort Occurswhen adatatransfer instruction attemptsto load or store data at
anillegal address.
IRQ Occurs when the processor external interrupt request pin is asserted

(LOW) and the bit in the CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pinis
asserted (LOW) and the F bit in the CPSR is clear.

9-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.11 The vector table

Processor exception handling is controlled by avector table. The vector tableis a
reserved area of 32 bytes, usually at the bottom of the memory map. It has one word of
space alocated to each exception type, and one word that is currently reserved.

Thisis not enough space to contain the full code for a handler, so the vector entry for
each exception type typically contains a branch instruction or load pc instruction to
continue execution with the appropriate handler.

9.1.2 Use of modes and registers by exceptions

Typically, an application runsin user mode, but servicing exceptionsrequires privileged
(that is, non-user mode) operation. An exception changes the processor mode, and this
in turn means that each exception handler has access to a certain subset of the banked
registers.

. its own r13 orStack Pointer (sp_mode)

. its own r14 orLink Register (Ir_mode)

. its own Saved Program Satus Register (spsr mode)
and, in the case of a FIQ, five more general purpose registers (r8_FIQ to r12_FIQ).

Each exception handler must ensure that other registers are restored to their original
contents upon exit. You can do this by saving the contents of any registers the handle
needs to use onto its stack and restoring them before returning. If you are using Ange
or ARMulator, the required stacks are set up for you. Otherwise, you must set them ug
yourself. Refer to Chapter M¥iting Code for ROM for more information.

Note

As supplied, the assembler daows predeclare symbolic register names of the form
regi st er_node. To use this form, you must declare the appropriate symbolic names
with theRN assembler directive. For example, FI Q RN r 14 declares the symbolic
register namér _FI Qfor r14. Refer to thé&RM Software Development Tool kit

Reference Guide for more information on theN directive.

9.1.3 Exception priorities

When several exceptions occur simultaneously, they are serviced in a fixed order of
priority. Each exception is handled in turn before execution of the user program
continues. It is not possible for all exceptions to occur concurrently. For example, the
undefined instruction and SWI exceptions are mutually exclusive because they are botl
triggered by executing an instruction.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-3

Handling Processor Exceptions

Table 9-2 shows the exceptions, their corresponding processor modes and their

handling priorities.

Because the Data Abort exception has ahigher priority that the FIQ exception, the Data
Abort is actualy registered before the FIQ is handled. The Data Abort handler is
entered, but control is then passed immediately to the FIQ handler. When the FIQ has
been handled, control returns to the Data Abort Handler. This means that the data
transfer error does not escape detection asit would if the FIQ were handled first.

Table 9-2

Vector Address Exception Type Exception Mode Priority (1=High, 6=Low)
0x0 Reset supervisor (SVC) 1

0x4 Undefined Instruction undef 6

0x8 Software Interrupt (SWI) supervisor (SVC) 6

0xC Prefetch Abort abort 5

0x10 Data Abort abort 2

0x14 Reserved Not Applicable Not Applicable

0x18 Interrupt (IRQ) interrupt (irg) 4

ox1C Fast Interrupt (FIQ) fast interrupt (fiq) 3

9-4

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Handling Processor Exceptions

9.2 Entering and leaving an exception

This section describes the processor response to an exception, and how to return to the
place where an exception occurred after the exception has been handled. The method
for returning is different depending on the exception type.

9.21 The processor response to an exception

When an exception is generated, the processor takes the following actions:

1

Copies the Current Program Status Register (CPSR) into the Saved Program
Satus Register (SPSR) for the mode in which the exception is to be handled.

This saves the current mode, interrupt mask, and condition flags.

Changes the appropriate CPSR maode bitsin order to:

. Change to the appropriate mode, and map in the appropriate banked
registers for that mode.

. Disable interrupts. IRQs are disabled when any exception occurs. FIQs are
disabled when a FIQ occurs, and on reset.

Sets Irmode to the return address, as definedle return address and return
instruction on page 9-6.

Sets the program counter to the vector address for the exception. This forces a
branch to the appropriate exception handler.

Note

If the application is running on a Thumb-capable processor, the processor response i
slightly different. Seéiandling exceptions on Thumb-capable processorson page 9-41
for more details.

9.2.2 Returning from an exception handler

The method used to return from an exception depends on whether the exception handls
uses stack operations or not.

In both cases, to return execution to the place where the exception occurred an exceptic
handler must:

restore the CPSR from spetode
restore the program counter using the return address storechaulér

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-5

Handling Processor Exceptions

9.2.3

For a simple return that does not require the destination mode registers to be restored
from the stack, the exception handler carries out these two operations by performing a
data processing instruction with:

. the S flag set

. the program counter as the destination register.

The return instruction required depends on the type of exception. Refer to the following
section for instructions on how to return from each exception type.

Note

You do not need to return from the reset handler because the reset handler should
execute your main code directly.

If the exception handler entry code uses the stack to store registers that must be
preserved while it handles the exception, it must return using a load multiple instruction
with the ~ qualifier. For example, if an exception handler stores:

. all the work registers in use when the handler is invoked

. the link register, modified to produce the same effect as the data processing
instructions described below.

onto a full descending stack, it can return in one instruction using:
LDMFD sp!, {r0-r12, pc}”*

The » qualifier specifies that the CPSR is restored from the SPSR. It must be used only
from a privileged mode. Refer toplementing stackswith LDM and STM on page 5-36
for more general information on stack operations.

The return address and return instruction

The actual location pointed to by the program counter when an exception is taken
depends on the exception type. Because of the way in which the ARM processor fetches
instructions, when an exception is taken the program counter may or may not be
updated to the next instruction to be fetched. This means that the return address may not
necessarily be the next instruction pointed to by the program counter.

ARM processors use a pipeline with at least a fetch, a decode, and an execute stage.
There is one instruction in each stage of the pipeline at any time. The program counter
points to the instruction currently beifejched. Because each instruction is one word
long, the instruction being decoded is at address (pc — 4) and the instruction being
executed is at (pc — 8).

9-6

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

Note

See Thereturn address on page 9-43 for detail s of the return address on Thumb-capable
processors when an exception occurs in Thumb state.

Returning from SWI and Undefined instruction

The SWI and Undefined instruction exceptions are generated by the instruction itself,
so the program counter is not updated when the exception is taken. Therefore, storing
(pc — 4) in Ir mode makes Irmode point to the next instruction to be executed.
Restoring the program counter from the Ir with:

MOVS pc, Ir

returns control from the handler.

The handler entry and exit code to stack the return address and pop it on return is:
STMFD sp!,{reglist,Ir}

LDMFD sp!,{reglist, pc}”

Returning from FIQ and IRQ

After executing each instruction, the processor checks to see whether the interrupt pin
are LOW and whether the interrupt disable bits in the CPSR are clear. As a result, IRC
or FIQ exceptions are generated only after the program counter has been updated.
Storing (pc — 4) in Irmode causes Irmode to point two instructions beyond where the
exception occurred. When the handler has finished, execution must continue from the
instruction prior to the one pointed to byriiode. The address to continue from is one
word (four bytes) less than that inrinode, so the return instruction is:

SUBS pc, lr, #4
The handler entry and exit code to stack the return address and pop it on return is:

SUB lr,lr, #4
STMFD sp!,{reglist,Ir}

LDMFD sp!,{reglist, pc}”

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-7

Handling Processor Exceptions

Returning from prefetch abort

If the processor attempts to fetch an instruction from an illegal address, the instruction
isflagged asinvalid. Instructions already in the pipeline continue to execute until the
invalid instruction is reached, at which point a prefetch abort is generated.

The exception handler invokes the MMU to load the appropriate virtual memory
locations into physical memory. It must then return to the address that caused the
exception and reload the instruction. The instruction should now load and execute
correctly.

Because the program counter is not updated at the time the prefetch abort isissued,
Ir_ABT points to the instruction following the one that caused the exception. The
handler must return to Ir_ABT — 4 with:

SUBS pc,lr, #4
The handler entry and exit code to stack the return address and pop it on return is:

SUB lr,lr, #4
STMFD sp!,{reglist,Ir}

LDMFD sp!,{reglist, pc}”

Returning from data abort

When a load or store instruction tries to access memory, the program counter has been
updated. A stored value of (pc —4) in Ir_ABT points to the second instruction beyond
the address where the exception was generated. When the MMU has loaded the
appropriate address into physical memory, the handler should return to the original,
aborted instruction so that a second attempt can be made to execute it. The return
address is therefore two words (eight bytes) less than that in Ir_ABT, making the return
instruction:

SUBS pc, lr, #8
The handler entry and exit code to stack the return address and pop it on return is:

SUB lr,lr, #8
STMFD sp!,{reglist,Ir}

LDMFD sp!,{reglist, pc}”

9-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.3 Installing an exception handler

Any new exception handler must be installed in the vector table. When installation is
complete, the new handler executes whenever the corresponding exception occurs.

Exception handlers can be installed in two ways:

Branch instruction

Thisisthe simplest method of reaching the exception handler. Each entry
in the vector table contains a branch to the required handler routine.
However, this method does have alimitation. Because the branch
instruction only has arange of 32MB relative to the pc, with some
memory organizations the branch may be unable to reach the handler.

Load pcinstruction
With this method, the program counter is forced directly to the handler
address by:

1. storing the absolute address of the handler in a suitable memory
location (within 4KB of the vector address)

2. placing aninstruction in the vector that |oads the program counter
with the contents of the chosen memory location.

9.3.1 Installing the handlers at reset

If your application does not rely on the debugger or debug monitor to start program

execution, you can load the vector table directly from your assembly language reset (or
startup) code.

If your ROM isat location 0x0 in memory, you can simply have a branch statement for
each vector at the start of your code. This could also include the FIQ handler if it is
running directly from Ox1c. See Interrupt handlers on page 9-23.

Example 9-1 on page 9-10 shows code that sets up the vectorsiif they are located in
ROM at address zero. Note that you can substitute branch statements for the loads.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-9

Handling Processor Exceptions

Example 9-1

Vector_Init_Bl ock

Reset _Addr

Undef i ned_Addr

SW _Addr

Pr ef et ch_Addr

Abort _Addr

| RQ_Addr
FI Q Addr

LDR PC, Reset_Addr

LDR PC, Undefi ned_Addr

LDR PC, SW _Addr

LDR PC, Prefetch_Addr

LDR PC, Abort_ Addr

NOP ; Reserved vector
LDR PC, | RQ Addr

LDR PC, Fl Q Addr

DCD Start _Boot

DCD Undefi ned_Handl er

DCD SW _Handl er

DCD Pref et ch_Handl er

DCD Abort_Handl er

DCD 0 : Reserved vect or
DCD | RQ Handl er

DCD FI Q Handl er

If thereisRAM at location zero, the vectors (plus the FIQ handler if required) must be
copied down from an areain ROM into the RAM. In this case, you must use load pc
instructions, and copy the storage locations, to make the code relocatable.

Example 9-2 copies down the vectors given in Example 9-1 to the vector tablein RAM.

Example 9-2

MoV
ADR
LDM A
STM A
LDM A
STM A

r8,
ro,
r9l
r 8!
r9l
r 8!

#0

Vector_Init_Bl ock

,{ro0-r7} ; Copy the vectors (8 words)
,{ro-r7}

,{ro-r7} ; Copy the DCD ed addresses
,{ro-r7} ; (8 words agai n)

Alternatively, you can use the scatter loading mechanism to install the vector table.
Refer to Chapter 10 Writing Code for ROM for more information.

9-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.3.2 Installing the handlers from C

Sometimes during development work it is necessary to install exception handlersinto
the vectors directly from the main application. As aresult, the required instruction
encoding must be written to the appropriate vector address. This can be done for both
the branch and the load pc method of reaching the handler.

Branch method

The required instruction can be constructed as follows:

1. Takethe address of the exception handler.

2 Subtract the address of the corresponding vector.

3 Subtract 0x8 to allow for prefetching.

4. Shift theresult to the right by two to give aword offset, rather than a byte offset.
5

Test that the top eight bits of thisare clear, to ensure that the result is only 24 bits
long (because the offset for the branch is limited to this).

6. Logicaly OR thiswith 0xea000000 (the opcode for the Branch instruction) to
produce the value to be placed in the vector.

Example 9-3 on page 9-12 shows a C function that implements this algorithm. It takes
the following arguments:

. the address of the handler
. the address of the vector in which the handler is to be to installed.

The function can install the handler and return the original contents of the vector. This
result can be used to create a chain of handlers for a particular exception. Refer to
Chaining exception handlers on page 9-39 for further details.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-11

Handling Processor Exceptions

Example 9-3

unsi gned I nstall_Handl er (unsigned routine, unsigned *vector)
/* Updates contents of 'vector’ to contain branch instruction */
/* to reach '"routine’ from’'vector’. Function return value is */
/* original contents of ’'vector’.*/
/* NB: 'Routine’ nust be within range of 32MB from’vector’.*/
{ unsi gned vec, ol dvec;
vec = ((routine - (unsigned)vector - 0x8)>>2);
if (vec & Oxff000000)
{
printf ("Installation of Handler failed");
exit (1);
}
vec = 0xea000000 | vec;
ol dvec = *vector;
*vector = vec;
return (ol dvec);

The following code callsthisto install an IRQ handler:

unsi gned *irqvec = (unsigned *)0x18;
Instal | _Handl er ((unsigned)!| RQHandl er, irqvec);

In this case, the returned, original contents of the IRQ vector are discarded.

Load pc method

The required instruction can be constructed as follows:
1. Takethe address of the exception handler.

2 Subtract the address of the corresponding vector.
3. Subtract 0x8 to alow for the pipeline.
4

Logicaly OR thiswith 0xe59ff000 (the opcode for LDR pc, [pc, #of fset])
to produce the value to be placed in the vector.

5. Put the address of the handler into the storage location.

Example 9-4 on page 9-13 shows a C routine that implements this method.

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

Example 9-4

unsi gned | nstall_Handl er (unsigned |ocation, unsigned *vector)

/* Updates contents of 'vector’ to contain LDR pc, [pc, #offset] */
/* instruction to cause long branch to address in ‘location’. */
/* Function return value is original contents of ’'vector’. */

{ unsi gned vec, ol dvec;
vec = ((unsigned)location - (unsigned)vector - 0x8) | 0xe59ff000
ol dvec = *vector;
*yector = vec;
return (ol dvec);

Thefollowing code callsthisto install an IRQ handler:

unsi gned *irqgqvec = (unsigned *)0x18;

unsi gned *irgaddr = (unsigned *)0x38; /* For exanple */
*irgaddr = (unsigned) | RQHandl er;

Install _Handl er (irqgaddr,irqgvec);

Again in this example the returned, original contents of the IRQ vector are discarded,
but they could be used to create a chain of handlers. Refer to Chaining exception
handlers on page 9-39 for more information.

Note

If you are operating on a processor with separate instruction and data caches, such as
StrongARM, or ARM940T, you must ensure that cache coherence problems do not
prevent the new contents of the vectors from being used.

The data cache (or at |east the entries containing the modified vectors) must be cleaned
to ensure the new vector contents is written to main memory. You must then flush the
instruction cache to ensure that the new vector contentsis read from main memory.

For details of cache clean and flush operations, see the datasheet for your target
Processor.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-13

Handling Processor Exceptions

9.4

SWI handlers

31

28 27 26 25 24 23 0
— —— —

When the SWI handler is entered, it must establish which SWI isbeing called. This
informationisusually stored in bits 0-23 of theinstructionitself, asshownin Figure 9-1.

cond

1

1 1 1 24 _bit_immediate

comment field

Figure 9-1 ARM SWI instruction

The top-level SWI handler typically accesses the link register and |oads the SW
instruction from memory, and therefore has to be written in assembly language. The
individual routines that implement each SWI handler can be written in C if required.

The handler must first load the SW instruction that caused the exception into aregister.
At this point, Ir_SVC holds the address of the instruction that follows the SW
instruction, so the SW is loaded into the register (in this case r0) using:

LDR r0O, [Ir,#-4]

The handler can then examine the comment field bits, to determine the required
operation. The SWI number is extracted by clearing the top eight bits of the opcode:

BIC r0, r0, #0Oxff000000

Example 9-5 on page 9-15 shows how these instructions can be put together to form a
top-level SWI handler.

See Determining the processor state on page 9-44 for an example of ahandler that deals
with both ARM-state and Thumb-state SW instructions.

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

Example 9-5

AREA TopLevel Swi, CODE, READONLY; Name this bl ock

; of code.
EXPORT SW _Handl er
SW _Handl er
STMFD sp!,{r0-r12,1r} ; Store registers.
LDR ro,[1r,#-4] ; Cal cul at e address of

; SW instruction and
; load it into roO.
Bl C r0, r 0, #0xf f 000000 ; Mask off top 8 bits of
; instruction to give SW nunber.

; Use value in r0 to determ ne which SW routine to execute.

LDMFD sp!, {r0-r12, pc}” ; Restore registers and return.
END ; Mark end of this file.

94.1 SWI handlers in assembly language

The easiest way to call the handler for the requested SWI number isto use ajump table.
If rO contains the SWI number, the code in Example 9-6 can be inserted into the
top-level handler given in Example 9-5, following on from the Bl Cinstruction.

Example 9-6: SWI Jump Table

ADR r2, SW JunpTabl e
LDR pc, [r2,r0,LSL #2]

SW JunpTabl e
DCD SW nun®
DCD SW nuni
;. DCD for each of other SW routines
SW nun® ; SW numrber 0 code
B Endof SW
SW nuni ; SW nunber 1 code
B Endof SW
; Rest of SW handling code
Endof SW

; Return execution to top level
; SW handler so as to restore
; registers and return to program

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-15

Handling Processor Exceptions

9.4.2

SWI handlers in C and assembly language

Although the top-level header must always be written in ARM assembly language, the
routinesthat handle each SWI can bewritten in either assembly language or in C. Refer
to Using SWIs in supervisor mode on page 9-17 for a description of restrictions.

Thetop-level header usesaBL (Branch with Link) instructionto jump to the appropriate
C function. Because the SWI number isloaded into rO by the assembly routine, thisis
passed to the C function as the first parameter (in accordance with the ARM Procedure
Call Standard). The function can usethisvaluein, for example, aswi t ch() statement.

The following line can be added to the SWI_Handler routine in Example 9-5:
BL C_SW _Handl er ; Call Croutine to handle the SW

Example 9-7 shows how the C function can be implemented.

Example 9-7

void C_SW _handl er (unsigned nunber)
{ switch (nunber)
{case 0 : /* SW nunber 0 code */
br eak;
case 1 : /* SW nunber 1 code */
br eak;

default : /* Unknown SW - report error */

}

The supervisor stack space may belimited, so avoid using functionsthat require alarge
amount of stack space.

You can passvaluesin and out of such ahandler written in C, provided that thetop-level
handler passes the stack pointer value into the C function as the second parameter (in
rl):

MWV rl1, sp ; Second paraneter to Croutine...
; ...is pointer to register val ues.
BL C _SW _Handl er ; Call Croutine to handle the SW

and the C function is updated to accessit:

voi d C_SW _handl er (unsi gned nunber, unsigned *reg)

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

9.4.3 Using SWis

Handling Processor Exceptions

The C function can now access the values contained in the registers at the time the SW
instruction was encountered in the main application code (see Figure 9-2). It can read
from them:

value_in_reg 0 = reg [0];
value_in_reg_1 =reg [1];
value_in_reg_ 2 =reg [2];
value_in_reg_3 =reg [3];

and also write back to them:

reg [0] = updated_val ue_0;
reg [1] = updated_val ue_1;
reg [2] = updated_val ue_2;
reg [3] = updated_val ue_3;

causing the updated value to be written into the appropriate stack position, and then
restored into the register by the top-level handler.

Previous sp_SVC——> " SVC
r3 <«—— reg[3]
r2
r
sp_SVC ro <«—— regl0]

Figure 9-2 Accessing the supervisor stack

in supervisor mode

When aSW instruction is executed, the processor enters supervisor mode, the CPSR is
stored into spsr_ SV C, and the return addressis stored in Ir_SV C (see The processor
response to an exception on page 9-5). If the processor is already in supervisor mode,
Ir_SVC and spsr_SVC are corrupted.

If you call a SWI whilein supervisor mode you must storelr_SVC and spsr_SVC to
ensure that the original values of the link register and the SPSR are not lost. For
example, if the handler routine for a particular SWI number calls another SWI, you
must ensure that the handler routine stores both Ir_SVC and spsr_ SV C on the stack.
This ensures that each invocation of the handler saves the information needed to return
to the instruction following the SW that invoked it. Example 9-8 on page 9-18 shows
how to do this.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-17

Handling Processor Exceptions

Example 9-8 SWI Handler

STMFD sp!,{r0-r3,1r} Store registers.
LDR rO,[Ir,#4] Cal cul ate address of SW instruction...
...and load it into rO.
BI C r0, r0, #0xf f 000000 Mask off top 8 bits of
instruction to give SW nunber.
MoV rl, sp Second paraneter to Croutine...
...is pointer to register val ues.
VRS r2, spsr Move the spsr into a general purpose register.
STMD sp!, {r2} Store spsr onto stack. This is
only really needed in case of
nested SWs.
BL C SW Handl er Call Croutine to handle the SW.
LDMD sp!, {r2} Restore spsr fromstack into r2...
MSR spsr, r2 and restore it into spsr.
LDMD sp!, {rO0-r3, pc}* Restore registers and return.
END Mark end of this file.
Nested SWIs in C
By default, the ARM compilers do not take into account the fact that an inline SWI will
overwrite the contents of the link register if it is called from Supervisor mode. If the
nested SWI handlers are written in C or C++, you must use the - f z compiler option to
instruct the compiler to generate code that storeslr_SV C. For example, if the C function
isinmodulec_swi _handl e. c, thefollowing command produces the object codefile:
arncc -¢ -fz c_swi _handle.c
9-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.4.4 Calling SWiIs from an application

The easiest way to call SWIsfrom your application codeisto set up any required
register values and call the relevant SWI in assembly language. For example:

MOV rQ, #65 ; load rO with the val ue 65
SW 0x0 ; Call SW 0OxO0 with paraneter
value inr0

The SW instruction can be conditionally executed, as can al ARM instructions.

CallingaSWI from Cismore complicated becauseit isnecessary to map afunction call
onto each SWI withthe __swi compiler directive. This allows a SWI to be compiled
inline, without additional calling overhead, provided that:

. any arguments are passed in r0-r3 only
. any results are returned in rO-r3 only.

Note
You must use thef z compiler option when compiling code that contains inline SWIs.

The parameters are passed to the SWI as if the SWI were a real function call. Howevel
if there are between two and four return values, you must tell the compiler that the returr
values are being returned in a structure, and use the ue_i n_r egs directive. This

is because a struct-valued function is usually treated as if it were a void function whose
first argument is the address where the result structure should be placed.

Example 9-9 on page 9-20 shows a SWI handler that provides SWI numbers 0x0 and
0x1. SWI 0x0 takes four integer parameters and returns a single result. SWI 0x1 take:
a single parameter and returns four results.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-19

Handling Processor Exceptions

9.4.5

Example 9-9

struct four
{ int a, b, c, d;
I

__Swi (0x0) int calc_one (int,int,int,int);
_ Sswi (0x1) _ value_in_regs struct four calc_four (int);

/* You can call the SWs in the foll ow ng manner */
voi d func (void)
{ struct four result;
int single, resl, res2, res3, res4;
single = calc_one (vall, val2, val 3, val 4);
result = calc_four (val5);
resl result. a;
res2 result.b;
res3 result.c;
res4 result.d;

Calling SWIis dynamically from an application

In some circumstances it may be necessary to call a SWI whose number is not known
until runtime. This situation can occur, for example, when there are anumber of related
operations that can be performed on an object, and each operation hasits own SWI. In
such a case, the methods described above are not appropriate.

There are several ways of dealing with this. For example:

. Construct thesw instruction from the SWI number, store it somewhere, then
execute it.

. Use a generic SWI that takes, as an extra argument, a code for the actual operation
to be performed on its arguments. The generic SWI decodes the operation and
performs it.

The second mechanism can be implemented in assembly language by passing the
required operation number in a register, typically rO or r12. The SWI handler can then
be rewritten to act on the value in the appropriate register. Because some value has to
be passed to the SWI in the comment field, it would be possible for a combination of
these two methods to be used.

9-20

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

For example, an operating system might make use of only asingle SW instruction and
employ aregister to pass the number of the required operation. This leaves the rest of
the SWI space available for application-specific SWIs. This method can also be used if
the overhead of extracting the SWI number from the instruction istoo great in a
particular application.

A mechanism isincluded in the compiler to support the use of r12 to pass the value of
the required operation. Under the ARM Procedure Call Standard, r12 istheip register
and has a dedicated role only during function call. At other times it may be used as a
scratch register. The arguments to the generic SWI are passed in registers rO-r3 and
values are optionally returned in rO-r3 as described earlier. The operation number
passed in r12 could be, but need not be, the number of the SWI to be called by the
generic SWI.

Example 9-10 shows a C fragment that uses a generic, or indirect SWI.

Example 9-10

__Swi _indirect (0x80)
unsi gned SW _Mani pul at eCbj ect (unsi gned oper ati onNunber,

unsi gned obj ect, unsi gned paraneter);

unsi gned DoSel ect edMani pul ati on(unsi gned obj ect,

unsi gned paraneter, unsigned operation)

{ return SW _Mani pul at eObj ect (operati on, object, paraneter);

}

This produces the following code:

EXPORT DoSel ect edMani pul ati on
DoSel ect edMani pul ati on

0x000000: elalOc002 : MV ri2,r2
0x000004: ef000080 : SW 0x80
0x000008: elaOf00e : MWV pc,rl4

It is also possible to pass the SWI number in rO from C using the__swi mechanism.
For example, if SW 0x0 isused asthe generic SWI and operation O isacharacter read
and operation 1 a character write, the following can be set up:

__swi (0) char __ReadCharacter (unsigned op);
__sw (0) void __WiteCharacter (unsigned op, char c);

These can be used in a more reader-friendly fashion by defining the following:

#defi ne ReadCharacter () _ ReadCharacter (0);
#define WiteCharacter (¢) _ WiteCharacter (1, c);

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-21

Handling Processor Exceptions

However, using r0 in this way means that only three registers are available for passing
parametersto the SWI. Usually, if more parameters need to be passed to a subroutinein
addition to rO-r3, this can be done using the stack. However, stacked parameters are not
easily accessible to a SWI handler, because they typically exist on the user mode stack
rather than the supervisor stack employed by the SWI handler.

Alternatively, one of the registers (typically rl) can be used to point to a block of
memory storing the other parameters.

9-22

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.5 Interrupt handlers

The ARM processor has two levels of externa interrupt, FIQ and IRQ, both of which
are level-sensitive active LOW signals into the core. For an interrupt to be taken, the
appropriate disable bit in the CPSR must be clear.

FI Qs have higher priority than IRQs in two ways:
. FIQs are serviced first when multiple interrupts occur.

. Servicing a FIQ causes IRQs to be disabled, preventing them from being servicec
until after the FIQ handler has re-enabled them. This is usually done by restoring
the CPSR from the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table (at addseiss) so that the FIQ
handler can be placed directly at the vector location and run sequentially from that
address. This removes the need for a branch and its associated delays, and also me
that if the system has a cache, the vector table and FIQ handler may all be locked dow
in one block within it. This is important because FIQs are designed to service interrupts
as quickly as possible. The five extra FIQ mode banked registers enable status to be he
between calls to the handler, again increasing execution speed.

— Note
An interrupt handler should contain code to clear the source of the interrupt.

95.1 Simple interrupt handlers in C

You can write simple C interrupt handlers by using_thier g function declaration
keyword. You can use the i r g keyword both for simple one-level interrupt handlers,
and interrupt handlers that call subroutines. However, you cannot use the

keyword forreentrant interrupt handlers, because it does not store all the required state.
In this context, reentrant means that the handler re-enables interrupts, and may itself b
interrupted. Refer t&eentrant interrupt handlers on page 9-26 for more information.

The__irq keyword:

. preserves all APCS corruptible registers.

. preserves all other registers (excluding the floating-point registers) used by the
function.

. exits the function by setting the program counter to (Ir — 4) and restoring the
CPSR to its original value.

If the function calls a subrouting, i r q preserves the link register for the interrupt
mode in addition to preserving the other corruptible registersC&8léag subroutines
frominterrupt handlers on page 9-24 for more information.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-23

Handling Processor Exceptions

Note

C interrupt handlers cannot be produced in thisway using tcc. The __i r g keyword is
faulted by tcc because tce can only produce Thumb code, and the processor is always
switched to ARM state when an interrupt, or any other exception, occurs.

However, the subroutinecalled by an__i r g function can be compiled for Thumb, with
interworking enabled. Refer to Chapter 7 Interworking ARM and Thumb for more
information on interworking.

Example 9-11 shows a simple handler that does not call any subroutines. The handler
reads a byte from location 0x80000000 and clears theinterrupt by writing it to location
0x80000004.

The__i r g keyword ensuresthat rO-r3 and r12 are preserved, and that the function exits
with SUBS pc, | r, #4.

Example 9-11

__irqg void | RQHandl er (voi d)

{
vol atile char *base = (char *) 0x80000000; // read a byte
*(base + 4) = *base; /1 clear the interrupt

Compiled with armcc Example 9-11 gives the following code:

EXPORT | RQHandl er

| RQHandl er

0x000000: e92d100f ..-. : STMFD sp!,{r0-r3,r12}
0x000004: e3a00102 : MWV r 0, #0x80000000
0x000008: e5d01000 : LDRB ri,[roO, #0]
0x00000c: e5c01004 : STRB ri,[roO, #4]
0x000010: e8bdioof : LDWD sp!, {r0-r3,r12}
0x000014: e25ef004 ..~. : SUBS pc, |l r, #4

Calling subroutines from interrupt handlers

If you call subroutines from your top level interrupt handler, the__i r g keyword also
restores the value of Ir_IRQ from the stack so that it can be used by a SUBS instruction
to return to the correct address after the interrupt has been handled.

9-24

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

Example 9-12 showshow thisworks. Thetop level interrupt handler reads the value of
amemory mapped interrupt controller base address at 0x80000000. If the value of the
addressis 1, the top level handler branchesto a handler writtenin C.

Example 9-12

_irg void | RQHandl er (void)

{ vol atile unsigned int *base = (unsigned int *) 0x80000000
if (*base == 1) /1 which interrupt was it?
{ C_int_handler(); /1 process the interrupt
1(base+1) = *base; /1 clear the interrupt

}

Compiled with armcc, Example 9-12 produces the following code:

EXPORT | RQHandl er

| RQHandl er
0x000000: e92d501f .P-. :STMFD sp!,{r0-r4,r12,1r}
0x000004: e3a04102 .A.. : MWV r4, #0x80000000
0x000008: 5940000 :LDR ro, [r4, #0]
0x00000c: 3500001 ..P. :CWP r0, #1
0x000010: Obfffffa :BLEQ C_int_handl er
0x000014: 5940000 :LDR r0, [r4, #0]
0x000018: 5840004 :STR r0, [r4, #4]
0x00001c: e8bd501f .P.. :LDWD sp!,{r0-r4,r12,1r}
0x000020: e25ef004 ..~". :SUBS pc,lr, #4

Compare thisto the result of not using the __i r g keyword:

EXPORT | RQHandl er
| RQHandl er

0x000000: €92d4010 .@. :STMFD sp!,{r4,1r}
0x000004: e3a04102 .A. . MOV r 4, #0x80000000
0x000008: €5940000 :LDR ro, [r4, #0]
0x00000c: e3500001 ..P. :CW ro, #1
0x000010: Obfffffa :BLEQ C_int_handl er
0x000014: e5940000 :LDR ro, [r4, #0]
0x000018: 5840004 :STR ro, [r4, #4]
0x00001c: e8bd8010 :LDWD sp!,{r4, pc}

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-25

Handling Processor Exceptions

9.5.2 Reentrant interrupt handlers

Note

The following method works for both IRQ and FIQ interrupts. However, because FIQ
interrupts are meant to be serviced as quickly as possible there will normally be only
one interrupt source, so it may not be necessary to allow for reentrancy.

If an interrupt handler re-enables interrupts, then calls a subroutine, and another
interrupt occurs, the return address of the subroutine (stored in Ir_IRQ) is corrupted
whenthesecond IRQ istaken. Usingthe__i r g keywordin C doesnot storeall the state
information required for reentrant interrupt handlers, so you must write your top level
interrupt handler in assembly language.

A reentrant interrupt handler must save the necessary IRQ state, switch processor
modes, and save the state for the new processor mode before branching to a nested
subroutine or C function.

In ARM architecture 4 or later you can switch to System mode. System mode uses the
User mode registers, and allows privileged access that may be required by your
exception handler. Refer to System mode on page 9-46 for more information. In ARM
architectures prior to architecture 4 you must switch to Supervisor mode instead.

The steps needed to safely re-enable interruptsin an IRQ handler are:

Construct return address and save on the IRQ stack.

Save the work registers and spsr_IRQ.

Clear the source of the interrupt.

Switch to System mode and re-enable interrupts.

Save User mode link register and non-callee saved registers.
Call the C interrupt handler function.

When the C interrupt handler returns, restore User mode registers and disable
interrupts.

Switch to IRQ mode, disabling interrupts.
Restore work registers and spsr_IRQ.
10. Return from the IRQ.

No o ~wDdPRE

© ©

9-26 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

Example 9-13 shows how this works for System mode. Registersr12 and r14 are used
as temporary work registers after Ir_IRQ is pushed on the stack.

Example 9-13

AREA | NTERRUPT, CODE, READONLY
I MPORT C_irq_handl er

I RQ
SUB lr, lr, #4 ; construct the return address
STMD sp!, {Ir} ; and push the adjusted Ir_|I RQ
MRS rl4, SPSR ; copy spsr_IRQto ri4
STMFD sp!, {r12, r14} ; save work regs and spsr_I RQ
; Add instructions to clear the interrupt here
; then re-enable interrupts.
MBR CPSR_c, #O0x1F ; switch to SYS node, FIQ and | RQ
; enabl ed. USR node registers
; are now current.
STMFD sp!, {r0-r3, Ir} ; save I r_USR and non-call ee
; saved registers
BL C_irg_handl er ; branch to C I RQ handl er.
LDMFD sp!, {r0-r3, Ir} ; restore registers
MBR CPSR_c, #0x92 ; switch to | RQ node and di sabl e
; IRQ. FIQis still enabled.
LDMFD sp!, {r12, r14} ; restore work regs and spsr_IRQ
MSR SPSR cf, rl14
LDMFD sp!, {pc}” ; return fromIRQ
END

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-27

Handling Processor Exceptions

9.5.3 Example interrupt handlers in assembly language
Interrupt handlers are often written in assembly language to ensure that they execute
quickly. The following sections give some examples.
Single-channel DMA transfer

Example 9-14 shows an interrupt handler that performsinterrupt driven 1/0 to memory
transfers (soft DMA). The codeis an FIQ handler. It uses the banked FIQ registersto
maintain state between interrupts. This code is best situated at location Ox1c.

In the example code:

rg8 Points to the base address of the 1/O device that datais read from.

|OData Isthe offset from the base address to the 32-bit dataregister that is read.
Reading this register clears the interrupt.

ro Points to the memory location to where that data is being transferred.

rio Points to the last address to transfer to.

The entire sequence for handling a normal transfer is four instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 9-14
LDR ri11, [r8, #l OData] ; Load port data fromthe 1O device.
STR rll, [r9], #4 ; Store it to nenory: update the pointer.
cowe r9, rio ; Reached the end ?
SUBLES pc, Ir, #4 : No, so return.

; Insert transfer conplete code here.

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an 1/0 device are made by swapping the
addressing modes between the load instruction and the store instruction.

Dual-channel DMA transfer

Example 9-15 on page 9-29 is similar to Example 9-14, except that there are two
channels being handled (which may be the input and output side of the same channel).
The code is an FIQ handler. It uses the banked FIQ registers to maintain state between
interrupts. It is best situated at location Ox1c.

In the example code:

9-28 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

r8
|OStat

Handling Processor Exceptions

Points to the base address of the I/O device from which datais read.

Isthe offset from the base address to a register indicating which of two

ports caused the interrupt.

|OPort1Active

Isabit mask indicating if the first port caused the interrupt (otherwise it
is assumed that the second port caused the interrupt).

IOPort1, I10Port2

Are offsets to the two data registers to be read. Reading a data register
clears the interrupt for the corresponding port.

ro

transferred.
ri10

transferred.
ril1andrl2

Points to the memory location to which data from the first port is being

Pointsto the memory location to which datafrom the second port isbeing

Point to the last address to transfer to (r11 for the first port, r12 for the
second).

The entire sequence to handle a normal transfer takes nine instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 9-15
LDR rl3, [r8, #l OStat]
TST r13, #l OPort1Active
LDREQ r13, [r8, #l OPort1l]
LDRNE r13, [r8, #l OPort2]
STREQ rl3, [r9], #4
STRNE r13, [rl0], #4
CwP ro, rl1i1
CMVPLE r10, r12
SUBNES pc, Ir, #4

Insert transfer conplete code

Load status register to
find which port caused
the interrupt.

Load port 1 data.
Load port 2 data.
Store to buffer 1.
Store to buffer 2.
Reached t he end?
On either channel ?
Return

here.

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an 1/0 device are made by swapping the
addressing modes between the conditional load instructions and the conditional store

instructions.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

9-29

Handling Processor Exceptions

Interrupt prioritization

Example 9-16 dispatches up to 32 interrupt sources to their appropriate handler
routines. Becauseit is designed for use with the normal interrupt vector (IRQ), it should
be branched to from location 0x18.

External hardwareis used to prioritize the interrupt and present the high-priority active
interrupt in an /O register.

In the example code:
IntBase Holds the base address of the interrupt controller.

IntL evel Holds the offset of the register containing the highest-priority active
interrupt.

ri3 Is assumed to point to asmall full descending stack.
Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered after a further two instructions (with
all registers preserved on the stack).

In addition, the last three instructions of each handler are executed with interrupts
turned off again, so that the SPSR can be safely recovered from the stack.

Note

Application Note 30: Software Prioritization of Interrupts (ARM DAI 0030) describes
multiple source prioritization of interrupts using software, as opposed to using hardware
as described here.

Example 9-16

o first

STMFD

STMFD

LDR

save the critical state

lr, Ir, #4 ; Adjust the return address
; before we save it.
sp!, {Ir} ; Stack return address
r14, SPSR ; get the SPSR ...
sp!, {r12, r14} ; ... and stack that plus a
; working register too.
; Now get the priority level of the
; highest priority active interrupt.
rl2, #lntBase ; Get the interrupt controller’s
;. base address.
rl2, [r12, #lntlLevel] ; Get the interrupt level (0 to 31).

9-30

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

; Now read-nodify-wite the CPSR to enable interrupts.

VRS rl4, CPSR ; Read the status register.
BI C rl4, rl4, #0x80 ; Clear the | bit
; (use 0x40 for the F bit).
MSR CPSR ¢, rl14 ; Wite it back to re-enable
; interrupts and
LDR PC, [PC, r12, LSL #2] ; junp to the correct handler.

; PC base address points to this
; instruction + 8

NOP ; pad so the PC indexes this table.
; Tabl e of handler start addresses

DCD PriorityOHandl er

DCD PrioritylHandl er

DCD Priority2Handl er

PriorityOHandl er
STMD sp!, {r0 - r11} ; Save ot her working registers.
; Insert handl er code here.
LDVFD sp!, {r0 - r11} ; Restore working registers (not rl12).

; Now read-nodify-wite the CPSR to disable interrupts.

MRS r12, CPSR ; Read the status register.
ORR r12, rl1l2, #0x80 ; Set the | bit

; (use 0x40 for the F bit).
MBR CPSR c, r12 ; Wite it back to disable interrupts.
; Now that interrupt disabled, can safely restore SPSR then return.
LDMFD sp!, {r12, r14} ; Restore rl12 and get SPSR
MSR SPSR csxf, ri14 ; Restore status register fromr14.
LDMFD sp!, {pc}” ; Return from handl er.

PrioritylHandl er

1

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-31

Handling Processor Exceptions

Context switch

Example 9-17 on page 9-33 performs a context switch on the user mode process. The
code is based around alist of pointersto Process Control Blocks (PCBs) of processes
that are ready to run.

Figure 9-3 shows the layout of the PCBs that the example expects.

r7 User mode registers

PCB pointer —>> 10

Figure 9-3 PCB layout

The pointer to the PCB of the next processto runispointed to by r12, and the end of the
list has a zero pointer. Register r13isa pointer to the PCB, and is preserved between
time glices, so that on entry it points to the PCB of the currently running process.

9-32

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

Example 9-17
STMA r13, {r0 - rl14}~" ; Dunp user registers above rl3.
VBR r0, SPSR ; Pick up the user status
STMDB r13, {r0, Ir} ; and dunp with return address
;. bel ow.
LDR r13, [rl2], #4 ; Load next process info
; pointer.
CcwP r13, #0 ; If it is zero, it is invalid
LDVNEDB r13, {r0, Ir} ; Pick up status and return
; address.
MRSNE SPSR csxf, r0 ; Restore the status.
LDWNEI A r13, {r0 - r14}~ ; Get the rest of the registers
SUBNES pc, rl4 ;and return and restore CPSR

;I nsert

"no next process code"

here.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

9-33

Handling Processor Exceptions

9.6 Reset handlers

The operations carried out by the Reset handler depend on the system for which the
software is being developed. For example, it may:

. Set up exception vectors. Refetneatalling an exception handler on page 9-9 for

details.
. Initialize stacks and registers.
. Initialize the memory system, if using an MMU.
. Initialize any critical /0O devices.

. Enable interrupts.

. Change processor mode and/or state.
. Initialize variables required by C.

. Call the main application.

Refer to Chapter 1Q+iting Code for ROM for more information.

9-34 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.7 Undefined instruction handlers

Instructions that are not recognized by the processor are offered to any coprocessors
attached to the system. If theinstruction remains unrecognized, an undefined instruction
exception is generated. It could be the case that the instruction is intended for a
coprocessor, but that the rel evant coprocessor, for example aFloating Point Accelerator,
is not attached to the system. However, a software emulator for such a coprocessor
might be available.

Such an emulator should:
1. Attach itself to the undefined instruction vector and store the old contents.

2. Examinethe undefined instruction to seeif it should be emulated. Thisissimilar
to theway in which a SWI handler extracts the number of a SWI, but rather than
extracting the bottom 24 bits, the emulator must extract bits 27-24.

These bits determine whether the instruction is a coprocessor operation in the

following way:

. If bits 27 to 24 = b1110 or b110x, the instruction is a coprocessor
instruction.

. If bits 8-11 show that this coprocessor emulator should handle the
instruction, the emulator should process the instruction and return to the
user program.

3. Otherwise the emulator should pass the exception onto the original handler (or the
next emulator in the chain) using the vector stored when the emulator was
installed.

When a chain of emulators is exhausted, no further processing of the instruction can
take place, so the undefined instruction handler should report an error and quit. Refer t
Chaining exception handlers on page 9-39 for more information.

—— Note

The Thumb instruction set does not have coprocessor instructions, so there should be
no need for the undefined instruction handler to emulate such instructions.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-35

Handling Processor Exceptions

9.8 Prefetch abort handler

If the system contains no MM U, the Prefetch Abort handler can simply report the error

and quit. Otherwise the address that caused the abort must be restored into physical

memory. Ir_ABT pointsto the instruction at the address following the one that caused

the abort, so the address to be restored is at Ir_ABT — 4. The virtual memory fault for
that address can be dealt with and the instruction fetch retried. The handler should
therefore return to the same instruction rather than the following one.

9-36 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.9 Data abort handler

If thereisno MMU, the data abort handler should simply report the error and quit. If
thereisan MMU, the handler should deal with the virtual memory fault.

The instruction that caused the abort is at Ir_ABT — 8 because Ir_ABT points two
instructions beyond the instruction that caused the abort.

Three types of instruction can cause this abort:

Single Register Load or Store
The response depends on the processor type:

. If the abort takes place on an ARM6-based processor:
. If the processor is in early abort mode and writeback was
requested, the address register will not have been updated.
. If the processor is in late abort mode and writeback was

requested, the address register will have been updated. The
change must be undone.

. If the abort takes place on an ARM7-based processor, including the
ARM7TDMI, the address register will have been updated and the
change must be undone.

. If the abort takes place on an ARM9TDMI or StrongARM based
processor, the address is restored by the processor to the value it
had before the instruction started. No further action is required to
undo the change.

Swap There is no address register update involved with this instruction.

L oad/Store Multiple
The response depends on the processor type:

. If the abort takes place on an ARM6-based processor or
ARM7-based processor, and writeback is enabled, the base register
will have been updated as if the whole transfer had taken place.

In the case of anDMwith the base register in the register list, the
processor replaces the overwritten value with the modified base
value so that recovery is possible. The original base address can
then be recalculated using the number of registers involved.

. If the abort takes place on an ARM9TDMI or StrongARM based
processor and writeback is enabled, the base register will be
restored to the value it had before the instruction started.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-37

Handling Processor Exceptions

In each of the three casesthe MMU can load the required virtual memory into physical
memory. The MMU Fault Address Register (FAR) contains the address that caused the
abort. When thisisdone, the handler can return and try to execute the instruction again.

9-38 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.10 Chaining exception handlers

In some situations there can be several different sources of a particular exception. For
example:

. Angel uses an undefined instruction to implement breakpoints. However,
undefined instruction exceptions also occur when a coprocessor instruction is
executed, and no coprocessor is present.

. Angel uses a SWI for various purposes, including getting into supervisor mode
from user mode and supporting semihosting requests. However, an RTOS or an
application may also wish to implement some SWiIs.

In such situations there are two approaches that can be taken to extend the exceptior
handling code. These are described below.

9.10.1 A single extended handler

In some circumstances it is possible to extend the code in the exception handler to wor
out what the source of the exception was, and then directly call the appropriate code. i
this case, you are modifying the source code for the exception handler.

Angel has been written to make this approach simple. Angel decodes SWIs and
undefined instructions, and the Angel exception handlers can be extended to deal witl
non-Angel SWIs and undefined instructions.

However, this approach is only useful if all the sources of an exception are known wher
the single exception handler is written.

9.10.2 Several chained handlers

Some circumstances require more than a single handler. Consider the situation in whic
a standard Angel debugger is executing, and a standalone user application (or RTOS;
which wants to support some additional SWIs is then downloaded. The newly loaded
application may well have its own entirely independent exception handler that it wants
to install, but which cannot simply replace the Angel handler.

In this case the address of the old handler must be noted so that the new handler is ak
to call the old handler if it discovers that the source of the exception is not a source it
can deal with. For example, an RTOS SWI handler would call the Angel SWI handler
on discovering that the SWI was not an RTOS SWI, so that the Angel SWI handler gets
a chance to process it.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-39

Handling Processor Exceptions

Thisapproach can be extended to any number of level sto build achain of handlers. Note
that, although code that takes this approach allows each handler to be entirely
independent, it isless efficient than codethat usesasingle handler, or at least it becomes
less efficient the further down the chain of handlersit hasto go.

Both routines given in Installing the handlers from C on page 9-11 return the old
contents of the vector. This value can be decoded to give:

The offset for a branch instruction

This can be used to calculate the location of the original handler and
allow anew branch instruction to be constructed and stored at a suitable
placein memory. If the replacement handler fail sto handlethe exception,
it can branch to the constructed branch instruction, which in turn will
branch to the original handler.

Thelocation used to store the address of the original handler

If the application handler failed to handle the exception, it would then
need to load the program counter from that location.

In most cases, such cal culations may not be necessary because information on the debug
monitor or RTOS handlers should be available to you. If so, theinstructions required to
chain in the next handler can be hard coded into the application. The last section of the
handler must check that the cause of the exception has been handled. If it has, the
handler can return to the application. If not, it must call the next handler in the chain.

Note

When chaining in ahandler before adebug monitor handler, you must removethe chain
when the monitor is removed from the system, then directly install the application
handler.

9-40

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.11 Handling exceptions on Thumb-capable processors

Note
This section applies only to Thumb-capable ARM processors.

This section describes the additional considerations you must take into account when
writing exception handlers suitable for use on Thumb-capable processors.

Thumb-capable processors use the same basic exception handling mechanism as
processors that are not Thumb-capable. An exception causes the next instruction to be
fetched from the appropriate vector table entry.

The same vector tableis used for both Thumb-state and ARM-state exceptions. An
initial step that switchesto ARM state is added to the exception handling procedure
described in The processor response to an exception on page 9-5.

9.11.1 Thumb processor response to an exception
When an exception is generated, the processor takes the following actions:
1. Copiescpsrinto spsr_mode. Switchesto ARM state.

2. Sets the CPSR mode hits.

3. Storesthe return addressin Ir_mode. See The return address on page 9-43 for
further details.

4. Setstheprogram counter to the vector address for the exception. The switch from
Thumb stateto ARM statein step 1 ensures that the ARM instruction installed at
this vector address (either a branch or a pc-relative load) is correctly fetched,
decoded, and executed. This forces a branch to atop level veneer that you must
writein ARM code.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-41

Handling Processor Exceptions

Handling the exception

Your top-level veneer routine should save the processor statusand any required registers
on the stack. You then have two options for writing the exception handler:

. Write the whole exception handler in ARM code.

. Perform aBX (branch and exchange) to a Thumb code routine that handles the
exception. The routine must return to an ARM code veneer in order to return from
the exception, because the Thumb instruction set does not have the instructions
required to restore cpsr from spsr.

This second strategy is shown in Figure 9-4. See Chatberworking ARM and
Thumb for details of how to combine ARM and Thumb code in this way.

Thumb coded ARM coded Thumb coded
application Vector table veneers handler
Switch to Save CPU and Switch to
ARM state register state Thumb state
Entry Veneer Handle the
exception

Restore CPU and Switch to

Switch to Thumb register state ARM state

state and return

Exit veneer

Figure 9-4 Handling an exception in Thumb state

9-42 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

9.11.2 Thereturn address

If an exception occursin ARM state, thevaluestoredinlr_modeis (pc — 4) as described

in The return address and return instruction on page 9-6. However, if the exception
occurs in Thumb state, the processor automatically stores a different value for each o
the exception types. This adjustment is required because Thumb instructions take up
only a halfword, rather than the full word that ARM instructions occupy.

If this correction were not made by the processor, the handler would have to determine
the original state of the processor, and use a different instruction to return to Thumb
code rather than ARM code. By making this adjustment, however, the processor allows
the handler to have a single return instruction that will return correctly, regardless of the
processor state (ARM or Thumb) at the time the exception occurred.

The following sections give a summary of the values to which the processor sets
Ir_mode if an exception occurs when the processor is in Thumb state.

SWI and Undefined instruction handlers

The handler's return instructiom@/s pc, | r) changes the program counter to the
address of the next instruction to execute. This is at (pc — 2), so the value stored by th
processor in Irmodeis (pc — 2).

FIQ and IRQ handlers

The handler's return instructio8UBS pc, | r, #4) changes the program counter to the
address of the next instruction to execute. Because the program counter is updated
before the exception is taken, the next instruction is at (pc — 4). The value stored by th
processor in Irmode is therefore pc.

Prefetch abort handlers

The handler's return instructio8UBS pc, | r, #4) changes the program counter to the
address of the aborted instruction. Because the program counter is not updated befor
the exception is taken, the aborted instruction is at (pc — 4). The value stored by the
processor in Irmode is therefore pc.

Data abort handlers

The handler's return instructio8UBS pc, | r, #8) changes the program counter to the
address of the aborted instruction. Because the program counter is updated before th
exception is taken, the aborted instruction is at (pc — 6). The value stored by the
processor in Irmode is therefore (pc + 2).

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-43

Handling Processor Exceptions

9.11.3 Determining the processor state

An exception handler may need to determine whether the processor wasin ARM or
Thumb state when the exception occurred. SWI handlers, especially, may need to read
the processor state. Thisisdone by examining the SPSR T bit. Thisbit isset for Thumb
state and clear for ARM state.

Both ARM and Thumb instruction sets have the SW instruction. We have already
examined how to handle SWis called from ARM state (in SWI handlerson page 9-14).
Here we address the handling of SWisthat are called from Thumb state. When doing
so there are three considerations to bear in mind:

15 14 13 12

the address of the instruction is at (Ir — 2), rather than (Ir — 4)
the instruction itself is 16-bit, and so requires a halfword load
the SWI number is held in 8 bits instead of the 24 bits in ARM state.

11 10 9 8 7 0

1 1 1 1 8 bit_immediate I

comment field

Figure 9-5 Thumb SWI instruction

Example 9-18 on page 9-45 shows ARM code that handl&s &om both sources.
Note the following points:

Each of thelo_swi _x routines could carry out a switch to Thumb state and back
again to improve code density if required.

The jump table could be replaced by a call to a C function contaisisig &h()
statement to implement the SWis.

It would be possible for a SWI number to be handled differently depending upon
the state it was called from.

The range of SWI numbers accessible from Thumb state can be increased by
calling SWIis dynamically as describedI®l handlers on page 9-14.

9-44 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Handling Processor Exceptions

Example 9-18
T_bit EQU 0x20 Thunb bit of CPSR/SPSR, that is, bit 5.
SW Handl er
STMFD sp!, {r0-r3,I1r} Store the registers.
VRS r0, spsr Move SPSR into general purpose
register.
TST r0, #T _bit Test if bit 5 is set.

LDRNEH rO, [Ir, #- 2]
BICNE rO,r0, #0xf f 00

LDREQ rO,[Ir,#-4]
BI CEQ rO,r0, #0xf f 000000

ADR rl, switable

LDR pc, [r1,r0, LSL#2]
switabl e

DCD do sw 1

DCD do_swi _2
do sw 1

; Handl e the SW.
LDMFD sp!, {rO0-r12, pc}”
do_swi _2

T bit set so | oad hal fword (Thunb)
and clear top 8 bits of hal fword
(LDRH clears top 16 bits of word).
T bit clear so | oad word (ARM
and clear top 8 bits of word.

Load address of the junp table.
Junmp to the appropriate routine.

Restore the registers and return.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 9-45

Handling Processor Exceptions

9.12 System mode

Note

This section only applies to processors that implement ARM Architectures 4, 4T and
later.

The ARM Architecture defines a User mode that has 15 general purpose registers, apc
and aCPSR. In addition to this mode there are five privileged processor modes, each of
which have an SPSR and a number of registers that replace some of the 15 User mode
general purpose registers.

When a processor exception occurs, the current program counter is copied into the link
register for the exception mode, and the CPSR is copied into the SPSR for the exception
mode. The CPSR is then altered in an excepti on-dependent way, and the program
counter is set to an exception-defined address to start the exception handler.

The ARM subroutine call instruction (BL) copies the return address into r14 before
changing the program counter, so the subroutinereturn instruction movesr14to pc (MoV
pc, I r).

Together these actions imply that ARM modes that handle exceptions must ensure that
they do not cause the same type of exceptionsif they call subroutines, because the
subroutine return address will be overwritten with the exception return address.

In earlier versions of the ARM architecture, this problem has been solved by either
carefully avoiding subroutine calls in exception code, or changing from the privileged
mode to user mode. Thefirst solution is often too restrictive, and the second meansthe
task may not have the privileged access it needs to run correctly.

ARM Architecture 4 and later provide a processor mode called system mode, to
overcome this problem. System mode is a privileged processor mode that shares the
User mode registers. Privileged mode tasks can run in this mode, and exceptions no
longer overwrite the link register.

Note

System mode cannot be entered by an exception. The exception handler modify the
CPSR to enter System mode. Refer to Reentrant interrupt handlers on page 9-26 for an
example.

9-46 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 10

Writing Code for ROM

This chapter describes how to build ROM images, typically for embedded applications.
There are a so hints on how to avoid the most common errorsin writing code for ROM.

This chapter contains the following information:

. About writing code for ROM on page 10-2

. Memory map considerations on page 10-3

. Initializing the system on page 10-6

. Example 1: Building a ROM to be loaded at address 0 on page 10-10

. Example 2: Building a ROM to be entered at its base address on page 10-19
. Example 3: Using the embedded C library on page 10-21

. Example 4: Smple scatter |loading example on page 10-24

. Example 5: Complex scatter load example on page 10-28

. Scatter loading and long-distance branching on page 10-32

. Converting ARM linker ELF output to binary ROM formats on page 10-34
. Troubleshooting hints and tips on page 10-37.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-1

Writing Code for ROM

10.1 About writing code for ROM

This chapter describes how to write code for ROM, and shows different methods for
simple and complex images. Sampleinitialization codeis given, aswell asinformation
on initializing data, stack pointers, interrupts, and so on.

This chapter contains examples of using scatter |oading to build complex images. For
detailed reference information on scatter loading, refer to Chapter 6 Linker inthe ARM
Software Devel opment Toolkit Reference Guide.

Two examples are given to illustrate the use of scatter loading:

. a scatter loading application that runs under the ARMulator, and also uses
sprintf() from the Embedded C library. The example displays the
linker-generated scatter symbols on the screen.

. a more complex scatter loading application that runs from Flash memory on an
ARM Development Board (PID7T).

10-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.2 Memory map considerations

10.2.1 ROM at 0x0

10.2.2 RAM at 0x0

A major consideration in the design of an Embedded ARM application is the layout of
the memory map, in particular the memory that is situated at address 0x0. Following
reset, the core starts to fetch instructions from 0x0, so there must be some executable
code accessible from that address. In an embedded system, this requires ROM to be
present, at least initially.

Thesimplest layout isto locate the applicationin ROM at address 0 inthe memory map.
The application can then branch to the real entry point when it executes its first
instruction (at the reset vector at address 0x0).

0x10000000
SRAM
0x0F000000
DRAM
0x04000000
ROM
0x00000000

Figure 10-1 Example of a system with ROM at 0x0

However, there are disadvantages with this layout. ROM istypically narrow and slow
(requireswait statesto accessit). This slows down the handling of processor exceptions
(especially interrupts) through the vector table. Also, if the vector tableisin ROM, it
cannot be modified by the code.

For more information on exception handling, see Chapter 9 Handling Processor
Exceptions.

RAM isnormally faster and wider than ROM. For this reason, it is better for the vector
table and FIQ handlersif the memory at 0x0 is RAM.

However, if RAM islocated at address OxO, there is not avalid instruction in the reset
vector entry on power-up. Therefore, you need to allow ROM to be located at 0x0 at
power-up (so thereis avalid reset vector), but to also allow RAM to be located at 0x0
during normal execution. The changeover from the reset to the normal memory map is
normally caused by writing to a memory mapped register.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-3

Writing Code for ROM

For example, on reset, an aliased copy of ROM is present at 0x0, but RAM isremapped
to zero when code writes to the RPS REMAP register. For more information, refer to
the ARM Reference Peripheral Specification.

Normal
RESET (Remapped)
0x10000000 —> 0x10000000 —>
ROM ROM
0x0F000000 — 0x0F000000 —
ROM aliased to
DRAM address 0x00000000 DRAM
by system decoder
0x04000000 —> 0x04000000 —>
ROM SRAM
0x00000000 —> 0x00000000 —>

Code writes to RPS REMAP register ———>

Figure 10-2 Example of a system with RAM at 0x0

Implementing RAM at 0x0
A sample sequence of events for implementing RAM at Ox0 is:

1. Power onto fetch the RESET vector at 0x00000000 (from the aliased copy of
ROM).

2. Executethe RESET vector:
LDR PC, =0x0F000004
which jumpsto the real address of the next ROM instruction.

3. Writeto the REMAP register. Set REMAP = 1.

4. Completetherest of theinitialization code, as described in Initializing the system
on page 10-6.

System decoder

ROM can be aliased to address 0x00000000 by the system decoder:

10-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

case ADDR(31:24) is

when "0x00"
if REMAP = "0" then
sel ect ROM
el se
sel ect SRAM
when " OxOF"
sel ect ROM
when

Writing Code for ROM

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

10-5

Writing Code for ROM

10.3 Initializing the system

One of the main considerations with application code in ROM isthe way in which the
applicationinitializesitself and starts executing. If thereis an operating system present,
this does not cause a problem because the application is entered automatically through
the mai n() function.

No automatic initialization takes place on RESET, so the application entry point must
perform some initialization beforeit can call any C code.

Typically, theinitialization code should carry out some or all of the following tasks:
. defining the entry point
. setting up exception vectors

. initializing the memory system

. initializing the stack pointer registers

. initializing any critical 1/0O devices

. initializing any RAM variables required by the interrupt system

. enabling interrupts

. changing processor mode if necessary
. changing processor state if necessary
. initializing memory required by C

. entering C code.

These items are described in more detail below.

10.3.1 Defining the entry point
The initialization code must define the entry point. The assembler dir&siRyY
marks the entry point.

10.3.2 Setting up exception vectors
The initialization code sets up required exception vectors, as follows:

. Ifthe ROM is located at address 0, the vectors consist of a sequence of hard-coded
instructions to branch to the handler for each exception.

. If the ROM is located elsewhere, the vectors must be dynamically initialized by
the initialization code. Some standard code for doing this is sholasample 2:
Building a ROM to be entered at its base address on page 10-19.

10-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.3.3 Initializing the memory system

If your system has a Memory Management or Protection Unit, you must make sure that
itisinitialized:
. before interrupts are enabled

. before any code is called that might rely on RAM being accessible at a particular
address, either explicitly, or implicitly through the use of stack.

10.3.4 Initializing the stack pointers

The initialization code initializes the stack pointer registers. You may need to initialize
some or all of the following stack pointers, depending on which interrupts and
exceptions you use:

sp_SvC must always be initialized.

sp_IRQ must be initialized if IRQ interrupts are used. It must be initialized before
interrupts are enabled.

sp_FIQ must be initialized if FIQ interrupts are used. It must be initialized before
interrupts are enabled.

sp_ABT must be initialized for data and prefetch abort handling.

sp_UND must be initialized for undefined instruction handling.

Generallysp_ABT andsp_UND are not used in a simple embedded system. However,
you may wish to initialize them for debugging purposes.

— Note

You can set up the stack pointgr_USR when you change to User mode to start
executing the application.

10.3.5 Initializing any critical /O devices

Critical 1/0 devices are any devices that you must initialize before you enable
interrupts. Typically, you must initialize these devices at this point. If you do not, they
may cause spurious interrupts when interrupts are enabled.

10.3.6 Initializing RAM variables required by the interrupt system

If your interrupt system has buffer pointers to read data into memory buffers, the
pointers must be initialized before interrupts are enabled.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-7

Writing Code for ROM

10.3.7 Initializing memory required by C code

Theinitial valuesfor any initialized variables (RW) must be copied from ROM to RAM.
All other ZI variables must be initialized to zero.

Note

If the application uses scatter loading, see Initialization code on page 10-26 for details
of how toinitialize these areas.

Example 10-1 shows an example of codeto initialize variablesin RAM if the
application does not use scatter loading.

Example 10-1 Initializing variables

I MPORT | | mage$$SROBSLI mit | ; End of ROM code (=start of ROM data)
| MPORT | | mage$$RWB$Base| ; Base of RAMto initialize
| MPORT | | rage$$Zl $$Base| ; Base and limt of area
| MPORT | | nage$$ZI $$Li mit | ; to zero initialize
LDR ro, =1 nmage$$ROBSLI mit | ; Get pointer to ROM data
LDR rl, =|1nmge$$RWbSBase| ; and RAM copy
LDR r3, =|1nmge$$Zl $$Base| ; Zero init base => top of initialized data
CWP ro, rl ; Check that they are different
BEQ %1
0 CWP rl, r3 ; Copy init data

LDRCC r2, [r0], #4
STRCC r2, [rl], #4

BCC %80
1 LDR ril, =|1nmage$$zZl $$Limt| ; Top of zero init segment
MoV r2, #0
2 CWP r3, rl ;o Zero init
STRCC r2, [r3], #4
BCC 9B2

10.3.8 Enabling interrupts
Theinitiaization code should enable interrupts if necessary, by clearing the interrupt
disable bitsin the CPSR.

10.3.9 Changing processor mode

At this stage the processor isin Supervisor mode. If your application runsin User mode,
change to User mode and initialize the User mode sp register, sp_USR.

10-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.3.10 Changing processor state

On Thumb-capable processors, the processor startsup in ARM state. If the application
entry point is Thumb code, you must change to Thumb state, for example, using:

ORR Ir, pc, #1
BX Ir

For more details on changing between ARM and Thumb state, refer Chapter 7
Interworking ARM and Thumb.

10.3.11 Entering C code
Itisnow safeto call C code, for example:
I MPORT C_Entry
BL C Entry
Notes on using the main function

When building a ROM image using the Embedded C Library, call the C entry point
something other than mai n() , for example C_entry or ROM ent ry.

When the compiler compiles afunction called mai n() , it generates areference to the
symbol __mai n to force the linker to include the basic C run-time system from the
semihosting ANSI Clibrary. If you are not linking with the C library (when building the
ROM), this causes an error.

If you use the mai n() function only when building an application version for
debugging, comment it out with an #i f def when building a ROM image.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-9

Writing Code for ROM

10.4 Example 1: Building a ROM to be loaded at address O

This example shows how to construct a piece of code suitable for running from ROM.
In areal example, much more would have to go into the initialization section, but
because the initialization processis very hardware-specific, it has been omitted here.

Thecodeforini t.s andex. c isinthe Exanpl es\ ROM i ni t subdirectory of your
SDT install directory (normally c: \ ARM250\ Exanpl es\ ROM i ni t), and isincluded
in Sample code on page 10-13 for reference.
1. Compilethe Cfileex. c with the following command.

arnmcc -c ex.c (ARM)

tcc -c ex.c (Thumb)

where:

-c tells the compiler to compile only (not to link).

2. Assemble the initidlization codei nit . s.
armasm - PD "ROM_AT_ADDRESS ZERO SETL {TRUE}" init.s
or, for Thumb:

armasm - PD "THUMB SETL { TRUE}" - PD "ROM AT_ADDRESS ZERO SETL
{TRUE}" init.s

Thistellsthe assembler to predefine (- PD) the symbol ROM_AT_ADDRESS_ZERO
and to giveit the logical (or Boolean) value TRUE.

Note

On UNIX systems, use single quotes (‘) instead of double quotes (“), or put a
backslash before any double quotes. For example:

\ " ROM AT_ADDRESS ZERO SETL { TRUE}\"

The assembiler fileni t . s tests this symbol and generates different code
depending on whether or not the symbol is set. If the symbol is set, it generates a
sequence of branches to be loaded directly over the vector area at address 0.

3. Link the image using the following command:

armink -o ronD.axf -ro-base 0x0 -rw base 0x10000000
-first init.o(Init) -map -info Sizes init.o ex.o

or, for Thumb:

armink -o tronD. axf -ro-base 0x0 -rw base 0x10000000
-First init.o(Init) -map -info Sizes init.o ex.o

where:

10-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

-0 specifies the output file.

-ro-base 0x0

tells the linker that the read-only or code segment will be placed at
0x00000000 in the address map.

-rw base 0x10000000

tells the linker that the read-write or data segment will be placed at
0x10000000 in the address map. Thisis the base of the RAM in this
example.

-first init.o(lnit)
tells the linker to place this areafirst in the image. On UNIX systems
you might need to put a backslash\ before each parenthesis.

- map tellsthelinker to print an areamap or listing showing where each code
or data section will be placed in the address space. The output isshown
in Area listing for the code on page 10-12.

-info Sizes
tell the linker to print information on the code and data sizes of each
object file along with the totals for each type of code or data. The
output generated is shown in Output from -info Sizes option on page
10-12.

4. RunthefromELF utility to produce a plain binary version of the image:

fromel f -nozeropad ronD.axf -bin ronD.bin (ARM)

fromel f -nozeropad tronD.axf -bin tronD. bin (Thumb)

where:

-nozer opad

tellsthelinker not to pad the end of theimage with zerosto make space
for variables. This option should always be used when building ROM
images.

-bin specifies abinary output image with no header.

5. Load and execute the ROM image under ARMulator by starting armsd, ADW, or
ADU, then type the following on the command line:
getfile romD.bin 0 (ARM)

getfile tronD.bin 0 (Thumb)

pc=0
go

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-11

Writing Code for ROM

10.4.1 Arealisting for the code

Example 10-2 shows the map (area listing) for the sample code:

Example 10-2 Area listing

Base Si ze Type RO? Narre

0x00000000 e4 CCDE RO 111 fromobject file init.o
0x000000e4 238 CODE RO C$$code fromobject file ex.o
0x0000031c 10 CCDE RO C$$constdata fromobject file ex.o
0x10000000 4 DATA RW C$$data fromobject file ex.o
0x10000004 140 ZERO RW C$$zidata fromobject file ex.o

This shows that the linker places three code areas at successive locations starting from
0x0000000 (where the ROM is based), and two data areas starting at address
0x10000000 (where the RAM is based).

Note

Thefiguresmay differ, depending on which version of the ARM Software Development
Toolkit is being used.

10.4.2 Output from -info Sizes option

The output fromthe-i nf o Si zes option is shown in Example 10-3.

Example 10-3 Sample output

object file code inline inline ‘const’ RW O-1nit debug
si ze dat a strings data dat a dat a dat a

init.o 228 0 0 0 0 0 0

ex. o 184 28 356 16 4 320 0

oj ect totals 412 28 356 16 4 320 0

Therequired RAM sizeisthe sum of the Rw dat a (4) andthe0- I nit dat a (320),in
this case 324 bytes.

Therequired ROM sizeisthe sum of thecode si ze (412), thei nl i ne dat a size
(28), thei nl i ne strings (356), theconst dat a (16) and the Rw dat a (4). In this
example, the required ROM sizeis 816 bytes.

The RW datais included in both the ROM and the RAM counts. This is because the
ROM contains the initidlization values for the RAM data.

10-12 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.4.3 Sample code

Example 10-4: init.s

;. The AREA nmust have the attri bute READONLY, otherwi se the |inker will not
; place it in ROM

; The AREA nust have the attribute CODE, otherw se the assenbler will not
; allow any code in this AREA

; Note the '|’ character is used to surround any synbols which contain
; non standard characters like '!’.

AREA Init, CODE, READONLY

; Now sone standard definitions...

Mbde USR EQU 0x10
Mode_| RQ EQU 0x12
Mode_SVC EQU 0x13
| _Bit EQU 0x80
F Bit EQU 0x40

; Locations of various things in our nenory system

RAM Base EQU 0x10000000 ; 64k RAM at this base
RAM Limt EQU 0x10010000
| RQ St ack EQU RAM Li m t ; 1K I RQ stack at top of nenory
SVC St ack EQU RAM Li mt-1024 ; followed by SVC stack
USR_St ack EQU SVC_St ack- 1024 ; followed by USR stack
; --- Define entry point
EXPORT _ _main ; defined to ensure that C runtinme system
__main ; is not linked in
ENTRY

; --- Setup interrupt / exception vectors
| F : DEF: ROM AT_ADDRESS ZERO
; If the ROMis at address O this is just a sequence of branches
Reset Handl er
Undef i ned_Handl er
SW _Handl er
Pr ef et ch_Handl er

s JRlve v uv)

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-13

Writing Code for ROM

B Abort Handl er

NOP ;. Reserved vector

B | RQ_Handl er

B FI Q_Handl er

ELSE

; Ot herwi se, copy a sequence of LDR PC instructions over the vectors
; (Note: Copy LDR PC instructions because branch instructions
; could not sinply be copied, the offset in the branch instruction
; woul d have to be nodified so that it branched into ROM Al so, a
; branch instructions mght not reach if the ROMis at an address
;> 32M).

MoV R8, #0

ADR R9, Vector Init_ Bl ock

LDM A R9!, {RO-R7}

STMA R8!, {RO-R7}

LDMA R9!, {RO-R7}

STMA R8!, {RO-R7}

; Now fall into the LDR PC, Reset Addr instruction which will continue
; execution at ' Reset Handl er’

Vector _I nit_Bl ock

LDR PC, Reset_Addr

LDR PC, Undefi ned_Addr

LDR PC, SW _Addr

LDR PC, Prefetch_Addr

LDR PC, Abort _Addr

NOP

LDR PC, | RQ Addr

LDR PC, FI Q Addr
Reset _Addr DCD Reset Handl er
Undefi ned_Addr DCD Undef i ned_Handl er
SW _Addr DCD SW _Handl er
Pref et ch_Addr DCD Pref et ch_Handl er
Abort _Addr DCD Abort _Handl er

DCD 0 ;. Reserved vector
| RQ_Addr DCD I RQ _Handl er
FI Q_Addr DCD FI Q Handl er
ENDI F

; The followi ng handl ers do not do anything useful in this exanple.

Undef i ned_Handl er

B Undef i ned_Handl er
SW _Handl er

B SW _Handl er

10-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Writing Code for ROM

Pref et ch_Handl er

B Prefetch_Handl er
Abort _Handl er

B Abort _Handl er
| RQ_Handl er

B | RQ _Handl er
FI Q Handl er

B FI Q Handl er

; The RESET entry point
Reset _Handl er

; --- Initialize stack pointer registers
; Enter 1 RQ node and set up the |IRQ stack pointer

MoV RO, #Mode IRQ ORI _Bit:ORF Bit ; No interrupts
MBR CPSR ¢, RO
LDR R13, =l RQ _Stack

; Set up other stack pointers if necessary

; Set up the SVC stack pointer last and return to SVC node

MoV RO, #Mode SVC. ORI _Bit:ORF Bit ; No interrupts
VSR CPSR c, RO
LDR R13, =SVC Stack

; --- Initialize menory system

1

i --- Initialize critical 10 devices

; --- Initialize interrupt systemvariables here

1

; --- Initialize menory required by C code

I MPORT | | mage$$ROBSLI mit | ; End of ROM code (=start of ROM data)

| MPORT | | nage$$RWs$Base| ; Base of RAMto initialize

| MPORT | | mage$$Zl $$Base| ; Base and linmt of area

I MPORT | | mage$$Zl $$Limit | ; to zero initialize

LDR ro, =1 nmage$$ROBSLI mit| ; Get pointer to ROM data

LDR rl, =1 mge$$RW$$Base| ; and RAM copy

LDR r3, =|1nmage$$Zl $$Base| ; Zero init base => top of initialized data
cwpP ro, rl ; Check that they are different

BEQ %1

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-15

Writing Code for ROM

; Now safe to enable interrupts,

A

; in case it does,

awP
LDRCC
STRCC
BCC
LDR
MoV
awP
STRCC
BCC

ri,
r2,
r2,
%B0
rl, =|1mge$$Zl $$Linmt| ;
r2, #0

r3, rl ;
r2, [r3], #4

uB2

r3 ;
[rO], #4
[r1], #4

- Enable interrupts

MoV
MSR

- Now change to User

RO, #Mode SVC.OR F Bit ;
CPSR c, RO

node and set up

Copy init data

Top of zero init segnent

Zero init

so do this and remain in SVC node

Only | RQ enabl ed

User node st ack.

MoV RO, #Mbde_USR ORI _Bit:OR F_Bit
MBR CPSR c, RO
LDR sp, =USR_St ack
- Now enter the C code
| MPORT C Entry
[: DEF: THUMB
ORR lr, pc, #1
BX Ir
CCODE16 ; Next instruction will be Thumb
]
BL C Entry
real application wouldn't nornmally be expected to return, however

MOV
LDR
[: DEF:

]
END

the debug nonitor sw
r0, #0x18 ;
rl, =0x20026 ;
THUMB

SW OxAB ;

SwW 0x123456 ;

is used to halt the application.
angel _SWreason_Report Exception
ADP_St opped_Appl i cati onExi t

Angel semi hosting Thunmb SW

Angel sem hosting ARM SW

10-16

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Writing Code for ROM

Example 10-5: ex.c

#ifdef __thunmb

/* Define Angel Semi hosting SW to be Thunb one */
#define Sem SW OxAB

#el se

/* Define Angel Semi hosting SW to be ARM one */
#define Sem SW 0x123456

#endi f

/* Use the followi ng Debug Monitor SWs to wite things out
* in this exanmple
*/

/* Wite a character */
__Swi(Sem SW) void _WiteC(unsigned op, const char *c);
#define WiteC(c) _WiteC (0x3,¢)

/* Wite a string */
__Swi(Sem SW)void _WiteO(unsigned op, const char *string);
#define WiteO(string) WiteO (0x4,string)

/[* Exit */
__SwWi(Sem SW) void _Exit(unsigned op, unsigned except);
#define Exit() _Exit (0x18, 0x20026)

/* The follow ng synbols are defined by the |inker and define

* various nmenory regions which may need to be copied or initialized
*/

extern char | mage$$SROBSLI mit[];

extern char | mage$$RW$Base[];

/* Define some nore neani ngful nanes here */
#define rom data_base | mage$$SROBSLI mi t
#defi ne ram dat a_base | mage$$RWE$Base

/* This is an exanple of a pre-initialized variable. */
static unsigned factory_id = OxAAS5AA55; /* Factory set ID */

/* This is an exanple of an uninitialized (or zero-initialized) variable */
static char display[8][40]; /* Screen buffer */

static const char hex[17] = "0123456789ABCDEF";
static void pr_hex(unsigned n)

{

int i;

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-17

Writing Code for ROM

for (i =0; i <8 i++) {
WiteC(&ex[n >> 28]);
n <<= 4;

void C Entry(void)

{
if (romdata_base == ram data_base) {
WiteO("Warning: | nmage has been |linked as an application.\r\n");
WiteO(" To link as a ROMimage, link with the options\r\n");
WiteO(" -RO <rom base> - RW <ram base>\r\n");
}

WiteO(" factory_id is at address ");
pr _hex((unsi gned) & actory_i d);
WiteO(", contents = ");

pr _hex((unsi gned)factory_id);
WiteO("\r\n");

WiteO(" display’ is at address ");
pr _hex((unsi gned)di spl ay) ;
WiteO("\r\n");

Exit();

10-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.5 Example 2: Building a ROM to be entered at its base address

This example shows how to construct a ROM image, where the ROM is normally
located at a non-zero address, but is mapped to address 0x0 on reset.

Thecodeforinit.s andex. c isinthe Exanpl es\ ROM i ni t subdirectory of your
SDT install directory (normally c: \ ARM250\ Exanpl es\ ROM i ni t), and areincluded
in Sample code on page 10-13 for reference.

10.5.1 Building the ROM image
Follow this procedure to build the ROM image:

1. Compilethe Cfileex. c with the following command.
arnmcc -c ex.c (ARM)
tcc -c ex.c (Thumb)
where:

-C tells the compiler not to link.

2. Assembletheinitialization codei nit . s.
armasminit.s
or, for Thumb:
armasm - PD "THUMB SETL {TRUE}" init.s

3. Build the ROM image using armlink.

armink -o ranD. axf -ro-base Oxf 0000000 -rw base 0x10000000
-first init.o(Init) -map -info Sizes init.o ex.o

or, for Thumb:

armink -o tranD. axf -ro-base 0xf 0000000 -ro-base 0x10000000
-First init.o(Ilnit) -nmap -info Sizes init.o ex.o

Theonly difference between this and the command used in Example 1isthat here
you use-ro Oxf 0000000 to specify the ROM base address.
4. RunthefromELF utility to produce a plain binary version of the image:
fromel f -nozeropad ranD.axf -bin ranD.bin (ARM)
fromel f -nozeropad tranmD.axf -bin tranmD.bin (Thumb)
5. Load and execute the ROM image under ARMulator by starting armsd, ADW, or
ADU, then type the following on the command line:
getfile ranD. bin Oxf 0000000 (ARM)
getfile tranD. bin 0xf0000000 (Thumb)

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-19

Writing Code for ROM

Thistellsarmsd to load the filer anD at address 0xfO000000 in the ARMulator
memory map.

6. Check that the ROM has been loaded correctly by disassembling itsfirst section:
list Oxf 0000000

Sample output is shown in Sample disassembly below.

7. Setthe program counter to the base of the ROM image, then runiit:
pc=0xf 0000000

go

This produces the following output:

"factory_id is at address 10000000, contents = AA55AA55

"display’ is at address 10000004
10.5.2 Sample disassembly

Example 10-6 shows a disassembly of thefirst part of i nit. s
Example 10-6: Disassembly of init.s
0xf 0000000: 0xe3a08000 :nov r8, #0
0xf 0000004: 0xe28f900c :add r9, pc, #0xc
0xf 0000008: 0xe8hb900f f ldmia r9!, {r0-r7}
0xf 000000c: 0xe8a800f f cstma r8!',{r0-r7}
0xf 0000010: 0xe8h900f f ldmia r9!, {r0O-r7}
0xf 0000014: 0xe8a800ff :stma r8!', {r0-r7}
0xf 0000018: Oxe59ff018 :ldr pc, 0xf 0000038 = #0xf 0000070
0xf 000001c: Oxe59ff018 :ldr pc, Oxf 000003c = #0xf 0000058
0xf 0000020: Oxe59ff018 :ldr pc, 0xf 0000040 = #0xf 000005¢c
0xf 0000024 Oxeb59ff018 :ldr pc, Oxf 0000044 = #0xf 0000060
0xf 0000028: Oxe59ff018 :ldr pc, Oxf 0000048 = #0xf 0000064
0xf 000002c: 0xela00000 :nop
0xf 0000030: Oxe59ff018 :ldr pc, 0xf 0000050 = #0xf 0000068
0xf 0000034: Oxe59ff018 :ldr pc, 0xf 0000054 = #0xf 000006¢c
0xf 0000038: 0xf 0000070 ...p :andnv r0,r0,r0,ror r0
0xf 000003c: 0xf 0000058 ... X :andnv r0,r0,r8,asr r0
Note

If the disassembly produces output that has each word byte-reversed (that is, the word
at 0xf0000000 is 0x0080a0e3 instead of 0xe3a08000), there is a problem with

endianness. Check that your compiler, assembler, and debugger are al configured for
the same endianness.

10-20

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Writing Code for ROM

10.6 Example 3: Using the embedded C library

This example shows an application that makes use of a function from the Embedded C
library, inthiscase, sprintf ().

Thecodefor startup. s andprint.cisintheExanpl es\rom enbed_|ib
subdirectory of your SDT installation directory (normally
c:\ ARM250\ Exanpl es\ rom enbed_| i b), and isincluded below for reference.

For more information on the Embedded C library, refer to Chapter 4 The C and C++
Librariesin the ARM Software Development Toolkit Reference Guide.

10.6.1 Initialization code

10.6.2 Ccode

Before any C code can be called, some startup code to initialize the system is needed.
For the ARMulator, al that isrequired istoinitialize the stack pointer. Theinitialization
codeiscaledst art up. s and isshown in Code listings for example 3 on page 10-22.

The Embedded C Library does not contain pri nt f (), so here, Angel SWIs are used
together with spri nt f () to display text onto the console. This mechanism is portable
across ARMulator, Angel, EmbeddedI CE, and Multi-ICE.

The C code to print ten strings using spri nt f () isshownin full in Code listings for
example 3 on page 10-22.

10.6.3 Compiling, linking, and running the program

Follow these steps to compile and link the program:

1. Compileprint. c by typing:
arncc print.c (ARM)
tcc print.c (Thumb)

2. Assemblest artup. s by typing:
armasm startup.s (ARM)
armasm - 16 startup.s (Thumb)

3. Type

armink -o print.axf -info totals startup.o print.o
c:\ ARMR250\ | i b\ enbedded\arm i b_cn. 321

or, for Thumb:

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-21

Writing Code for ROM

armink -o print.axf -info totals startup.o print.o
c:\ ARMR50\ | i b\ enbedded\arm i b_i. 16l

4. Start armsd, ADW, or ADU and type the following on the command line:
| oad print.axf
go
10.6.4 Code listings for example 3

Example 10-7: startup.s

AREA asm code, CODE

; If assenbled with ARVMASM -16 the variable {CONFIG will be set to 16
; If assenbled with ARMASM the variable {CONFIG will be set to 32
; Set the variable THUMB to TRUE or fal se dependi ng on whether the
; file is being assenbled for ARM or Thunb.

GBLL THUVB

[{CONFIG = 16

THUMB SETL { TRUE}
; If assenmbling with ARMASM -16 go into 32 bit node as the ARMul ator will
; start up the programin ARM state.

CODE32

I
THUMB SETL {FALSE}

]

| MPORT C Entry
ENTRY

; Set up the stack pointer to point to the 512K

MoV sp, #0x80000
; Get the address of the C entry point.

LDR Ir, =C_Entry

[THUMB
; If building a Thunb version pass control to C entry using the BX
; instruction so the processor will switch to THUVB state.

BX Ir

; O herwise just pass control to Centry in ARMstate.
MoV pc, Ir
]

END

10-22 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

Example 10-8: print.c

#i ncl ude <stdio. h>

#i fdef __thunb

/* Define Angel Semi hosting SW to be Thunb one */
#define Sem SW OxAB

#el se

/* Define Angel Semi hosting SW to be ARM one */
#define Sem SW 0x123456

#endi f

/* W use the follow ng Debug Monitor SWs in this exanple */
/* Wite a string */

__swi(Sem SW) void _WiteO(unsigned op, char *string);
#define WiteO(string) WiteO (0x4,string)

/[* Exit */

__SwWi(Sem SW) void _Exit(unsigned op, unsigned except);

#define Exit() _Exit (0x18, 0x20026)

void C Entry(void)

{ . .
int i;
char buf[20];
for (i =0; i <10; i++) {
sprintf(buf, "Hello, World %\n", i);
WiteO(buf);
}
Exit();
}

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-23

Writing Code for ROM

10.7

10.7.1

FLASH Exception vectors

0x00000000 -’ <— 0x00000000 —

Example 4: Simple scatter loading example

Scatter loading provides a more flexible mechanism for mapping code and data onto
your memory map than the armlink - r o- base and - r w- base options. These options
are described in detail in Chapter 6 Linker of the ARM Software Devel opment Toolkit
Reference Guide.

The following example shows a scatter loading application that runs under the
ARMulator, and also usesspri nt f () from the Embedded C library. The example
displaysthelinker-generated scatter symbols on the screen. It isnot normally necessary
to access these linker symbolsin application code (they are only really needed in
initialization code). The linker symbols are accessed here for illustration only.

The code for this exampleisin Exanpl es\ r omi ARMul _Scat t er inyour SDT
installation directory (normally c: \ ARMR250\ Exanpl es\ roml ARMul _Scat t er).

Memory map

This example shows:

FLASH is 0 on RESET and is remapped to 0x04000000 after RESET
. 32bitRAM is at 0x00000000 to hold the exception vectors

. 16bitRAM is at 0x02080000 for the storage of program variables.

<— 0x08000000 —

Initialized RW data

FLASH |, | Exception vectors

Main program code Main program code|

R ’ = =~ 0x04000000 - 1
T

Initialized RW data Zldata <05
1

6bitRAM

16bitRAM
Initialized RW data

<— 0x02080000 —

—

/
Main program code(" /

, 32bitRAM 32bitRAM
Boot code S Exception Vectors

On RESET Load View Execution View

Figure 10-3 Memory map for example 4

10-24

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.7.2 Scatter load description file

The scatter load description file shown in Example 10-9 defines:
. one load region, FLASH
. three execution regions:

. FLASH (at 0x04000000)

. 32bitRAM (at 0x0)

. 16hitRAM (at 0x02080000).

On reset, an aliased copy of FLASH is re-mapped (by hardware) to address zero (as
described ilMemory map considerations on page 10-3). Following reset, 32bitRAM is
mapped to address zero, by the first few instructioh®dn . o.

The 32bitRAM region might be fast on-chip (internal) RAM, and is typically used for
code that must be executed quickly. Here, the exception vectoestodr s. o get
relocated (copied) from FLASH to 32bitRAM. It can also be advantageous to locate the
stack here, if enough memory is available.

The 16bitRAM region might be slower off-chip (external) DRAM, and is typically used
for less frequently accessed RW variables and ZI data. Here, the RW and ZI areas of
C_mai n andC_f unc are relocated/initialized to the region 16bitRAM.

All other read-only code:((+RO)), for example region initialization and library code,
is executed from FLASH, by using a wildcard in the description file.

Example 10-9 scat.txt

FLASH 0x04000000 0x04000000

{
FLASH 0x04000000
{
boot. o (Boot, +First)
* (+RO)
}
32bi t RAM 0x00000000
{
vectors. o (Vect, +FI RST)
}
16bi t RAM 0x02080000
{
C main.o (+RW +Zl)
C func.o (+RW +Zl)
}
}

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-25

Writing Code for ROM

10.7.3 Initialization code

This example illustrates the use of boot code (boot . s), which is an extended version

of thei ni t. s code used in Example 1: Building a ROM to be loaded at address 0 on
page 10-10). The boot code definesthe ENTRY point and initializes the stack pointers
for each mode.

10.7.4 Initializing execution regions

This example uses region initialization code (r egi oni ni t . s) to perform al the
initialization required before branching to the main C application code. The region
initialization code copies RO code and RW data from ROM to RAM, and
zero-initializes the ZI data areas used by the C code.

Thefunction| ni t Regi ons() inregi oni ni t.s usesamacrocaledRegi onlnit to
initialize the specified execution regions. These execution region names match those
given in the scatter load description filescat . t xt :

macro_Regionlnit 32bit RAM
macro_Regionlnit 16bitRAM

Tore-usethiscodein your own scatter-loaded applications, call themacro Regi onl ni t
for each of your execution regions.

Note

Theinitialization code should move all the execution regions from their |oad addresses
to their execution addresses before creating any zero-initialized areas. This ensuresthat
the creation of a zero-initialized area does not overwrite any execution region contents
before they are moved from their load address to their execution address. Failure to do
so may produce unpredictabl e results when the image executes.

10.7.5 Ccode

The C entry pointiscaled C Entry(), not nai n(), to prevent the semihosted ANSI
C libraries being pulled in during the link step, because the Embedded C libraries are
being used here instead.

The Embedded C librariesdo not containpri nt f () , so here Angel SWistogether with
sprintf () areusedto display text onto the console.

This mechanism is portable across ARMulator, Angel, Embedded| CE, and Multi-1CE.

10-26 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.7.6 Building the example

To build the example, do one of the following:

load the suppliedcatter. apj into APM

use a batch file or makefile containing the following

armasm -g boot.s -1list
armasm-g regioninit.s -list
armasm -g vectors.s -1list

arncc -g -¢ C_ main.c

arncc -g -¢ C func.c

arm ink boot.o regioninit.o vectors.o C main.o C func.o
-info totals -info sizes -scatter scat.txt -list out.txt
-map -synbols -xref c:\ARM250\I i b\ enbedded\arm i b_cn. 321
-0 scatter. axf

fromel f -nozeropad scatter.axf -bin scatter.bin

This creates:

an ELF debug image¢at t er . axf) for loading into a debugger (ADW, ADU,
or armsd)

a binary ROM images(cat t er . bi n) suitable for downloading into the Flash
memory of a PID board.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-27

Writing Code for ROM

10.8

10.8.1

Example 5: Complex scatter load example

Thisexampl e showsamore complex scatter |oading application that runsfrom the Flash
memory on an ARM Development Board (PID7T). It reads the switches S3 connected
totheParallel Port and flashes LEDs. It requiresthelink LK 8 to be closed and the LK 11
link field to be correctly configured. Refer to the documentation for the ARM
Development Board for more information.

The code for thisexampleisin Exanpl es\ rom PI D_Scat t er inyour SDT
installation directory (normally c: \ ARMR50\ Exanpl es\rom Pl D_Scat t er).

Note

This codeis amodified version of the code provided in the sample code suite of the
ARM Development Board.

Memory map

This example shows:
FLASH is 0 on RESET and is remapped to 0x04000000 after RESET
Fast SSRAM is at 0x0000 to hold the exception vectors and the exception

FLASH

0x00000000 —>

handlers

SRAM is at 0x02000 for the storage of program variables.

1
’

Remap FLASH
after RESET

Initialized RW data

Exception Handlers!

.
,
,
.
.
’
’
.

Exception Vectors

Main program code

Boot code

On RESET

Initialized RW data

Exception Handlers

Exception Vectors

Main program code

Boot code

SRAM

SSRAM

Load View

<— 0x08000000 —

<— 0x04000000 —

<— 0x00002000 —

NS

<— 0x00000000 —

Main program code

Boot code

Zl data =+

Initialized RW data

Exception Handlers!

Exception Vectors

Execution View

SSRAM

Figure 10-4 Memory map for example 5

10-28

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Writing Code for ROM

10.8.2 Scatter load description file

The scatter load description file shown in Example 10-10 defines one load region
(FLASH) and three execution regions:

« FLASH (at 0x04000000)
« SSRAM (at 0x0000)
« SRAM (at 0x2000).

On reset, an aliased copy of FLASH is re-mapped (by hardware) to address zero.
Following reset, SRAM is mapped to address zero, by the first few instructions in
boot . o.

The SSRAM area might be fast on-chip (internal) 32-bit RAM, and is typically used for
the stack, and code that must be executed quickly. The exception vectors (in

vect or s. 0) and interrupt handler (i@_i nt _handl er . o) are relocated (copied) from
FLASH to (fast) SSRAM at address 0x0000 for speed.

SRAM might be slower off-chip (external) 16-bit DRAM or SRAM, and is typically
used for less frequently accessed RW variables and ZI data. Here, the RW variables ar
ZI1 data of the main program code @nmai n. c¢) get copied/initialized in SRAM at
address 0x2000.

All other read-only code? ((+RO)), for example region initialization and library code,
is executed from FLASH, by using a wildcard in the description file.

Example 10-10 scat.txt

FLASH 0x04000000 0x04000000

{
FLASH 0x04000000
{
boot. o (Boot, +First)
* (+RO
}
SSRAM 0x0000
{
vectors.o (Vect, +FI RST)
C.int_handler.o (+RO
}
SRAM 0x2000
{
C main.o (+RW +Zl)
}
}

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-29

Writing Code for ROM

10.8.3 Initialization code

This exampleillustrates the use of boot code (boot . s), asdescribed in Initialization
code on page 10-26.

Note
Theinitialization code should move all the execution regions from their |oad addresses
to their execution addresses before creating any zero-initialized areas. This ensuresthat
the creation of a zero-initialized area does not overwrite any execution region contents
before they are moved from their load address to their execution address. Failure to do
so may produce unpredictable results when the image executes.

10.8.4 Initializing execution regions

This example uses region initialization code (r egi oni ni t. s) asin Initializing
execution regions on page 10-26, but changes the macro invocations in the scatter load
description file:

macro_Regi onlnit SSRAM
macro_Regionlnit SRAM

10.8.5 Building the example

To build the example, do one of the following:
. load the suppliedcat t er. apj into APM
. use a batch file or makefile containing the following

armasm -g boot.s -1list
armasm-g regioninit.s -list
armasm -g vectors.s -list

arncc -g -¢ C main.c

arncc -g -¢ C.int_handler.c

arm ink boot.oregioninit.ovectors.o C main.oCfunc.o-info
totals -info sizes -scatter scat.txt -list out.txt -nmap
-synbol s -xref c:\ARMR50\I i b\enbedded\arm ib_cb.321 -0
scatter. axf

fromel f -nozeropad scatter.axf -bin scatter.bin

This creates:

. an ELF debug image¢at t er . axf) for loading into a debugger (ADW, ADU,
or armsd)

. a binary ROM images(at t er . bi n) suitable for downloading into the Flash
memory of a PID board.

10-30 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.8.6 Running the example

Follow these steps to execute/debug the image with ADW, EmbeddedI CE and aPID
board:

1
2.

© © N o

11

12,

Ensure REMAP link LK18is OUT to Flash-download.
Switch on the power to the PID board and launch ADW.

In ADW, select Configure debugger from the Options menu and select
remote _a.

Select Flash download from the Filemenu and enter the name of the ROM image
(scatter. bin).
The Command Window displays:

ARM Fl ash Progranming Utility

AT29C040A r ecogni sed

Input File Is : - (your_ROMfilenane)

Pl ease enter the nunber of the first sector to wite
Default is to start at sector O

Start at sector 0x0

Click Enter to start the Flash programming.

The Command Window displays the progress as the Flash is programmed, and a
message when the operation is complete:

Flash witten and verified successfully
Exit ADW and switch off the power to the PID board.
Put REMAP link LK18 IN to execute from Flash.
Switch on the power to the PID board and launch ADW.

In ADW, select L oad from the File menu and enter the name of the debug image
(scatter. axf).

Select Debugger | nter nalsfrom the View menu and makevect or _cat ch=0, to
free awatchpoint unit.

You can now debug your ROM code (for example, set breakpoints, single-step,
view backtrace).

To break on each interrupt, put a breakpoint on line 112 of C_mai n. c:
if (1ntCT1)

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-31

Writing Code for ROM

10.9 Scatter loading and long-distance branching
Long-distance branching is defined for ARM and Thumb architectures as follows:

. The branch instructions in the ARM instruction set allow a branch forwards or
backwards by up to 32MB. A subroutine call is a variant of the standard branch.
As well as allowing a branch forwards or backwards up to 32MBLtliBranch
with Link) instruction preserves the return address in register 14 (link register, Ir).

. The Thumb instruction set has much shorter branch ranges:
. Conditional instructions have a range of 256 bytes
. Unconditional branches have a range of 2048 bytes
. TheBL (long branch with link) instruction has a range of 4MB.

10.9.1 Range restrictions

The linker ensures that no branch or subroutine call violates these range restrictions. If
you place your execution regions in such a way as to require inter-region branches
beyond the range, the linker generates an error message stating:

Rel ocated val ue too big for instruction sequence

There are two ways to work around this restriction:
. Using function pointers in code, removing the dependence on branch ranges.
. Calling the out-of-range routines through assembly language veneers.

Function pointers

For example, if the application currently has a function:
int func(int a, int b);

that is invoked as:

func(a, b);

you can change this using function pointers into:

typedef int FuncType(int, int);
FuncType *fn = func;

and invoke the function as:

fn(a, b);

10-32 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

Assembly language veneers

If you use assembly language veneers, you can write the function as:
asm func(a, b);

whereasm f unc isan assembly language routine.

Because ARM and Thumb assembly languages differ, the code for the veneersis
dlightly different.

The following is the assembly language veneer for ARM:

AREA arm_| ongbranch_veneers, CODE, READONLY
EXPORT asm func

| MPORT func
asm func

LDR pc, addr_func
addr _func

DCD func

END

The following is the assembly language veneer for Thumb:

AREA thunb_I ongbranch_veneers, CODE, READONLY
EXPORT asm func

| MPORT func
asm func
SUB sp, #4
PUSH {ro}
LDR r0, addr_func
STR r0, [sp, #4]
POP {ro0, pc}
ALI GN
addr _func
DCD func
END
—— Note

You must ensure that the file containing these veneers is within range of the module
calingasm func(a, b).

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-33

Writing Code for ROM

10.10 Converting ARM linker ELF output to binary ROM formats

By default, the ARM SDT 2.50 linker produces industry-standard EL F images. For
embedded applications, the image usually needs to be converted into a binary format
suitable for an EPROM programmer.

For more information on the ARM ELF implementation, refer to the ELF
documentation in c: \ ARM250\ PDF\ specs. For the command-line options for
fromELF, see Chapter 8 Toolkit Utilitiesin the ARM Software Devel opment Tool kit
Reference Guide.

Follow these steps to add a FromELF build step to a project template:

1

Select the root of the project tree view. Choose Edit variablesfor project.apj...
from the Project menu. The Edit variables dialog is displayed.

Find the variable named bui | d_t ar get and change its value from
<$pr oj ect nanme>. axf to <$proj ect nane>. bi n and click OK.

Choose Edit Project template from the Project menu. The Project Template
Editor dialog is displayed.

Select Edit Detalils... and add (ROM) to thetitle.

Create a CreateROM build step by clicking on the New... button in the Project
template Editor dialog.

The Create a new build step pattern dialog is displayed.

Type Cr eat eROMin the Name field, and click OK. An empty Edit Build Step
Pattern dialog for CreateROM appears.

In the Command Linesfield, type (on oneline):

<fronel f > <FROVELFOPTI ONS> <$pr oj ect nane>. axf -bin
<$pr oj ect nane>. bi n

The - bi n option produces a Plain Binary image, suitable for blowing into ROM.
Other output formats are also available, for example:

. Motorola 32 bit Hex{n82)

. Intel 32 bit Hex {i 32)

. Intellec Hex i hf).

In thelnput Partition, type:

| mage

In thelnput Pattern, type:

<$pr oj ect nane>. axf

10-34

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

10.
11

12,

13.
14.

15.
16.

17.

Writing Code for ROM

This should match the Link build step output pattern.
Click Add.

In the Output Partition, type:
Eprom

In the Output Pattern, type:
<$pr oj ect nane>. bi n
This should match the Link build step output pattern.

Click Add, then OK.
Select Edit variablesfor project.apj... from the Project menu.

a. Inthe Namefield of the Edit variables diaog, type

FROVELFOPTI ONS
b. IntheValuefield, type your chosen options, for example:

-nozer opad
Click OK.

If you want to re-use thistemplate for another project, save the template with the
Save As Template option from the File menu.

Rebuild the project. If you see an error message like:

"project.apj"; No build target naned ' <$proj ect nane>. bi n’

a Removeadl sourcefiles from your project by highlighting the files, then
pressing delete.

b. Replace all source filesinto your project using the Add Filesto Project
from the Project menu.

10.10.1 Multiple output formats

This example uses - bi n to produce a plain binary image, suitable for blowing into
ROM. Other output formats are also possible (Motorola 32 bit Hex, Intel 32 bit Hex,
and Intellec Hex. Multiple outputs are al so possible. For example, step 7 might read (on
oneline):

<fronel f> <FROVELFOPTI ONS> <$pr oj ect nane>. axf -nB2
<$pr oj ect name>. n82 -bi n <$proj ect nane>. bi n

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-35

Writing Code for ROM

10.10.2 Configuration

The Project - Tool configuration menu will now contain an entry f r orrel f . You will
not need to use this configuration tool, because you can change the fromELF options
using the template variables.

10-36 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

10.11 Troubleshooting hints and tips

This section provides solutions to some common errors or problems. The errors are
organized in the following categories:

. Problems with thevite0() SWI call

. Linker errors

. Load/run errors

. ARMulator errors

10.11.1 Replacing the Write0() SWI call

Users of EmbeddedICE 2.04 or earlier may find problems with the semihosting SWI
SYS WRI TEO, used by the examples in this chapter to print to the debugger console.
Upgrade to the latest ICEagent (currently 2.07) to remedy this problem.

It is possible to make a temporary workaround to this problem by using the following
code to replace thef i t e0() SWI call, though the recommended fix is to upgrade to
ICEAgent 2.07.

/* Wite a character */
__Swi(Sem SW) void _WiteClunsigned op, char *c);
#define WiteC(c) _WiteC (0x3,c)

void WiteO (char *string)
{ int pos = 0;
while (string[pos] !'= 0)
WiteC(&string[pos++]);

10.11.2 Linker errors

These are common linker errors:

Undefined symbols: _ rt_...or __16_ rt_...
The linker reports a number of undefined symbols of the form:

rt_ ... or 16 rt_

Cause

These are runtime support functions called by compiler-generated code to perform task
that cannot be performed simply in ARM or Thumb code (for example, integer division
or floating-point operations).

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-37

Writing Code for ROM

For example, the following code generates a call to runtime support function
__rt_sdiv toperform adivision.

int test(int a, int b)
{

return a / b;

}

Solution
Link with a C library so that these functions are defined.

Undefined symbols: _ rt_stkovf_split_big or __rt_stkovf_split_small

The linker reports one of the symbols__rt _st kovf _split_bigor
_rt_stkovf_split_small asbeing undefined.

Cause

You have compiled your C code with software stack checking enabled. The C compiler
generates code that calls one of the above functions when stack overflow is detected.

Solutions

. Recompile your C code with stack checking disabled. Stack checking is disabled
by default.

. Link with a C library that provides support for stack limit checking. This is
usually possible only in an application environment because C library stack
overflow handling code relies heavily on the application environment.

. Write a pair of functions_rt _st kovf _split_bigand
__rt_stkovf_split_small,the code for which usually generates an error for
debugging purposes. This effectively means that the application has a fixed size
stack.

The code might look similar to the following:

EXPORT _ rt_stkovf_split_big

EXPORT _ rt_stkovf_split_small
_rt_stkovf_split_big
_rt_stkovf_split_small

ADR RO, stack_overfl ow _nmessage
SwW Debug_Message ; System dependent SW
; to wite a debugging
forever ; message and | oop forever.
B forever
st ack_overfl ow_nessage
DCB "Stack overflow', O

10-38

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Writing Code for ROM

Attribute conflict in the linker
Thelinker generates an error similar to the following:

ARM Li nker: (Warning) Attribute conflict between AREA
test 2. o(C3$code) and i nmge code.
ARM Linker: (attribute difference = {NO SW STACK_CHECK}) .

Cause

Parts of your code have been compiled or assembled with software stack checking
enabled and parts without. Alternatively, you have linked with alibrary that has
software stack checking enabled whereas your code hasiit disabled, or vice versa.

Solution

Recompile your C code with stack checking disabled. Stack checking is disabled by
default. Link with alibrary built with the same options.

undefined __main

Thelinker reports __mai n as being undefined.

Cause

When the compiler compiles the function mai n() , it generates a reference to the
symbol __mai n toforcethelinker toincludethe basic C runtime system fromthe ANSI
semihosted Clibrary. If you arenot linking with an ANSI semihosted C library and have
afunction mai n() you may get this error.

Solution

This problem may be fixed in one of the following ways:

. If the mai n() function is used only when building an application version of your
ROM image for debugging purposes, comment it out withidnlef when
building a ROM image.

. When building a ROM image and linking with the Embedded C Library, call the
C entry point something other thami n(), such a Entry orROM Entry.

. If you do need a function calledhi n() , define a symbol nmai n in your ROM
initialization code. Usually this is defined to be the entry point of the ROM image,
so you should define it just before tB¥TRY directive as follows:

EXPORT _ nmain
ENTRY

__main
B main

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10-39

Writing Code for ROM

10-40 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 11

Benchmarking, Performance Analysis, and
Profiling

This chapter describes various ways of measuring performance, enabling you to
improve any sections of code that are inefficient. It contains the following sections:
. About benchmarking and profiling on page 11-2

. Measuring code and data size on page 11-3

. Performance benchmarking on page 11-6

. Improving performance and code size on page 11-16

. Profiling on page 11-20.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-1

Benchmarking, Performance Analysis, and Profiling

11.1

About benchmarking and profiling

This chapter explains how to run benchmarks on the ARM processor, and shows you
how to use the profiling facilities to help improve the size and performance of your
code. It makes extensive use of the example programsin the ARM Software
Development Toolkit, and contains a number of practical exercisesfor you to follow.
You should therefore have access to the exanpl es directory of the toolkit, and the
ARM software tools themselves, while working through it.

When devel oping application software or comparing the ARM with another processor,
it is often useful to measure:

. code and data sizes
. overall execution time
. time spent in specific parts of an application.

Such information enables you to:

. compare the ARM's performance against other processors in benchmark tests

. make decisions about the required clock speed and memory configuration of a
proposed system

. pinpoint where an application can be streamlined, leading to a reduction in system
memory requirements

. identify performance-critical sections of code that you can then optimize, either
by using a more efficient algorithm, or by rewriting in assembly language.

11-2

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

11.2 Measuring code and data size

11.2.1 Interpreting

To measure code size, do not look at the linked image size or object module size, as
these include symbolic information that is not part of the binary data. Instead, use one
of the following armlink options:

-info sizes this option gives a breakdown of the code and data sizes of each
object file or library member making up an image

-info totals this option gives a summary of the total code and data sizes of all
object filesand all library members making up an image

size information

Theinformation provided by the-i nfo si zes and-info totals optionscan be
broken down into:

. code (or read-only) segment
. data (or read-write) segment
. debug data.

Code (or read-only) segment

code size Size of code, excluding any data that has been placed in the code segmer

(see Table 11-1 on page 11-5).

inline data
Size of read-only data included in the code segment by the compiler.

Typically, this data contains the addresses of variables that are accessec

by the code, plus any floating-point immediate values or immediate

values that are too big to load directly into a register. It does not include
inline strings, which are listed separately (see Table 11-1 on page 11-5).

inline strings
Size of read-only strings placed in the code segment.

The compiler puts such strings here whenever possible to reduce runtime

RAM requirements.

const Size of any variables explicitly declaredcasst .

These variables are guaranteed to be read-only and so are placed in the

code segment by the compiler.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-3

Benchmarking, Performance Analysis, and Profiling

11.2.2

11.2.3

Data (or read-write) segment

RW dat a Size of read-write data. Thisis datathat is read-write and also has an
initializing value. Read- wri t e dat a occupies the displayed amount of
RAM at runtime, but also requires the same amount of ROM to hold the
initializing values that are copied into RAM on image startup.

0-init data
Size of read-write datathat is zero-initialized at image startup.
Typically thiscontainsarraysthat are not initialized in the C source code.

Zero-initialized data requires the displayed amount of RAM at runtime
but does not require any space in ROM.

Debug data

debug data

Reports the size of any debugging dataif the files are compiled with the
- g+ option.

Note

There are totals for the debug data, even though the code has not been compiled for
source-level debugging, because the compiler automatically addsinformationtoan AIF
file to allow stack backtrace debugging.

Calculating ROM and RAM requirements

Calculate the ROM and RAM requirements for your system as follows:

ROM Code size + inline data + inline strings + const data
+ RWdat a

RAM RWData + 0-init data
In addition you must allow some RAM for stacks and heaps.

In more complex systems, you may require part (or al) of the code segment to be
downloaded from ROM into RAM at runtime. This increases the system RAM
requirements but could be necessary if, for example, RAM access times are faster than
ROM access times and the execution speed of the system iscritical.

Code and data sizes example: Dhrystone

The Dhrystone application is located in the exanpl es subdirectory of the ARM
Software Development Toolkit. Copy the files into your working directory.

11-4

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

Using command-line tools:
Compile the Dhrystone files, without linking:
arncc -c¢ -DMSC _CLOCK dhry_1.c dhry_2.c

The compiler produces a number of warnings that you can either ignore, or suppress
using the - w option. The warnings are generated because the Dhrystone application is
coded in Kernighan and Ritchie style C, rather than ANSI C.

Perform thelink, withthe-i nf o t ot al s option to give areport on the total code and
data sizesin the image, broken into separate totals for the object files and library files:

armink -info totals dhry_1.0 dhry_2.0 -0 dhry

Using the Windows tools
You can use this easier method if you use ADW and are running APM.
Load the Dhrystone project file dhr y. apj into the ARM Project Manager (APM).

Changethe project setting to produce arel ease build with alittle-endian memory model,
using the ARM toolsinstead of the Thumb tools (see Configuring tools on page 2-21).

@ | Click the Force Build button. This compiles and links the project, automatically
generating a summary of the total code and data sizesin the image.

Results
Table 11-1 Code and data sizes results
code inline inline const RW 0-init debug
size data strings data data data data
Object totals 2136 28 1536 0 48 10200 0
Library totals 33888 528 616 24 396 1132 0
Grand totals 36024 556 2152 24 444 11332 0

Your figures may differ, depending on the version of the compiler, linker, and library.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-5

Benchmarking, Performance Analysis, and Profiling

11.3

11.3.1

11.3.2

Performance benchmarking

The basis for improving performance is to minimize the number of machine cycles
required to perform atask a specific number of times.

Measuring performance

There are two debugger internal variables that contain the cycle counts. These can be
displayed using thearmsd pri nt command, or by selecting Debugger I nternalsfrom
the ADW or ADU View menu:

$statistics
can be used to output any statisticsthat the ARMulator has been keeping.

$statistics_inc
shows the number of cycles of each type since the previoustime
$statisticsor$statistics_inc wasdisplayed. Thisisonly
applicable for armsd, or the command-line window in ADW or ADU.

$statistics_inc_w
outputs the difference between the current statistics and the point at
which you asked for the $st ati sti cs_i nc_wwindow. Thisisonly
applicable for ADW or ADU, not for armsd.

Make sure you have not compiled with source-level debugging enabled (ar ncc - g+),
because this causes sub-optimal codeto be generated (larger and slower). The- 01, - 02
and - gt compiler options can reduce this. Refer to Chapter 2 The ARM Compilersin

the ARM Software Development Toolkit Reference Guide for more information on the
effect of debug and optimization options.

If your code makes use of floating-point mathematics, a considerable amount of time
may be spent in the floating-point code (libraries or FPE).

Cycle counting example: Dhrystone

In this example, the number of instructions executed by the main loop of the Dhrystone
application and the number of cycles consumed are determined. A suitable place to
break within the loop is the invocation of function Pr oc_5.

If you are using the command-line tools:

1. Load the executable, produced in Code and data sizes example: Dhrystone on
page 11-4, into the debugger:

arnmsd - nof pe dhry

11-6

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

Set a breakpoint on the first instruction of Proc_5:
break @roc_5

Typego at the armsd prompt to begin execution. When prompted, request at least
two runs through Dhrystone.

When the breakpoint at the start of Pr oc_5 isreached, display the system variable
$statistics (whichgivesthetotal number of instructions and cycles taken so
far) and restart execution:

print $statistics

go

When the breakpoint is reached again, you can obtain the number of instructions
and cycles consumed by one iteration:

print $statistics_inc

If you are using the Windows toolkit:

1

10.

11

If you have not already done so, build the Dhrystone project as described in Code
and data sizes example: Dhrystone on page 11-4.

If you use ADW and are running APM then click on the Debug button to start
ADW and load the Dhrystone project. If you use ADU then start ADU and select
Load Image... from the File menu to load the Dhrystone project.

Disable floating point emulation. Select Options — Configure Debugger... —
Target -~ ARMulate and switch the FPE check box off.

Locate function Pr oc_5 by selecting L ow L evel Symbolsfrom the View menu.
Double click on Pr oc_5 to open the Disassembly Window.

Toggle the breakpoint on Pr oc_5 in the Disassembly Window by selecting the
instruction, then clicking the Toggle breakpoint button on the toolbar.

Click the Go button to begin execution.
When prompted, request at least two runs through Dhrystone.

When the breakpoint set at nai n isreached, click Go again to begin execution of
the main application.

When the breakpoint at Pr oc_5 isreached, choose Debugger | nter nalsfrom the
View menu.

Doubleclick onthest ati sti cs_i nc field to display thedetail for thisvariable.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-7

Benchmarking, Performance Analysis, and Profiling

12. Click the Go button. When the breakpoint at Pr oc_5 is reached again, the
contents of the st ati sti cs_i nc_wfield isupdated to reflect the number of
instructions and cycles consumed by one iteration of the loop.

Results

The results are shown in the following table:

Table 11-2 Cycle counting results

Instructions S-cycles N-cycles I-cycles C-cycles F-cycles

358 427 188 64 0 0

S-cycles Sequentia cycles. The CPU requests transfer to or from the same
address, or from an addressthat isaword or halfword after the preceding
address.

N-cycles Non-sequential cycles. The CPU requests transfer to or from an address
that is unrelated to the address used in the preceding cycle.

I-cycles Internal cycles. The CPU does not require atransfer becauseit is
performing an internal function (or running from cache).

C-cycles Coprocessor cycles.
F-cycles Fast clock cycles for cached processors (FCLK).

Note

You may obtain slightly different figures, depending on the version of the compiler,
linker, or library in use, and the processor for which the ARMulator is configured.

11.3.3 Real-time simulation

The ARMulator also provides facilities for real-time simulation. To carry out such a
simulation, you must specify:

. the type and speed of the memory attached to the processor

. the speed of the processor.

Refer toMap files on page 11-9 for more information and examples.

While it is executing your program, the ARMulator counts the total number of clock
ticks taken. This allows you to determine how long your application would take to
execute on real hardware.

11-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

11.3.4 Reading the simulated time
When it performs a simulation, the ARMulator keeps track of the total time elapsed.
This value may be read either by the simulated program or by the debugger.
Reading the simulated time from assembler
To read the simulated clock from an assembly language program use the Angel
SYS_ CLOCK SWI.
Reading the simulated time from C

From C, usethe standard C library functioncl ock() . Thisfunction returns the number
of elapsed centiseconds.

Reading the simulated time from the debugger

Theinterna variable $cl ock contains the number of microseconds since ssmulation
started. To display this value, use the command:

Print $cl ock

if you are using armsd, or select Debugger Internalsfrom the View menu if you are
using ADW or ADU.

— Note

The $cl ock internal variable is unavailable if the processor clock frequency is set to
0.00. You must specify a processor clock frequency for ARMulator if you wish to read
the$cl ock variable. Select Options — ConfigureDebugger... — Target - ARMulate
- Configure... and use the ARMulator Configuration dialog.

11.3.5 Map files

The type and speed of memory in asimulated system is detailed in amap file. This
defines the number of regions of attached memory, and for each region:

. the address range to which that region is mapped
. the data bus width in bytes
. the access time for the memory region.

armsd expects the map file to be in the current working directory under the name
ar nsd. map.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-9

Benchmarking, Performance Analysis, and Profiling

ADW or ADU accept amap file of any name, provided that it has the extension . map.
See Real-time simulation example: Dhrystone on page 11-13 for details of how to
associate amap fileinto an ADW or ADU session.

To calculate the number of wait states for each possible type of memory access, the
ARMulator uses the values supplied in the map file and the clock frequency. See
ARMulator configuration on page 3-57 for details of how the wait states are calcul ated.

Format of a map file

The format of each lineis:

start size nane width access read-tines wite-tines

where:

start

si ze

nane

width

access

isthe start address of the memory region in hexadecimal, for example,
80000.

is the size of the memory region in hexadecimal, for example, 4000.

isasingle word that you can use to identify the memory region when
memory access statistics are displayed. You can use any name. To ease
readability of the memory access statistics, give a descriptive name such
as SRAM DRAM or EPROM

isthe width of the data busin bytes (that is, 1 for an 8-bit bus, 2 for a
16-bit bus, or 4 for a 32-bit bus).

describes the type of access that may be performed on this region of
memory:

r for read-only.
w for write-only.
rw for read-write.
- for no access.

Anasterisk (*) may be appended to the accessto describe a Thumb-based
system that uses a32-bit data bus, but which hasa 16-bit latch to latch the
upper 16 bits of data, so that asubsequent 16-bit sequential access can be
fetched directly out of the latch.

11-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

read-tines
describes the nonsequential and sequential read times in nanoseconds.
These should be entered as the nonsequential read access time followed
by / (slash), followed by the sequential read access time. Omitting the /
and using only one figure indicates that the nonsequential and sequential
access times are the same.

Note

Do not simply enter the times quoted on top of amemory chip. You must
add a 20-30ns signal propagation time to them.

wite-tines
describes the nonsequential and sequential write times. The format is
identical to that of read times.

The following examples assume a clock speed of 20MHz.

Example 1
0 80000000 RAM 4 rw 135/85 135/85

This describes a system with a single contiguous section of RAM from 0 to Ox 7fffffff
with a 32-bit data bus, read-write access, and N and S access times of 135ns and 85ns
respectively.

The N-cycle access time is one clock cycle longer than the S-cycle access time. For a
faster system, asmaller N-cycle accesstime should be used. For example, for a33MHz
system, the access times would be defined as 115/ 85 115/ 85.

Example 2

0 80000000 RAM 1 rw 150/100 150/100

This describes a system with the same single contiguous section of memory, but with

an 8-bit external data bus and slightly different access times.

Example 3

Thefollowing description file detailsatypical embedded system with 32K B of on-chip
memory, 16-bit ROM and 32KB external DRAM:

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-11

Benchmarking, Performance Analysis, and Profiling

00000000 8000 SRAM 4 rw 1/1 1/1

00008000 8000 ROM 2 r 100/100 100/100
00010000 8000 DRAM 2 rw 150/100 150/ 100
7ff18000 8000 Stack 2 rw 150/100 150/ 100

There are four regions of memory:

. A fast region from O t@x7f f f with a 32-bit data bus.

. A slower region frondx8000 to Oxf f f f with a 16-bit data bus. This is labelled
ROM and contains the image code, and is therefore marked as read-only.

. A region of RAM from0x10000 to 0x17f f f that is used for image data.

. A region of RAM from0Ox7f f f 8000 toOx7f f f f f f f that is used for stack data
(the stack pointer is initialized tx80000000).

In the final hardware, the two distinct regions of the external DRAM would be
combined. This does not make any difference to the accuracy of the simulation.

The SRAM region is given access times of 1ns. In effect, this means that each access
takes 1 clock cycle, because ARMulator rounds this up to the nearest clock cycle.
However, specifying it as 1ns allows the same map file to be used for a number of
simulations with differing clock speeds.

Note

To ensure accurate simulations, take care that all areas of memory likely to be accessed
by the image you are simulating are described in the memory map.

To ensure that you have described all areas of memory you think the image should
access, you can define a single memory region that covers the entire address range as
the last line of the map file.

For example, you could add the following line to the above description:
00000000 80000000 Dummry 4 - 1/1 1/1

You can then detect if any reads or writes are occurring outside the regions of memory
you expect using thgri nt $nenory_stati sti cs command. This can be a very

useful debugging tool.

Reading the memory statistics

To read the memory statistics use the command:

Print $nenory_statistics

The statistics are reported in the following form:

11-12

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

Example 11-1
address name wacc RINS) WNS) reads(N S) wites(NS) time (ns)
00000000 Dunmy 4 - 171 1/1 0/0 0/0 0
7FFF8000 St ack 2 rw 150/100 150/ 100 0/0 0/0 0
00010000 DRAM 2 rw 150/100 150/ 100 0/0 0/0 0
00008000 ROM 2r 100/ 100 100/ 100 0/0 0/0 0
00000000 SRAM 4 rw 1/1 1/1 0/0 0/0 0

Print $nenstats isashorthand versionof Print $nenory_statistics.

Processor clock speed

You must specify the clock speed of the processor being simulated in the debugger. In
armsd, thisis set by the command-line option - cl ock val ue. Thevalueis presumed
to bein Hz unless MHz is specified.

In ADW or ADU, the clock speed is set in the Debugger Configuration dialog. To
display this diaog:

1. Select Options - Configure Debugger... » Target -~ ARMulate -
Configure....

2. Enter avalue and click OK.

See ARMulator configuration on page 3-57 for more information.

11.3.6 Real-time simulation example: Dhrystone

To work through this example, you must create amap file. (If amap fileisincluded in
thefilesyou copied from the toolkit directory, edit it to match the one shown here.) Call
itar msd. map.

00000000 80000000 RAM 4 RW 135/85 135/85

This describes a system that has:

. a single contiguous section of memory

. starting at address 0x0

. 0x80000000 bytes in length

. labeled as RAM

. a 32-bit (4-byte) data bus

. read and write access

. read access times of 135ns nonsequential and 80ns sequential
. write access times of 135ns nonsequential and 80ns sequential.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-13

Benchmarking, Performance Analysis, and Profiling

If you are using the command-line tools:

1

L oad the executable produced in Code and data sizes example: Dhrystone on
page 11-4 into the debugger, telling the debugger that its clock speed is 20MHz:

armsd -cl ock 20MHz - nof pe dhry

Asthe debugger loads, you can see the information about the memory system that
the debugger has obtained from the ar nsd. map file.

Type go at the armsd prompt to begin execution.
When requested for the number of Dhrystones, enter 30000.

When the application completes, record the number of Dhrystones per second
reported. Thisis your performance figure.

If you are using the Windows toolkit:

ADW and ADU by default use afile called ar nsd. map astheir map file. To changeto
the map file you have created:

1

Select ConfigureDebugger from the Optionsmenu. Thisdisplaysthe Debugger
configuration dialog.

Select theM emory M apstab to change the default memory map. Click the L ocal
Map File button and select the map file you created.

The association is now set up, and you can run the program.

1

l 3.

If you use ADW and are running APM then click on the Debug button to start
ADW and load the project. If you use ADU then start ADU and select L oad
Image... from the File menu to load the project. If adialog box prompts you to
save the changes to the project file, click Yes.

To set up the debugger to run at the required clock speed:

a. Select Configure Debugger from the Options menu.

b. Select ARMulator from the Target Environment box on Target page of
the Debugger Configuration dialog.

c. Click the Configure button.

d. Ensurethe Emulated radio button is selected, set the Clock Speed to
20MHz, and click OK.

e. Click OK onthe Debugger Configuration dialog. The image is reloaded.

Click the Go button to begin execution, and again when the breakpoint on mai n
is reached.

11-14

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

4. When requested for the number of Dhrystones, enter 30000.

5. When the application completes, record the number of Dhrystones per second
reported. Thisis your performance figure.

When the debugger is configured to emul ate a processor of the required clock speed (in
this case 20MHz), you can repeat the simulation by clicking on Execute rather than
Debugin APM.

—— Note

You may obtain slightly different figures, depending on the version of the compiler,
linker, and library in use, and the processor for which the ARMulator is configured.

11.3.7 Reducing the time required for simulation

You may be able to significantly reduce the actual time taken for a simulation by
dividing the specified clock speed by afactor of ten or a hundred, and multiplying the
memory access times by the same factor. Take the time reported by thecl ock()
function (or by SYS_CLOCK) and divide by the same factor.

This works because the simulated time is recorded internally in microseconds, but
SYS_CLOCK only returns centiseconds. Dividing the clock speed shifts digits from the
nanosecond count into the centisecond count, allowing the same level of accuracy but
taking much less time to simulate.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-15

Benchmarking, Performance Analysis, and Profiling

11.4

114.1

11.4.2

Improving performance and code size

There are two main goals when compiling a benchmark:
. minimizing code size
. maximizing performance.

This section explains how using compiler options, avoiding the standard C library, and
modifying your source code can all help to achieve these goals.

Compiler options

The ARM C compiler has a number of command-line options that control the way in
which code is generated.

By default, the ARM C compiler is highly optimizing. By default, the code produced
from your source is balanced for a compromise of code size versus execution speed.
However, there are a number of compiler options that can affect the size and
performance of generated code. These may be used individually or may be combined to
give the required effect.

For a full description of optimization and other command-line options see Chapter 2
The ARM Compilersin theARM Software Development Toolkit Reference Guide. That
chapter includes a description of thecc option, but a little more information about
that option follows:

- pcc The code generated by the compiler can be slightly larger when
compiling with the- pcc switch. This is because of extra restrictions on
the C language in the ANSI standard that the compiler can take advantage
of when compiling in ANSI mode.

If your code compiles in ANSI mode, do not use-thec option. The
Dhrystone application provides a good example. It is written in old-style
Kernighan and Ritchie C, but compiles more efficiently in ANSI mode,
even though it causes the compiler to generate a number of warning
messages.

Improving image size with the linker

You can reduce image size by using the embedded C libraries, instead of the standard
ANSI C library which adds a minimum of around 15KB to an image. Refer to Chapter

4 TheCand C++ Librariesin theARM Software Devel opment Toolkit Reference Guide

for more information. See also ChapteViKiting Code for ROM in this book for an
example of their use.

11-16

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

11.4.3 Changing the source

You can make further improvements to code size and performance in addition to those
achieved by good use of compiler options by modifying the code to take advantage of
the ARM processor features.

Use of shorts

ARM coresthat implement an ARM Architecture earlier than version 4 do not havethe
ability to directly load or store halfword quantities (or shor t types). This affects code
size. Generally, code generated for Architecture 3 that makes use of short islarger
than equivalent code that only performs byte or word transfers. Storing ashort is
particularly expensive, because the ARM processor must make two byte stores.
Similarly, loading ashor t requiresaword load, followed by shifting out the unwanted
halfword.

If your processor supports halfwords, use the appropriate - ar chi t ect ure or
-processor options. Refer to Chapter 2 The ARM Compilersin the ARM Software
Development Toolkit Reference Guide. This ensures that the resulting code contains the
Architecture 4 halfword instructions. By default the compiler generates halfword
instructions.

If you are writing or porting for processors that do not have halfword support, you
should minimize the use of short values. However, thisis sometimesimpossible. C
programs ported from x86 or 68k architectures, for example, frequently make heavy use
of short . If the code has been written with portability in mind, al you may have to do
ischange at ypedef or #defi ne tousei nt instead of shor t . Where thisis not the
case, you may have to make some functional changes to the code.

You may be ableto establish the extent of code sizeincrease resulting from using shorts
by compiling the code with:

arncc -Dshort=int

which preprocesses al instances of short toi nt . Be aware that, although it may
compile and link correctly, code created with this option may not function as expected.

Whatever your approach, you need to weigh the change in code si ze against the opposite
change in data size.

The program below illustrates the effect of using shorts, integers, and the - AR T
option on code and data size.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-17

Benchmarking, Performance Analysis, and Profiling

#i ncl ude <stdi o. h>
typedef short nunber;
nunber array [2000];
nunber | oop;

int main()
{
for (loop=0; |loop < 2000; |oop++)
array[l oop] = | oop;
return O;

}

The results of compiling the program with all three options are shown in the following
table:

Table 11-3 Object code and data sizes

code inline inline const RW 0-init debug

size data strings data data data data

short 76 8 0 0 4 4000 64

short with hardware 60 8 0 0 4 4000 64
support (see note)

int 44 8 0 0 4 8000 0

Note

See Soecifying thetarget processor and architecture on page 2-20 of the ARM Software
Development Toolkit Reference Guide for details of hardware support for halfwords.

Other changes

. Modify performance-critical C source to compile efficiently on the ARM. See
Improving performance and code size on page 11-16.

. Port small, performance-critical routines into ARM assembly language.

Compile with the Soption to produce assembly output without generating object code,
and take this as a starting point for your own hand-optimized assembly language. When
you specify the S option you can also speciffys to write a file containing interleaved

C or C++ and assembly language (Specifying output format on page 2-19 of the

ARM Software Development Toolkit Reference Guide).

You can make significant performance improvements by using Load and Store Multiple
instructions in memory-intensive algorithms. When optimizing the routines:

. use load/store multiple instructions for memory-intensive algorithms

11-18

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

. use 64-bit result multiply instructions (where available) for fixed-point arithmetic

. replace small, performance-critical functions by macros, or use the i ne
preprocessor directive

. avoid the use ddet j np() in performance-critical routines (particularly in pcc
mode).

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-19

Benchmarking, Performance Analysis, and Profiling

11.5

1151

11.5.2

Profiling

Profiling allowsthetime spent in specific parts of an application to be examined. It does
not require any special compiletime or link time options. The only requirement is that
low level symbolsmust beincluded intheimage. These areinserted by the linker unless
it isinstructed otherwise by the - Nodebug option.

Profiling datais collected by the ARM Debugger while the codeis being executed. The
dataissavedto afile. It isthen loaded into the ARM profiler which displaystheresults.
The profiler in turn generates a profile report.

Availability of profiling

Profiling is currently available only when you use the ARMulator, or the Angel debug
monitor on atarget board such asthe PID7T. Profiling is an optional feature for Angel,
selectable at build time. Refer to Chapter 13 Angel for more information. The standard
Angel image supplied with SDT 2.50 for the PID7T has profiling turned on.

It is not possible to use Embedded] CE or Multi-1CE for profiling.

When you select Options - Profiling — Toggle Profiling, the debugger determines
whether the target hardware can perform profiling. If so, profiling isenabled. If not, the
message Tar get Processor can’t do this isdisplayed.

About armprof

The ARM profiler, armprof, displays an execution profile of a program from a profile

data file generated by a debugger. The profiler displays one of two types of execution

profile, depending on the amount of information present in the profile data:

. If only pc sampling information is present, the profiler can display only a flat
profile giving the percentage time spent in each function, excluding the time spent
in any of its children.

. If function call count information is present, the profiler can display a call graph
profile that shows not only the percentage time spent in each function, but also the
percentage time accounted for by calls to all children of each function, and the
percentage time allocated to calls from different parents.

The compiler automatically prepares the code for profiling, so no special options are
required at compile time. At link time, you must ensure that your program image
contains symbols. This is the default setting for the linker.

You can only profile programs that are loaded into store from the debugger. Function
call counting for code in ROM is not available. You must inform the debugger that you
wish to gather profile data when the program image is loaded. The debugger then alters
the image, diverting calls to counting veneers.

11-20

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

The debuggers alow the collection of pc samplesto be turned on and off at arbitrary
times, allowing data to be generated only for the part of a program on which attention
isfocussed (omitting initialization code, for example). However, care should be taken
that the time between turning sampling on and off islong compared with the sample
interval, or the data generated may be meaningless. Turning sampling on and off does
not affect the gathering of call counts.

11.5.3 Collecting profile data

Thedebugger collects profiling datawhile an application isexecuting. You can turn data

collection on and off during execution, so that only the relevant sections of code are

profiled:

. If you are using armsd, use tpreof on andpr of of f commands.

. If you are using ADW or ADU, sele@ptions - Profiling - Toggle Profiling
(seeProfiling on page 3-43).

The format of the execution profile obtained depends on the type of information stored
in the data file:

pc sampling provides a flat profile of the percentage time spent in each function
(excluding the time spent in its children).

Function call count

provides a call graph profile showing the percentage time spent in each
function, plus the percentage time accounted for by calls to the children
of each function, and the percentage time allocated to calls from different
parents.

— Note

No count is taken if the function calls children through an ARM-Thumb interworking
veneer.

The debugger needs to know which profiling method you require when it loads the
image. The default is pc sampling. To obtain a call graph profile:

. If you are using armsd, load the image with:

| oad/ cal | graph image-file

. If you are using ADW or ADU, sele@ptions - Profiling - Call Graph
Profiling.

Then execute the code to collect the profile data.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-21

Benchmarking, Performance Analysis, and Profiling

11.5.4 Saving profile data
When collection is complete, save the datato afile:

. If you are using armsd, enter theof wr i t e command:
profwite data-file

. If you are using ADW or ADU, sele@ptions - Profiling - Writeto File.

11.5.5 Generating the profile report

The ARM profiler utility, armprof, generates the profile report using the data in the file.
The report is divided into sections, each of which gives information about a single
function in the program.

A section function (called theurrent function) is indicated by having its name start at
the left-hand edge of thdane column. If call graph profiling is used, information is

also given about child and parent functions. Functions listed below the current function
are its children. Those listed above the current function are the function parents it.

The columns in the report have the following meanings:

Name Displays the function names. The current function in a section starts at
the left-hand edge of the column. Parent and child functions are shown
indented.

cunto Shows the total percentage time spent in the current function plus the
time spent in any functions that it called. It is only valid for the current
function.

sel f % Shows the percentage time spent in a function.

. For the current function, it shows the percentage time spent in this
function.

. For parent functions, it shows the percentage time spent in the
current function on behalf of the parent.

. For child functions, it shows the percentage time spent in this child
on behalf of the current function.

desc% Shows the percentage time spent in a function:
. for the current function, it shows the percentage time spent in
children of the current function on the current function's behalf
. for parent functions, it shows the percentage time spent in children
of the current function on behalf of this parent
. for child functions, it shows the percentage time spentin this child's
children on behalf of the current function.

11-22 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

calls Shows the number of times afunctionis called:
. for the current function, it shows the number of times this function
was called

. for parent functions, it shows the number of times this parent called
the current function

. for child functions, it shows the number of times this child was
called by the current function.

Below is a section of the output from armprof for a call graph profile:

Narme cuno sel f % desc% calls
mai n 96. 04% 0.16% 95.88% 0
qgsort 0.44% 0. 75% 1
_printf 0. 00% 0. 00% 3
cl ock 0. 00% 0. 00% 6
_sprintf 0. 34% 3. 56% 1000
check_order 0.29% 5.28% 3
random se 0.12% 0.69% 1
shel | _sort 1. 59% 3.43% 1
insert_sort 19.91% 59. 44% 1
mai n 19.91% 59. 44% 1
insert_sort 79.35% 19.91% 59.44% 1
strcnp 59. 44% 0.00% 243432

From thecunf®scolumn, you can see (in thai n section) that the program spent 96.04
percent of its time imai n and its children. Of this, only 0.16 percent of the time is spent
inmai n (sel f %column), whereas 95.88 percent of the time is spent in functions called
by mai n (desc%column). The call count farai n is O because it is the top-level
function, and is not called by any other functions, whereas the section for

i nsert_sort shows that it made 243432 callssta cnp, and that this accounted for
59.44 percent of the time spentirr cnp (thedesc%column shows 0 in this case
becauset r cnp does not call any functions).

11.5.6 Profiling example: sorts

Thesort s application can be found in tlEanpl es subdirectory of the ARM
Software Development Toolkit. Copy the files into your working directory.
PC sampling information

If you are using the command-line tools:

1. Compile thesorts. c example program:

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-23

Benchmarking, Performance Analysis, and Profiling

arncc -Qtine -0 sorts sorts.c

2. Start armsd and |oad the executabl e:

arnsd sorts

3. Turnprofiling on:
prof on

4. Run the program as normal:
go

5. When execution completes, write the profile datato afile using the Prof Wit e
command:
Prof Wite sortl.prf

6. Exitarmsd:
Qui t

7. Generate the profile for the collected data by entering at the system prompt:
arnprof sortl.prf > profl
The profiler generates the report and sends the output to text file pr of 1 that you
can examine.

If you are using the Windows toolkit:

1. If youuse ADW and are running APM then:

a. Select Open fromthe Project menutoloadtheprojectfilesort s. apj into
APM.
b. Build the project by clicking the Force Build button. The project is built
@ and any messages are displayed in the build log.
fr— c. Load the debugger by clicking the Debug button. ADW is started and the
ﬁ application is loaded.
If you use ADU then:

a Compileandlink thesorts. c example program with the command:
arncc -Qtine -0 sorts sorts.c

Start ADU.

c. Select Load Image... from the File menu to load the sor t s. exe program
fileinto ADU.

2. Select Options - Profiling — Toggle Profiling to turn profiling onin ADW or
ADU.

3. Click Go to start the program.

11-24 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

The program runs and stops at the breakpoint on nai n.
Click Go again.
The program resumes execution.

When execution completes, select Options - Profiling — Writeto Fileto write
the profile datato thefilesort 1. prf.

Exit ADW or ADU and start aDOS session. Make the profiledirectory the current
directory.

Generate the profile for the collected profile data by entering the following at the
system prompt:
arnprof sortl.prf > profl

ar mpr of generates the profile report and sends its output to text file pr of 1 that
you can examine.

Call graph information

If you are using the command-line tools:

1

Restart the debugger:
ar nmsd

Load thesort s program into armsd with the /cal | gr aph option:

| oad/ cal | graph sorts

/ cal | gr aph tellsarmsd to prepare an image for function call count profiling by
adding code that counts the number of function calls.

Turn profiling on:

Pr of On

Run the program as normal :

go

When execution completes, write the profile data to afile:

Prof Wite sort2.prf

Exit armsd:

Qui t

Generate the profile by entering the following at the system prompt:
arnmprof -Parent sort2.prf > prof2

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-25

Benchmarking, Performance Analysis, and Profiling

The- Par ent option instructs armprof to include information about the callers of
each function. armprof generatesthe profile report and sendsits output to text file
pr of 2, that you can examine.

If you are using the Windows tools:

1

If you are using APM and ADW, reload the debugger by clicking the Debug
button on the APM toolbar. If you are using ADU, start ADU.

Select Options - Profiling — Call Graph Profiling to turn on call graph
profiling.

Click Reload to reload the image. This forces call graph profiling to take effect.

Select Options — Profiling — Toggle Profiling to turn on profiling in ADW or
ADU.

Click Go to start the program.

The program runs and stops at the breakpoint on nai n.

Click Go again.
The program resumes execution.

When execution completes, select Options - Profiling — Writeto file to write
the profile datato thefilesort 2. prf.

Exit ADW or ADU and invoke a DOS session.

Generate the profile by entering the following at the DOS prompt:
arnprof -Parent sort2.prf > prof2

The- Par ent option instructs armprof to includeinformation about the callers of
each function. armprof generates the profile report and sendsits output to the text
file pr of 2, that you can examine.

11-26

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Benchmarking, Performance Analysis, and Profiling

11.5.7 Profiling and instruction tracing with ARMulator

In addition to profiling the time spent in specific parts of an application, the ARMul ator
provides facilities for profiling other performance statistics, and for generating full
instruction traces.

The ARMulator provides:

Enhanced profiling with the Profiler module. The ARMulator has an Events
mechanism that enables events such as cache misses and branch mispredictior
to be profiled.

For example, profiling cache misses enables you to find areas of code that are
causing high levels of cache activity. You can then optimize and tune the code
accordingly.

The profiling is controlled through a configuration file, rather than from the
debugger. However, the data is collected by the debugger and processed by
armprof in exactly the same way, using the same commands and menus.

Instruction tracing with the Tracer module. At the cost of a significant runtime
overhead, the Tracer module can generate a continuous trace stream of executir
instructions and memory accesses.

Both modules are supplied in source form, and you can modify them as you want. This
enables profiling and tracing to be customized to your specific needs.

For help with understanding the contents of a trace fildnsaereting tracefile output
on page 12-9. For more information on the ARMulator refer to Chapt&RiRilator.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 11-27

Benchmarking, Performance Analysis, and Profiling

11-28 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 12
ARMulator

This chapter describes the ARMulator, a collection of programs that provide software
emulation of ARM processors. It contains the following sections:

. About the ARMulator on page 12-2

. ARMulator models on page 12-3

. Tracer on page 12-6

. Profiler on page 12-12

. Windows Hourglass on page 12-13

. Watchpoints on page 12-14

. Page table manager on page 12-15

. armflat on page 12-19

. armfast on page 12-20

. armmap on page 12-21

. Dummy MMU on page 12-24

. Angel on page 12-25

. Controlling the ARMulator using the debugger on page 12-27
. A sample memory model on page 12-29

. Rebuilding the ARMulator on page 12-32

. Configuring ARMulator to use the example on page 12-34.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-1

ARMulator

12.1 About the ARMulator

The ARMulator is a program that emulates the instruction sets and architecture of
various ARM processors. It provides an environment for the development of
ARM-targeted software on your workstation or PC.

ARMulator istransparently connected to armsd or the ARM GUI debuggers, to provide
a hardware-independent ARM software devel opment environment. Communication
takes place through the Remote Debug I nterface (RDI).

The ARMulator isinstruction-accurate. It models the instruction set but not the precise
timing characteristics of the processor. The ARMulator supportsafull ANSI C library
to allow complete C programs to run on the emulated system.

You can supply modelswrittenin C that interface to the ARMulator’'s external interface.

12-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.2 ARMulator models

You can add extra models to ARMulator without altering the existing models. Each
model is entirely self-contained, and communicates with the ARMulator through a set
of defined interfaces. The full definition of theseinterfacesisin Chapter 12 ARMulator
in the ARM Software Development Tool kit Reference Guide.

The source of a number of sample models can be found in the rebuild kit on UNIX in:
armsd/ sour ce
oronPCin:

C. \ ARM250\ Sour ce\ W n32\ ARMUI at e

12.2.1 Sample models

The ARMulator is supplied with the following models:
. Basic models

. Memory models

. Coprocessor models

. Operating system models.

Basic models
The following source files are provided for the basic models:

tracer.c The tracer module can trace instruction execution and events from
within the ARMulator.

profiler.c The profiler module provides the profiling functionality. This
includes basic instruction sampling and more advanced use, such
as profiling cache misses.

wi ngl ass. ¢ This module is used only with the ARM Debugger for Windows.

paget ab. c This module sets up the MMU/cache and associated pagetables
inside the ARMulator on reset.

Memory models

The following source files are provided for memory models:

arnflat.c This memory model implements a flat model of 4GB RAM.

arnfast.c This memory model implements a flat model of 2MB RAM.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-3

ARMulator

ar nmap. c

byt el ane. c

trickbox.c

tracer.c

arnpi e.c

exanpl e. c

Thisis another memory model that allows you to have an

ar msd. map file specifying memory layout. (This slows down
emulation speed, so when no ar nsd. map file is present,
ARMulator uses the faster ar nf | at . ¢ model in preference.)

Thisis an example of amemory model veneer. A veneer isa
model that sits between the processor and the real memory model.
Thismodel converts the accesses from the core into byte-lane
(also known as byte-strobe) accesses.

Thisisamemory model of asystem that shows how accessing
various addresses causes events, such as aborts and interrupts, to
occur.

Aswell as being abasic model, the tracer module provides a
veneer memory model that can log memory accesses.

Thisisamodel of the ARM PIE card. (UNIX only.)

Thismemory model isthe example described in A sample memory
model on page 12-29.

Coprocessor models

dunmymu. ¢

validate.c

Thisisacut-down model of coprocessor 15 (the system
COprocessor).

Thisisasmall coprocessor that is used to validate the behavior of
the ARM emulator. It can cause interrupts and busy-waits, for
example. It is supplied as an example.

Operating system models

angel . c

noos. C

Thisis an implementation of the Software Interrupts (SWIs) and
environment required for running programslinked with the Angel
semihosted C library on ARMulator.

Thisisadummy operating system model, where no SWis are
intercepted.

12-4

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.2.2 Model stub exports

Each of these models exports a stub (see the ARM Software Devel opment Tool kit
Reference Guide). You declare stubsin nodel s. h, using sets of macros. For example:

MEMORY(ARMul _Fl at)
COPROCESSOR(ARMUI _Dunmy MWL)
OSMCDEL (ARMUI _Angel)
MODEL (ARMUl _Profi | er)

There are no trailing semicolons on these lines.

You can also add new user-supplied modelsto nodel s. h.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-5

ARMulator

12.3 Tracer

A sample implementation of atracer is provided. This can trace instructions, memory
accesses, and events to an RDI log window or afile (in text or binary format). See the
sourcefile, tracer. ¢, and Configuring the Tracer below, for details of the formats
used in thesefiles. The configuration filear mul . cnf controls what is traced.

Alternatively, you can link your own tracing code onto the Tracer module, allowing
real-timetracing. No examples are supplied, but the required functions are documented
here. Theformatsof Trace_St at e and Tr ace_Packet aredocumentedintracer. h.

unsi gned Tracer_Open(Trace_State *ts)

Thisis called when the tracer isinitialized. Theimplementationin
t racer . ¢ opensthe output file from this function, and writes a header.

void Tracer_Dispatch(Trace_State *ts, Trace_Packet *packet)

Thisiscalled on eachtraced event for every instruction, event, or memory
access. Int racer . ¢, this function writes the packet to the trace file.

voi d Tracer_C ose(Trace_State *ts)

Thisiscalled at the end of tracing. Thefilet r acer . ¢ usesthisto close
the tracefile.

extern void Tracer_Flush(Trace_State *ts)

Thisis called when tracing isdisabled. Thefilet r acer . ¢ usesthisto
flush output to the trace file.

The default implementations of these functions can be changed by compiling
tracer. c with EXTERNAL DI SPATCH defined.

12.3.1 Configuring the Tracer

The Tracer hasits own section in the ARMulator configuration file (ar mul . cnf). Find
the Ear | yModel s section in the configuration file, and the Tr acer section below it:

{ Tracer
Qut put options - can be plaintext to file, binary to file or
to RDI | og wi ndow. (Checked in the order RDILog, File, BinFile.)
RDI Log=Fal se
File=armul .trc
Bi nFil e=armul .trc
Tracer options - what to trace
Tracel nstructions=True
Tr aceMenor y=Fal se
Tracel dl e=Fal se
Tr aceNonAccount ed=Fal se

12-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

Tr aceEvent s=Fal se
;; Where to trace menory - if not set, it will trace at the core.
TraceBus=Tr ue

Fl ags - di sassenble instructions; start with tracing enabl ed;

Di sassenbl e=True
St art On=Fal se

}

where:

RDI Log instructsthe Tracer to output to the RDI Log window (the console
under armsd).

File defines the file where the trace information is written, using the

default Tr acer _Open functions. Alternatively, you can use
Bi nFi | e to store datain a binary format.

The other options control what is being traced:
TraceMenory traces real memory accesses.
Tracel dl e tracesidle cycles.

TraceNonAccount ed
traces unaccounted RDI accesses to memory.

TraceEvent s traces events. For moreinformation, refer to Eventson page 12-87
of the ARM Software Development Toolkit Reference Guide.

Tr aceBus controls the trace data source. Thisis one of:
TRUE Bus (between processor and memory)
FALSE Core (between core and cache, if present).

Di sassenbl e disassembles instructions. Enabling disassembly will greatly
affect emulation speed.

Other tracing controls

You can a'so control tracing using:

Range=/ ow addr ess, hi gh address
Tracing is carried out only within the specified address range.

Sanpl e=n Only every nth trace entry is sent to the tracefile.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-7

ARMulator

12.3.2

Tracing events
When tracing events, you can select the events to be traced using:

Event Mask=nask, val ue

Only those events whose number when masked (bitwise-AND)
with mask equals val ue aretraced.

Event =nunber Only nunber istraced. (Thisis equivaent to
Event Mask=0xf fffffff, number.)

For example, the following traces only MM U/cache events:
Event Mask = Oxffff0000, 0x00010000

See Events on page 12-87 of the ARM Software Development Toolkit Reference Guide
for more information on events.

Debugger support for tracing

Thereisno direct debugger support for tracing. I nstead, the tracer uses bit 4 of the RDI
Logging Level ($rdi _I og) variable to enable or disable tracing.

Using the ARM Debugger for Windows (ADW)

Select Set RDI Log L evel from the Options menu.

. To enable tracing, set the RDI Log Level to 16.

. To disable tracing, set the RDI Log Level to 0.

Using armsd
. To enable tracing under armsd, typesd: $rdi _| og=16.

. To disable tracing, typer nsd: $rdi _| 0og=0.

12-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.3.3 Interpreting trace file output

This section describes how you interpret the output from the tracer.

Example of a trace file
The following example shows part of atracefile:

Date: Fri Jul 10 13:29:16 1998
Source: Arnul

Options: Trace Instructions (D sassenble) Trace Menory Cycl es
MNR4O__ 00008008 EB0O00OOOC

MSR4O__ 0000800C EB0O000O1B

MSR4O__ 00008010 EF000011

I T 00008008 eb00000c BL 0x8040
MNR4O__ 00008040 E1A00000

MSR4O__ 00008044 E04ECOOF

MSR4O__ 00008048 E08FCO0OC

I T 00008040 €1a00000 NOP

MSR4O__ 0000804C E99COO00F

I T 00008044 e04ec00f SUB riz, r 14, pc
MBR4AO__ 00008050 E24CC010
I T 00008048 e08f cO0c ADD riz, pc,ri2

E 00000020 00000000 10005
MNRAO __ 00000020 E1A00000
I T 00000018 eb00000a BL 0x48
E 00000048 00000000 10005
MNR4O__ 00000048 E10F0000
E 0000004C 00000000 10005
MBR4AO__ 0000004C E1A00000

In atracefile, there are three types of line:

. trace memory lines (M lines)

. trace instruction lines (I lines)

. trace event lines (E lines).

These are described in the following sections.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-9

ARMulator

Trace memory (M lines)

The format of the trace memory (M) linesis asfollows:
access addr data

For example:

MNRAO__ 00008008 EBO0O00OC

where:
access contains the following information:
menory_access indicates amemory access (Min tracefile).
menory_cycl e indicates the type of memory cycle:
S sequential.
N non-sequential.
I idle.
C COProcessor.
read_wite indicates either aread or awrite operation:
R read.
W write.
mem acc_si ze indicates the size of the memory access:
4 word (32 bits).
2 halfword (16 bits).
1 byte (8 bits).
opcode_fetch indicates an opcode fetch:
o opcode fetch.
_ no opcode fetch.
| ocked_access indicates alocked access:
L locked access (LOCK signal
HIGH).
no locked access.
spec_fetch indicates a speculative instruction fetch:
S speculative fetch (ARM810
only).
_ no speculative fetch.
addr gives the address. For example: 00008008.

12-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

data can show one of the following:
val ue givesthe read/written value. For example: EBO0000C
(wait) indicatesnWAIT was LOW toinsert await state.
(abort) indicates ABORT was HIGH to abort the access.

Trace instructions (Il lines)
The format of the trace instruction (1) linesis as follows:

[IT| I'S] instr_addr opcode disassenbly

For example:

I T 00008044 e04ec00f SUB rl2,r14, pc

where:

1T instruction taken.

'S instruction skipped (all ARM instructions are conditional).

i nstr_addr shows the address of the instruction. For example: 00008044.
opcode gives the opcode, for example: e04ec00f .

di sassenbly gives the disassembly (uppercase if the instruction istaken), for

example, SUB r 12, r 14, pc. Thisisoptiona andiscontrolled by
armul . cnf. Set Di sassenbl e=Tr ue to enable this.

Events (E lines)

The format of the event (E) linesisasfollows:

E addr1 addr2 event nunber

For example:

E 00000048 00000000 10005

where:

addr 1 givesthefirst of apair of words, such as, the pc value.

addr 2 gives the second of a pair of words, such as, the aborting address.
event _nunber gives an event number, for example: 0x10005. ThisisMMU

Event _| TLBWAl k. Events are fully described in Events on page
12-87 inthe ARM Software Development Toolkit Reference Guide.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-11

ARMulator

12.4

1241

Profiler

The profiler is controlled by the debugger. For more details on the profiler, see ARM
profiler on page 8-6 in the ARM Software Devel opment Toolkit Reference Guide.

Thefilepr of i | er . c containscodeto implement the profiling optionsin the debugger.
It does so by providing an UnkRDI | nf oHandl er that handles the profiling requests
from the debugger. In addition to profiling program execution time, it allowsyou to use
the profiling mechanism to profile events, such as cache misses.

Configuring the profiler

TheProf i | er section in the configuration fileis as follows:

{ Profiler

;; For exanple - to profile the PCval ue when cache m sses happen,
;; set:

; Type=Event

; Event =0x00010001

; Event Wor d=pc

}

By default, thisisempty. If uncommented, the example shown allows profiling of cache
mi sses.

TheType entry controlshow the profiling interval isinterpreted. (The profiling interval
n is set using the armsd command pr of on n, or from ADW, using the Debugger tab
of the Debugger Configuration dialog, as shown in Debugger on page 3-53.):

Type=M crosecond
the default is that samples are taken every microsecond.

Type=l nstruction

samples are taken every n instructions, where n is set using the
armsd command pr of on n. For example, prof on 2. Setting
thisvalue in the GUI is described in Debugger on page 3-53.

Type=Cycl e samples are taken every n cycles.

Type=Event the profiling interval isignored. Instead, all relevant events are
profiled. See Events on page 12-87 of the ARM Software
Devel opment Toolkit Reference Guide for more information on
events.

Event Mask=event _nunber isalso alowed (see the section Tracer on page 12-6).

12-12

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.5 Windows Hourglass

Thismoduledeal swith calling the debugger regularly during execution. Thisisrequired
when you are using the GUI debuggers.

The W ndowsHour gl ass section in the configuration file controls how regularly this
occurs. Increasing this rate decreases the regul arity at which control isyieldedto ADW
or ADU. Thisincreases emulation speed but decreases responsiveness.

{ W ndowsHour gl ass

;; We can control how regularly we callback the frontend
i, More often (lower value) nmeans a slower enul ator, but
;; faster response. The default is 8192.

Rat e=8192

}

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-13

ARMulator

12.6 Watchpoints
The Watchpoints module isamemory veneer that provides memory watchpoints. It sits
between the processor core and memory (or cache, as appropriate).

12.6.1 Enabling watchpoints
To enable watchpoints, uncomment the Wat chpoi nt s lineinar mul . cnf :

i, To enabl e wat chpoi nts, set "WitchPoints”
; Wt chpoi nts

12-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.7 Page table manager

The PageTable module is amodel that sets up pagetables and initializes the MMU on
reset. The page tablesmodel inclusion iscontrolled by setting the UsePageTabl es tag
to be either True or False:

UsePageTabl es=Tr ue

The Paget abl es section in the configuration file controls the contents of the
pagetables, and the configuration of the MMU:

{ Paget abl es

For full details of the flags, control register and pagetabl es described in this section, see
the ARM Architectural Reference Manual.

12.7.1 Controlling the MMU and cache

Thefirst set of flags controls the MMU and cache:

MVU=Yes

Al i gnFaul t s=No
Cache=Yes

Wit eBuf f er=Yes
Prog32=Yes

Dat a32=Yes

Lat eAbort =Yes

Bi gEnd=No

Br anchPr edi ct =Yes
| Cache=Yes

Some flags only apply to certain processors. For example, Br anchPr edi ct only
appliesto the ARM810, and | Cache to the SA-110 and ARM940T processors.

12.7.2 Controlling registers 2 and 3

The second set of options controls (on an MM U-based processor):
. the Translation Table Base Register (System Control Register 2)
. the Domain Access Control Register (Register 3).

The Translation Table Base Register should be aligned to a 16KB boundary.

PageTabl eBase=0xa0000000
DAC=0x00000003

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-15

ARMulator

12.7.3 Pagetable contents

Finally, the configuration file can contain an outline of the pagetable contents. The

modul e writes out atop-level pagetable (to the address specified for the Translation

Table Base Register) whenever ARMulator resets on MM U-based processors.

By default, ar nul . cnf contains adescription of asingle region covering the whole of

the address space. You can add more regions. A region entry consists of:

{ Regi on[0]

Vi rt ual Base=0

Physi cal Base=0

Si ze=4GB

Cacheabl e=Yes

Buf f er abl e=Yes

Updat eabl e=Yes

Domai n=0

AccessPer ni ssi ons=3

Transl| at e=Yes

}

Regi on[n] names the regions, starting with Regi on[0] . nisan integer.

Vi rtual Base isthevirtual address of the base of thisregion. Thisaddress should
be aligned to a 1M B boundary on an MMU processor.

Physi cal Base isthe addressthat the base of the region mapsto. Physi cal Base
defaultsto the same as Vi r t ual Base if it is unset. This address
should be aligned to a IMB boundary on an MMU processor.

Si ze specifiesthesize of thisregionforan MMU. Thisvalueisrounded
down to the nearest megabyte on an MMU processor.

Cacheabl e controls the C bit in the trandlation table entry.

Buf f er abl e controls the B bit in the tranglation table entry.

Updat eabl e controlsthe Ubit in the trandl ation table entry. (Note that the U bit
isonly used for the ARM610 processor.)

Domai n specifies the domain field of the table entry.

AccessPer nmi ssi ons
controls the AP field.

Transl ate controls whether accesses to this region causes trand ation faults.
Setting Tr ansl at e=No for aregion causes an abort to occur
whenever ARMulator reads from or writesto that region.

12-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

Pagetable model and protection units

Core models such as the ARM740T and the ARM940T do not have an MMU and
pagetables. Instead, they have a Protection Unit and protection regions.

If you use the PageTable model on a core that has a Protection Unit (PU), instead of
initializing the MMU and setting up pagetables, the PU isinitialized. With the above
example, the default set-up initializesthe first region (that hasthe lowest priority) such
that the entire memory space (0 to 4GB) is marked as read/write, cacheable and
bufferable.

For the 740T, the Protection Unit would be initialized as follows:

The M, C and W bits are set in the control register (CP15 register 1), to enable the
Protection Unit, the Cache and the Write Buffer.

The cacheable register is initialized to 1, marking region 0 as cacheable (CP15
register 2).

The bufferable register is initialized to 1, marking region 0 as bufferable (CP15
register 3).

The protection register is initialized to 3, marking region 0 as read/write access
(CP15 register 5).

Finally, the Memory area definition register for region 0 is initialized to 0x3F,
marking the size of region 0 as 4GB and as enabled.

For the 940T, the Protection Unit would be initialized as follows:

The P, D and | bits are set in the control register (CP15 register 1), to enable the
Protection Unit, the data cache and the instruction cache.

The cacheable registers are initialized to 1, marking region 0 as cacheable for the
| and D caches (CP15 register 2). This is displayed as 0x010, where:

. the low byte (bits 0..7) represent the dcache cacheable register
. the high byte (bits 8..15) represent the icache cacheable register.

The bufferable register is initialized to 1, marking region 0 as bufferable (CP15
register 3).

The Protection registers are initialized to 3, marking region 0 as read/write access
for I and D caches (CP15 register 5). This is displayed as 0x00030003, where:

. the low halfword (bits 0..15) represent the dcache protection register

. the high halfword (bits 16..31) represent the icache protection register.

The first register value shown is for region 0, the second for region 1 and so on.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-17

ARMulator

. The protection region base/size register for region 0 is initialized to 0x3F,
marking the size of region 0 as 4GB and as enabled (CP15 Register 6).

. CP15 Register 7 is a control register. Reading from it is unpredictable. At startup
it shows a value of zero.

. The programming lockdown registers are both initialized to zero. (CP15 Register
9). The first register value shown is for data lockdown control, the second for
instruction lockdown control.

. CP15 Register 15, the Test/Debug register, is initialized to zero. Only bits 2 and
3 have any effect in ARMulator. These control whether the cache replacement
algorithm is random or round robin.

12-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

12.8 armflat

ARMulator

ARMflat (ar nf | at . ¢) providesamemory model of azero-wait state memory system.
The emulated memory sizeis not fixed, so host memory isallocated in chunks of 64KB
each time anew region of memory is accessed. The memory sizeislimited by the host
computer, but in theory all 4GB of the address space is available. ARMflat does not

generate aborts.

12.8.1 Selecting the ARMflat memory model

You select the ARMflat model by setting Def aul t =FI at inthe Menor i es section of

thear nul . cnf file:

{ Menories

Default menory nodel is the "Flat" nodel,
nodel if there is an arnsd.map file to |oad.

; Validation suite uses the trickbox
#if Validate

Def aul t =Tri ckBox

#endi f

If there’'s a nenory nmapfile, use that.
#i f MenConfi gToLoad && MEMORY_MapFil e
Def aul t =MapFi | e
#endi f

Default default is the flat nenory nmap
Def aul t =FI at

or the "MpFile"

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

12-19

ARMulator

12.9 armfast

ARMfast (ar nf ast . ¢) provides aflat memory model of 2MB of RAM. Emulation
using ARMfast istypically 17% faster than for ARMflat. This performanceincreaseis
partly achieved by not counting cycles, so cycle countsin $st ati sti cs will be zero.
Thismodel isintended for use by software devel opers who want maximum emulation
speed, and are not interested in cycle counts or execution time.

The memory sizeis limited to 2MB. You can change this by editing ar nf ast . ¢ and
rebuilding ARMulator, as described in Rebuilding the ARMulator on page 12-32.

ARMfast does not generate aborts.

12.9.1 Selecting the ARMfast memory model

You select ARMfast by setting Def aul t =Fast , inthe Menor i es section of the
armul . cnf file:

{ Menories

Default menory nodel is the "Flat" nodel, or the "MapFile"
nodel if there is an arnsd.map file to | oad.

;; Validation suite uses the trickbox
#if Validate

Def aul t =Tr i ckBox

#endi f

7, If there’s a menory mapfile, use that.
#i f MenConfigToLoad &% MEMORY_MapFil e

Def aul t =MapFi | e

#endi f

Default default is the flat nenory nap
; Def aul t =FI at
Def aul t =Fast

12-20 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.10 armmap

ARMmMap (ar mmap. c) provides amemory model of a user-configurable memory
system. You can specify the size, access width, access type and access speeds of
individual memory blocks in the memory system in a memory map file.

The debugger internal variables $menst at s and $st ati sti cs give details of
accesses of each cycletype, regions of memory accessed and time spent accessing each

region.
ARMmap may generate aborts if you specify a memory region with accesstype as- .

12.10.1 Clock frequency

You must specify an emulated clock frequency when using this memory model, or the
number of wait states for each memory region cannot be cal culated. To configure the
clock frequency:

. Under armsd, use the command-line optiohock c/ ockspeed. This is
described irCommand-line options on page 7-3.

. Under the ARM GUI debuggers, select @anfiguredebugger option from the
Options menu. In the debugger configuration dialog, clickGamfigure to
display the ARMulator configuration dialog. This contairSlack Speed box
that you can edit to the required frequency.

12.10.2 Selecting the ARMmap memory model

Under armsd, ARMmap is automatically selected as the memory model to use
whenever amr msd. map file exists in the directory where armsd is started.

Under the ARM GUI debuggers, ARMmap is automatically selected whenever a
memory map file is specified. You specify map files usingieenory M apstab of the
debugger configuration dialog.

7 If there’s a menory mapfile, use that.
#i f MenConfi gToLoad && MEMORY_MapFil e

Def aul t =MapFi | e

#endi f

12.10.3 How ARMmap calculates wait-states

The memory map file specifies access times in nanoseconds for
non-sequential/sequential reads/writes to various regions of memory. By inserting
wait-states, the ARMmap memory model ensures that every access from the ARM
processor takes at least that long.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-21

ARMulator

The number of wait-states inserted is the least number required to take the total access
time over the number of nanoseconds specified in the memory map file. For example,
with a clock speed of 33MHz (a period of 30ns), an access specified to take 70nsin a
memory map file results in two wait-states being inserted, to lengthen the access to
90ns.

This can lead to inefficiencies in your design. For example, if the access time were
60ns—only 14% faster—ARMmap would insert only one wait-state—33% quicker.

A mismatch between processor clock-speed and memory map file can sometimes lead
to faster processor speeds having worse performance. For example, a 100MHz
processor (10ns period) will take 5 wait-states to access 60ns memory—total access
time, 60ns. At 110MHz, ARMmap must insert 6 wait-states—total access time, 63ns.
So the 100MHz-processor system is faster than the 110MHz processor, if connected to
60ns memory. (This does not apply to cached processors, where the 110MHz processor
would be faster.)

12.10.4 Configuring the ARMmap memory model

You can configure ARMmap to model several memory managers, by editing its entry in
thear nul . cnf file:

{ MapFile

7, Options for the mapfile menory nodel
Count Wi t St at es=Tr ue

AMBABuUs Count s=Fal se

Spot | SCycl es=True

| STi mi ng=Early

}

Counting wait-states
By default, ARMmap is configured to count wait-states#it at i sti cs. This can be
disabled by settin@ount Wi t St at es=Fal se in arnul . cnf.

Counting AMBA decode cycles

You can configure ARMmap to insert an extra decode cycle for every non-sequential
access from the processor. This models the decode cycle seen on AMBA bus systems.

You enable this by settirgvBABus Count s=Tr ue inar mul . cnf .

12-22

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

Merged I-S cycles

All ARM processors, particularly cached processors, can perform a non-sequential
access asapair of idle and sequential cycles, known asmerged I-Scycles. By default,
ARMmMmap treats these cycles as a non-sequential access, inserting wait-states on the
S-cycleto lengthen it for the non-sequential access.

You can disable this by setting Spot | SCycl es=Fal se inar mul . cnf . However, this
islikely to result in exaggerated performance figures, particularly when modeling
cached ARM processors.

ARMmMmap can optimize merged I-S cycles using one of three strategies:

Speculative This models a system where the memory manager hardware
speculatively decodes all addresseson idle cycles. This gives both the |-
and S-cyclestime to perform the access, resulting in one less wait state.

Early Thisstartsthe decode when the ARM declaresthat the next cycleisgoing
to be an S-cycle; that is, half-way through the I-cycle. This can result in
onefewer wait-state. (Whether or not there are fewer wait-states depends
on the cycle time and the non-sequential access time for that region of
memory.)

Thisisthe default setting. You can change this by setting
| STi mi ng=Spec or | STi ni ng=Lat e inar nul . cnf.

Late This does not start the decode until the S-cycle.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-23

ARMulator

12.11 Dummy MMU

DummyMMU (dunmy mmu. ¢) provides adummy implementation of an ARM
Architecture v.3/v.4 system coprocessor. This does not provide any of the cache and
MMU functions, but does prevent accesses to this coprocessor being Undefined
Instruction exceptions.

Reads from r0 return a dummy ARM |D register value, that can be configured.

Writes to rl of the dummy coprocessor (the system configuration register) set the
bigend, lateabt and other signals.

12.11.1 Configuring the Dummy MMU

You can set the code of the DummyMMU in the configuration file. Use the following
entry in the Copr ocessor s section of ar nul . cnf :

{ Coprocessors

Here is the list of co-processors, in the form
Copr ocessor [<n>] =Nane

#i f COPROCESSOR_Duntmy MV
;; By default, install a dummy MWUJ on co-processor 15.
CoPr ocessor [15] =Dunmy VMM

Here is the configuration for the co-processors.
;; The Dumtmy MWMU can be configured to return a given Chip ID
; Dunmy MMU: Chi pl D=

#endi f
}
Theline

; Dunmy MMU: Chi pl D=

can be uncommented and set to any value. For example, to configure DummyMMU to
return the ARM710 ID code (0x44007100), change thisline to:

Here is the configuration for the co-processors.

The Dummy MMUJ can be configured to return a given Chip ID
Dunmy MMU: Chi pl D=0x44007100
#endi f

12-24

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

12.12 Angel

ARMulator

The Angel model (angel . ¢) isan operating system model that allows code that has
been built to run with the Angel Debug Monitor, to run under ARMulator.

The model intercepts Angel SWIs and emulates the functionality of Angel directly on
the host, transparently to the program running under ARMulator.

12.12.1 Configuring Angel

The configuration for the Angel model existsin asection called Osin thear mul . cnf
file. This appears as:

{ Cs

7 Angel configuration
[...]

}

The configuration options are:

Angel SW ARM=0x123456
Angel SW Thunmb=0xab

Angel SW ARMand Angel SW Thunb declare the SWI numbers that Angel uses. For
descriptions, see Chapter 13 Angel in the ARM Software Devel opment Toolkit User
Guide.

Heapbase=0x40000000
HeapLi mi t =0x70000000
St ackbase=0x80000000
St ackLi mi t =0x70000000

where:

HeapBase/HeapLi mi t
defines the application heap.

St ackBase/St ackLi i t
defines the application stack.

The Angel model automatically detects at runtime whether a model uses Angel or
Demon SWis.

Thefollowing options define the initial locations of the exception mode stack pointers.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-25

ARMulator

Addr Super St ack=0xa00
Addr Abor t St ack=0x800
Addr Undef St ack=0x700
Addr | RQSt ack=0x500
Addr FI QSt ack=0x400

The next option is the default location of the user mode stack, and the default value
returned by SW _SYSHEAPI NFQ, that returns the top of the memory application. A
different value may be returned if a memory model calls ARMUI _Set MenSi ze, for
example:

Addr User St ack=0x80000

These options define the location in memory where the ARMulator places the code to
handl e the hardware exception vectors:

Addr Sof t Vect or s=0xa40
Addr sO Handl er s=0xad0
Sof t Vect or Code=0xb80

Thefinal option pointsto abuffer wherethe Angel model placesacopy of the command
line. This can be retrieved be by catching the RDI _I nf o call, RDI Set _Cndl i ne:

Addr CndLi ne=0xf 00

12.12.2 ARMulator SWis

In addition to the standard Angel SWis, the ARMulator uses a set of SWIs for default
exception vector handlers. These are known as the soft vector SWIs. The soft vector
codeisinstalled by the Angel model.

There are two sets of SWIs:

SWIs 0x90 — 0x98 are used to implement $vect or _cat ch; that is, they return
control tothedebugger if theuser hasset $vect or _cat ch for the
relevant exception vector. SWI 0x90 is used for the reset vector;
0x91 for the undefined instruction vector, and so on.

SWIs 0x80 — 0x88 are used to stop the ARMulator if the exception cannot be
handled. The 0x80 SWis are used as afinal stop if the exception
is not caught by such an exception handler.

Note
These SWis are for internal use by the ARMulator only.

12-26

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.13 Controlling the ARMulator using the debugger

12.13.1 About RDI

This section gives configuration information for the ARMulator and describes how to
configure the debugger using RDI.

The debugger communicates with ARMulator using RDI, whether it isthe
command-line armsd, ADW or ADU.

The RDI allows the debugger to configure:
. the processor type.
. the clock speed. Only one clock speed is allowed, usually taken to be the

processor clock speed. For systems with multiple clocks (for example, a cached

processor), the clock speeds are set in the configuration file)¢gmethe
armul.cnf configuration file on page 12-28 and alégplication Note 52, The
ARMulator Configuration File, ARM DAI 0052A.

. the memory map. The debugger readsathesd. map file and tells ARMulator
its contents. Individual memory models have to support this information if they
are to use ther nsd. map file. One such modear mmap. c, is supplied with the
ARMulator as an example.

Other information is sent over the RDI. Models can intercepttk&Dl | nf oUpcal |
to receive this data. Some of the sample models do this, for example:

ar nmap. ¢ intercepts the memory map information coming from the
debugger. Se€he armsd.map File on page 12-28.

angel . c interceptsRDI Er r or P, RDI Set _Cmdl i ne and
RDI Vect or _Cat ch, RDI _Seni hosti ng_ SETARMSW , and
RDI _Sem hosti ng_SETThunbSW .

durmynmmu. ¢ responds to the debugger's request about the emulated MMU.

profiler.c intercepts the profiling calls from the debugger to set up
information such as profiling maps, enable profiling, and
write-back profiling data.

wat chpnt . ¢ responds to thBDI | nf o_Poi nt s call from the debugger,
responding that watchpoints are available.

— Note

It is not possible to add further control of the ARMulator from the debugger by, for
example, the addition of extra commands or pseudo-variables.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-27

ARMulator

12.13.2 Using the armul.cnf configuration file

Thear nul . cnf file contains the configuration for the ARMulator. It sets the options
for the various ARMulator components, for example, defining configurations for
different processors and caches. See Application Note 52, The ARMulator
Configuration File, ARM DAI 0052A for more information.

12.13.3 The armsd.map File

It isthe responsibility of the memory model to translate map files. New models do not
understand the map file unless support is written in. Only one supplied model,
ar mmap. ¢, supportsthis.

Adding armsd.map file support to memory models

To support the map data, amemory model hasto intercept upcall UnkRDI | nf oUpcal |,
watching for:
RDI Menory_Map

The debugger makes this call to pass the data parsed from the
ar nsd. map file.

. ar g1 points to an array &®Dl _MenDescr structures.
. ar g2 gives the number of elements in the array.
RDI Menory_Map can be called many times during initialization.

RDI I nfo_Menory_Stats
The model should retuRDI Er r or _NoEr r or to indicate that memory
maps are supported.

RDI Menory_Access

The debugger makes this call to obtain access statistics (see
$menory_stati stics or the equivalent in the ARM GUI Debuggers).

. ar g1 points to arRDl _MemAccessSt at s structure for the

memory model to fill in. (One call is made for each mapped area
passed t&Dl Menory_Map.)

. ar g2 identifies the area by the handle passed iRhé&enDescr
passed t&Dl Menory_Map.

These structures are defined i _st at . h.

12-28 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.14 A sample memory model

The sample memory model includes:

. an address decoder

. a memory mapped I/O area

. some RAM that is paged by writing to another area of memory.

12.14.1 The memory map

This example deals wittixanpl e. ¢, a device in which memory is split into two
128KB pages:

. the bottom page is read-only.

. the top page has one of eight 128KB memory pages mapped into it, page 0 bein
the low page.

Addresses wrap around above 256KB for the first LGB of memory, as if bits 29:18 of
the address bus were ignored. Bits 31:30 are statically decoded:

Table 12-1 Address bus

bit 31 bit 30 Description

0 0 Memory access.

0 1 Bits 18:16 of the address select the physical page mapped in to the top
page.

1 0 1/0 port. (see 1/O area split on page 12-30)

1 1 Generates an abort.

This produces the memory map shown in Figure 12-1 on page 12-30.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-29

ARMulator

FFFFFFFF

Abort

€0000000
1/0 port

80000000
Page select

40000000
Paged RAM
Read-only RAM
Paged RAM
Read-only RAM

00040000
Paged RAM

00020000
Read-only RAM

00000000

Figure 12-1 Memory map

The /O area, that is accessible only in privileged modes, is split as follows:

0000000

Schedule_IRQ

B0000000
Schedule_FIQ

20000000
QOut channe

90000000
In channel

80000000

Figure 12-2 1/O area split
These function as follows:

Schedule IRQ AnIRQ israised after n cycles, where nisthe bottom 8 bits of the

address.

Schedule FIQ An FIQ israised after n cycles, where n isthe bottom 8 bits of the
address.

Out channel The character represented by the bottom 8 bits of the datais sent

to the screen for awrite, and isignored on read.

In channel A byteisread from the terminal for aread, or ignored for awrite.

12-30

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

12.14.2 Implementation

There are eight banks of 128KB of RAM, one of which is currently mapped in to the
top page. The memory model has two pieces of state:

. an array representing the model of memory
. the number of the page currently mapped into the top page.

In this model, the ARM does not need to run in different endian modes. You can assum
that the ARM is configured to be the same endianness as the host architecture.

Note

If you want to allow the ARM to run in different endian modes, you must have a
Conf i gChange callback, as imrnfl at . c.

However, you do occasionally need to ensure that a write is allowed only if the
NTRANS signal is HIGH, indicating that the processor is in a privileged mode. To
enable you to know this, you must install a callback for changeERANS, because

it is not supplied to the memory access function. The core calls the callback wheneve
NTRANS changes (on mode changes), and when executinDRIMSTRT instruction.

For an example of implementation code, look at the rebuild kit file on UNIX in:
ar msd/ sour ce/ exanpl e. c
oron PCin:

C. \ ARM250\ Sour ce\ W n32\ ARMuI at e\ exanpl e. ¢

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-31

ARMulator

12.15 Rebuilding the ARMulator

Thefile exanpl e. ¢ defines an extra memory model (see A sample memory model on
page 12-29). For ARMulator to know about this model, you must declare the model in
nmodel s. h by adding the line:

MVEMORY(Exanpl eMenor y)

Thereference Exanpl eMenor y comesfrom ARMul _Mentt ub Exanpl eMenor y inthe
fileexanpl e. c.

You must also add the object fil e to the supplied Makefile, along with arulefor building
the model.

12.15.1 Rebuilding on UNIX
Follow these steps to rebuild the ARMulator under UNIX:
1. Placethe source codein the directory sour ces.
2 Load the Makefilein bui | d/ into an editor.
3. Addthe object to thelist of objectsto be built.
4

Change thelines:

OBJALL=main.o angel .o arnfast.o arnflat.o armap.o \
arnpi e. o bytel ane. o dumynmu. o ebsall0.0 errors.o \
nodel s. o pagetab.o profiler.o tracer.o trickbox.o \
val i date. o wat chpnt.o wi ngl ass. o

to read:

OBJALL=main.o angel .o arnfast.o arnflat.o armap.o \
arnpi e. o bytel ane. o dutmymmu. o ebsall0.0 errors.o \
nmodel s. 0 pagetab.o profiler.o tracer.o trickbox.o \
val i date. o watchpnt.o wi ngl ass. o exanple.o

5. Addarulefor building the example:

exanpl e. o: $(SRCDI R1) / exanpl e. ¢

exanpl e. o: $(SRCDI R1) / ardefs. h

exanpl e.o: $(SRCDIR1)/rdi _hif.h
$(CC) $(CFLAGS) $(CFLexanple) -o exanple.o
$(SRCDI R1) / exanpl e. ¢

6. Indirectory bui | d, type:
make.
For the Solaris/gcc target, this produces the following output:

12-32 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

ARMulator

Example 12-1 Sample output

gcc -c -ansi -pedantic -W-Wormat -Wnplicit -Wr ssing-prototypes
-Whar - subscripts -Wnused -Wininitialized -Weturn-type -Wointer-arith
-Wast-qual -Wstrict-prototypes -Wonmment -Dunix -g -Q2

- DARM_RELEASE="\"unr el eased\"" -lderived -1../../arnmsd/source
-1../..larnmsd/source -I|../../arnmsd/obj -I1../../arnsd/obj -1../../arnsd/ obj
-l../..larmsd/obj -I1../../armsd/obj -I../../armsd/obj -1../../arnsd/obj
-l../..larmsd/obj -I1../../armsd/obj -I../../armsd/obj -1../../arnsd/obj
-l../..larmsd/obj -I1../../armsd/obj -1../../arnsd/obj -0 exanple.o

../..larmsd/ source/ exanpl e.c

../..larnsd/ sourcel/ exanpl e. c: 44: warning: pointer targets in initialization
differ in signedness

gcc -o arnsd -Im-Ilsocket -Insl main.o angel.o arnfast.o arnflat.o
arnmap. o arnpie.o bytelane.o dummynmu.o ebsall0.o0 errors.o nodels.o
pagetab.o profiler.o tracer.o trickbox.o validate.o watchpnt.o wi ngl ass. o
exanple.o ../../arnsd/ obj/gccsol rs/angsd. o

./l armsd/ obj/gccsol rs/sarnmul .a ../../arnsd/ obj/gccsolrs/iarma

.larnmsd/ obj/gccsol rs/armul 920.a ../../arnsd/obj/gccsol rs/armnmul 940. a
./ armsd/ obj/gccsolrs/armulib.a ../../arnmsd/ obj/gccsolrs/asdlib.a

.l armsd/ obj /gccsolrs/dbglib.a ../../armsd/ obj/gccsol rs/arnmdbg. a

./ armsd/ obj /gccsolrs/armsd.a ../../arnsd/ obj/gccsol rs/cl150t 100. a
../..larnmsd/obj/gccsolrs/clx.a

echo "Made ar nmsd"

Made ar nsd

~ O~~~

12.15.2 Rebuilding on Windows

To rebuild the ARMulator, load ar mul at e. mak into Microsoft Visual C++ Developer
Studio (version 4.0 or greater).

Alternatively, type nmake ar nul at e. nak.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 12-33

ARMulator

12.16 Configuring ARMulator to use the example

The ARMulator determines which memory model to use by reading the configuration
file, ar mul . cnf . Before the example memory model can be used by ARMulator, a
reference to it must be added to the configuration file. By default, the ARMulator uses
the built-in FI at or MapFi | e memory models.

Follow these stepsto edit the configuration file so that the ARMulator selectsthe sample
memory model:

1

Load thear mul . cnf fileinto atext editor, and find the following lines
approximately halfway through the file:

7, List of nenory nodel s
{ Menories

the 'default’ default is the flat nenory nap
Def aul t =FI at
Change the last two lines to:

Use the new nenory nodel instead
Def aul t =Exanpl e

where Exanpl e is the name of the model in the MenSt ub givenin
Implementation on page 12-31. The changed lines specify that the default
memory model is now Exanpl e, rather than Fl at .

Note

If amap file exists (or for ADW, if amap fileis specified), the ar map memory
model is used.

Start ADW or armsd. The debugger responds:

ARMul ator 2.0

ARM7, User nanual exanple, 1MB menory, Dunmy MW,

Soft Angel 1.4 [Angel SWs], FPE initialization failed,
Profiler, Tracer, Pagetables, Big endian.

You may see the following errors:

. TheFloating Point Emulator (FPE) initialization failed because this model

does not have a standard memory map, and the FPE could not be loaded.

. Alternatively, you might see the error:

Initialization failed: Menory nodel 'Exanple’
inconpatible with bus interface

This is the memory model reporting that it cannot talk to the selected
processor (for example, ARM7TDMI, or ARM9TDMI).

12-34

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Chapter 13
Angel

This chapter describes the Angel debug monitor. It contains the following sections:
. About Angel on page 13-2

. Developing applications with Angel on page 13-10

. Angel in operation on page 13-27

. Porting Angel to new hardware on page 13-41

. Configuring Angel on page 13-67

. Angel communications architecture on page 13-71

. Angel C library support SMs on page 13-77

. Angel debug agent interaction SMis on page 13-92

. The Fusion | P stack for Angel on page 13-96.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-1

Angel

13.1

About Angel

Angel isaprogram that enables you to develop and debug applications running on
ARM -based hardware. Angel can debug applications running in either ARM state or
Thumb state.

You can use Angel to:

. evaluate existing application software on real hardware, as opposed to hardware
emulation

. develop new software applications on development hardware
. bring into operation new hardware that includes an ARM processor
. port operating systems to ARM-based hardware.

These activities require you to have some understanding of how Angel components
work together. The more technically challenging ones, such as porting operating
systems, require you to modify Angel itself.

A typical Angel system has two main components that communicate through a physical
link, such as a serial cable:

Debugger The debugger runs on the host computer. It gives instructions to Angel
and displays the results obtained from it. All ARM debuggers support
Angel, and you can use any other debugging tool that supports the
communications protocol used by Angel.

Angel Debug M onitor

The Angel debug monitor runs alongside the application being debugged
on the target platform. There are two configurations of Angel:

. a full version for use on development hardware
. a minimal version that you can use on production hardware.

See Figure 13-1 on page 13-6 for an overview of a typical Angel system. The debugger
on the host machine sends requests to Angel on the target system. Angel interprets those
requests and performs an operation such as inserting an undefined instruction where a
breakpoint is required, or reading a portion of memory and sending back a response to
the host.

Angel uses a debugging protocol called Amgel Debug Protocol (ADP) to

communicate between the host system and the target system. ADP supports multiple
channels and provides an error-correcting communications protocol. RefeArmshe
Debug Protocol specification in Ar 250\ PDF\ specs for more information on ADP.

13-2

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Angel issupplied as:

. a stand-alone form that is built into the Flash and/or ROM of ARM evaluation and
development boards and other, third party boards

. prebuilt images that you can program into ROM or download to Flash

. a minimal library that you can link with your application.

In addition, full Angel source is provided so that you can port Angel to your own
ARM-based hardware.

ANSI C and C++ libraries that support Angel are supplied with the ARM Software
Development Toolkit. Refer to Chapteffle C and C++ Librariesin theARM
Software Development Toolkit Reference Guide for more information.

13.1.1 Angel system features

Angel provides the following functionality:
. basic debug support

. C library support

. communications support

. task management

. exception handling.

These features are described below. See Figure 13-1 on page 13-6 for an overview o
the Angel components that provide this functionality.

Debug support

Angel provides the following basic debug support:
. reporting memory and processor status

. downloading applications to the target system
. setting breakpoints.

Refer toAngel debugger functions on page 13-29 for more information on how Angel
performs these functions.

C library semihosting support

Angel uses a software interrupt (SWI) mechanism to enable applications linked with the
ARM C and C++ libraries to malsemihosting requests. Semihosting requests are
requests such apen afile on the host, orget the debugger command-line, that must be
communicated to the host to be carried out. These requests are referred to as
semihosting because they rely on the C library of the host machine to carry out the
request.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-3

Angel

The ARM Software Development Toolkit provides prebuilt ANSI C libraries that you
can link with your application. The toolkit provides 26 prebuilt library variantsthat are
targeted to Angel. The libraries use the Angel SWI mechanism to request that specific
C library functions, such as input/output, are handled by the host system.

These libraries are used by default when you link code that calls ANSI C library
functions. Refer to Chapter 4 The C and C++ Librariesin the ARM Software
Development Toolkit Reference Guide for more information.

Angel uses asingle SWI to request semihosting operations. By default, the SWI is
0x123456 in ARM state and Oxab in Thumb state. You can change this number if
required. Refer to Configuring Angel on page 13-67 for more information.

If semihosting support is not required you can disable it by setting the
$seni host i ng_enabl ed variablein the ARM debuggers.

. In armsd set:

$seni hosting_enabled = 0

. In ADW or ADU, selectDebugger Internals from theView menu to view and
edit the variable. Refer to ChapteABM Debuggers for Windows and UNI X for
more information.

Refer toAngel C library support SWIs on page 13-77 for details of the Angel
semihosting SWis.

Communications support

Angel communicates using ADP, and uskeannelsto allow multiple independent sets
of messages to share a single communications link. Angel provides an error-correcting
communications protocol over:

. Serial and serial/parallel connection from host to the target board, with Angel
resident on the board.

. Ethernet connection from the host to PID board, with Angel resident on the board.
This requires the Ethernet Upgrade Kit (No. KP1 0015A), available separately
from ARM Limited.

The host and target system channel managers ensure that logical channels are
multiplexed reliably. The device drivers detect and reject corrupted data packets. The
channel managers monitor the overall flow of data and store transmitted data in buffers,
in case retransmission is required. Refekrigel communi cations architecture on page

13-71 for more information.

13-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Thefull Angel Device Driver Architecture uses Angel task management functionality
to control packet processing and to ensure that interrupts are not disabled for long
periods of time.

You can write device driversto use alternative devices for debug communication, such
asaROMulator. You can extend Angel to support different peripherals, or your
application can address devices directly.

Task management

All Angel operations, including communications and debug operations, are controlled
by Angel task management. Angel task management:

. ensures that only a single operation is carried out at any time
. assigns task priorities and schedules task accordingly

. controls the Angel environment processor mode.

Refer toAngel task management on page 13-31 for more information.

Exception handling

Angel exception handling provides the basis for each of the system features describe
above. Angel installs exception handlers for each ARM exception type except Reset:

SWI Angel installs a SWI exception handler to support C library semihosting
requests, and to allow applications and Angel to enter Supervisor mode.

Undefined Angel uses three undefined instructions to set breakpoints in code. Refer
to Setting breakpoints on page 13-21 for more information.

Data, Prefetch Abort

Angel installs basic Data and Prefetch abort handlers. These handlers
report the exception to the debugger, suspend the application, and pass
control back to the debugger.

FIQ,IRQ Angelinstalls IRQ and FIQ handlers that enable Angel communications
to run off either, or both types of interrupt. If you have a choice you
should use IRQ for Angel communications, and FIQ for your own
interrupt requirements.

You can chain your own exception handlers for your own purposes. R€flesitong
exception handlers on page 13-19 for more information.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-5

Angel

13.1.2 Angel component overview
The main components of an Angel system are shown in Figure 13-1. The following
sections give a summary of the system components.
Debugger
Debugger toolbox
ADP Boot C Library
support support support
Channel manager
Device drivers
v Angel C library
Channel manager SWI support
Booting Generic debug support
and
initialization
Target dependent)
debug support C Library
Exceptions support Application
Figure 13-1 A typical Angel system
13-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Host system components summary
The host system components are:

Debugger Thisisthe ARM Debugger for Windows (ADW), the ARM Debugger for
UNIX (ADU), the ARM command-line debugger (armsd), or athird
party debugger that supports the Angel Debug Protocol.

Debugger toolbox

This provides an interface between the debugger and the Remote Debug
Interface (RDI).

ADP support

This translates between RDI calls from the debug controller and Angel
ADP messages.

Boot support

This establishes communi cation between the target and host systems. For
example, it sets baud rates and re-initializes Angel in the target.

C library support
This handles semihosting requests from the target C library.

Host channel manager

This handles the communication channel s, providing the functionality of
the devices at a higher level.

Devicedrivers

These implement specific communications devices on the host. Each
driver provides the entry points required by the channel manager.

Target system components summary
The target system components are:

Devicedrivers

These implement specific communications devices on the development
boards. Each driver provides the entry points required by the channel
manager.

Channel manager

This handles the communication channels. It provides a streamed packet
interface that hides details of the device driver in use.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-7

Angel

13.1.3

Generic debug support

This handles the Angel Debug Protocol by communicating with the host
over aconfigured channel, and sending and receiving commands from
the host.

Tar get-dependent debug support
This provides system-dependent features, such as setting up breakpoints
and reading/writing memory.

Exceptions support
This handles all ARM exceptions.

C library support

C library support consists of the ARM ANSI C libraries supplied with the
SDT, and the semihosting support that is built into Angel to send requests
to the host when necessary.

Booting and initialization
The Angel booting and initialization support code:
. performs startup checks
. sets up memory, stacks, and devices
. send a boot message to the debugger.

User application
This is an application on the target system.

Angel system resource requirements

Where possible, Angel resource usage can be statically configured at compile and link
time. For example, the memory map, exception handlers, and interrupt priorities are all
fixed at compile and link time. Refer @onfiguring Angel on page 13-67 for more
information.

The following sections describe the system and memory resources required by Angel.

System resources

Angel requires the following configurable and non-configurable resources:

Configurable resources
Angel requires the following for semihosting purposes:
. one ARM SWI
. one Thumb SWI.

13-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Non-configurable resour ces
For breakpoints, Angel requires:
. two ARM Undefined instructions
. one Thumb Undefined instruction.

ROM and RAM requirements

Angel requires ROM or Flash memory to store the debug monitor code, and RAM to
store data. The amount of ROM, Flash, and RAM required varies depending on your
configuration.

Additional RAM is required to download a new version of Angel:

. if you download a new version of Angel to Flash memory you will require enough
RAM to store the flash download program

. if you download a new version of Angel using theadagent debugger
command, you will require RAM to store the downloaded copy of Angel.

— Note

Thel oadagent command cannot write to Flash. If you usadagent , Angel must
be compiled to run from RAM.

Exception vectors

Angel requires some control over the ARM exception vectors. Exception vectors are
initialized by Angel, and are not written to after initialization. This supports systems
with ROM at address 0, where the vectors cannot be overwritten.

Angel installs itself by initializing the vector table so that it takes control of the target
when an exception occurs. For example, debug communications from the host cause ¢
interrupt that halts the application and calls the appropriate code within Angel.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-9

Angel

Interrupts

Angel requires use of at least one interrupt to support communication between the host
and target systems. You can set up Angel to use:

+ IRQ

. FIQ
. both IRQ and FIQ.

It is recommended that you use FIQ for your own interrupt requirements because Angel
has no fast interrupt requirements. Refedeieconf.h on page 13-58 for more
information.

Stacks

Angel requires control over its own Supervisor stack. If you want to make Angel calls
from your application yomust set up your own stacks. ReferReveloping an
application under full Angel on page 13-16 for more information.

Angel also requires that the current stack pointer points to a few words of usable full
descending stack whenever an exception is possible, because the Angel exception return
code uses the application stack to return.

13.2 Developing applications with Angel
This section describes how you can develop applications under Angel. It gives an
overview of the development process and describes how you can use Angel in two
distinct ways:
. full Angel debug agent
. minimal Angel library.
It also describes the programming restrictions that you must be aware of when
developing an application under Angel, and provides some workarounds for Angel
intrusions.

13.2.1 Full Angel debug agent
Full Angel is a stand-alone system that resides on the target board and is always active.
Full Angel is used during the development of the application code. It supports all
debugger functions and you can use it to:
. download your application image from a host
. debug your application code
. develop the application before converting to stand-alone code.

13-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Full Angel issupplied in the following forms:

In target board ROM
The ARM development and evaluation boards are supplied with full
Angel built into ROM, or Flash, or both. To use Angel in thisform you
simply connect your target board to a host machine running a debugger,
such as ADW, ADU, or armsd.

Prebuilt images
Full Angel issupplied as prebuilt images for the ARM PID board with
SDT 2.50. These are located in:

. Angel \ I mages\ pi d\1i ttl e for a little-endian configuration of
the ARM PID board

. Angel \ I mages\ pi d\ bi g for a big-endian configuration of the
ARM PID board.

The supplied binaries are:

angel . rom This is a ROM image of full Angel. You can use this
image in place of the Angel in your target board
ROM if your board contains an older version. In
addition, if you are porting Angel to your own
hardware this image provides you with a working
default to test against.

angel . hex This is an Intellec Hex format version of full Angel.

angel . n82 This is a Motorola M32 version of full Angel.

Refer toDownloading a new version of Angel on page 13-65 for
information on how to download a new version of Angel to the target.

Full source code
You can port the Angel source code to your own development board if
you are developing an application on your own hardware. Refer to
Porting Angel to new hardware on page 13-41 for more information.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-11

Angel

13.2.2 Minimal Angel

Minimal Angel isacut down version of Angel that provides:
. board setup

. application launch

. device drivers.

Minimal Angel keeps theaw device drivers intact because your application might have
been developed to use these. Raw device drivers are device drivers that send and receive
byte streams, rather than ADP packets.

You can use minimal Angel in the final stages of development, and on your production
hardware.

Minimal Angel does not support features that are provided by full Angel, such as:
. debugging over ADP

. semihosting

. multiple channels on one device

. task management.

Minimal Angel is supplied in the following forms:

Prebuilt libraries
There are separate big-endian and little-endian minimal Angel libraries:
. Angel \ I mages\ pi d\bi glangnin.lib
. Angel \ Il mages\pid\littlelangm n.lib.

Full source code
There is a separate build directory for minimal Angel PID port. This is
Angel \ Sour ce\ pi d. mi n. It contains UNIX makefiles and an ARM
Project Manager project to build minimal Angel.

Refer toPorting Angel to new hardware on page 13-41 for more
information.

13-12 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

13.2.3 Overview of the development procedure

Angel

This section gives an overview of the development process of an application using
Angel, from the evaluation stage to the final product.

The stages in the Angel development procedure are:

1
2.
3.
4,

Evaluate the application.
Build with high dependence on Angel.
Build with low dependence on Angel.

Move to final production hardware.

Figure 13-2 shows an example of this development procedure. The stages of the
development procedure are described in more detail below.

Application under
ARMulator or on an
evaluation board

Application using Full
Angel on
Development Board
(very dependent)

Application using Full
Angel on Development
Board
(minimal dependency)

Application under
minimal Angel on
final product

Application on final
product. No Angel.

Figure 13-2 The Angel development process

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

13-13

Angel

Stage 1: Evaluating applications

If you want to evaluate the ARM to ensurethat it isappropriate for your application you
must have a program, or suite of programs to run on the ARM.

You can rebuild your programs using the ARM Software Development Toolkit, and link
them with an ARM C or C++ library.

You can run your ported applicationsin two ways:

ARMulator You can run your programs under the ARMulator, and evaluate cycle
counts to seeif the performance is sufficient.

This method does not involve Angel, however you can use an
Angel-targeted ARM C or C++ library because the ARMulator supports
the Angel semihosting SWIs, so C library calls are handled by the host C
library support.

Evaluation board
Instead of testing programs under the ARMulator, you can use an ARM
evaluation board to evaluate performance. In this case you use Angel
running as a debug monitor on the ARM evaluation board. You do not
need to rebuild Angel, or to be familiar with the way Angel works.

You can build images that are linked with an Angel-targeted ARM C or
C++ library, and then download the images with an ARM debugger.

Stage 2: Building applications on adevelopment board, highly dependent
on Angel

After evaluating your application you move to the devel opment stage. At this stage, the
target board is either your own development board or an ARM devel opment board:

Using an ARM development board

You can use the ARM PID board to closely emulate the configuration of
your production hardware. You can develop your application on the PID
board and port it to your final hardware with minimal effort.

Using your own development board

If you are developing on your own hardwareit islikely to have different
periphera hardware, different memory maps, and so on from the ARM
evaluation boards or devel opment boards. This meansthat you must port
Angel to your development board. The porting procedure includes
writing device driversfor your hardware devices. Refer to Porting Angel
to new hardware on page 13-41 for more information.

13-14

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

When you have chosen your devel opment platform, you build a stand-alone application
that runs next to Angel on your target hardware. You must use one of the methods
described in Downloading new application versions on page 13-25 to download the
application to your development board.

At this stage you are highly reliant on Angel to debug your application. In addition you
must make design decisions about the final form of your application. In particular you
should decide whether the final application is stand alone, or uses minimal Angel to
provide initialization code, interrupt handlers, and device drivers. If you are porting
Angel to your own hardware you must also consider how you will debug your Angel
port. Refer to Debugging your Angel port on page 13-66 for more information.

If you are devel oping simple embedded applications, you might want to move straight
to building your application on a development board.

Stage 3: Building applications on a development board, with little
dependence on Angel

Asyou proceed with your devel opment project and your code becomes more stabl e, you
will rely less on Angel for debugging and support. For example, you might want to use
your own initialization code, and you might not require C library semihosting support:

. You can switch off semihosting, without building a special cut-down version of
Angel, by setting th@seni host i ng_enabl ed variable in the ARM debuggers.
In armsd:

$seni hosting_enabled = 0

In ADW or ADU selectDebugger Internals from theView menu to view and
edit the variable. Refer #®8lRM Debuggers for Windows and UNIX on page 3-1
for more information.

. You can build an application that links with the minimal Angel library. This can
be blown into a ROM, soft-loaded into Flash by the ARM debuggers, or installed
using a ROM emulator, Multi-ICE, or EmbeddedICE.

Minimal Angel provides the same initialization code, raw device drivers, and
interrupt support as full Angel. Moving from full Angel to minimal Angel on your
development hardware is straightforward. Segeloping an application under
minimal Angel on page 13-22 for a description of minimal Angel.

This is conceptually a step closer to the final product compared with using the
debugger to download an image. You can choose either to keep minimal Angel in
your production system, or remove it for final production.

If you need to debug a minimal Angel application and your hardware supports
JTAG you can use EmbeddedICE or Multi-ICE. These do not require any
resource on the target.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-15

Angel

Stage 4: Moving an application to final production hardware

When you are ready to move the application onto final production hardware, you have
adifferent set of requirements. For example:

. Production hardware might not have as many communications links as your
development board. You might not be able to communicate with the debugger.

. RAM and ROM might be limited.

. Interrupt handlers for timers might be required in the final product, but debug
support code is not.

At this stage it is not desirable to include any parts of Angel that are not required in the
final product. You can choose to remove Angel functionality completely, or you can
continue to link your application with a minimal Angel library to provide initialization,
raw device, and exception support.

13.2.4 Developing an application under full Angel
This section gives useful information on how to develop applications under Angel,
including:
. Planning your development project on page 13-16
. Programming restrictions on page 13-17
. Using Angel with an RTOS on page 13-18
. Using Supervisor mode on page 13-19
. Chaining exception handlers on page 13-19
. Linking Angel C library functions on page 13-20
. Using assertions when debugging on page 13-21
. Setting breakpoints on page 13-21
. Changing from little-endian to big-endian Angel on page 13-21.
Planning your development project
Before you begin your development project you must make basic decisions about such
things as:
. the APCS variant to be used for your project
. whether or not ARM/Thumb interworking is required
. the endianness of your target system.
Refer to the appropriate chapters of ARM Software Devel opment Toolkit Reference
Guide and this book for more information on interworking ARM and Thumb code, and
specifying APCS options.
13-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

In addition, you should consider:

Whether you are to move to a production system that includes minimal Angel, or
a stand-alone system. If you are not using minimal Angel you must write your
own initialization and exception handling code.

Whether or not you require C library support in your final application. You must
decide how you will implement C library support if it is required, because the
Angel semihosting SWI mechanism will not be available. Refeirtking Angel

C library functions on page 13-20 for more information.

Whether or not debug information is included. You should be aware of the size
overhead when using debuggable images as production code.

Communications requirements. You must write your own device drivers for your
production hardware.

Memory requirements. You must ensure that your hardware has sufficient
memory to hold both Angel and your program images.

Programming restrictions

Angel resource requirements introduce a number of restrictions on application
development under Angel:

Angel requires control of its own Supervisor stack. If you are using an RTOS you
must ensure that it does not change processor state while Angel is running. Refe
to Using Angel with an RTOS on page 13-18 for more information.

You should avoid using SWI 0x123456 or SWI Oxab. These SWIs are used by
Angel to support C library semihosting requests. Ref€@otdiguring SM

numbers on page 13-70 for information on changing the default Angel SWI
numbers.

If you are using SWIs in your application, and using EmbeddedICE or Multi-ICE
for debugging, you should usually set a break point on the SWI handler routine,
where you know it is an Angel SWI, rather than at the SWI vector itself.

If you are using SWIs in your application you must restore registers to the state
that they were when you entered the SWI.

If you want to use the Undefined instruction exception for any reason you must
remember that Angel uses this to set breakpoints.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-17

Angel

Using Angel with an RTOS

From the application perspective Angel issinglethreaded, modified by theability to use
interrupts provided the interrupt is not context switching. External functions must not
change processor modes through interrupts. This means that running Angel and an
RTOS together is difficult, and is not recommended unless you are prepared for a
significant amount of development effort.

If you are using an RTOS you will have difficultieswith contention between the RTOS
and Angel when handling interrupts. Angel requires control over its own stacks, task
scheduling, and the processor mode when processing an IRQ or FIQ.

An RTOS task scheduler must not perform context switches while Angel is running.
Context switches should be disabled until Angel has finished processing.

For example, if an RTOS installs an ISR to perform interrupt-driven context switches
and:

. the ISR is enabled when Angel is active (for example, handling a debug request)
. an interrupt occurs when Angel is running code

then the ISR switches the Angel context, not the RTOS context. That is, the ISR puts
values in processor registers that relate to the application, not to Angel, and it is very
likely that Angel will crash.

There are two ways to avoid this situation:

. Detect ISR calls that occur when Angel is active, and do not task switch. The ISR
can run, provided the registers for the other mode are not touched. For example,
timers can be updated.

. Disable either IRQ or FIQ interrupts, whichever Angel is not using, while Angel
is active. This is not easy to do.

In summary, the normal process for handling an IRQ under an RTOS is:

1. IRQ exception generated.

2 Do any urgent processing.

3 Enter the IRQ handler.

4. Process the IRQ and issue an event to the RTOS if required.

5 Exit by way of the RTOS to switch tasks if a higher priority task is ready to run.

13-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Under Angel this procedure must be modified to:
1. IRQ exception generated.

2. Do any urgent processing.

3. Check whether Angel is active:

a If Angel isactive then the CPU context must be restored on return, so
scheduling cannot be performed, although for example a counter could be
updated. Exit by restoring the pc to the interrupted address.

b. If Angel isnot active, process as hormal, exiting by way of the scheduler if
required.

Using Supervisor mode

If you want your application to execute in Supervisor mode at any time, you must set
up your own Supervisor stack. If you call an Angel SWI while in Supervisor mode,
Angel usesfour words of your Supervisor stack when entering the SWI. After entering
the SWI Angel usesits own Supervisor stack, not yours.

Thismeansthat, if you set up your own Supervisor mode stack and call an Angel SWi,
the Supervisor stack pointer register (sp_SVC) must point to four words of afull
descending stack in order to provide sufficient stack space for Angel to enter the SWI.

Chaining exception handlers

Angel provides exception handlers for the Undefined, SWI, IRQ/FIQ, Data Abort, and
Prefetch Abort exceptions. If you areworking with exceptions you must ensure that any
exception handler that you add is chained correctly with the Angel exception handlers.
Refer to Chapter 9 Handling Processor Exceptions for more information.

If you are chaining an interrupt handler and you know that the next handler in the chain
isthe Angel interrupt handler, you can use the Angel interrupt table rather than the
processor vector table. You do not have to modify the processor vector table. The Angel
interrupt table is easier to manipul ate because it contains the 32-bit address of the
handler. The processor vector tableis limited to 24-bit addresses.

Note

If your application chainsexception handlers, Angel must be reset with ahardware reset
if the application iskilled. This ensures that the vectors are set up correctly when the
application is restarted.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-19

Angel

The conseguences of not passing an exception onto Angel from your exception handler
depend on the type of exception, asfollows:

Undefined You will not be able to single step or set breakpoints from the debugger.

SWI

If you do not implement the EnterSV C SWI, Angel will not work. If you
do not implement any of the other SWIs you will not be able to use
semihosting.

Prefetch abort

The exception will not be trapped in the debugger.

Dataabort The exception will not be trapped in the debugger. If a Data abort occurs

IRQ

FIQ

during a debugger-originated memory read or write, the operation might
not proceed correctly, depending on the action of the handler.

This depends on how Angel is configured. Angel will not work if itis
configured to use IRQ asits interrupt source.

This depends on how Angel is configured. Angel will not work if itis
configured to use FIQ asits interrupt source.

Linking Angel C library functions

TheClibraries provided with the ARM Software Development Toolkit use Angel SWis
to implement semihosting requests. You have a number of options for using ARM C
library functionality:

Use the ARM C library for early prototyping only and replace it with your own C
library targeted at your hardware and operating system environment.

Support Angel SWis in your own application or operating system and use the
ARM C libraries as provided.

Port the ARM C library to your own environment. The ARM C libraries are
supplied as full source code so that you can retarget them to your own system.

Refer toRetargeting the ANS C library on page 4-6 of thARM Software
Development Toolkit Reference Guide for more information.

Use the embedded C library with your own startup code. The embedded C library
does not rely on underlying Angel or operating system functionality. Reféeto
embedded C library on page 4-19 of thaRM Software Devel opment Toolkit

Reference Guide for more information.

13-20 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Using assertions when debugging

To speed up debugging, Angel includes runtime assertion code that checksthat the state
of Angel isasexpected. The Angel code definesthe ASSERT _ENABL ED option to enable
and disable assertions.

If you use assertions in your code you should wrap them in the protection of
ASSERT_ENABLED macros so that you can disable them in the final version if required.

#i f ASSERT_ENABLED

#rendi f

Angel uses such assertions wherever possible. For example, assertions are made when
it isassumed that astack isempty, or that there are no itemsin aqueue. You should use

assertions whenever possible when writing device drivers. The ASSERT macrois
available if the code is a simple condition check (variable = value).

Setting breakpoints

Angel can set breakpointsin RAM only. You cannot set breakpointsin ROM or Flash.

In addition, you must be careful when using single step or breakpoints on the UNDEF,
IRQ, FIQ, or SWI vectors. Do not single step or set breakpoints on interrupt service
routines on the code path used to enter or exit Angel.

Changing from little-endian to big-endian Angel

You can use the Flash download program to change from alittle-endian version of
Angel onthe ARM PID board to a big-endian version. However, because of an
incompatibility between the way big-endian and little-endian code is stored in 16-bit
wide devices, thisworks only if the target device is an 8-bit Flash device:

1. Make sureyou are using the 8-bit Flash device (U12).

2. Start little-endian Angel by switching on the board and connecting to the
debugger.

3. Run the Flash download program and program the Flash with the big-endian
Angel image. This works because Angel operates out of SRAM.

4. Quit the debugger and switch off the board.

5. Change the EPROM controller (U10) to be the big-endian controller. Refer to
your board documentation for details.

6. Insert the BIGEND link (LK4).

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-21

Angel

7. Power up the board and connect the debugger. Make sure that the debugger is
configured for big-endian operation.

When you have a big-endian Angel in Flash, you can use a big-endian version of the
Flash downloader to program a new copy of Angel into the 16-bit device. To do this:

1. Switch on the board.
2. Start the debugger.

3. Insertthe SEL8BIT link (LK6-4) so that the target deviceis now the 16-bit Flash
chip.

You must provide a 16-bit wide Flash device, because oneis not supplied with the
board.

Refer to The Flash downloader on page 8-15 of the ARM Software Devel opment Toolkit
Reference Guide for more information on using the Flash download utility.

Note

There is no performance gain from using a 16-bit wide device in this case, because
Angel copiesitself to SRAM and executes from there.

13.2.5 Developing an application under minimal Angel

The minimal Angel library isintended to support the later stages of debugging. It does
not include full Angel features such as:

. debugging and packet organization through ADP
. reliable communications through ADP

. channels support

. semihosted C library support

. an Undefined exception handler

. the task serializer.

Minimal Angel is not suitable for use when you are in the development stage of your
project.

Components of minimal Angel

The minimal Angel library contains almost the same initialization code, interrupt
handling, and exception handling as full Angel. The device driver architecture is the
same, and any Angel device driver that can be compiled as a raw device is fully
supported.

13-22 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

The minimal library contains sufficient components to allow it to replace a full Angel
system. Themain differenceisthat an image containing an application and the minimal
library initializes, and then immediately enters the application at the __ent ry symbol.

The minimal library is approximately one third to one fifth the size of full Angel. The
actual size depends on the device drivers that are included, and on compile-time
debugging and assertion options.

Building and linking a minimal Angel library

Separate build directories, makefiles, and APM project files are provided for minimal
Angel.

The build directories for the PID Angel port arein:
angel / source/ pi d. m n
There are separate subdirectories for Solaris, HPUX, and APM builds.

Within the Angel source code, minimal Angel build specifics are controlled by the
M NI MAL_ANGEL macro. Thisis set to O for full Angel and to 1 for minimal Angel.

13.2.6 Application communications

Full Angel requires use of at least one device driver for its own communications
requirements. If you are using Angel on aboard with more than one serial port, such as
the PID board, you can either:

. use Angel on one serial port and your own device on the other

. use minimal Angel, which requires no serial port, and use either or both of the
serial ports for your application.

The PID Angel port provides examples of raw serial drivers. Refer to the Angel source
code for details of how these are implemented. If you want to use Angel with your own
hardware you must write your own device drivers. Ref&ktiding the device drivers

on page 13-61 for more information.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-23

Angel

Angel serial drivers

Figure 13-3 gives an overview of the Angel serial device architecture.

| 8 ! 8
I 5l€
dé')’ | S é |§ Minimal Angel Angel
< 9 og Application
| £ | .g
S i R
R N
| N T I
(serraw.c) |
Byte | | [
Serial | |
Devices | Packet | | Packet e
5 | :Nrnekt X T i Send layer <
ev serpkt.c
< l
™ (A | | | Devclnt.c
Ring buffer | Raw | Device Channels
| | Read I Switcher |— layer
w D | | : | Reliabl
o ev | eliable
= R 1 r I Packet | Packet Pack
g X L—) Read | Read unreliable, c::nste? reliable,
£ Ring buffer | | unor?ered, ordﬁreld,
simplex
T Dev | | uses Rx/Tx | | Develnt.c stregms Q;Jee;?nes
Ctrl | | code | |
1
l I . I
Dev RW |
ISR Poll |
X either 7\
' -or I : | Angel Poll Device Call
i | e o -
: | I
. Angel
""""""" *I""'"'""""'""""'"'I""'""""'""""""""" T ISnF??-Iandler
I I
I I
Figure 13-3 Angel raw serial device
Using the Thumb Debug Communication Channel
You can use cin and cout in armsd and the channel viewer interface to accessthe TDCC
from the host. You can use the TDCC channel to send ARM DCC instructions to the
processor. No other extra channels are supported.
13-24 Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Angel

13.2.7 Downloading new application versions

There are a number of techniques you can use to move successive versions of your
application onto a development board. Each technique has advantages and
disadvantages:

Using Angel with a serial port
This gives slow downloading, but has the advantage that it requires only
asimple UART on the development board. If your board supports Flash
download you can use this method to fix your image in Flash.

Using Angel with serial and parallel ports

This provides medium speed downloading, but requires a serial and a
parallel port on the development board. If your board supports Flash
download you can use this method to fix your image in Flash.

Using Angel with an Ethernet connection

This provides fast downloading, but requires Ethernet hardware on the
development board and a considerable amount of Ethernet support
software to run on the development board. If your board supports Flash
download you can use this method to fix your image in Flash.

Flash download

This provides slow to fast downloading, depending on the type of
connection you are using.

Thismethod is only available on boards that have Flash memory and are
supported by the Flash download program. It hasthe advantagethat, after
the Flash is set, the image is fixed in memory, even if the board is
switched off.

You can also download application-only images using this method, but
you cannot then use Angel.

Refer to your devel opment board documentation for more information on
downloading to Flash.

Using a ROM emulator to download a new ROM image
This provides medium to fast downloading, depending on the ROM

Emulator. You must have accessto aROM Emulator that is compatible
with the hardware.

You cannot replace application-only images using this method. You must
replace the complete ROM image.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-25

Angel

Blowing anew ROM or EPROM each time
This provides slow replacement in that it takes arelatively fixed amount
of time to physically remove your ROM or EPROM, blow a new ROM
image, and replaceit. If you need to erase your EPROM thiswill add to
the time required.

However, this method might be preferable for extremely large ROM
images where only a slow download mechanism is available.

Replacing the ROM or EPROM also has the advantage that the
application is permanently available, and does not have to be reloaded
when the board is switched off.

You cannot replace only a part of the program using this method. You
must replace the complete ROM image.

If you use one of the ROM replacement methods then you must change from building
application images to building ROM images as soon as the development phase starts.

If you use a simple download method then the transition to the development phase is
easier because you can moveto building ROM images when everything elseisworking
and you are preparing to move to production hardware.

Refer to The Flash downloader on page 8-15 of the ARM Software Devel opment Toolkit
Reference Guide for information on using the Flash download utility.

Refer to The fromELF utility on page 8-3 of the ARM Software Development Tool kit
Reference Guide if you are using an EPROM programmer to program big-endian code
into 16-bit devices.

13-26

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.3 Angel in operation

13.3.1 Initialization

This section gives a brief explanation of Angel operation that you should understand
before you begin to port Angel to your own hardware. It contains the following:

Initialization, below

Waiting for debug communications on page 13-28

Angel debugger functions on page 13-29

Angel task management on page 13-31

Context switching on page 13-36

Example of Angel processing: a simple IRQ on page 13-38.

The initialization of the code environment and system is almost identical, whether the
code is to initialize the debugger only (full Angel) or to launch an application (minimal
Angel). The initialization sequence is as follows:

1.

The processor is switched from the current privileged mode to Supervisor mode
with interrupts disabled. Angel checks for the presence of an MMU. If an MMU
is present it can be initialized after switching to Supervisor mode.

Angel sets the code execution and vector location, depending on the compilatior
addresses generated by the value¥DDR andRWADDR. Refer toConfiguring
where Angel runs on page 13-68 for more information.

Code and data segments for Angel are copied to their execution addresses.

If the application is to be executed then the runtime system setup code and the
application itself are copied to their execution addresses. If the system has ROM
at address 0 and the code is to be run from ROM, only the Data and Zero
Initialization areas are copied.

The stack pointers are set up for each processor mode in which Angel operates
Angel maintains control of its own stacks separately from any application stacks.
You can configure the location of Angel stacks. Ref&doafiguring the memory

map on page 13-67 for more information.

Target-specific functions such as MMU or Profiling Timer are initialized if they
are included in the system.

The Angel serializer is set up. Refer toAmgel task management on page 13-31
for more information on the Angel serializer.

The processor is switched to User mode and program execution is passed to th
high level initialization code for the C library and Angel C functions.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-27

Angel

When initialization is complete, program execution is directed to the __mai n
entry point.

9. Atthispoint, theinitialization procedure is different for full Angel and minimal
Angel.

For minimal Angel:

a Thedevicedrivers are set up for transmission of raw data only. The ADP
packet protocol and communi cations channels are not used.

b. Theapplication entry point is called by abranch with link (BL) instruction

toan__ent ry label. You must usethislabel asyour application entry point
to ensure that the application is launched.

For full Angel:

a The communications channels are initialized for ADP.

b. Any raw data channelsinstalled for the application are set up if you are
using extra channels. The application can set this up itself. Refer to the
Angel source code for details.

c. Full Angel transmitsits boot message through the boot task and waits for
communication from the debugger.

13.3.2 Waiting for debug communications

After initiaization, full Angel enterstheidle loop and continually calls the device
polling function. This ensures that any polled communications deviceis serviced
regularly. Wheninput is detected, it isplaced into abuffer and decoded into packet form
to determine which operation has been requested. If an acknowledgment or reply is
required, it is constructed in an output buffer ready for transmission.

All Angel operations are controlled by Angel task management. Refer to Angel task
management on page 13-31 and Example of Angel processing: a simple IRQ on page
13-38 for more information on Angel task management.

13-28 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.3.3 Angel debugger functions

This section gives a summary of how Angel performs the basic debugger functions:
. reporting memory and processor status

. downloading a program image

. setting breakpoints.

Reporting processor and memory status

Angel reports the contents of memory and the processor registers as follows:

Memory

Registers

Download

The memory address being examined is passed to a function that copies
the memory as a byte stream to the transmit buffer. The data is transmittec
to the host as an ADP packet.

Processor registers are saved into a data block when Angel takes control
of the target (usually at an exception entry point). When processor status
is requested, a subset of the data block is placed in an ADP packet and

transmitted to the host.

When Angel receives a request to change the contents of a register, it
changes the value in the data block. The data block is stored back to the
processor registers when Angel releases control of the target and
execution returns to the target application.

When downloading a program image to your board, the debugger sends a sequence
ADP memory write messages to Angel. Angel writes the image to the specified memory

location.

Memory write messages are special because they can be longer than other ADP
messages. If you are porting Angel to your own hardware your device driver must be
able to handle messages that are longer than 256 bytes. The actual length of memory
write messages is determined by your Angel port. Message length is defined in
devconf . h with:

#def i ne BUFFERLONGSI ZE

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-29

Angel

Setting breakpoints

Angel uses three undefined instructions to set breakpoints. The instruction used
depends on:

. the endianness of the target system

. the processor state (ARM or Thumb).

ARM state In ARM state, Angel recognizes the following words as
breakpoints:

Ox E7FDDEFE for little-endian systems.
O0x E7FFDEFE for big-endian systems.

Thumb state In Thumb state, Angel recogniz@sDEFE as a breakpoint.

Note

These are not the same as the breakpoint instructions used by Multi-ICE or
EmbeddedICE.

These instructions are used for normal, user interrupt, and vector hit breakpoints. In all
cases, no arguments are passed in registers. The breakpoint address itself is where the
breakpoint occurs.

When you set a breakpoint, Angel:

. stores the original instruction to ensure that it is returned if the area containing it
is examined

. replaces the instruction with the appropriate undefined instruction.

The original instruction is restored when the breakpoint is removed, or when a request
to read the memory that contains the instruction is made in the debugger. When you step
through a breakpoint, Angel replaces the saved instruction and executes it.

Note
Angel can set breakpoints only on RAM locations.

When Angel detects an undefined instruction it:

1. Examines the instruction by executing an:
. LDR instruction from Ir — 4, if in ARM state
. LDR instruction from Ir — 2, if in Thumb state.

2. Ifthe instruction is the predefined breakpoint word for the current processor state
and endianness, Angel:

13-30 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

a. haltsexecution of the application
b. transmits a message to the host to indicate the breakpoint status
c. executesatight poll loop and waits for areply from the host.

If the instruction is not the predefined breakpoint word, Angel:

a reportsit to the debugger as an undefined instruction
b. executesatight poll loop and waits for areply from the host.

ARM breakpoints are detected in Thumb state. When an ARM breakpoint is executed
in Thumb state, the undefined instruction vector is taken whether executing the
instruction in the top or bottom half of the word. In both cases these correspond to a
Thumb undefined instruction and result in abranch to the Thumb undefined instruction
handler.

— Note
Thumb breakpoints are not detected in ARM state.

13.3.4 Angel task management

All Angel operations are controlled by Angel task management. Angel task
management:

. assigns task priorities and schedules tasks accordingly
. controls the Angel environment processor mode.

Angel task management requires control of the processor mode. This can impose
restrictions on using Angel with an RTOS. Refeldsing Angel with an RTOSon page
13-18 for more information.

Task priorities

Angel assigns task priorities to tasks under its control. Angel ensures that its tasks hav
priority over any application task. Angel takes control of the execution environment by
installing exception handlers at system initialization. The exception handlers enable
Angel to check for commands from the debugger and process application semihosting
requests.

Angel will not function correctly if your application or RTOS interferes with the
execution of the interrupt, SWI or Data Abort exception handlers. Re@hsining
exception handlers on page 13-19 for more information.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-31

Angel

When an exception occurs, Angel either processesit completely as part of the exception
handler processing, or calls Angel _Seri al i seTask() to schedule atask. For
example:

. When an Angel SWI occurs, Angel determines whether the SVéirigpke SWI
that can be processed immediately, such as the EnterSVC SWbnaplax SWI
that requires access to the host communication system, and therefore to the
serializer. Refer té\ngel C library support SMs on page 13-77 for more
information.

. When an IRQ occurs, the Angel PID port determines whether or not the IRQ
signals the receipt of a complete ADP packet. If it does, Angel task management
is called to control the packet decode operation. Refexample of Angel
processing: a smple IRQ on page 13-38 for more information. Other Angel ports
can make other choices for IRQ processing, provided the relevant task is
eventually run.

The task management code maintains two values that relate to priority:

Task type The task type indicates type of task being performed. For
example, the application task is of typ®_Appl i cati on, and
Angel tasks are usuallyP_Angel Cal | back. The task type
labels a task for the lifetime of the task.

Task priority The task priority is initially derived from the task type, but
thereafter it is independent. Actual priority is indicated in two
ways:

. in the value of a variable in the task structure
. in the relative position of the task structure in the task queue.

The task priority of the application task changes when an
application SWI is processed, to ensure correct interleaving of
processing.

Table 13-1 shows the relative task priorities used by Angel.

Table 13-1 Task priorities

Priority Task Description
Highest Angel Vant Lock High priority callback.
Angel Cal | Back Callbacks for Angel.
Appl Cal | Back Callbacks for the user application.

13-32 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Table 13-1 Task priorities (Continued)

Priority Task Description
Application The user application.
Angel | ni t Boot task. Emits boot message on reset and
then exits.
Lowest 1 dl eLoop

Angel task management isimplemented through the following top-level functions:
. Angel _Seri al i seTask()

. Angel _NewTask()

. Angel _QueuecCal | back()

. Angel _Bl ockAppl i cation()

. Angel _Next Task()

. Angel _Yi el d()

. Angel _Wait()

. Angel _Si gnal ()

. Angel _Taskl ().

Some of these functions call other Angel functions not documented here. The functions
are described in brief below. For full implementation details, refer to the source code in
serl ock. h, serl ock. c, andser| asm s.

Angel_SerialiseTask

In most cases this function is the entrance function to Angel task management. The onl
tasks that are not a result of a calhbmel _Seri al i seTask() are the boot task, the

idle task, and the application. These are all created at startup. When an exception occul
Angel _Seri al i seTask() cleans up the exception handler context and calls

Angel _NewTask() to create a new high priority task. It must be entered in a privileged
mode.

Angel_NewTask

Angel _NewTask() is the core task creation function. It is called by
Angel _Seri al i seTask() to create task contexts.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-33

Angel

Angel_QueueCallback

This function:

. gueues a callback

. specifies the priority of the callback

. specifies up to four arguments to the callback.

The callback executes when all tasks of a higher priority have completed. Table 13-1 on
page 13-32 shows relative task priorities.

Angel_BlockApplication

This function is called to allow or disallow execution of the application task. The
application task remains queued, but is not executed. If Angel is processing an
application SWI wherngel _Bl ockAppl i cati on() is called, the block might be
delayed until just before the SWI returns.

Angel_NextTask

This is not a function, in that it is not called directiygel _Next Task() is executed
when a task returns from its main function. This is done by setting the link register to
point toAngel _Next Task() on function entry.

TheAngel _Next Task() routine:
. enters Supervisor mode
. disables interrupts

. callsAngel _Sel ect Next Task() to select the first task in the task queue that
has not been blocked and run it.

Angel_Yield

This is a yield function for polled devices. It can be called either:

. by the application

. by Angel while waiting for communications on a polled device
. within processor-bound loops such as the idle loop.

Angel _Yi el d() uses the same serialization mechanism as IRQ interrupts. Like an
IRQ, it can be called from either User or Supervisor mode and returns cleanly to either
mode. If it is called from User mode it calls the Angel_EnterSVC SWI to enter
Supervisor mode, and then disables interrupts.

13-34

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Angel_Wait

Angel _Wai t () worksin conjunction with Angel _Si gnal () to enable atask to wait
for a predetermined event or events to occur before continuing execution. When
Angel Wi t () iscalled, thetask isblocked unlessthe predetermined event has already
been signalled with Angel Si gnal ().

Angel Wi t () iscalled with an event mask. The event mask denotes events that will
result in the task continuing execution. If more than one bit is set, any one of the events
corresponding to those bits will unblock the task. The task remains blocked until some
other task calls Angel _Si gnal () with one or more of the event mask bits set. The
meaning of the event mask must be agreed beforehand by the routines.

If Angel Wai t () iscalled with azero event mask, execution continues normally.

Angel_Signal

Angel _Si gnal () worksin conjunction with Angel _Wai t () . Thisfunction sends an
event to atask that is now waiting for it, or will in the future wait for it:

. If the task is blockeddngel _Si gnal () assumes that the task is waiting and
subtracts the new signals from the signals the task was waiting for. The task is
unblocked if the event corresponds to any of the event bits defined when the task
calledAngel Wit ().

. If the task is runningangel _Si gnal () assumes that the task will call
Angel _Wai t () at some time in the future. The signals are marked in the task
si gnal Wai ti ng member.

Angel _Si gnal () takes atask ID that identifies a current task, and signals the task that
the event has occurred. See the descriptiem@é! _\Wai t () for more information on
event bits. The task ID for the calling task is returned bytlyel _Taskl D() macro.

The task must write its task ID to a shared memory location if an external task is to
signal it.

Angel_TaskID

This macro returns the task ID (a small integer) of the task that calls it. There is no way
to obtain the ID of another task unless the other task writes its task ID to a shared
memory location.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-35

Angel

13.35

Context switching

Angel maintains context blocks for each task under its control through the life of the
task, and savesthe value of all current processor registers when atask switch occurs. It
uses two groups of register context save areas:

. The Angel global register blocks. These are used to store the CPU registers for a
task when events such as interrupt and task deschedule events occur.

. An array of available Task Queue Items (TQI). Each allocated TQI contains the
information Angel requires to correctly schedule a task, and to store the CPU
registers for a task when required.

The global register blocks: angel_GlobalRegBlock

The Angel global register blocks are used by all the exception handlers and the special
functionsAngel _Yi el d() andAngel _Wai t () . Register blocks are defined as an
array of seven elements. Table 13-2 shows the global register blocks.

Table 13-2 Global register blocks

Register block Description

RB_Interrupted Thisis used by the FIQ and IRQ exception handlers.

RB_Desired Thisisused by Angel _Seri al i seTask() .

RB_SWI Thisis saved on entry to acomplex SWI and restored on return to the
application.

RB_Undef Thisis saved on entry to the undefined instruction handler.

RB_Abort Thisis saved on entry to the abort handler.

RB_Yield Thisisused by the Angel _Yi el d() and Angel _Wait ()
functions.

RB_Fatal Thisisused only in adebug build of Angel. It saves the context in
which afatal error occurregd.

In the case of RB_SW!I and RB_Interrupted, the register blocks contain the previous
task register context so that the interrupt can be handled. If the handler function calls
Angel _Seri al i seTask(), the global register context is saved into the current task

TQI.

In the case of RB_Yield, the register block is used to store temporarily the context of
the calling task, prior to entering the serializer. The serializer saves the contents of
RB_Yield to the TQI entry for the current task, if required.

13-36

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

The Angel task queue: angel_TQ_Pool

The serializer maintains a task queue by linking together the elements of the
angel _TQ Pool array. The task queue must contain an idle task entry. Each element
of the array is a Task Queue Item (TQI). A TQI contains task information such as:

. the register context for the task

. the current priority of the task

. the type of the task (for example, TP_Application)
. the task state (for example, TS_Blocked)

. the initial stack value for the task

. a pointer to the next lower-priority task.

The elements in thengel _TQ Pool array are managed by routines within the
serializer and must not be modified externally.

Angel callsAngel _NewTask() to create new tasks. This function initializes a free TQI
with the values required to run the task. When the task is selected for execution,
Angel _Sel ect Next Task() loads the register context into the CPU. The context is
restored to the same TQI when:

. Angel _Seri al i seTask() is called as the result of exception processing or a
call toAngel _Yi el d()

. Angel _Wai t () determines that the task must be blocked.

When the debugger requests information about the state of the application registers, th
Angel debug agent retrieves the register values from the TQI for the application. The

application TQI is updated from the appropriate global register block when exceptions
cause Angel code to be run.

Overview of Angel stacks for each mode

The serialization mechanism described\ngel task management on page 13-31
ensures that only one task ever executes in Supervisor mode. Therefore, all Angel
Supervisor mode tasks share a single stack, on the basis that:

. it is always empty when a task starts

. when the task returns, all information that was on the stack is lost.

The application uses its own stack, and executes in either User or Supervisor mode.
Callbacks due to application requests to read or write from devices under control of the
Device Driver Architecture execute in User mode, and use the application stack.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-37

Angel

13.3.6

Thefollowing Angel stacks are simple stacks exclusively used by one thread of control.
Thisis ensured by disabling interruptsin the corresponding processor modes:

. IRQ stack

. FIQ stack
. UND stack
. ABT stack.

The User mode stack is also split into two cases, because the Application stack and
Angel stack are kept entirely separate. The Angel User mode stack is split into array
elements that are allocated to new tasks, as required. The application stack must be
defined by the application.

Example of Angel processing: a simple IRQ

This section gives an example of processing a simple IRQ from start to finish, and
describes in more detail how Angel task management affects the receipt of data through
interrupts. Refer also tAngel communications architecture on page 13-71 for an

overview of Angel communications.

Figure 13-4 on page 13-39 shows the application running, when an interrupt request
(IRQ) is made that completes the reception of a packet.

13-38

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Appl IRQ 1
Angel ISR 2

Angel

Interrupt? Dev ISR

no

Complete N
Requpesw Serialize Task New task
highest Rx_Proc 6
¢ priority?
Angel Return Save Content 5
* Another task no
Create new
task
¢ yes
Queue 7
Select Next calloack

End Rx_Proc

8

yes Data specific
callback

Callback
next?

Next task

l

Select
Next Task

1
T

Another task

Appl

Figure 13-4 Processing a simple IRQ
The IRQ is handled as follows:

1. Thelnterrupt exception is noticed by the processor. The processor:
. fetches the IRQ vector
. enters Interrupt mode
. starts executing the Angel Interrupt Service Routine.
On entry to the IRQ handler, FIQ interrupts are disabled if

HANDLE | NTERRUPTS_ON_FI Q=1 (the default is 0, FIQ interrupts enabled).
Interrupts are not re-enabled until either:

. Angel _Seri al i seTask() is called
. the interrupt completes.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-39

Angel

The Angel | SR savesthe processor state in aregister block, uses the GETSOURCE
macro to determine the interrupt source, and jumps to the handler. The processor
state is saved because this dataisrequired by Angel _Seri al i seTask().

Theinterrupt handler determines the cause of the IRQ. If the interrupt is not an
Angel interrupt it returns immediately.

If theinterrupt is an Angel interrupt and the driver uses polled input, the handler
calsAngel _Seri al i seTask() to schedule processing. If the driver does not
use polled input, the handler calls Angel _Seri al i seTask() to schedule
processing if:

. the end of packet character is reached

. the end of request is reached for a raw device (determined by length)

. the ring buffer is empty (tx), or full (rx).

If Angel _Seri al i seTask() is not required, the ISR reads out any characters
from the interrupting device and returns immediately.

Angel _Seri al i seTask() saves the stored context from step 2 and creates a
new task. It then executes the current highest priority task. The new task is
executed after all tasks of higher priority have been executed.

The new task executes in Supervisor mode. It reads the packet from the device
driver to create a proper ADP packet from the byte stream.

When the packet is complete, the task schedules a callback task to process the
newly arrived packet.

The callback routine processes the packet and terminatgs. Next Task()
finds that the application is the highest priority task, and

Angel _Sel ect Next Task() restarts the application by loading the context
stored at step 2 into the processor registers.

13-40

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.4 Porting Angel to new hardware

This section describes the steps you must take to port Angel to your own hardware. It
assumes that you have a general understanding of how Angel works. Refer to Angel in
operation on page 13-27 for an introduction to Angel operation.

Angel isdesigned to make porting to new hardware as easy as possible. However, there
are many configurable features of Angel and you must modify Angel code to support
your hardware.

The easiest way to port Angel isto select an existing Angel implementation as a
template and modify it to suit your own hardware. The ARM Software Devel opment
Toolkit provides a number of Angel portsin the Angel \ Sour ce directory.

In addition, there are Angel ports from other board manufacturers for their own
development boards. These are not distributed with the ARM Software Development
Toolkit.

You should select an existing version of Angel that has been ported to hardware that is
as similar as possible to your own. If you are not basing your Angel port on aport from
another board manufacturer it is recommended that you use the Angel PID port
provided with the ARM Software Development Toolkit. The most important hardware
features to consider when making this decision include:

Devicedrivers Writing device driversis alarge part of the porting process. If
possible, chooseaversion of Angel that supportsthe same, or very
similar communications hardware. This makesit simpler to
modify the device driver code.

CacheMMU The PID and ARM evaluation boards do not have a cache or
MMU. If you are porting to hardwarethat isbased on athird party
development board that includes a cache and MMU you should
consider using the Angel port from that manufacturer.

Thefollowing examplesand recommendationsrefer to the Angel PID port, however, the
same general principles apply no matter which Angel port you select as a template.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-41

Angel

13.4.1 Angel source code directory structure

The Angel sources are distributed in a directory structure that separates the
target-dependent code, such as device drivers and board-specific setup code, from the
main generic code directory. There is a separate build directory for the specific build
information for each target. This directory contains the makefile or APM project file,
and is usually used as the output directory for object files and the final ROM image.

Figure 13-5 shows the directory structure for the Angel PID port.

Angel

Source

pid.b pid generic Angel
| | source files

make directories target-specific

for supported source files
platforms

Figure 13-5 Angel source directory structure

13.4.2 Overview of porting steps and recommendations
These are the steps required in the porting process:

Choose atarget template.

Set up the makefile or APM project file.
Perform atrial build using the template files.
Modify target specific files.

Define the target macros.

Write the device drivers.

Build for the new target.

Download your Angel port to the target.
Debug your Angel port.

© N gk wDdhE

©

These steps are explained in more detail below, together with some recommendations
that might be useful when porting Angel to any new hardware.

13-42 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Choosing a target template

Thefirst step in the porting processisto select atarget template. If you are basing your
port on an ARM-supplied Angel port, it is recommended that you use the PID port asa
starting point.

The PID board is a complex system with a varied memory map comprising:
. SSRAM, SRAM, and DRAM

. ROM, and Flash memory

. two serial and one parallel communications channels

. two PC card slots.

There are also memory-mapped peripherals such as dual timers. The peripherals
conform to the ARMReference Peripheral Specification. The system has a memory
remap facility.

Setting up makefiles and APM project templates

After you have copied your template directory pair, you must set up the makefile or
APM project template to reflect your new directory structure. In addition you must set
a number of build options to suit your requirements.

You can build Angel on the following platforms:
. Solaris 2.5 or 2.6

. HPUX 10

. Windows 95 or 98

. Windows NT 4.0.

Refer toModifying the UNIX makefile on page 13-45 for information on modifying a
UNIX makefile orModifying an APM project on page 13-49 for information on setting
up the ARM Project Manager project for your build.

Performing a trial build

When you have set up the makefile or APM project for your development directory
structure you should perform a trial build to ensure that the modifications are complete,
and that all necessary project build files have been copied correctly.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-43

Angel

Modifying target specific files

The PID Angel port includes a number of target specific source files that you must
modify to support your hardware and environment. You should examine each of the
target specific files described in Modifying target-specific files on page 13-55.

You must pay particular attention to the following:

Defining the device configuration in devconf.h

You should take a great deal of care to modify thisfile correctly. Time
spent checking at this stage will save alot of debug time later. You must
ensurethat you define support only for featuresthat are supported by your
hardware.

For example, if you select DCC Support for anon-DI core, such asthe

ARM710a, Angel calls a subroutine to poll a coprocessor. This halts

Angel on an undefined instruction trap.

In addition, you must:

. define a complete memory map for your implementation

. allocate stack space for each processor mode used by Angel

. ensure that interrupts are used in the same way as for production
hardware.

It is recommended that Angel interrupts are handled by the IRQ.

Refer todevconf.h on page 13-58 for more information on modifying this
file.

Defining the target macrosin target.s
The GETSOURCE macro returns the current interrupt source. These are
target dependent and must correspond to the target peripherals. The
interrupt sources are defineddavconf . h. You must ensure that all
interrupt sources used by Angel are supported bgENS8OURCE macro.

Refer totarget.s on page 13-56 for more information.

Writing the device drivers

Writing device drivers for your hardware is the major part of the porting procedure and
is completely target-dependent. RefekMating the device drivers on page 13-61 for
information on writing device drivers.

13-44

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Downloading Angel

After you have completed your Angel port you must download it to your hardware.
There are a number of methods you can use to do this. Refer to Downloading a new
version of Angel on page 13-65 for more information.

Debugging your Angel port

At various stages throughout the porting process you will need to debug your Angel
port. Only theinitial stages of development can be debugged under the ARMulator
because the ARMulator environment does not support communications with peripheral
devices. Refer to Debugging your Angel port on page 13-66 for more information on
debugging Angel.

13.4.3 Modifying the UNIX makefile

If you are using acommand-line UNIX system, you must edit the appropriate makefile
when you copy an Angel template directory. If you are using APM, refer to Editing the
APM project directory structure on page 13-51.

The build directory is separate from the target source code directory. In the supplied
examplesit has the same name as the target code directory with a. b extension. For
example, the build directory for the PID Angel portisangel / source/ pid. b

You must modify the makefile so that it uses your directories, compiles and assembles
your source, and links your object files. Thisis described in Setting up the makefile,
below.

In addition to setting up the makefile for your new directory structure, you must set a
number of build options, either on the command-line or in the makefile, to provide
support for your hardware. The options include:

. Thumb support
. Angel data area and execution addresses
. endianness.

This is described ietting command-line build options on page 13-46 argditing
makefile build options on page 13-47.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-45

Angel

Setting up the makefile
The following instructions assume that you have:
. copied the complete angel directory to your working directory

. copied thei d andpi d. b template directory pair to a directory pair that is named
appropriately for your board.

At this stage, the directory structure for your board-specific files is similar to:

~/ wor ki ng_di rect oryl angel / sour ce/ your_boar d
and
~/ wor ki ng_di rect oryl angel / sour ce/ your_board. b

Follow these steps to edit the makefile:

1. Open the appropriate makefile for your platform in a text editor. For example, if
you are working under Solaris, opgmur_boar d. bl gccsunos/ Makefi | e.

2. Change all occurrences of the original directory name to the new directory name.
For example, if your port is based on thel/ pi d. b directory pair, change all
occurrences of thei d directory toyour_boar d.

Be careful with search and replace utilities because there are files padied
the target directories.

3. Set up the make parameters required.Esigeng makefile build options below.

Setting command-line build options
The PID makefile supports three command-line build options:

ENDI AN=BI G

This option builds a big-endian version of Angel. The objects and images
are stored in a sub-directory nanmedy_r el . By default, the makefile
builds a little-endian Angel.

ETHERNET_SUPPORTED=1

This option enables ethernet support for the PID board. It includes the
ethernet drivers and the Fusion IP stack in the Angel build to enable
communications through the PC Card Ethernet Adapter. The defaultis O
(no Ethernet support).

FUSI ON_BU LD=1
This option rebuilds the Fusion stack sources, if they are available.

13-46

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

The Fusion stack binaries are supplied by ARM, under alicense from
Pacific Softworks, with the Ethernet Upgrade Kit (No. KPI 0015A) for
the PID board. Thefusion sources are availablefrom ARM after you have
agreed afull source license with Pacific Softworks.

By default, the makefile does not rebuild Fusion stack sources.

DEBUG=1 This option builds a debug version of Angel.

Editing makefile build options

Thefollowing PID build options are not available as command-line options. You must
edit the value of these optionsin the makefile. The most important options are ROADDR
and RWADDR. You must edit these to reflect the operational memory of your system.

The most important makefile options are:

THUMB_SUPPORT

ASSERT_ENABLED

M NI MAL_ ANGEL

When set to 1 this builds Angel with support for debugging
Thumb code. If thisis not set, the debugger does not support
Thumb state debugging. If Thumb code is encountered it
generally causes an undefined instruction trap.

This option controls debug assertions. When set to 1 extra
consistency checksare madethroughout Angel. If any checksfail,
the fatal error trap istaken. This normally resets Angel.

Setting thisto 0 is not recommended unless the Angel codeis
known to befully functional and the small reduction inimage size
isimportant. The default is 1.

This option is used by the minimal Angel makefilesto build a
minimal Angel library.

This option should always be set to 0. Use the separate makefile
and build areasto build minimal Angel libraries. For example, the
minimal Angel makefiles for the PID board are located in

/ angel / source/ pi d. mi n.

Refer to Minimal Angel on page 13-12 for more information on
building minimal Angel.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-47

Angel

FI RST This option definesthe object filethat islinked at the beginning of
the ROM image. Valid values are:

FI RST = ’'startrom o(ROVSt art up)’

The system can remap its memory map. ROM is
unmapped from 0 after reset. The first line of the
startup codeis placed at the start of the ROM image.
The startup code copies the ARM exception vector
tableto RAM at 0 after remap. Thisis the default.

FI RST = ' except.o(__Vectors)’
ROM ispermanently mapped at 0. The ARM exception
vector table is placed at the beginning of the ROM
image.

ROADDR This defines the address of the Angel code at run time:

. If ROADDR is set to a ROM address, Angel executes from
ROM.

. If ROADDR is set to a RAM address, Angel copies itself to
RAM and executes from there.

You can use this option to move Angel to RAM when ROM is
much slower than RAM. For example, the makefile for the PID
Angel port specifies aROADDR in SRAM.

ROADDR is the address on which the compiler bases its
calculations for all the pc-relative instructions, such as branch
instructions.

Refer toConfiguring where Angel runs on page 13-68 for more
information oNROADDR.

RWADDR This defines where Angel should store its read/write data. This is
the address of the data used by Angel at run time. You should
avoid setting this to 8000 if possible, because this is the default
application area.

Refer toConfiguring where Angel runs on page 13-68 for more
information oNRWADDR.

DEBUG If set to 1, this option enables debugging code within Angel.

13-48 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.4.4 Modifying an APM project

If you are using the ARM project manager on a Windows system, you must change the
project file when you copy an Angel template directory. If you are using UNIX, refer to
Editing makefile build options on page 13-47.

The build directory is separate from the target source code directory. In the supplied
examples it has the same name as the target code directory with a. b extension. The
APM projects arelocated in asubdirectory of the build directory. For example, the PID
project islocated inc: \ ARMR50\ Angel \ Sour ce\ pi d. b\ Apm

The simplest way to use the PID Angel port as atemplate isto copy the entire Angel
directory structure to aworking directory. If you want to change the names of the
directoriesto reflect the name of your board, you must modify the APM project file so
that it uses your directories, compiles and assembles your source, and links your object
files. Thisis described in Editing the APM project directory structure on page 13-51.

In addition to setting up the project file for your new directory structure, you must set a
number of build options. The options include:

. Thumb support

. Angel data area and execution addresses.

If you are using APM and have purchased the Angel Ethernet Kit, separate project files
are supplied to enable you to build Angel ROM Images with or without the Ethernet
drivers. Endianness is defined by the selected endianness of the APM environment.

Copying the APM project

When you have selected the Angel port that you want to base your own port on, you
must copy the required directories and files. The following instructions assume that you
are basing your port on the Angel PID port. Follow these steps to copy the Angel
template:

1. Copy the entire Angel directory and all subdirectories to your working directory.
It is recommended that you do not work in the installation Angel directory, by
defaultc: \ ARMR50\ Angel , because this may cause problems if you reinstall the
Software Development Toolkit.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-49

Angel

2. Inyour working copy of the Angel directory, select Edit variablesfor
AngelPid.apj from the Project menu. The Edit Variable dialog is displayed
(Figure 13-6).

Edit Yarniables for AngelPid. apj E
$3ProjectM ame

Delete |
$10 epth0fD otaPJBelowProjectH oot -

C |
$ProjectM ame ﬂl
armlink. |
armsd hizh
asm
build_target Apply |
co LI

Walue:
IYourPorﬂ

Figure 13-6 Edit variables

3. Changethe $$Pr oj ect Nane variable to the name of your port. The value given
here is used by APM to name the build output binaries.

4. Angd requirestwo files from the SDT installation C library directory:
. c:\ARMR50\ A \h_la_obj.s
. c:\ ARM250\ Ol \ obj nacs. s

Copy these files to your working Angel source directory.

5. This stepis optional. You can rename the appropriate source and build directories
for your own port. For example, you can rename
wor ki ng_di rect or y\ Angel \ Sour ces\ pi d and
wor ki ng_di r ect or y\ Angel \ Sour ces\ pi d. b as appropriate for your board.
You may need to do this if you have more than one project based on the PID port.

If you rename thei d andpi d. b directories, you must make additional changes
to the project so that it will find the appropriate source files. Reféditing the
APM project directory structure on page 13-51 for detailed instructions.

If you have not renamed the directories, you can perform a trial build.

13-50 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Editing the APM project directory structure

If yourenamed thepi d and pi d. b directorieswhen you copied the Angel directory you
must ensure that the new directory paths are used to compile, assemble, and link your
sources. Follow these steps to configure the project templ ate:

1. Openthe APM project file for your project.

2. Select Edit Project Template... from the Project menu. The Project Template
Editor dialog is displayed (Figure 13-7).

Project Template Editor E

Select Build Step Pattern :

ASEEBIE . Exdit
Azzemble for ROM
Compile

LibLink

Makelo

RamLink Delets

Edit Dretails...

Help

B L

Cloze

Figure 13-7 Project template editor

3. Select Assemblefrom thelist of build step patterns and click on the Edit...
button. The Edit Build Step Pattern dialog is displayed (Figure 13-8).

Edit Build Step Pattern E

Build Step Pattern Mame :

r— lnput Partition Pattern
Sources <pathz<slash|#»<filer .z [Elete |
IncludedFiles <pathz><slashl/> <hdillolevel>.s

Type in the boxes below and press the Add or Replace button to edit the above list M

Heplacel

- Dutput Partition—— Pattern
Objects <filex.a [Ielete |
Type in the boxes below and press the Add or Replace button o edit the above list. ﬂl
Heplacel

LCommand Lines:
<asmy -0 <filer.0 -32 -PD ROADDRPSETAR<ROADDR: -<EMDIAMMESS i {Dathl<pathl-l>;|

B

4| |
oK | Cancel | Help | Apply I

Figure 13-8 Edit Build Step Pattern

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-51

Angel

The Command Lines section of the dialog contains the command-line for the
assembler. The last part of the command lineis:

{pat h| <pat h| - | ><pat h>} <pat h><sl|l ash><file>.s
Change thisto:

{pat h2| <pat h| - | ><pat h>} <pat h><sl ash><file>.s
by adding the number 2 to thefirst pat h.

Click the Apply button and then click OK.
Repeat steps 3 and 4 for the build step patterns Assemblefor ROM and Compile.

Select Makel ofromthelist of build step patternsand click on the Edit... button.
The Edit Build Step Pattern dialog is displayed (Figure 13-9).

Edit Build Step Pattern E

Build Step Pattern Mame :

— Input Partition Pattern

Host Source <path:<slashl <files .o DElete

Type in the boxes below and press the Add or Replace button to edit the above list. ﬂl

I Heplacel
r~ Dutput Partition—— Pattern

InchudedFiles L Spidilolevel s [elete |
Type in the boxes below and press the Add or Replace button to edit the above list. ﬂl
I Heplacel

LCommand Lines:

<ooy <pathr<slashe<files.c -4 LA Apid -DTARGET -DRETRANS -DMINIMAL_ANGEL:;I
<armed> -exec -armul makelo.aif |5 Spidiolevel s

K
QK | Cancel | Help | Apply I

B

Figure 13-9 Edit makelo.c build step

Change the Included Files and Command Lines sections of the dialog to reflect
the new directory structure. For example, if you have copied the complete Angel
directory structure and renamed the pi d and pi d. b directories, change pi d to
your new directory name.

When you have finished editing the build steps, click Closeto exit the Build Step
dialog box.

13-52

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

10. Select Project - Tool Configuration — <cc> = armcc - Set. The Compiler
Configuration dialog is displayed (Figure 13-10).

Compiler Configuration E
Language and Debug Include Files | Preprocessorl Code Generationl Al I L4

— List of include directarie:

™ Display ANSI Headers

A
A Apid
. hipstack

[drag list items to rearder them) Delete

— Update directory list

| o | [~ Use KR path
search les
Aidd FEeplace |

— Equivalent Command Line

-D__TARGET_CPU_ARMZTHM -DLATE_STARTUP=0 -DDEBUG=0-DRETRANS
-DTHUMBE_SUPPORT=1 -DMINIMAL_ANGEL=0-DLOGTERM_DEBUGGING=0
-DETHERMWET_SUPPORTED=0-DASSERT_ENABLED=0 .4 Asupport .4 Adec
AL Apid LS Sipstack

QK I Cancel | Help |

Figure 13-10 Compiler Configuration

11. Click onthelncludeFilestab and edit thelist of include file directoriesto reflect
the new directory structure. Click OK to apply the changes.

12. Repeat steps 10 and 11 using the <asm> = tasm submenu to configure the
assembler.

13. Remove and re-add all target-specific source filesto the project. These are the
filesthat are located in the renamed pi d directory, such asdevi ces. ¢ and
makel o. ¢ (see Figure 13-11 on page 13-54). In general you will have to replace
these files with your own code when porting Angel.

Select afile and press the delete key to removeit. Select Add files from the
Project menu to re-add the file to the Sources partition.

In addition, you must replace makel o. ¢ in the Host Sources partition.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-53

Angel

“IARM Project Manager - [C:\Port\5ource\E xample. b\Apm\AngelPid. apij]

File Edit “iew Project Toolz ‘Window Help

1= =T — =

o

5
i
=
(=
o
[=9
5
T
2

BN EY Y PV EVENEYEY PN ENEY) oy oo g BY EY BN BN Y EY Y Y Y

.4 Aogaing.c

.4 Aloggingtedsendb.s
.4 Mogaingtladpasm.s
.4 Aloggingtloghhz. o
.4 Aoggingtlogadp.c
.4 Moggingtlogterm.c
.4 Mogagingtpanichlk. o
.4 Moggingtrombox.c
L wmezgbuild. o

b hparamec

4 Apididelay s

A Apididevices.c

[g] .
@ L hpidspemcia.c
[g] .

A Apidhet1BcB52

[-6] .\ \pidstimer. ¢
L hprof.c
RRIEN]

A hserlazms
Ahserlock.c
M heerpkte
A hsermaw.c
Ahstacksc
LA startlibs
4 hsuppasm. e
L hapee
RREE]

- |

(=]l

Figure 13-11 Replacing target-specific source files

14. Thedirectory header in the APM window can be edited using the Edit Details
button. Thisis not required to build Angel.

Selecting build options

The build variables for the APM project are the same as those defined in the UNIX
makefile. They are defined in either the project variables, or as preprocessor definitions
in the compiler configuration dialog. Refer to Editing makefile build options on page
13-47 for a description of the build options.

13-54 Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

Angel

13.4.5 Modifying target-specific files

Target-specific files are dependent on the target system you are porting Angel to. You
must modify these files for your system.

Overview of the target specific sources

Most of the work in porting is carried out on the code in the target specific source
directory to set up the target and provide device drivers.

The target specific files are:

target.s Thisfileprovidesimportant startup macros specific to the hardware. You
must check each macro in this file and change them for your board, if
necessary.

Thisfile aso contains the GETSOURCE macro. GETSOURCE is used to
identify which interrupt source has caused an interrupt. You must modify
this macro to suit the interrupt-driven devices and interrupt scheme used
by your hardware. Refer to target.s on page 13-56 for details.

mekel o. ¢ Thisispart of the Angel build environment. When built, makel o includes
anumber of Angel header files and produces an assembly language . s
file that defines globals shared between C and assembly language
routines.

This enables assembly language and C modules to access global
constants without requiring separate copies for assembler use and for C
compiler use.

If you introduce new constants that need to be shared by C and assembly
language routinesyou must add themto nekel o. c. Refer to makelo.con
page 13-57 for details.

banner. h Thisdeclareswhat board Angel is running on, and with what options.
Refer to banner.h on page 13-58 for details.

devi ces. ¢ Thisfile#i ncl udes the headers for device drivers for the system. You
must modify thisfile if you add, remove, or rename any device drivers.
Refer to devices.c on page 13-58 for details.

devconf. h Thisisthe main configuration file. It includes device declarations,
memory |ayout details, stack sizes, and interrupt sourceinformation (IRQ
or FIQ). You must check every item in thisfileto ensure that it is set up
correctly for your board. Refer to devconf.h on page 13-58 for details.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-55

Angel

Device Drivers

target.s

All other filesin the target specific source directory are device driver
sources. You might need to modify these evenif your board usesthe same
communications chips as those supported by the port you are using as a
template. If you are using different communications hardware, you must
rewrite these files for your own hardware. Refer to Writing the device
driverson page 13-61 for more information on writing device drivers.

This file defines the code in the macros called from the initialization and interrupt
routinesinthemain codeinst artrom s and suppasm s.

The following macros are defined:

UNVAPROM

This macro iscalled by thest art r om s ROM initialization code. The
macro is called in systems that use ROM remapping to ensure that the
ROM imageisat O at reset. When the system initialization is complete, a
remap is called to map the ROM to its physical address, and map RAM
toO.

This method is used in the PID board system where the memory
management system aliases the ROM from its physical addressto 0, in
order to allow ROM-resident code to be available at reset.

STARTUPCODE

NI TMW

I NI TTI MER

Thismacroiscalledfrom st art r om s for target specific startup. Inthe
PID example, the startup macros reset both the ramsize counter and the
interrupt controller.

This macro initializes the MMU for processors that include an MMU.
The location of the pagetable isimportant to the operation of this code
and you must be specify it correctly.

If the system is operating in big-endian mode and the MMU is
responsiblefor the endianness of the core, it must be set up early to enable
to code to operate correctly.

Thismacroisnot used by Angel. It is provided as a place holder to allow
you to initialize any timersrequired by your application. Itiscalled after
interrupts are disabled and the processor is set to Supervisor mode. There
isno codeincluded in the exampl e because it does not make use of system
timers. Profiling support code contains its own timer initialization code.

13-56

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

GETSOURCE Thismacro is called by the Angel support routinesini nterrupt. s. It
determines whether the current interrupt isfor an Angel device, and if so,
which one.

The routine returns a small integer representing the current interrupt
source, as defined in devconf . h (see devconf.h on page 13-58). These
values are used by the interrupt handler for ajump table holding the
individual Angel Interrupt source handler function pointers.

The PID board has the following possible interrupt sources:
TI MER For polled device support, and profiling.

PARALLEL For parallel code download, if this option is
selected at compile time.

PCMCI A CARD A Used by the Olicom Ethernet driver, if selected at

compiletime.
PCMCI A CARD B Used by the Olicom Ethernet driver, if selected at
compiletime.
SERI AL A Thisisthe default for debug communications.
SERIAL B Thisis optional for debug communications.

CACHE_I BR Thismacroiscalled by Angel support routinesin suppasm s to set an
Instruction Barrier Range. Thisis an option on the SA1100 processor.
There is no code included in this macro for the PID example.

makelo.c

Thisfile enables you to share variables and definitions between C and assembly
language sources. The nakel o. ¢ source file is compiled with armcc and executed
under armsd as part of the Angel build process. When executed, it reads the contents of
the C header files#i ncl uded at the start of makel o. ¢ and produces an assembler
header file named | ol evel . s.

The assembler header file mirrors the C definitionsin the #i ncl uded C header files.
For example, the processor mode defined inar m h, such as:

#defi ne USRmode 0
produce equivalent assembler EQU directives such as:
USRmode EQU O

UseaGET directivetoincludel ol evel . s in any assembly language file that requires
access to C variables or definitions.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-57

Angel

To include your own C variablesin the list contained in nakel o. ¢, add linesin the
format:

fprintf(outfile, "Variable_Name\t\t EQMAt%\n", Variabl e_Nane);

for each variable or definition.

banner.h

This header file contains macros that define the text that is displayed when the host and
target connect after initialization. You can modify thisfile to suit your target, and the
build options you use. Different ports can share components of this message by
including thefile conf i gmacr os. h. You should take care not to advertise afeaturein
the banner message that will not work correctly. The banner message is limited to 204
characters.

devices.c

Thisfile defines the base address in memory for each available device. It enables C
pointers to access the operational registersin each device.

It ishelpful to use astructure, or #def i ne offsets, describing the peripheral register
layout symbolically. Symbolic definitions of bit fields can also be useful.

You must aso define the interrupt handlers as the handler routine plus an optional
parameter. The parameter is used for handlers that service more than one source. In the
case of the PID, the same handler isresponsible for the two serial portsand the parallel
port.

Serial drivers must conform to the generic function calls defined in devdri v. h. This
ensures that generic calls from the debug code and channels manager can access any
valid device driver, without requiring information about the peripheral being used.

devconf.h

Thisisthe main configuration file for the target image. It sets up the Angel resources
for the specific target and defines the hardware configuration to Angel, including:

. a memory map of available memory
. interrupt operation
. the peripherals and devices available to Angel.

All systems require a similatevconf . h to that used for the PID. The following
explanation uses the Pid2vconf . h file as an example. It defines the following:

13-58

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Number of Serial Ports

The PID has two serial ports. In the PID example, one port is defined to
Angel. The other port is available for application use.

Boar d hardwar e setup
Thisoption is defined if not minimal Angel:
. Parallel is for the use of a parallel port for faster download
. PCMCIA is to set up and use the PC card slots on the board

. PROFILE makes use of one timer to allow code profiling if
requested by the host debugger. This option is rarely used in final
builds.

DCC and Cache Support

DCC and CACHE support are processor-dependent. You must take care
when defining these. These options enable routines that will not work,
and will halt the Angel Debugger, if your processor does not support
them.

Debug Method
TheDEBUG_METHOD option is only applicable BEBUG=1 is specified in
the makefile or APM project file.

The value oDEBUG_METHOD defines the channel that is used to pass
debug messages. Some options require specific equipment or software,
for examplepi dul at e, r onmbox, ande5 (see als®ebugging your

Angel port on page 13-45).

Thel ogadp option should not be used.

In general, the safest optiongani cbl k. The most useful option is
| ogt er m but this requires a spare serial port.

Use thetdef i nes NO_LOG | NFOandNO LOG WARNI NGto increase
execution speed and reduce the size of images created with debug
enabled, when some or all debug messages are not required.

Interrupt sourcefor ADP

You can select the interrupt source that is used to drive ADP channel
communications and timer interrupts. You can select either or both of:

HANDLE | NTERRUPTS ON | RQ
Angel interrupt handlers will handle interrupts on IRQ

HANDLE_| NTERRUPTS_ON_FI Q
Angel interrupt handlers will handle interrupts on FIQ.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-59

Angel

The recommended option isto use IRQ because:

. Angel interrupt operation is not time-critical.

. you can use FIQ for your application

. the Angel FIQ handler is slower than the IRQ handler.

Device Data Control

Device data control is dependent on the build options (minimal or not)
and the number of ports controlled by Angel. The default options for full
debug operation Angel on the PID board are:

. serial port A for debug communications
. serial port B for application use with raw (not packet) data
. options for parallel download, and application use.

You can change any of these options to suit the communications
requirements of your application by redefining the relevant label.

The memory map

You must define the memory map to allow the debugger to control illegal
read/writes using theERM TTED checks. These check that writes are not
made to Angel data or code space and provide primitive memory
protection.

These should reflect the permitted access of the system memory
architecture. Refer t@onfiguring the memory map on page 13-67 for
detailed information on setting up an Angel memory map.

Setting up the stacks

Note

You must define a stack for each processor mode used by Angel. These
always include User, Supervisor, Undefined, and the selected Interrupt
modes. The location of the stacks can be fixed, or can be set to the top of
memory when this has been defined. Refeédofiguring the memory

map on page 13-67 for detailed information on setting up an Angel
memory map.

All other Angel-defined memory spaces (fusion stack and heaps, profile
work area, application stacks) can be defined to sit relative to the stacks,
or can be given fixed locations. The default for the Application Heap
space is above the run time Angel code, and the available space is to the
lowest limit of the stacks.

Angel stack space is different from the application stack space. However,
Angel uses four words of application stack when it returns to the
application from an exception.

13-60 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

The download agent area

The download agent area is a spare area of RAM to which new Angel
images are downloaded.

Thel oadagent command writestheimage to the download area. When
complete, the agent is started with an ADP command. It relocates itself
to another areaif it has been compiled to do so. This enables the new
Angel to overwrite the old Angel and rel ease the download agent area.
The download agent can bein the same RAM as an application, because
the application and the download agent never run at the same time.

The Deviceldent structure

The available devices must be defined in the Devi cel dent structure.
You must ensure that the order of the devicesin this structure isthe same
asthat defined indevi ces. c, because this enables accessto the register
base of the specified ports.

ThelntHandler| D structure

You must ensure that the order and number of entriesin this structureis
the same asdefined in devi ces. s, becausethisisthe basisfor the jump
tablein suppasm s.

You must also place the labelsin nakel o. ¢ to ensure that they are
available for suppasm s.

13.4.6 Writing the device drivers

Writing device driversfor your hardware is the main area of the porting operation, and
is completely application dependent. The device drivers provided with the PID Angel
port can provide a starting point, but in many cases you must completely recode the
sourcefiles. The simplest approach isto use the main functions defined in the PID code
and rewrite the underlying functionality.

For example, the Angel PID port controls the device through function pointers defined
between devcl nt . h and devdri v. h. The main controlling functions are:

theangel _Devi ceControl Fn()
Transmit Control (ControlTx)
Receive Control (ControlRx)
Transmit Kick Start (KickStartFn)
The interrupt handler.

These are discussed in more detail in the following sections.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-61

Angel

To implement a device driver you must:
. Write the initialization code for your device.
. Write either an interrupt service routine or a poll function that does input/output.

. Provide ring buffers that allow you to communicate with the rest of the code. You
must provide one transmit and one receive ring buffer.

. Write a control routine similar to thengel _Devi ceCont r ol Fn() . Angel
device drivers provide control calls for:

. disabling and enabling the reception of raw data

. disabling and enabling packet interpretation of the data stream
. initializing the device

. resetting the device to its default state

. setting the device configuration to a set of specified parameters.

Your device driver must be able to handle messages that are longer than 256 bytes in
order to handle memory write messages. The actual length of memory write messages
is determined by your Angel port. Refe@ownload on page 13-29 for more

information.

Note

Raw device drivers that are purely interrupt driven must fit in with the interrupt scheme
describedexample of Angel processing: a simple IRQ on page 13-38.

angel_DeviceControlFn

This function is defined idevcl nt . h. It is implemented in a manner similar to the
UNIX i oct | () call. It controls the device by passing in a set of standard control values
that are defined idevi ces. h. Examples of the controls available to this function are:

DCINT Device initialization. This provides device-specific initialization at the
start of a session.

DC_RESET Device Reset. This provides device re-initialization to set the device into
a known operational state ready to accept input from the host at the
default setup.

DC_RECEI VE_MODE
Receive mode select. This sets the device into and out of receive mode.

13-62 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

DC_SET_PARANMS
Set Device operational parameters. This sets the device parameters at
initialization. It isaso used if the host needs to re-negotiate the
parameters, for example if the baud rate changes.

DC_RX_PACKET_FLOW

This control disables packet delivery when required, while still allowing
the device to read data:

1 Packet buffers not requested. Writing to the ring buffer is
allowed.

0 Normal operation.

-n deliver n good packets, then behave as

RX_PACKET_FLOWO0) .

Transmit Control (ControlTx)

When in operation, Angel defaults to the receive active state in order to enable quick
response to host messages. This function controls the transmit channel of the serial
driver, switching it on or off depending on the flag status set up in the calling routine.

Receive Control (ControlRx)

This function is similar to Control Tx. It controls the receive channel.

Transmit Kick Start (KickStartFn)

Transmission must be initiated by this function because Angel generally operatesin
receive active mode. The Angel packet construction code sets up the bytes to be
transmitted for amessage to the host in atransmit buffer and callstheKi ckSt ar t Fn()
function to initiate the transfer. TheKi ckSt art Fn() takesthefirst character from the
transmit buffer and passes it to the serial Tx register. This causes a Tx interrupt from
which the interrupt handler passes the remainder of the buffer as each character is
transmitted.

Interrupt handlers

Theinterrupt handlers are generic for each peripheral. In the case of the PID board the
interrupt handler controlsinterrupts from each serial driver Tx and Rx in addition to the
parallel reads.

Theinterrupt handler determines the source of the interrupt:

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-63

Angel

. for the Tx case, it passes bytes from the internal Tx buffer to the Serial Tx FIFO
as long as there is space in the FIFO.

. for the Rx case, it passes the byte received at the Rx FIFO into the internal Rx
buffer, ready for Angel to unpack the message when the transfer is complete.

. for the parallel case, the parallel port is polled to pass the received data into the
memory location requested.

Refer toExample of Angel processing: a simple IRQ on page 13-38 for more
information on how Angel handles interrupts. Refekitigel task management on page
13-31 for information on how Angel serializes communications tasks.

Note

Other system drivers (Ethernet/DCC) might not need the full operation functions
described above. They might need only a pure Rx/Tx control.

Polled devices

The registered read and write poll functions are called byrthel _Devi ceYi el d()
function. Angel ensures this function is called whenever communication with the host
is required. On each call, the device poll handler ensures that the device is serviced.

For a full Angel system, a hardware timer must be available for polled devices to work
because the timer interrupt is used to gain control of the processor and call

Angel _Devi ceYi el d(). This call must be inserted at the end of the timer interrupt
handler for the port, because the timer itself is part of the port. For example:

/* See if it is time to call Angel _Yield yet */
if (++call _yield count >= call _yield_ every _n_irqgs)

{
cal |l _yi el d_count =0;
Angel _Seri al i seTask(0, (angel _Seri al i sedFn) Angel _Yi el dCor e,
NULL, enpty_stack, &Angel _d obal RegBl ock[RB_Interrupted]);
}

The valuecal | _yi el d_every_n_irgs must be calculated such that
Angel _Yi el d() is called approximately every 0.2 seconds.

13-64

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.4.7 Downloading a new version of Angel

Angel can download anew version of itself. There are anumber of methodsyou can use
to do this, depending on whether you are using armsd or ADW/ADU.

Downloading a new debug agent is often preferable to replacing ROM becauseit is
usually quicker, and does not require you to remove the ROM from its socket and
reprogram it with an EPROM programmer. However, downloading a new Angel to
RAM isnot permanent. If the board is powered down or reset, the downloaded Angel is
lost.

The best method is to download Angel to Flash, if your board supportsit. This alows
you to replace your Angel as often as required, without losing the image at reset or
power down. The ARM PID board supports Flash. Refer to your board documentation
for more information on downloading to Flash.

If your board does not have Flash, and does have sufficient RAM, you can load Angel
to RAM and either runitin place, or relocate and run. If you are using Angel to replace
Angel with this method you cannot overwrite the currently executing Angel code.

Note
. Angel is not always capable of downloading a new copy of itself and then

restarting. Your board must contain sufficient spare RAM to copy the new Angel
into RAM before relocating it and running it. If you do not have sufficient RAM
you can use EmbeddedICE or Multi-ICE to download Angel, providing it has
been compiled to run from the download location.

Angel is built to relocate a downloaded new Angel to the address that the new
Angel is built to execute from, and then to execute it. If you download a copy of

Angel that is built to run from ROM, it will fail.

SeeConfiguring where Angel runs on page 13-68 for more information on
specifying the Angel execution address.

Using the debuggers to download Angel

From armsd, use tHeadagent command to download a new version of Angel. The

| oadagent command cannot write to Flash. If you isadagent , Angel must be
compiled to run from RAM.

In the ARM debuggers (ADW and ADU), selé&ttsh Download from theFile menu
to download a new version of Angel to Flash.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-65

Angel

13.4.8 Debugging your Angel port

You can use a number of methods to debug your Angel port. The method you choose

will depend on the stage of development you have reached, and the hardware available

to you.
Note

You should take debug reguirements into consideration when designing your

development board. Your board should allow access to the full Data bus and Address

bus. In addition, general purpose outputs, such as programmable LEDs, can be useful
for debug purposes.

You can use the following debug methods:

ARMulator You can debug the early stages of your Angel port under ARMulator.
Only theinitia stages of the code can be debugged in ARMulator
because the ARMulator environment has no means of receiving
responses from peripherals. You can use programmable LEDs to assist
you in debugging under ARMulator.

Multi-ICE Embeddedl CE and Multi-ICE are valuable tools for debugging Angel
because they can operate before the basic Angel functionality isworking.
For example, they can operate before your Angel device driversare
functional.

These are the preferred option if your board uses an appropriate ARM
processor, such asthe ARM7TDMI. Your processor must support theDl
debug extensions to work with an ICE solution.

ROM emulatorsand Logic Analyzers
If your ARM processor does not support debugging under Multi-1CE or
EmbeddedI CE, you can use ROM emulators or logic analyzersto help
you debug your Angel port. The Angel sources include source filesto
help you use:

. the E5 ROM Emulator from Crash Barrier Ltd.
. the neXus ROMulator from neXus Ltd.
The support files for these are located inAhgel \ Sour ce\ | oggi ng
directory.
Note

SpecifyDEBUG=1 to build a debugging version of Angel.

13-66 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.5 Configuring Angel

This section describes some of the major configuration changes that you can make to
Angel. All the configuration changes described in this section are static. You must
re-compile Angel to implement these changes. The changesyou can make are described
in the following sections:

. Configuring the memory map on page 13-67

. Configuring timers and profiling on page 13-68
. Configuring exception handlers on page 13-68
. Configuring where Angel runs on page 13-68

. Configuring SWI numbers on page 13-70.

13.5.1 Configuring the memory map

You can configure the Angel stack positions by editing the value of:
#defi ne Angel _StacksAreRel ati veToTopOf Menory
in devconf . h.

By default, the Angel stacks are configured relative to the top of memory. This is the
recommended option. If Angel stacks are configured to start relative to the top of
memory then the Angel code searches for the top of contiguous memory and the stac
pointers are set at this location. This means that you can add memory to your system
without updating the memory map and rebuilding Angel. Refdetconf.h on page

13-58 for more information.

You must define the memory map to allow the debugger to control illegal read/writes
using the checks in tiRERM TTED macro. These should reflect the permitted access of
the system memory architecture. You must take care with systems that have access t
the full 4GB of memory, because the highest section of memory should equate to
Oxffffffff when the base and size are defined as a sum, and it may wrap around to 0.

For example, if there is memory-mapped I/O at 0xffd00000 the definition should be:

#define | OBase (O0xFFDO000O0)
#define 10Si ze (0x002fffff)
#define 1 OTop (1OBase + |CSize)

not:

#define | OBase (O0xFFDO000O0)
#define 1 0Si ze (0x00300000)
#define 1 OTop (1OBase + |CSize)

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-67

Angel

13.5.2

1353

1354

Configuring timers and profiling

The PID board has two timers available, and by default profiling and Ethernet are
configured to use the same timer. The PID board uses pc sampling for profiling. This
requires afast interrupt. The interrupt service routine records where the program was
when it was interrupted. If you do not use profiling or Ethernet you can use the timer
for your application.

You can turn off profiling by setting a runtime debugger variable, but this does not free
the timer. In the Angel PID port, profiling is specified in the PROFILE entry of
devconf . h. You must recompile Angel to remove profiling support. Refer to devconf.h
on page 13-58 for more information.

System timerscan beinitialized by implementing thel NI TTI MERmacroint ar get . s.
Thismacroisnot implemented by the PID port. It isprovided asaplace holder to enable
you to initialize your own system timers. Refer to target.s on page 13-56 for more
information.

Configuring exception handlers

You can chain your own exception handlers to the Angel exception handlers. Refer to
Chaining exception handlers on page 13-19 for more information.

Configuring where Angel runs

This section describes how to configure Angel to run from:
. ROM

. ROM mapped to address zero

. RAM (the default).

Link addresses

The makefile fomngel . r omcontains two makefile macros that control the addresses
where Angel is linked:

RWADDR This defines the base address for read/write areas, sdahaseg and
bss (zero-initialized) areas, along with some assembler areas. Angel
requires approximately 24KB of free RAM for its read/write areas.

ROADDR This defines the base address for read-only areas. In general, read-only
areas are code areas. Angel requires between 50 and 100KB of RAM for
its read-only areas.

13-68

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

The target-specific configuration file devconf . h contains a number of macros that
define the memory layout of the target board. It also contains checks to ensure that the
values of RWADDR and ROADDR are sensible.

Most of these macros are only used within devconf . h (for the sanity checks, in the
READ/WRI TE_PERM TTED macros, and for defining application stack and heap areas),
In addition, the macro ROVBase is used during startup to calcul ate the offset between
the code currently executing in ROM and its eventual ROADDR destination.

ROM locations

Angel supports two types of ROM system:

. ROM mapped to address 0 on reset, and mapped out to RAM during Angel
bootstrap

. ROM permanently mapped to address 0.
For the first type:

1. Define ROMBase idevconf . h as the normal (mapped-out) address of the
ROM.

2. Set the ROM-only build variable irar get . s to FALSE.

3. Provide an assembler macro callstyAPROMint ar get . s that maps the ROM
away from 0.

4. Declare the makefile macrORST as' st artrom o(ROVBt art up) ', including
the quote (') characters.

For the second type:

1. Define ROMBase idevconf. h as 0.

2. Set the ROMonly build variable trar get . s to TRUE.

3. Declare the makefile macFORST as' except . o(__Vectors) ', including the
single quote (') characters.

Processor exception vectors

Regardless of where you decl&#&A\DDR andROADDR to be, the ARM processor

requires the exception vector table to be located at zero. There are a number of situatio
where this happens by default, for example WR&XDDR is set to 0, or in ROM-at-zero
systems.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-69

Angel

When this does not happen by default, Angel explicitly copies everything in
AREA __ Vect or s from RWADDRto zero. All codewithinthe _ Vect or s areamust be
position-independent, because it is linked to run at ROADDR, not zero.

In most configurations, Angel is able to detect a branch through zero by application
code, and report it as an error. However, thisisnot possiblein ROM-at-zero systems. In
this case, a branch through zero causes:

. a system reboot if the processor is executing in a privileged mode
. a system crash if the processor is not executing in a privileged mode.

13.5.5 Configuring SWI numbers
Angel requires one SWI in order to operate. The SWI is used to:
. change processor mode to gain system privileges
. make semihosting requests
. report an exception to the debugger.
The SWI passes a reason code in rO to determine the type of request. Depending on the
SWI, additional arguments are passed in r1. Reféngel C library support SMson
page 13-77 more information.
The SWI number is different for ARM state and Thumb state. By default, the SWI
numbers used are:
ARM state 0x123456
Thumb state Oxab
If you want to use either of these SWI numbers for your system you can reconfigure the
SWI to use any of the available SWI numbers. If you change these values you must:
. Recompile the C library, specifying the new SWI value in the Angel definition

files. Refer toRetargeting the ANS C library on page 4-6 of thARM Software
Development Toolkit Reference Guide for more information.

. Recompile the debug agent using the new value.
Refer to Chapter Blandling Processor Exceptions for more general information on
handling SWis.
In C, the Angel SWI numbers are definedhitgel \ Sour ce\ ar m h as:
#defi ne angel _SW _ARM (0x123456)
#defi ne angel _SW_THUMB (OxXAB)

13-70 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

13.6 Angel communications architecture

Angel

This section gives an overview of the Angel communications architecture. It describes
how the various parts of the architecture fit together, and how debugging messages are
transmitted and processed by Angel. For full details of the Angel Debug Protocol, refer
to the ADP specification document in c: \ ARMR50\ PDF\ specs.

13.6.1 Overview of the Angel communications layers

Figure 13-12 shows a conceptual model of the communication layers for Angel. In
practice, some layers might be combined.

Angel

ADP BOOT TDCC

CLIB

User application

Reliable comms and buffer management

Device driver (with error detection)

Raw device driver

Devices

Figure 13-12 Communications layers for Angel

The channels layer includes:

ADP The Angel Debug Protocol channel. This consists of the Host ADP
channel (HADP) and Target ADP channel (TADP).

BOOT The boot channel.

TDCC The Thumb debug communications channel.

CLIB C library support.

At the top level on the target, the Angel agent communi cates with the debugger host,
and the user application can make use of semihosting support (CLIB).

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-71

Angel

13.6.2

13.6.3

All communications for debugging (ADP, BOOT, TDCC, CLIB) require a Reliable
channel between the target and the host. The Reliable communications and buffer
management layer is responsible for providing reliability, retransmissions, and
multiplexing/de-multiplexing for these channels. This layer must also handle buffer
management, because reliability requires retransmission after errors have occurred.

The device driver layer detects and rejects bad packets but does not offer reliability
itself.

Boot support

If there are two or more debug devices (for example, serial and serial/parallel), the boot
agent must be able to receive messages on any device and then ensure that further
messages that come through the channels layer are sent to the correct (new) device.

When the debug agent detects a Reboot or Reset message, it listensto the other channels
using the device that received the message. All debug channels switch to use the newly
selected debug device.

During debugging, each channel is connected through the same device to one host.
Initially, Angel listens on al Angel-aware devices for an incoming boot packet, and
when oneisreceived, the corresponding deviceis selected for further Angel use. Angel
listens for a reset message throughout a debugging session, so that it can respond to
host-end problems or restarts.

To support this, the channel s layer provides afunction to register aread callback across
all Angel-aware devices, and a function to set the default device for al other channel
operations.

Channels layer and buffer management

The channels layer is responsible for multiplexing the various Angel channels onto a
single device, and for providing reliable communications over those channels. The
channelslayer is also responsible for managing the pool of buffers used for al
transmission and reception over channels. Raw device 1/0 does not use the buffers.

Although there are severa channels that could be in use independently (for example,
CLIB and HADP), the channel layer accepts only one transmission attempt at atime.
Channel restrictions

To simplify the design of the channels layer and to help ensure that the protocols
operating over each channel arefree of deadlocks, thefollowing restrictionisplaced on
the use of each channel.

13-72

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

For aparticular channel, all messages must originate from either the Host or the Target,
and responses can be sent only in the opposite direction on that channel. Therefore two
channels are required to support ADP:

. one for host originated requests (Read Memory, Execute, Interrupt Request)
. one for target originated requests (Thread has stopped).

Each message transmitted on a channel must be acknowledged by a reply on the sar
channel.

Buffer management

Managing retransmission means that the channels layer must keep messages that he
been sent until they are acknowledged. The channel layer supplies buffers to channel
users who want to transmit, and then keeps transmitted buffers until acknowledged.

The number of available buffers might be limited by memory to less than the theoretical
maximum requirement of one for each channel and one for each Angel-aware device

The buffers contain a header area sufficient to contain channel number and sequence
IDs, for use by the channels layer itself. Any spare bits in the channel number byte are
reserved as flags for future use.

Long buffers

Most messages and responses are short (typically less than 40 bytes), although some «
be up to 256 bytes long. However, there are some situations where larger buffers woul
be useful. For example, if the host is downloading programs or configuration data to the
target, a larger buffer size reduces the overhead created by channel and device heade
by acknowledgment packets and by the line turnaround time required to send each
acknowledgment (for serial links). For this reason, a long (target defined, suggested siz
4KB) buffer is available for target memory writes, which are used for program
downloads.

Limited RAM

When RAM is unlimited, the easiest solution is to make all buffers large. There is a
mechanism that allows a single large buffer to be shared, because RAM in an Angel
system is not normally an unlimited resource.

When the device driver has read enough of a packet to determine the size of the pack
being received, it performs a callback asking for a suitably sized buffer. If a small buffer
is adequate, a small buffer is provided. If a large buffer is required, but is not available,
the packet is treated as a bad packet, and a resend request results.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-73

Angel

Buffer life cycle

When sending data, the user of a channel must explicitly allocate a buffer before
requesting awrite. Buffers must be released either by:

. Passing the buffer to one of the channel transmit functions in the case of reliable
data transmission. In this case, the channels code releases the buffer.

. Explicitly releasing it with the release function in the case of unreliable data
transmission.

Receive buffers must be explicitly released with the release function (see Figure 13-13).

Unreliable data buffer lifecycle Reliable data buffer lifecycle
alloc alloc
\ 4 \ 4
send send
\ 4 \ 4
wait |«—| callback() wait |« callback()
\ 4 \
release no release

Figure 13-13 Send buffer lifecycle

Channel packet format

Channel packets contain information, including:

. channel ID, such as the HADP ID

. packet number

. acknowledged packet number

. flags used for distinguishing data from control information.

Refer to the Angel debug protocol specificatior in ARM250\ PDF\ specs for a
complete description of the channel packet format.

13-74

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Thelength of the compl ete data packet is returned by the devicedriver layer. An overall
length field for the user data portion of the packet it not required, because the channel
header is fixed length.

Heartbeat mechanism

Heartbeats must be enabled for reliable packet transmission to work. Heartbeats work
only with the Software Development Toolkit version 2.11a (Angel 1.04, EmbeddedI CE
2.07) and later.

Theremote_a heartbeat software writes packets using at |east the heartbeat rate, and
uses heartbeat packetsto ensure this. It expects to see packets back using at least the
packet timeout rate, and signals atimeout error if thisis violated.

13.6.4 Device driver layer

Angel supports polled and asynchronousinterrupt-driven devices, and devicesthat start
in an asynchronous mode and finish by polling the rest of a packet. At the boundary of
the device driver layer, the interface offers asynchronous (by callback) read and write
interfaces to Angel, and a synchronous interface to the application.

Refer to Writing the device drivers on page 13-61 for more information on device
drivers.
Support for callback across all devices

Thisis primarily achannels layer issue, but because the BOOT channel must listen on
all Angel-compatible devices, the channels layer must determine how many devicesto
listen to for boot messages, and which devices those are.

To providethisstatically, the deviceslayer exportsthe appropriate devicetableor tables,
together with the size of the tables.
Transmit queueing

Because the core operating mode is asynchronous and more than one thread can use a
device, Angel rejects all but the first request, returnsabusy error message, and leaves
the user (channels or the user application) to retry later.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-75

Angel

Angel interrupt handlers

Angel Interrupt handlers are installed statically, at link time. The Angel Interrupt
handler runs off either IRQ or FIQ. It isrecommended that it isrun off IRQ. The Angel
interrupt is defined in devconf.h. Refer to devconf.h on page 13-58 for more
information.

Control calls

Angel device drivers provide a control entry point that supports the enable/disable
transmit/receive commands, so that Angel can control application devices at critical
times. Refer to Writing the device drivers on page 13-61 for more information.

13-76 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.7 Angel C library support SWis

Angel usesa SWI mechanism to enable user applicationslinked withan ARM C library
to make semihosting requests. Semihosting requests are requests such asopen afile on
the host, that must be communicated to the host to be carried out.

Refer to The ANS C library on page 4-5 of the ARM Software Development Tool kit
Reference Guide for more information on ARM C library support.

Angel uses asingle SWI to request semihosting operations. By default, the Angel
semihosting SWI is:

. 0x123456 in ARM state

. Oxab in Thumb state.

You can configure the Angel SWI to any SWI number if you are developing an
operating system or application that uses these SWI numbers. RefeCtmfitgeiring
Angel on page 13-67 for more information.

The semihosting operation type is passed in r0, rather than being encoded in the SWI
number. All other parameters are passed in a block that is pointed to by rl1. The result i
returned in r0, either as an explicit return value or as a pointer to a data block. If no resul
is returned, r0 is corrupted. Registers r1-r3 are preserved by Angel when an Angel
system call is made. See the description of each operation below.

In the following descriptions, the number in parentheses after the operation name (for
example 0x01) is the value rO must be set to for this operation. If you are calling Angel
SWiIs from assembly language code it is best to use the operation names that are defins
in ar m h. You can define the operation names witlE@u directive. For example:

SYS OPEN EQU 0x01
SYS CLOSE EQU 0x02

13.7.1 Angel task management and SWIs
Angel SWis are divided into two main categories:

. Simple SWis. These are SWIs such as EnterSVC and undefined SWIs. These
SWIs do not use the Angel serializer and do not store anything in the global
registers blocks. They can be treated like an APCS function call. Registers r0 to
r3 and rl12 are corrupted.

. Complex SWIs. These are SWIs such as the C library support SWIs. These SWIs
use the serializer and the global register block, and they can take a significant
length of time to process. They can be treated as an APCS function call, but they
restore the registers they are called with before returning, except for rO which
contains the return status.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-77

Angel

Table 13-3 gives asummary of the Angel semihosting SWIs. Refer to the descriptions
below for more detailed information.

Table 13-3 Angel semihosting SWIs

SWI Page Description

SYS OPEN (0x01) page 13-79 Open afile on the host.

SYS CLOSE (0x02) page 13-80 Close afile on the host.

SYS WRITEC (0x03) page 13-80 Write a character to the debug channel.

SYS WRITEOQ (0x04) page 13-80 Write a string to the debug channel.

SYS WRITE (0x05) page 13-81 Writeto afile on the host.

SYS READ (0x06) page 13-82 Read the contents of afile into a buffer.

SYS READC (0x07) page 13-83 Read a byte from the debug channel.

SYS_ISERROR (0x08) page 13-83 Determineif areturn codeis an error.

SYS ISTTY (0x09) page 13-84 Check whether afileis connected to an interactive device.
SYS SEEK (0x0a) page 13-84 Seek to apositionin afile.

SYS FLEN (0x0c) page 13-85 Return the length of afile.

SYS TMPNAM (0x0d) page 13-85 Return atemporary name for afile.

SYS REMOVE (0x0e) page 13-86 Remove afile from the host.

SYS RENAME (0xf) page 13-86 Rename afile on the host.

SYS CLOCK (0x10) page 13-87 Number of centiseconds since support code started.
SYS TIME (0x11) page 13-87 Number of seconds since Jan 1, 1970.

SYS SYSTEM (0x12) page 13-88 Pass a command to the host command-line interpreter.
SYS ERRNO (0x13) page 13-88 Get the value of the C library er r no variable.

SYS GET_CMDLINE (0x15) page 13-89 Get the command-line used to call the executable.

SYS _HEAPINFO (0x16) page 13-90 Get the system heap parameters.
SYS_ELAPSED (0x30) page 13-91 Get the number of target ticks since support code started.
SYS TICKFREQ (0x31) page 13-91 Define atick frequency.

13-78 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.7.2 SYS_OPEN (0x01)

Open afile on the host system. Thefile path is specified either asrelative to the current
directory of the host process, or absolutely, using the path conventions of the host
operating system.

The ARM debuggers interpret the special path name: t t as meaning the console input
stream (for an open-read) or the console output stream (for an open-write). Opening
these streams is performed as part of the standard startup code for those applications
that reference the C stdio streams.

Entry

On entry, rl contains a pointer to a three word argument block:

word 1 isapointer to a null-terminated string containing afile or device name.

word 2 isan integer that specifies the file opening mode. Table 13-4 gives the
valid values for the integer, and their corresponding ANSI C f open()
mode.

word 3 isan integer that givesthe length of the string pointed to by word 1. The
length does not include the terminating null character that must be
present.

Table 13-4
mode o 1 2 3 4 5 6 7 8 9 10 11

ANSI C fopen mode r rb r+ b w wb w+ wt+tb a a a+ atb

Return

On exit, rO contains:
. a non-zero handle if the call is successful
. -1 if the call is not successful.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-79

Angel

13.7.3 SYS_CLOSE (0x02)

Closes afile on the host system. The handle must reference afile that was opened with
SYS OPEN.

Entry
On entry, r1 contains a pointer to a one word argument block:

word 1 isafile handle referring to an open file.

Return

On exit, rO contains:
. 0 if the call is successful
. -1 if the call is not successful.

13.7.4 SYS_WRITEC (0x03)

Writes a character byte, pointed to by r1, to the debug channel. When executed under
an ARM debugger, the character appears on the display device connected to the
debugger.

Entry

On entry, rl contains a pointer to the character.

Return

None. Register r0 is corrupted.

13.7.5 SYS_WRITEO (0x04)

Writes a null-terminated string to the debug channel. When executed under an ARM
debugger, the characters appear on the display device connected to the debugger.

Entry

On entry, rl contains a pointer to the first byte of the string.

Return

None. Register r0 is corrupted.

13-80 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.7.6 SYS_WRITE (0x05)

Writes the contents of a buffer to a specified file at the current file position. The file

position is specified either:

. explicitly, by a SYS_SEEK

. implicitly as one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the
file is closed.

The file operation should be performed as a single action whenever possible. That is,
write of 16KB should not be split into four 4KB chunks unless there is no alternative.
Entry

On entry, rl contains a pointer to a three word data block:

word 1 contains a handle for a file previously opened with SYS_OPEN.
word 2 points to the memory containing the data to be written.

word 3 contains the number of bytes to be written from the buffer to the file.
Return

On exit, r0 contains:
. 0 if the call is successful
. the number of byte that are not written, if there is an error.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-81

Angel

13.7.7 SYS_READ (0x06)

Read the contents of afile into abuffer. The file position is specified either:
. explicitly, by a SYS_SEEK
. implicitly, as one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the
file is closed.

The file operation should be performed as a single action whenever possible. That is, a
write of 16KB should not be split into four 4KB chunks unless there is no alternative.
Entry

On entry, rl contains a pointer to a four word data block:

word 1 contains a handle for a file previously opened with SYS_OPEN.

word 2 points to a buffer.

word 3 contains the number of bytes to read to the buffer from the file.

word 4 is an integer that specifies the file mode. Table 13-4 on page 13-79 gives

the valid values for the integer, and their corresponding ANSI C
f open() modes.

Return

On exit, r0 contains:
. 0 if the call is successful
. the number of bytes not read, if there is an error.

If the handle is for an interactive device (thatis, SYS_ISTTY returns —1 for this handle),
a non-zero return from SYS_READ indicates that the line read did not fill the buffer.

13-82 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.7.8 SYS_READC (0x07)
Readsabyte from the debug channel. Theread isnotionally from the keyboard attached
to the debugger.
Entry

There are no parameters. Register r1 must contain zero.

Return

On exit, rO contains the byte read from the debug channel.

13.7.9 SYS_ISERROR (0x08)
Determines whether the return code from another semihosting call is an error status or
not. This call is passed a parameter block containing the error code to examine.
Entry
On entry, r1 contains a pointer to a one word data block:

word 1 isthe required status word to check.

Return

On exit, rO contains;
. 0 if the status word is not an error indication
. a non-zero value if the status word is an error indication.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-83

Angel

13.7.10 SYS_ISTTY (0x09)

Checks whether afile is connected to an interactive device.

Entry
On entry, rl contains a pointer to a one word argument block:

word 1 isahandle for apreviously opened file object.

Return

On exit, rO contains:

. -1 if the handle identifies an interactive device
. 0 if the handle identifies a file

. a value other than —1 or 0 if an error occurs.

13.7.11 SYS_SEEK (0x0a)

Seeks to a specified position in a file using an offset specified from the start of the file.
The file is assumed to be a byte array and the offset is given in bytes.

Entry

On entry, rl contains a pointer to a two word data block:

word 1 is a handle for a seekable file object.
word 2 is the absolute byte position to be sought to.
Return

On exit, r0 contains:
. 0 if the request is successful

. A negative value if the request is not successful. SYS_ERRNO can be used to
read the value of the hostr no variable describing the error.

Note
The effect of seeking outside of the current extent of the file object is undefined.

13-84

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.7.12 SYS_FLEN (0x0c)

Returns the length of a specified file.

Entry
On entry, rl contains a pointer to a one word argument block:

word 1 isahandle for apreviously opened, seekable file object.

Return

On exit, rO contains:
. the current length of the file object, if the call is successful
. —1 if an error occurs.

13.7.13 SYS_TMPNAM (0x0d)

Returns a temporary name for a file identified by a system file identifier.

Entry

On entry, rl contains a pointer to a three word argument block:

word 1 is a pointer to a buffer.
word 2 is a target identifier for this filename.
word 3 contains the length of the buffer. The length should be at least the value

of L_t npnamon the host system.

Return

On exit, r0 contains:
. 0 if the call is successful
. -1 if an error occurs.

The buffer pointed to by rl contains the filename.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-85

Angel

13.7.14 SYS_REMOVE (0x0e)

Deletes a specified file.

Entry

On entry, rl contains a pointer to a two word argument block:

word 1 points to anull-terminated string that gives the pathname of thefileto be
deleted.

word 2 isthe length of the string.

Return

On exit, rO contains:
. 0 if the delete is successful
. a non-zero, host-specific error code if the delete fails.

13.7.15 SYS_RENAME (0xf)

Renames a specified file.

Entry

On entry, rl contains a pointer to a four word data block:

word 1 is a pointer to the name of the old file.
word 2 is the length of the old file name.
word 3 is a pointer to the new file name.
word 4 is the length of the new file name.

Both strings are null-terminated.

Return

On exit, rO contains:
. 0 if the rename is successful
. a non-zero, host-specific error code if the rename fails.

13-86

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.7.16 SYS_CLOCK (0x10)

Returns the number of centiseconds since the support code started executing.

Values returned by this SWI can be of limited use for some benchmarking purposes
because of communication overhead or other agent-specific factors. For example, with
the Multi-1CE debug agent the request is passed back to the host for execution. Thiscan
lead to unpredictable delays in transmission and process scheduling.

This function should be used only to calculate time intervals (the length of time some
action took) by calculating the difference in the result on two occasions.
Entry

There are no parameters. Register r1 must contain zero.

Return

On exit, r0 contains:

. the number of centiseconds since some arbitrary start point, if the call is
successful

. —1 if the call is unsuccessful (for example, because of a communications error).

13.7.17 SYS_TIME (0x11)

Returns the number of seconds since 00:00 January 1, 1970.

Entry

There are no parameters. Register r1 must contain zero.

Return

On exit, r0 contains the number of seconds.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-87

Angel

13.7.18 SYS_SYSTEM (0x12)

Passes a command to the host command-line interpreter. This SWI enables you to
execute a system command such as| s, or pwd. Theterminal 1/0 is on the host, and is
not visible to the target.

Entry

On entry, rl contains a pointer to a two word argument block:

word 1 pointsto astring that isto be passed to the host command-lineinterpreter.
word 2 isthe length of the string.
Return

On exit, r0 contains the return status.

13.7.19 SYS_ERRNO (0x13)

Returns the value of the C library er r no variable associated with the host support for
the debug monitor. The er r no variable can be set by a number of C library support
SWIs, including:

. SYS_REMOVE

. SYS_OPEN

. SYS_CLOSE

. SYS_READ

. SYS_WRITE

. SYS_SEEK.

Whether or not, and to what valeer no is set is completely host-specific, except
where the ANSI C standard defines the behavior.

Entry

There are no parameters. Register r1 must be null.

Return

On exit, r0 contains the value of the C library no variable.

13-88

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.7.20 SYS_GET_CMDLINE (0x15)

Returns the command-line used to call the executable.

Entry

On entry, r1 pointsto atwo word data block in which the command string and itslength
are to be returned:

word 1 isapointer to a buffer of at least the number of bytes specified in word
two.

word 2 isthe length of the buffer.

Return

On exit:

. Register rl points to a two word data block:
word 1 is a pointer to null-terminated string of the command line.
word 2 is the length of the string.

The debug agent might impose limits on the maximum length of the string that
can be transferred. However, the agent must be able to transfer a command-line
of at least 80 bytes.

In the case of the Angel debug monitor using ADP, the minimum is slightly more
than 200 characters.

. Register rO contains an error code:
. 0 if the call is successful

. —1 if the call is unsuccessful (for example, because of a communications
error).

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-89

Angel

13.7.21 SYS_HEAPINFO (0x16)

Returnsthe system heap parameters. The valuesreturned are typically those used by the
Angel Clibrary duringinitialization. Thesevaluesaredefinedinthedevconf . h header
file. Refer to Modifying target-specific files on page 13-55 for a description of
devconf. h.

The C library can override these values, but will doso only if __heap_base isdefined
at link time. In this case the values of the following symbols are used:

o __heap_base
. __heap_limt
. __stack_base
. __stack limt

This call returns sensible answers if EmbeddedICE is being used, but the values are
determined by the host debugger usingfthep_of _nenory debugger variable.

Entry

On entry, rl points to a single word data block:

word 1 is the address at which the heap descriptor is located.

Return
On exit, r1 points to a single word data block:
word 1 is the address at which the heap descriptor is located.

The heap descriptor is a block of four words of data that contains the stack and heap
base and limit:

word 1 Heap Base.
word 2 Heap Limit.
word 3 Stack Base.
word 4 Stack Limit.

13-90

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

13.7.22 SYS_ELAPSED (0x30)

Returns the number of elapsed target ticks since the support code started execution.
Ticks are defined by SYS TICKFREQ. If the target cannot define the length of atick,
it can supply SYS_ELAPSED.

Entry

Register r1 contains a pointer to a double word in which to put the number of elapsed
ticks. Thefirst word is the least significant word. The last word is the most significant
word. Thisfollows the convention used by the ARM compilersfor thel ong | ong data

type.
Return
If the double word pointed to by r1 (low order word first) does not contain the number
of elapsed ticks, rl is set to —1.
13.7.23 SYS_TICKFREQ (0x31)

Defines a tick frequency.

Entry

On entry, r0 contains the reason code 0x31

Exit

On exit, rO contains either:
. the ticks per second
. —1 if the target does not know the value of one tick.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-91

Angel

13.8 Angel debug agent interaction SWiIs

In addition to the C library support SWIsdescribed in Angel C library support SMson
page 13-77, Angel provides the following SWIls to support interaction with the debug
agent:

. The ReportException SWI. This SWI is used by the semihosting support code as
a way to report an exception to the debugger. It can be considered as a breakpoint
that starts in Supervisor mode rather than Undefined mode.

. The EnterSVC SWI. This SWI sets the processor to Supervisor mode.

These are described below.

13.8.1 angel_SWireason_EnterSVC (0x17)

Sets the processor to Supervisor (SVC) mode and disables all interrupts by setting both
interrupt mask bits in the new CPSR. Under Angel, the user stack pointer (r13_USR) is
copied to the Supervisor stack pointer (r13_SVC) and the | and F bits in the current
CPSR are set, disabling normal and fast interrupts.

Note
If you are debugging with an EmbeddedICE interface:
. the User mode stack pointemiat copied to the Supervisor stack pointer.
. the | and F bits of the CPSR aret set.

Entry

On entry, r0 contains 0x17. Register rl is not used. The CPSR can specify User or
Supervisor mode.

Return

On exit, r0 contains the address of a function to be called to return to User mode. The
function has the following prototype:

voi d Ret urnToUSR(voi d)

13-92 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Note

. If debugging with ARMulator or Multi-ICE, r0 is set to zero to indicate that no
function is available for returning to User mode.

. If debugging with an EmbeddedICE interface, r0 is set to an undefined value and
no function is available for returning to User mode.

If EnterSVC is called in User mode, this routine returns the caller to User mode and
restores the interrupt flags. If EnterSVC is not called in User mode, the action of this
routine is undefined.

If entered in User mode, the Supervisor stack is lost as a result of copying the user stac
pointer. The return to User routine restores r13_SVC to the Angel Supervisor mode
stack value, but this stack should not be used by applications.

After executing the SWI, the current link register will be r14_SVC, not r14_USR. If the
value of r14_USR is needed after the call, it should be pushed onto the stack before th
call and popped afterwards, as faBlafunction call.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-93

Angel

13.8.2 angel_SWireason_ReportException (0x18)

This SWI can be called by an application to report an exception to the debugger directly.
The most common use is to report that execution has completed, using
ADP_St opped_Appl i cationExit.

Entry

Onentry rOisset to Angel _SW r eason_Report Excepti on, and rlis set to one of
the valueslisted in Table 13-5 and Table 13-6 on page 13-95. These val ues are defined
inadp. h. The values marked with a* are not supported by the ARM debuggers. The
debugger reports an Unhandl ed ADP_St opped except i on for these values.

ADP_User | nt errupti on isgenerated by Angel if the debugger sends an

ADP_I nt er r upt Request to stop the application. ADP_Br eakpoi nt is generated
when Angel detects attempted execution of a breakpoint instruction. Angel does not
implement watchpoints, although other debug agents do.

The hardware exceptions are generated if the debugger variable $vect or _cat chisset
to catch that exception type, and the debug agent is capable of reporting that exception
type. Angel cannot report exceptions for interrupts on the vector it usesitself.

Table 13-5 Hardware vector reason codes

Name (#defined in adp.h) Hexadecimal value
ADP_Stopped_BranchThroughZero 0x20000
ADP_Stopped_Undefinedinstr 0x20001
ADP_Stopped_Softwarel nterrupt 0x20002
ADP_Stopped_PrefetchAbort 0x20003
ADP_Stopped_DataAbort 0x20004
ADP_Stopped_AddressException 0x20005
ADP_Stopped_IRQ 0x20006
ADP_Stopped FIQ 0x20007

13-94 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Table 13-6 Software reason codes

Name (#defined in adp.h)

Hexadecimal value

ADP_Stopped_BreakPoint 0x20020
ADP_Stopped_WatchPoint 0x20021
ADP_Stopped_StepComplete 0x20022
ADP_Stopped_RunTimeErrorUnknown *(0x20023
ADP_Stopped_Internal Error *(0x20024
ADP_Stopped_UserInterruption 0x20025
ADP_Stopped_ApplicationExit 0x20026
ADP_Stopped_StackOverflow *(0x20027
ADP_Stopped_DivisionByZero *0x20028
ADP_Stopped_OSSpecific *(0x20029

Return

No return is expected from these calls. However, it is possible for the debugger to
request that the application continue by performing an RDI_Execute request or
equivalent. In this case, execution continues with the registers asthey were on entry to
the SWI, or as subsequently modified by the debugger.

13.8.3 angel_SWireason_LateStartup (0x20)

This SWI is obsolete.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-95

Angel

13.9 The Fusion IP stack for Angel

This section describes the Fusion | P stack supplied with the Ethernet Upgrade Kit (No.
KPI 0015A)

13.9.1 How Angel, Fusion, and the PID hardware fit together

The Ethernet interface for the PID card is provided by an Olicom EtherCom PCMCIA
Ethernet card installed in either PCM CIA dlot. The Olicom card uses an Intel 182595
Ethernet controller.

The UDP/IP stack is the Pacific Softworks Fusion product, ported to ARM and the
Angel environment. The drivers for PCMCIA and the Ethernet card have been
implemented, as hasthe Angel devicedriver to makethewhol e stack appear asan Angel
device. Figure 13-14 shows how the components fit together.

Angel

Angel driver framework

Angel
Ethernet driver

Fusion
sockets library

Fusion
UDP
Fusion
IP

182595
controller

Olicom
card

pcmcia
manager

Ethernet

Figure 13-14 Angel, Fusion ,and PID hardware

13-96 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Angel

Initialization
The stack isinitialized in the following sequence:

1. devclnt.c:angel _InitialiseDevices() cals
et hernet. c: et her net _i ni t () to open a socket.

2. fusion: socket () noticesthat the fusion stack has not been initialized. Fusion
stack initialization calls:

a olicomc:olicominit() cdls
b. pcntia. c:penti a_set up() detects Olicom card and calls:

olicomc:olicomcard_handl er () withacard insertion event and
then:

d. olicomc:read_card_parans() toregisterol i com.isr() with
pcnti a. c.
3. Fusion stack initiaization cals:
ol i com c: ol i com updown() and, throughol i com state():

82595. c: i 595_bri ngup() to complete theinitialization sequence.

Angel Ethernet device driver

After initialization, the Angel side of the driver isimplemented as a polling device. At
every call to Angel _Yi el d(), angel _Et hernet Pol | () isinvoked, and
non-blockingr ecv() callsare madeto the Fusion stack to seeif dataiswaiting on any
of the sockets.

Outgoing packets are passed to the Fusion stack in asingle step by calling sendt o() .

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-97

Angel

Interrupt handling

The bottom of the Fusion stack is driven by interrupts from the Olicom card. Interrupts
are handled in the following sequence:

1

suppasm s:angel _Devi cel nt errupt Handl er () callsthe GETSOURCE
macro in pi d/ t ar get . s toidentify the PCMCIA controller as the source.

pcnti a. ¢: angel _PCMCI Al nt Handl er () establishesthat itisan I/O interrupt
and calls the routine registered during initialization.

olicomc:olicomisr() checkstheinterrupt, switchesoff interruptsfromthe
Olicom card, and serializes ol i com process() to do the processing with al
other interrupts enabled.

olicomc:olicomprocess() identifiesthe reason for the interrupt and
passesit asan eventtool i com st ate().

olicomc:olicomstate() callsanappropriateroutinein82595. c tohandle
packet reception and transmission.

82595. c routines control the 182595 chip and transfer packetsin both directions
between Fusion buffers and the chip. Calls are made to Fusion functions as

appropriate.

olicomc:olicom process() checksto seewhether al interrupt events have
been serviced. If so, Olicom interrupts are re-enabled. If not,

ol i com process() re-queues itself and then exitsin case another deviceis
waiting for the seriaizer lock.

Additionally, the Fusion stack can make callstool i com st art () (to queue anew
packet for transmission), ol i com i oct | (), and ol i com updown() inresponseto
socket calls from the Angel Ethernet driver or as aresult of packet processing.

13-98

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Appendix A
FlexLM License Manager

Thisappendix describesthe use made by ARM Limited of FlexLM license management
software. You need to read this appendix and use FlexLM software only if you intend

to run any ARM licensed software, which at present is confined to UNIX-based
products.

This appendix contains the following sections:

. About license management on page A-2

. Obtaining your licensefile on page A-4

. What to do with your licensefile on page A-5

. Sarting the server software on page A-6

. Running your licensed software on page A-7

. Customizing your license file on page A-9

. Finding a license on page A-11

. Using FlexLM with more than one product on page A-12
. FlexLM license management utilities on page A-14

. Frequently asked questions about licensing on page A-18.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

A-1

FlexLM License Manager

Al About license management

FlexLM is a software licensing package that controls the usage of licensed software
applications. Licensing is controlled by means of alicense file that describes the
software you may use and how many copies of it you may run concurrently.

You must obtain avalid license file from ARM Limited before you can run licensed
ARM software. Obtaining your licensefile on page A-4 describes how to apply for your
licensefile.

You must specify one or more computersto act as a license server, on which license
management software runs. Any computer running FlexL M licensed software must
either be alicense server or have access to alicense server.

ARM Debugger for UNIX (ADU) is one example of software that requires alicense
server before you canrun it.

The license server can be any one of:
. your local machine

. a remote machine

. several remote machines.

If you choose to use more than one, you must use three license server machines. These
communicate with one another, and co-ordinate the licensing. The advantage of this is
that if one of the license server machines fails to operate correctly the other two will
continue to allow licensed software to be used. This arrangement is known as a ‘3-server
redundant set’.

Remote license servers do not need to be running on the same hardware platform as the
software they are controlling.

A-2

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager

Al1 Installing FlexLM software

License management softwarefor various platformsis supplied on the CD-ROM of any
ARM licensed software (at present confined to UNIX-based products).

The following list shows the platforms supported, and the subdirectory containing the
appropriate software for each:

Solaris2.5 flexIm/solaris
Sun0S4.1.x flexlm/sunos
HP-UX 9.x flexim/hpux

Each directory contains the softwarein TAR file format, in afilecalled f 1 exI m t ar .

Before applying for alicense file you must install the FlexLM license management
software, as follows:

1. Copy the TAR file from the appropriate directory onto each license server
machine.

2. On each license server machine, unTAR the file using the command:

tar xvf flexImtar

3. WhenyouhaveunTARed the softwareyou needtorunthenakel i nks. sh script.
Change into the directory containing the unTARed software and type:

./ makel i nks. sh
4, Thiscreates numerous hard links, one of whichis| mhost i d.

You need | mhost i d when you complete your license request form.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. A-3

FlexLM License Manager

A.2 Obtaining your license file
The installation directory contains afile called license_request_form.txt
To obtain your licensefile:
1. Openthistext file with the editor of your choice.
2. Completetheform, following any instructionsthat areinthefile. You must decide
whether your license server isto be your local machine, a remote machine, or

three machines:

. To use your local machine machine as the license server, fill in the license
request form with the hostname and hostID of your machine.

. To use a remote machine as the license server, fill in the license request
form with the hostname and hostID of the remote machine. Sometimes an
organization will designate one machine as the machine to run all license
servers, so find out if this is what happens in your company.

. To specify three separate machines as license servers, fill in the hostname
and hostIDs of all three machines on the license request form.

3. Return the form to ARM Limited, as follows:

. if you have email available, paste the completed form into your email
composition tool and send it using the email address contained within the
template

. if you do not have email available, print out the completed form and send a
facsimile using the Fax number contained within the template.

4. Alicense file will be returned to you shortly.
A-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager

A.3 What to do with your license file

Make a copy of the license file on each of your license servers, asfollows:

1

5.

If you receivethe licensefile by email you can either copy the licensefile section
out of the message, or save the entire message to disk. The license server ignores
all lines except those start with SERVER, VENDOR, or FEATURE.

If you received thelicensefile by fax you will need to create atext fileand key in
theinformation, using the editor of your choice. When dataentry iscomplete, you
can usethel nchecksumultility to check that you typed everything in correctly.
Instructionsfor using | nthecksumare given under FlexLM license management
utilities, later in this appendix.

You may save the license file in any directory on each license server. It should,
however, be on alocally mounted file system.

You usually need to edit the VENDOR line of the license file on each license
server. The default license file sent you you contains:
VENDOR arm nd /opt/arm flexlmsolaris

Changethetext/ opt/arm fl exl m sol ari s so that it specifies the directory
that holds your license server software. Specificaly, the directory that holds file
arm nd.

Remember to do this on each license server.

Full instructionsfor editing thelicensefile can befound under Customizing your license
file, later in this appendix.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. A-5

FlexLM License Manager

A4

Starting the server software

To start the license server software on each machine, go to the directory containing the
license server software and type:

nohup Imgrd -c license_file_nanme -1 [|ogile_nanme &
where:

l'icense_fil e_nane
specifies the fully qualified pathname of the licensefile

logfile_nanme
specifies the fully qualifed pathname to alog file.

When you have started the license server, you can type:
cat /ogile_nane

to see the output from the license server.

A-6

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager

A.5 Running your licensed software

Before you run your licensed software for the first time, you must set the environment
variable ARMLMD_LICENSE FILE to an appropriate value.

Ab5.1 Setting the environment variable ARMLMD_LICENSE_FILE

The required val ue depends on your circumstances, as follows:

You have only one license server (option 1)

Assuming your licenseserveriscaled ent er pri se, goto the machinewherethe ARM
Debugger isinstalled and type:

setenv ARMLMD LI CENSE_FI LE @nterprise

You have only one license server (option 2)

Assuming your licensefileis called ar m debugger . | i ¢ and isin the directory
/ home/ | i censes, type:

setenv ARMLMD LI CENSE_FI LE / hone/ |l i censes

You have only one license server and specified a TCP port (option 1)

Assuming your license server iscalled ent er pri se and you have specified TCP port
7117 inyour license file, goto the machine where your licensed software isinstalled
and type:

setenv ARMLMD LI CENSE_FI LE 7117@nterpri se

You have only one license server and specified a TCP port (option 2)

Assuming your licensefileis called nyl i cense. t xt andisin the directory
/I ocal / hone/ | i cense, type:

setenv ARMLMD LI CENSE_FI LE /| ocal / home/li cense/ nyl i cense. t xt

You have 3 license servers

Assuming your licensefileiscalled | i cense. | i ¢ and isstored in the local directory
/opt/arm |i censes, type either one of the following two commands:

setenv ARMLMD LI CENSE FI LE /opt/arm |icenses

setenv ARMLMD LI CENSE FI LE /opt/arm |licenses/license.lic

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. A-7

FlexLM License Manager

A.5.2 Running your application

When you have set the environment variable ARMLMD_LICENSE_FILE toasuitable
value, as described above, you can run your licensed software.

A-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager

A.6 Customizing your license file

Your license file contains information similar to that shown in one of the following
examples:

Example 1-1: Typical 1-server license file

SERVER j upi t er 80826d02
VENDOR arm nd /opt/arm flexlmsolaris
FEATURE adu arm md 1. 000 O1-j an- 1999 4 5B7E20C1A2338616F456 ck=42

Example 1-2: Typical 3-server license file

SERVER j upi ter 80826d02 7117

SERVER saturn 80af 8111 7117

SERVER ur anus 81873622 7117

VENDOR armi nd /opt/arm flexl msolaris

FEATURE adu arm nd 1. 000 01-j an-1999 4 5B7E20C1A2338616F456 ck=42

Although you must not change Feature lines, you may need to change the SERVER and
VENDOR linesin your licensefile.

A.6.1 Server and Vendor lines
You may need to change SERVER and VENDOR lines for the following reasons:

Hostname on Server line

On occasion you may need to change the hostname of alicense server. In
such acase you must change the hostnamein all copies of the licensefile
that refer to that server.

If you supplied three hostnames on thelicense request form thenthere are
three server linesin the license file.

TCP port on Server line
Itis possible to specify on a SERVER line the TCP port that the license
manager uses to communicate with the licensed software. If not specified
the license manager will use the next available port in the range
27000-27009. When connecting to a server, an application tries al the
ports in the range 27000-27009.

A port number must be specified on each SERVER lineif a 3-server
licenseisin use.

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. A-9

FlexLM License Manager

Daemon path on Vendor line
On aVENDOR line you may need to change the second parameter, the
pathname of the vendor daemon executable. This pathname must point to
the directory containing file ar m nmd.
If the license server was running on a SunOS machine then the Vendor
line could be similar to:

VENDOR arm nd /opt/arni flexl nf sunos

A.6.2 Feature lines

Feature lines describe the licenses that are available, and must not be altered. If they are
altered the license isinvalidated, and the feature no longer operates.

Each Feature line specifies the feature name, the vendor daemon name, the feature
version, the expiration date of the license (ayear of 0 meansthe license never expires),
the number of concurrent licenses available, and the license key.

A-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

A.7

FlexLM License Manager

Finding a license

Figure A-1 on page A-11 shows the rules followed by licensed software when it
searches for alicense authorizing it to run:

| START |

environment variable
ARMLMD_LICENSE_FILE
set?

License
found?

Search for license

License
found?

environment variable
LM_LICENSE_FILE

Search for license

h 4

License
found?

Open any *lic files found in
foptfarm/licenses directory

v

Open default license file
license.dat in directory
fustdocalfleximilicenses

Search for license

License
found?

Search for license

h 4
License is Process
unavailable license

SEARCH FOR LICENSE

v

Environment variables can contain multiple filenames andfor directory names, separated by
colons. They can also contain a hosthame or hostname and TCP port number.
Examine each name in turn until you find the file that contains the license you require.

Search the directory for
all files with a lic
filename extension.
Examine each such
license file in turn.

v

Connect to hostto get license ‘ ‘ Search the license file for the required license ‘

I5 this
a file name ar
a directory

|5 this
a hostname or
hostname and
port no?

Figure A-1 Finding a license

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. A-11

FlexLM License Manager

A.8 Using FlexLM with more than one product

FlexLM isawidely used product for license management, so it is possible that you have
more than one product using FlexLM.

Thelatest version of the FlexL M software will alwayswork with vendor daemons built
using previous versions. Consequently you must always usethelatest version of | ngr d
and the FlexLM utilities.

Note
The FlexLM software currently shipped by ARM is FlexLM version 6.0.

If you have multiple products using FlexLM you may encounter two situations:
. all the products use the same license server
. all the products use different license servers.

A.8.1 All products use the same server

If the license files for every product contain exactly the same Server lines, ignoring
different TCP port numbers, then there are two possible solutions:

1. Start a separatergr d daemon for each license file. There are no real
disadvantages with this approach, as the separate daemons consume very little
system resources or CPU time.

2. Combine the the license files together. Take the the SERVER line from one of the
license files then add all of the other lines, that is the DAEMON/VENDOR and
FEATURE lines, to create a new license file.

You will need to store the new combined license file in
/usel/local/flexlmlicenses/license.lic
or give its location via theM LI CENSE_FI LE environment variable.

Now startl ngr d using the new license file. Remember that you must use the
latest version of ngr d that is used by any of the products. You can use the
command! ngrd -v or I nver | ngrd to find out the version of eachngrd.

If the version of ngr d is earlier than any of the vendor daemons, you see error
reports such asvendor daenon cannot talk to Imgrd (invalid data
returned fromlicense server)

Leave a symbolic link to the new license file in all the locations which held the
original license files.

A-12 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager

A.8.2 All products use different license servers

If all the products use different hosts to run the license managers, then you must keep
separate license files for each product.

Set the LM _LI CENSE_FI LE environment variable to point to the locations of all the
licensefiles, for example:

setenv LM LICENSE FILE /icense filel:license file2:
...:license filen

—— Note

FlexLM version 6.0 allows each software vendor to have an individual environment
variable for finding the license file for their products. The environment variable name
is xxx_LI CENSE_FI LE where xxx is the name of the vendor license daemon. In the
case of softwarefrom ARM Limited the vendor daemonis called ARMLMD, therefore the
environment variable for ARM softwareis ARMLMVD LI CENSE_FI LE. FlexLM version
6.0 vendor daemons always | ook for the vendor specific environment variable, ahead of
the LM_LICENSE_FILE environment variable.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. A-13

FlexLM License Manager

A.9 FlexLM license management utilities

The flexIm directory on your product CD-ROM contains subdirectories holding the
license manager utilities and the ARM vendor daemon (armimd) for various platforms.

Installing FlexLM software on page A-3 describes how to install the software on your
(one or three) license server machines.

Theinstallation process creates a series of hard links to make your usage of the license
management tools easier. Specifically it allowsyou to executethe utilities by using their
short names, for example you cantype | nver instead of | nutil | nver.

All the license tools are actually contained within the single executable | nuti | , the
behavior of which is determined by the value of itsar gv[0] .

A.9.1 License administration tools

The Imdown, Imremove, and Imreread commands are privileged. If you started Imgrd
with the -p 2 switch then you must be alicense administrator to run any of these three
utilities.

A license administrator isamember of the UNIX | madni n group or, if that group does
not exist, a member of group 0.

In addition, | ngrd - x can disable| ndown and/or | nr enove.
All utilities take the following arguments:
-v print version and exit.

-c license file
operate on a specific license file.

Imchecksum
I mchecksum [-Kk] [-c license_file_nane]

Thel nchecksumutility performs achecksum of alicensefile. Useit to check for data
entry errorsin your licensefile. I mrcksumprints aline-by-line checksum for the file as
well as an overall file checksum. If the license file containscksunenn attributes, the
bad lines are indicated automatically.

Thisutility is particularly useful if you received your license by Fax and typed thefile,
because of the possibility of data entry errors.

Use the - k switch to force the checksum to be case-sensitive.

A-14

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager

By default | nthecksumchecksthe contentsof | i cense. dat inthe current directory.
Usethe - ¢ switch to check adifferent file.

Imdiag
Imdiag [-c license file_list] [-n] [feature]

This utility allows you to check for problems, when you cannot check out alicense.
-c license_file_list

Path to file(s) to check. If more than onefile, use a colon separator.
-n Run in non-interactive mode.

feature Diagnose thisfeature only. If you do not specify afeature, al lines of the
license file are checked.

Thel ndi ag program first tries to check the feature. If thisfails, the reason for failure
is printed.

If the check failed because| ndi ag could not connect to the license server then you can
run extended connection diagnostics. These diagnostics try to check the validity of the
port number in the licensefile. | ndi ag displays the port numbers of all ports that are

listening, and indicates which ones are| ngr d processes. If | mdi ag findsthear m nd

daemon for the for feature being tested, it displays the correct port number to usein the
licensefile.

Imdown
I mdown [-c license file_|list] [-vendor nane] [-q]

The program allows you to shut down gracefully all license daemons on all nodes (both
| mgr d and all vendor daemons).

-c license file list
Path to file(s) to be shut down. If morethan onefile, useacolon separator.
-vendor nane

If you specify avendor name, only that vendor daemon is shut down, and
| mgr d is not shut down.

-q Donotissuethe Are you sur e? prompt.

You should restrict the execution of | ndown to license administrators, by starting
I mgr d withthe - p -2 switch, as shutting down the server causes |oss of licenses.

To disable | ndown, the license administrator canusel ngrd - x | ndown.

To stop and restart a single vendor daemon, use | ndown - vendor nane, then
I nreread -vendor nane

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. A-15

FlexLM License Manager

Imhostid
| mhostid

This program returns the correct host ID on any computer supported by FlexL M.

Imremove
Imenove [-c license file_list] feature user host display

This utility allows you to remove a single user license for a specific feature. For
example, when a user is running the software and the host crashes, the user licenseis
sometimes left checked out and unavailable to other users. | nt enove freesthelicense
and makes it available to other users.

-c license fil e _nane

The full pathname of the license file to be used. If thisis omitted the
LM_LICENSE_FILE environment variableis used instead.

feature The name of the feature the user has checked out.
user The name of the user.

host The name of the host the user was logged into.

di spl ay The name of the display where the user was working.

You can obtaintheuser , host , and di spl ay information from the output of | nst at
-a.

If the application is active when its license is removed by Imremove, it checks out the
license again at the next application heartbeat.

Imreread
Imeread [-vendor nane] [-c license file_list]

Thisutility causesthelicense daemontoreread thelicensefile, and start any new vendor
daemons that have been added. All the existing daemons are signalled to reread the
license file to check for any changes in their licensing information.
-vendor nane
If you specify avendor name, only that vendor daemon rereads the
licensefile. If the vendor daemon is not running, | nmgr d startsit.

A-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

FlexLM License Manager

To disable! nr er ead, the license administrator canusel ngrd -x | nreread.

| nT er ead does not cause server host names or port numbers to be reread from the
license file. To make any changes to those items effective, you must restart | ngr d.

To stop and restart a single vendor daemon, use | ndown - vendor nane, then
I nreread -vendor nane.

Imstat

Imstat [-a] [-A] [-c license file_ list] [-f [feature]] [-i
[feature]] [-s [server]] [-S [daenpon]] [-t val ue]

Thisutility helpsyou to monitor the status of all network licensing activities, including:
. which daemons are running

. users of individual features

. users of features served by specific daemons.

The optional arguments are:
-a Displays all information.
-A Lists all active licenses.
-c license file |ist

Uses all the license files listed.
-f [feature]

List users of a specific feature.
-i [feature]

Print information about the named feature, or all featurésaf ur e is
ommitted.

-s [server]

Display status of server node(s).
-S [daenopn]

List all users and features of a specific daemon.
-t value Setthd nstat timeout toval ue.

Imver
I mver [filenane]

This utility reports the FlexLM version of a specific library or binary file.

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved. A-17

FlexLM License Manager

A.10 Frequently asked questions about licensing

Q Why can | not find the LMHOSTID program?

A You haveto run the makel i nks. sh script that isin the directory
containing the FlexL M software. Thisscript createsaseriesof linkstothe
I mutil program, one of whichisfor | mhosti d.

Q How does an application find its license file?

A An application and the license server software itself looks in the
following places for license files:
$ARMLMD_LI CENSE_FI LE
$LM LI CENSE_FI LE
[opt/arm |icenses
lusr/local/flexlmlicense. dat
The $ARMLMD_LI CENSE_FI LE and $LLM LI CENSE_FI LE environment
variables can each contain multiple license file names, separated by
colons. In addition to full pathnamesto files, they can hold directory
names. If the license software finds a directory name it will search that
directory looking for files that end with . 1 i ¢ and treat all such files as
licensefiles.
/opt/arn |icenses isthedefault location that ARM applications
search for their licensefile.

Q Do | need to have the license file on my client machine?

A Sometimes. You need to have the license file on your client machines
only when you are using the three-license server option.
In this situation you need to point the ARMLMD_LICENSE_FILE
environment variable at thelocal copy of the licensefile. Ensure that the
hostnames and TCP port numbersin thelocal licensefile are the same as
in the license server copies.
On asingle-license server you can normally set
ARMLMD_LICENSE FILE to contain the hostname of the server.

A-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

Index

Theitemsin thisindex are listed in a phabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

Absolute maps 5-45

Access protection, in ADW/ADU 3-73

Accessing

host peripheras 3-5

onlinehelp 2-2, 3-2
ADD instruction 5-52
Adding 64-bit integers 6-6
Addresses

loading into registers 5-27

real-time 3-5
Addressing range 5-3
ADP 13-71

interrupt source for 13-59
adp.h 13-94

ADP_Stopped_ApplicationExit 13-94

ADR pseudo-instruction 5-27, 5-52

ADR Thumb pseudo-instruction 5-27

ADRL pseudo-instruction 5-27, 5-52
ADW/ADU

adding watches 3-71

adw.exe 3-62

adw_cpp.dll library 3-62
and Angel downloading 13-65
buttons 3-62
changing variables 3-70
classview 3-64
closing down 3-10
debug table formats 3-74
expression evaluation guidelines
3-72
expressions 3-71
formatting watch items 3-69
menus 3-62
starting 3-9
viewing code 3-65
watch window 3-66
watches, recalculating 3-70
Agent, debug 3-6
ALIGN directive 5-50
Alignment 5-50
ALU statusflags 5-17
Analysis of processor time 3-43
:AND: operator 5-50
Angel 3-5,3-6

and ARMulator 13-14, 13-66

and Ethernet 13-25

and exception handling 13-20

and RTOSes 13-18

APM project, modifying 13-49

Board setup 13-59

Boot channel 13-71

boot support 13-72

breakpoint restrictions 13-30

breakpoint setting 13-21

buffer lifecycle 13-74

buffer management 13-72

build directories 13-42

building 13-23, 13-43

C library support 13-20

C library support SWiIs 13-77

channel restrictions 13-72

channel viewers 3-49

channelslayer 13-72

channels packet format 13-74

communications layers 13-71

communications support 13-4,
13-23

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Index-1

component summary 13-7

configuring 3-59, 13-67

configuring run address 13-68

configuring seria ports 13-59

configuring SWI numbers 13-70

context switching 13-36

ControlRx 13-63

ControlTx 13-63

DEBUG 13-48

debug agent interaction SWIs 13-92

debug method 13-59

Debug Monitor (ADM) 3-6

Debug Protocol (ADP) 3-6

debug support 13-3

debugger functions 13-29

debugging 13-45, 13-66

device configuration 13-44

devicedriver layer 13-75

downloading 13-25, 13-45, 13-61

downloading new versionsof 13-65

enabling assertions 13-21

Enter SYC mode 13-92

Ethernet support 13-49, 13-96

exception handlers 13-68

exception handling 13-5

exception vectors 13-9

full Angel 13-10

hardware timers 13-64

heartbeat mechanism 13-75

initiglization 13-27

initidization code 13-62

interrupt handlers 13-61, 13-63,
13-98

interrupt table 13-19

logging 13-66

makefile 13-43, 13-45

memory requirements 13-9

minimal Angel 13-12, 13-22

minimal Angel initialization 13-28

planning development 13-16

polled devices 13-64

porting 13-41

prebuilt images 13-11

processor exception vectors 13-69

profiling 13-68

programming restrictions 13-17

raw serial drivers 13-23

Report Exception SWI 13-94

reporting memory and processor

status 13-29
ring buffers 13-62
ROADDR 13-48
RWADDR 13-48
semihosting support 13-3, 13-15,
13-17
semihosting SWIs 13-77
setting breakpoints 13-30
setting debug method 13-59
stacks 13-10, 13-37
stacks, settingup 13-60
supervisor mode 13-19
supervisor stack 13-17
target-specific files 13-55
task management 13-5, 13-28,
13-31, 13-37, 13-77
task management functions 13-33
task priorities 13-31
task queue 13-37
Task Queue Items 13-36
TDCC 13-24
templates for porting 13-43
Thumb debug communications
channel 13-24
timers 13-68
undefined instruction 13-17
writing device drivers 13-61, 13-62
angel.c ARMulator model 12-4
angel.hex 13-11
angel.m32 13-11
angel.rom 13-11, 13-68
Angel_BlockApplication() 13-33,
13-34
Angel_DeviceControlFn() 13-61
Angel_DeviceYield() 13-64
Angel_NewTask() 13-33, 13-37
Angel_NextTask() 13-33, 13-34,
13-40
Angel_QueueCallback() 13-33
Angel_SelectNextTask() 13-34,13-37,
13-40
Angel_SeridliseTask() 13-32-13-33,
13-36, 13-37, 13-39, 13-40
Angel_Signal() 13-33, 13-35
angel_SWiIreason_EnterSvV@3-92
Angel_SWIreason_ReportException
13-94
angel_SWiIreason_ReportException
13-94

Angel_TaskID() 13-33, 13-35
angel_TQ_Pool 13-37
Angel_Wait() 13-33, 13-35, 13-36
Angel_Yield() 13-33, 13-34, 13-36,
13-64, 13-97
ANSIC 820
header files 8-20
APCS
defined 6-3
interworking ARM and Thumb?7-2,
7-13
register usage6-10
APM
Angel project 13-43, 13-49
building C++ projects 2-53
closing down 2-4
creating C++ projects2-54
desktop 2-16
generating source dependenci2®
interworking ARM and Thumb
7-25
overview 2-2
partitions 2-25
preferences2-32
source files 2-35
starting and stopping2-4
template location 2-53
templates 2-42
using 2-4
using templates2-54
viewing files 2-38
Application heap, and Angell3-60
AREA directive 5-11, 5-13
AREA directive (literal pools) 5-25
Arguments, command line3-46
ARM code
interworking template 2-53
ARM core 3-5
ARM Debuggers for Windows and
UNIX, see ADW/ADU
ARM licensed softwareA-1
ARM processors 3-5
ARM Project Manageisee APM
ARM Software Development Toolkit
(SDT) 3-1
armasm 5-10
armcpp 2-54
armfast.c ARMulator model12-3,
12-20

Index-2

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

armflat.c ARMulator model 12-3,
12-19
ARMLMD_LICENSE _FILE
environment variable A-7
armmap.c ARMulator model 12-4,
12-21
armpie.c ARMulator model 12-4
armprof, see profiler
armsd
and Angel downloading 13-65
map files 11-9
armsd.map file 11-9, 12-28
ARMulator 3-5, 3-6
overview 12-2
and Angel 13-66
angel model 12-25
armsd.map file 12-28
armul.cnf file 12-28, 12-34
ARMS8I10 pagetable flags 12-15
ARMO940T page table flags 12-15
clock frequency 12-21
configuration file, armul.cnf 12-6
configuring 3-57
tracer 12-6
under RDI 12-27
controlling using the debugger

12-27
dummy system coprocessor model
12-24

emulation speed 12-13, 12-20
example 12-29, 12-34
flushing output to the tracer 12-6
functions, see ARMulator functions
initializing

MMU 12-15

tracer 12-6
instruction tracing 11-27
internal SWis 12-26
linking tracing code 12-6
memory watchpoints 12-14
model stub exports 12-5
models, see ARMulator models
pagetables 12-15
profiler 12-12
profiling 11-27
quitting from the tracer 12-6
real timesimulation 11-8

responsiveness 12-13
sample models
see also ARMulator models
basic 12-3
coprocessor 12-4
memory 12-3
operating system 12-4
SA-110 page table flags 12-15
SWis 12-26
tracer 12-6
user-configurable memory system
12-21
windows hourglass 12-13
with ADW 12-13
yieding control to ADW 12-13
ARMulator functions
Tracer Close 12-6
Tracer_Dispatch 12-6
Tracer_Flush 12-6
Tracer_ Open 12-6
ARMulator models
angel.c 12-4
armfast.c 12-3
armflat.c 12-3
armmap.c 12-4
ampiec 12-4
bytelanec 12-4
dummymmu.c 12-4
endianism 12-31
example.c 12-4, 12-29, 12-32,
12-34
noosc 12-4
pagetab.c 12-3
profiler.c 12-3
stubs 12-5
tracer.c 12-3, 12-4, 12-6
trickbox.c 12-4
validate.c 12-4
winglassc 12-3
armul.cnf file 12-6, 12-28, 12-34
ARM740T protection unit
page table model 12-17
ARMO940T protection unit
page table model 12-17
arm.h 13-57,13-70, 13-77
asdin ADW/ADU 3-75
ASIC 35

rebuilding with anew model 12-32 Assembler

regular calls to the debugger 12-13

inline, armasm differences 8-7

inline, see Inline assemblers
mode changing 7-6

Assembly language

Absolute maps 5-45

adignment 5-50

and C++ 8-25

areas 5-13

base register 5-46

block copy 5-38

boolean constants 5-12

cadlingfromC 8-20

caserules 5-10

codesize 5-55

comments 5-12

condition code suffixes 5-18

conditional execution 5-17

constants 5-12

data structures 5-45

directives, see Directives, assembly

entry point 5-14

examples 5-2, 5-13, 5-15, 5-19,
5-26, 5-28, 5-29, 5-32, 5-33,
5-38, 5-43, 5-55, 5-57

examples (Thumb) 5-16, 5-21,
5-30, 5-33, 5-40

execution speed 5-55

immediate constants (ARM) 5-22

inline, armasm differences 8-7

instructions, see Instructions,
assembly

interrupt handlers 9-28

interworking ARM and Thumb 7-4,
7-21

jump tables 5-29

labels 5-11

lineformat 5-10

linelength 5-11

listing from debugger 4-3, 4-9

literal pools 5-25

loading addresses 5-27

loading constants 5-22

local labels 5-11

macros 5-42

maintenance 5-50

maps 5-45

multiple register transfers 5-34
seealso STM, LDM

nesting subroutines 5-37

numeric constants 5-12

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Index-3

padding 5-50
pc 5-5,5-9, 5-11, 5-35, 5-37, 5-40
program counter 5-5, 5-9, 5-11,
5-35, 5-37, 5-40
program-relative 5-11
program-relative maps 5-48
pseudo-instructions, see
Pseudo-instructions, assembly
register-based
maps 5-47
register-relative address 5-11
relative maps 5-46
speed 5-55
stacks 5-36
string constants 5-12
subroutine return 5-5
subroutines 5-15
symbols 5-52
Thumb block copy 5-40
assembly language
using the APCS 6-2
ASSERT directive 5-49, 5-59
Assertions, and Angel debugging
13-21
ASSERT_ENABLED macro 13-21

B

B instruction (Thumb) 5-17
Backtrace window 3-18, 3-33
Banked registers 9-3
banner.h 13-55
Barrel shifter 5-7,5-17
Barrel shifter (Thumb) 5-9
Base classes
inADW/ADU 3-67
in ADW/ADU expressions 3-73
in mixed languages 8-19, 8-25
:BASE: operator 5-52
Baseregister 5-46
Benchmarks 11-2, 11-6
Bit 0, usein BX instruction 7-5
BL ingtruction 5-15, 8-7
BL instruction (Thumb) 5-17
Blank templates 2-42
Block copy, assembly language 5-38
Block copy, (Thumb) 5-40

Boolean constants, assembly language
5-12
boot.sinitiaization file 10-26
Branch instructions 5-6
scatter loading 10-32
Branch instructions (Thumb) 5-8
Breakpoints 4-6
and Angel 13-30
Angel restrictions 13-30
data-dependent 3-5
MultilCE and EmbeddedICE 13-30
settingin ADW/ADU 3-27
setting, editing and deleting 3-26
simple 3-27
simpleand complex 3-26
using 4-3
window 3-18, 3-26
Buildlog 2-13
Build step 2-12
patterns 2-40, 2-48
Building
an interworking image 2-53
C++ projectsin APM 2-53
project output 2-10
variants of projects 2-12
BX instruction 5-3, 5-6, 5-8, 5-16, 7-4,
8-8
bit Ousage 7-5
long range branching 7-5
non-Thumb processors 7-5
without state change 7-5
bytelane.c ARMulator model 12-4

calling assembler 8-20
combining with assembler 6-2
compiling 4-2
linkage 8-18
listing source 4-3, 4-9
using header filesfrom C++ 8-16
C global variables from assembly
language 8-15
C library
and Angel 13-20
Angel SWiIs 13-77
Call graph (profiling) 11-20, 11-21

Calling

assembler from C++ 8-18

C from assembly language 8-18

Cfrom C++ 8-18, 8-20

C++ from assembler 8-25

C++ from assembly language 8-18

language conventions 8-18
Calling SWIs 9-19
Caserules, assembly 5-10
Chaining exception handlers 9-39

and Angel 13-19
Changing debugger variables 3-12
Channel viewers, activating 3-49
Channels

Angel channel restrictions 13-72
Characters, special 3-42
Classview window 3-64
Clock speeds 11-13
Closing

ADW/ADU 3-10

APM 2-4
Code

ARM/Thumb 3-41

density and interworking 7-2

size 5-19,5-55

speed and setjmp() 11-19
Codesize

Dhrystone example 11-4

measuring 11-3

reducing 11-16

reducing with short integers 11-17
CODE16 directive 5-16, 7-4
CODE32 directive 5-16, 7-4
Collapsing project view 2-18
Command line

arguments 3-46

debugger instructions 3-46
Command window 3-17
Command-line

examples 4-2

tools 4-1
Comments

assembly language 5-12

inline assemblers 8-3
Communications

Angel communicationsarchitecture

13-71

Compiler options

latevia 2-24

Index-4

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

-MD- 29
reading from afile 2-24
via 2-24
Compiler, using 4-2
Complex
breakpoint 3-26
watchpoint 3-29
Concepts and terminology 3-7
Condition code suffixes 5-18
Conditional execution (Thumb) 5-8,
5-9
Conditional execution, assembly 5-17,
5-19
Configuring
Angel 13-67
Angel run address 13-68
ARMulator 3-57
EmbeddedICE 3-60
Remote A 3-59
toolsinAPM 2-21
Console window 3-16
Constants, assembly 5-12
Constants, inline assemblers 8-5
Context switch 9-32
and Angel 13-36
Controlling use of licensed software
A-2
ControlRx 13-61, 13-63
ControlTx 13-61, 13-63
Converting project format 2-31
Coprocessors
ARMulator models 12-3, 12-4,
12-24
undefined instruction handlers 9-35
CPSR 5-5,5-17,9-5
interworking ARM and Thumb 7-2
Crash Barrier 13-66
Current program status register 5-5,
5-17
Customizing licensefile A-9
Cycle counts
Dhrystone example 11-6
displaying 11-6
C++
asm 8-2
calling conventions 8-19
creating APM projects 2-54
menu 3-62
string literal 8-2

C++ datatypes
in mixed languages 8-19

D

Data abort
exception 9-2
handler 9-37, 9-43
LDM 9-37
LDR 9-37
returning from 9-8
STM 9-37
STR 9-37
SWP 9-37
DATA directive 7-12
Data maps, assembly 5-45
Data processing instructions 5-6
Data processing instructions (Thumb)
5-8
Datasize, measuring 11-3
Data structure, assembly 5-45
Datatypes 8-19
DC_INIT 13-62
DC_RECEIVE_MODE 13-62
DC RESET 13-62
DC_RX_PACKET_FLOW 13-63
DC_SET_PARAMS 13-63
Debug agent 3-6
Debug interaction SWis 13-92
Debugger
breakpoints 4-6
closing down 3-10
command lineinstructions 3-46
debugger variables 4-9
executing aprogram 4-8
extratoolswith C++ 3-63
.ini file 4-6
internalswindow 3-18
introductionto 3-2
program variables 4-9
see also ADW/ADU
single stepping 4-8
starting 3-9
table formatsin ADW/ADU 3-74
using 4-2,4-6
watchpoints 4-7
Debugger variables
viewing and changing 3-12

Debuggers

downloading Angel 13-65
Debugging

Angel 13-66

Angel assertions 13-21
decaof 2-39
decaxf 2-39
Deleting breakpoints 3-26
Demon 1-6
Destktop, APM 2-16
devcint.c 13-97
devcint.h 13-61, 13-62
devconf.h 13-29, 13-44, 13-57-13-58,

13-67-13-69, 13-90

devdriv.h 13-58, 13-61
Device Data Control13-60
Device driver layer (Angel)13-75
Device drivers

Angel 13-61
Deviceldent structurel3-61
devices.c 13-55, 13-61
devices.h 13-62
Dhrystone

code size 11-4

example 11-4

map files 11-13
Directives, assembler

ENTRY 10-6
Directives, assembly language

ALIGN 5-50

AREA 5-11,5-13

AREA (literal pools) 5-25

ASSERT 5-49, 5-59

CODEL16 5-16, 7-4

CODE32 5-16, 7-4

DATA 7-12

END 514

END (literal pools) 5-25

ENTRY 5-14

IMPORT 8-15

MACRO 5-42

MAP 5-45

ROUT 5-11

5-45
Disassembly

mode 3-41

window 3-21
Display formats 3-38
Download agent aredl3-61

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Index-5

dummymmu.c ARMulator model
12-4,12-24
DWARF 3-74
DWARF1 limitations 3-75

E

Editing
breakpoints 3-26
project source files 2-19
ELF
converting to binary ROM formats
10-34
fileformat 1-6
Embedded Clibrary, ROM applications
10-21
EmbeddedICE 3-5, 3-6
configuring 3-60
END directive 5-14
END directive (literal pools) 5-25
ENTRY directive 5-14
Entry point, assembly 5-14
Environment variable
ARMLMD_LICENSE FILE A-7
errno, C library variable 13-88
Ethernet
Angel support 13-25, 13-49
Fusion IP stack for Angel 13-96
Evauating expressions 3-71
Examining
memory 3-13, 3-40
search paths 3-36
sourcefiles 3-37
varigbles 3-37
example.c ARMulator model 12-4
Exception handlers
and Angel 13-19
chaining 9-39
dataabort 9-37, 9-43
extending 9-39
FIQ 943
installing 9-9
installing from C 9-11
installing on reset 9-9
interrupt 9-23
IRQ 9-43
nested 9-23
prefetch abort 9-36, 9-43

reentrant 9-23
reset 9-34
returning from 9-5
subroutinesin 9-46
SWI 9-14, 9-15, 9-16, 9-17, 9-43
Thumb 9-41
undefined instruction 9-35, 9-43
Exceptions 9-2
and Angel 13-19, 13-94
dataabort 9-2, 9-8
entering 9-5
FIQ 9-2,9-7
initialization code for ROM images
10-6
installing handlers 9-9
IRQ 9-2,9-7
leaving 9-5
prefetch abort 9-2, 9-8
priorities 9-3
reportingin Angel 13-94
reset 9-2
response by processors 9-5
returning from 9-7, 9-43
SWI 9-2,9-7
SWI handlers 9-14, 9-15, 9-16, 9-17
undefined instruction 9-2, 9-7
use of modes 9-3
use of registers 9-3
vector table 9-3, 9-9
Executable image
APM template 2-53
Execution
profile 11-20
speed 5-19, 5-55, 7-2, 7-19, 9-23
stopping 3-26, 3-34
window 3-15
Exiting debugger 3-10
Expanding project view 2-18
Expressions
evaluating, in ADW/ADU 3-71
formatting watches 3-69
regular 3-42
setting watchesin ADW/ADU 3-66
window 3-22
Extending exception handlers 9-39
extern"C" 8-16, 8-18, 8-20
E5 13-66

F

Fault addressregister 9-38
FEATURE lineinlicensefile A-9
File formats
Intel 32-bit hex 10-35
Intellec hex 10-35
Motorola 32-bit hex 10-35
Files
adding to project 2-8
armsd.map 11-9, 12-28
armul.cnf 12-6, 12-28, 12-34
boot.s 10-26
init.s 10-13
memory map 3-55
modelsh 12-5
profiler.c 12-12
project 2-5
Finding alicensefile A-11
FIQ 9-2,9-23
and Angel 13-10, 13-18
handler 9-7,9-23, 9-43
registers 9-23
Flash download 3-48, 13-65
and Angel 13-25
Flat profile 11-20
FlexLM license management A-2
installing A-3
multiplelicenses A-12
versions A-12
Force building aproject 2-12
Formatting displayed varigbles 3-38
FPA
undefined instruction handlers 9-35
Functions
cal graph count 11-21
nameswindow 3-22, 3-43
steppinginto 3-34
stepping out of 3-34
Fusion IP stack 13-96

G

GETSOURCE macro 13-40, 13-44,
13-55, 13-57, 13-98

Global hierarchy, in ADW/ADU 3-64

Global memory map file 3-55

Globalswindow 3-22

Index-6

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

H

Hafwords
in load and store instructions 5-6
reading and writing in ADW/ADU
3-47
toreduce codesize 11-17
HANDLE_INTERRUPTS ON_FIQ
13-39, 13-59
HANDLE_INTERRUPTS ON_IRQ
13-59
Heartbeats (Angel) 13-75
Help, online 2-2, 3-2
Hierarchy, project 2-26
High-level symbols 3-43
Host peripherals, accessing 3-5

Illegal address 9-2
Image
reducing sizeof 11-16
reloading 3-11
stepping through 3-34
Immediate constants (ARM) 5-22
implicit this 8-18
IMPORT directive 8-15
!INDEX: operator 5-52
Indicators, @ and * 3-43
Indirection 3-40
Initialization
Angel 13-62
INITMMU macro 13-56
INITTIMER macro 13-56, 13-68
init.sinitialization file 10-13
Inline assemblers 8-2
accessing structures 8-15
ADR pseudo-instruction 8-7
ADRL pseudo-instruction 8-7
ALU flags 8-6, 8-8
BL instruction 8-7
branches 8-3
BX instruction 8-8
C global variables 8-15
Cvariables 8-5, 8-9
commas 8-8
comments 8-3
complex expressions 8-5

constants 8-5
corrupted registers 8-3
CPSR 8-6
C, C++ expressions 8-5, 8-8
DC directives 8-6
examples 8-10
floating point instructions 8-8
instruction expansion 8-6
interrupts 8-10
invoking 8-2
labels 8-3
LDM instruction 8-8
long multiply 8-13
MUL instruction 8-6
multiplelines 8-3
operand expressions 8-5
physical registers 8-5, 8-8
register corruption 8-7, 8-8
restrictions 8-8
saving registers 8-9
sign extension 8-5
stacking registers 8-9
STM instruction 8-8
storage declaration 8-6
subroutine parameters 8-7
SWI instruction 8-7
writingtopc 8-2,8-5
85
Inlinestrings 11-3
Installing
FlexLM A-3
Instruction expansion 8-6
Instruction set
ARM 5-6
Thumb 5-8
Instruction tracing 11-27
Instructions, assembly language
ADD 5-52
BL 515,87
BX 5-3,5-16, 7-4
BX (Thumb) 5-8
LDM 5-34,5-48
LDM (Thumb) 5-40
LDR 5-45
MOV 5-22, 5-47
MRS 5-7
MSR 5-7
MVN 5-22
POP (Thumb) 5-40

PUSH (Thumb) 5-40
STM 5-34,5-48
STM (Thumb) 5-40
STR 5-45
Swi 8-7,9-14
SWis
Thumb 9-44
integer-like structures 6-14
Interrupt handlers 9-23
Angel 13-63
Interrupts
and Angel 13-39
Angel Fusion stack 13-98
prioritization 9-30
ROM applications 10-8
source for Angel 13-59
interrupt.s 13-57
Interval
profiling 3-53
Interworking ARM and Thumb 2-53,
7-1
APCS 7-2,7-13,7-23
APM template 2-53, 7-25
assembly language 7-4, 7-21
BX instruction 7-4
C 7-16
CandC++ 7-13
Cand C++ libraries 7-17, 7-19
Clibraries 7-28
CODEI16 directive 7-4, 7-25
CODE32 directive 7-4, 7-25
compatibility of options 7-13
compiler command-line options
7-17
compiling code 7-13
CPSR 7-2,7-7
datain Thumb code 7-12
detecting calls 7-18
duplicate functions 7-19
examples 7-7,7-9, 7-16, 7-20, 7-21
exceptions 7-2
function pointers 7-17
image template 7-25
indirect calls 7-17
leaf functions 7-14
mixed languages 7-21, 7-23
modifying existing project 7-27
MOV pc,Ir 7-8
non-Thumb processors 7-14

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. Index-7

procedure call standards 7-2
rules 7-17
SPSR 7-2
subroutines 7-8
TPCS 7-2
UNIX 7-20
veneers 7-2,7-13, 7-14, 7-15, 7-21
-16 assembler option 7-25
IntHandlerID structure 13-61
Introduction to debugging 3-2
IRQ 9-23
and Angel 13-10, 13-18
Angel processing of 13-38
handler 9-7, 9-43
IRQ exception 9-2
1/0 devices, ROM applications 10-7

J

JTAG 3-5

Jump table 9-15, 9-44

Jump tables, assembly 5-29
Jumps, and code speed 11-19

K

KickStartFn() 13-63

L

Labels, assembly 5-11
Labels, inline assemblers 8-6
LDM instruction 5-34, 5-48
Thumb 5-40
LDR
instruction 5-45
pseudo-instruction 5-22, 5-25, 5-31
Leaf functions 7-14
Library
adw_cpp.dil 3-62
Licensefile
customizing A-9
finding A-11
obtaining A-4
typica A-9
License management questions A-18

License management utilities A-14
Imchecksum A-14
Imdiag A-15
Imdown A-15
Imhostid A-16
Imremove A-16
Imreread A-16
Imstat A-17
Imver A-17
License server software A-6
Licensed software A-1
running A-7
Licenses, multiple A-12
Linelength, assembly language 5-11
Link register 5-4, 5-15, 9-3
Linker attribute conflict 10-39
Linking
and APM build steps patterns 2-12
and assembly language labels 5-11
and interworking 7-13, 7-18
and the AREA directive 5-13
Angel Clibraries 13-20
attribute conflicts 10-39
configuringin APM 2-21
improving image size 11-16
introduction 4-4
minimal Angel 13-23
the embedded Clibrary 10-9, 10-39
Literal pools, assembly language 5-25
Imchecksum utility A-14
Imdiag utility A-15
Imdown utility A-15
Imhostid utility A-16
Imremove utility A-16
Imreread utility A-16
Imstat utility A-17
Imver utility A-17
loadagent command 13-61
L oading constants, assembly language
5-22
Local labels, assembly language 5-11
Local memory map file 3-56
Localswindow 3-22
Location of APM templates 2-53
Log of project building 2-13
Logic analyzers
debugging Angel 13-66
lolevel.s 13-57
Low-level symbols 3-43

list order 3-23
Window 3-23

M

MACRO directive 5-42
Macros
Regionlnit 10-26, 10-30
makelo.c 13-55, 13-57, 13-58, 13-61
Managing projects, see APM
Mangling symbol names 8-18, 8-20
MAP directive 5-45
Map files 11-9
armsd.map 11-9
Dhrystone example 11-13
format 11-10
Maps, assembly language
apbsolute 5-45
program-relative 5-48
register-based 5-47
relative 5-46
Matching strings 3-42
Member functionsin ADW/ADU
expressions 3-72
Memory
displaying contents 4-3
examining 3-13, 3-40
flash 3-48
map files 3-55
simulating in map file 11-9
window 3-23
Memory management unit 10-7
Memory map
Angel 13-60
configuring for Angel 13-67
layout 10-3
organization of 10-3
RAM at addressO 10-3
ROM at addressO 10-3

Menu bar 3-8
Menus
C++ 3-62

window-specific 3-25
MINIMAL_ANGEL macro 13-23,
13-47
Mixed language programming
interworking ARM and Thumb
7-21,7-23

Index-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

models.hfile 12-5

Mode, disassembly 3-41

Modifying debugger variables 3-12

MOV instruction 5-22, 5-47

MRSinstruction 5-7

MSR instruction 5-7

Multi-1CE, debugging Angel 13-66

Multiple register transfers 5-34

Multiple register transfers, see also
STM, LDM

multiplication, returning a 64-bit result
6-16

MVN instruction 5-22

N

Naming projects 2-29

Nested interrupts 9-24

Nested SWIs 9-18

Nesting subroutines, assembly language
5-37

Next ling, steppingto 3-34

neXus 13-66

non integer-like structures 6-16

noos.c ARMulator model 12-4

Numeric constants, assembly language
5-12

O

Object library, APM template 2-53
Olicom 13-96

Online help, accessing 2-2, 3-2
Operand expressions, inlineassembl ers

85
Operatorsin ADW/ADU expressions
3-72

Operators, assembly language
‘BASE: 5-52
:INDEX: 5-52
:AND: 5-50
Optimization
and DWARF 3-75
and DWARF2 debug tables 3-75
Overloaded functionsin ADW/ADU
expressions 3-72

P

Padding 5-50
Page table model
access permissions 12-16
ARM740T protection unit 12-17
ARM810flags 12-15
ARMOA40T flags 12-15
ARMO40T protection unit 12-17
bufferable (B) bit 12-16
cacheable (C) bit 12-16
contents 12-16
domain access control
domainfield 12-16
initiaizing the MMU 12-15
physical base address 12-16
regionsize 12-16
regionsin 12-16
SA-110flags 12-15
translation faults 12-16
trandation table base register 12-15
updateable (U) bit 12-16
virtual base address 12-16
pagetab.c ARMulator model 12-3
Parameters (assembly macros) 5-42
Partitions, in APM 2-25
passing structures 6-13
Paths, search 3-36
Patterns, build step 2-40, 2-48
PC sampling 11-21
PCMCIA Ethernet card 13-96
pc, assembly 5-37
pc, assembly language 5-5, 5-9, 5-11,
5-35, 5-37, 5-40
Performance
improving 11-16
measuring 11-6
Peripherals, accessing 3-5
PERMITTED macro 13-60, 13-67
PID board
and Angel 13-14
Angel devicedrivers 13-61
Angel porting 13-41
PMCIA, and Angel 13-59
Pointers
datamembers 8-19
member functions 8-19
Polled devices, and Angel 13-64
POP instruction (Thumb) 5-40

12-15

porting

Angel 13-41

choosing an Angel template 13-43
Power-up 9-2
Preferences, in APM 2-32
Prefetch abort 9-2

and Angel 13-5, 13-19, 13-20

handler 9-36, 9-43

returning from 9-8
Process control blocks 9-32
Processor exception vectors

and Angel 13-69
Processor mode 5-4

and Angel stacks 13-37, 13-60
Processor time analysis 3-43
Processors

clock speeds 11-13

responding to exceptions 9-5
Profiler 11-20, 12-12

cache misses 12-12

configuring under ARMulator

12-12

instruction counts 12-12

profiling interval 12-12
profiler.c

ARMulator model 12-3

file 12-12
Profiling 3-43, 11-2, 11-20

and Angel timers 13-59

cal graph 11-20

collecting data 11-21

creating report 11-22

execution profile 11-20

flaa 11-20

instruction tracing 11-27

interval, setting 3-53

sortsexample 11-23
Program counter 5-9, 5-11, 5-35, 5-37,

5-40

Program counter, assembly 5-5, 5-37
Program image

reloading 3-11

stepping through 3-34
Program-relative

address 5-11

maps 5-48
Project

adding filesto 2-8

building 2-10

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Index-9

editing source files 2-19

expanding/collapsing view of 2-18

files 2-5

force building 2-12

format conversion 2-31

hierarchy 2-26

manager (APM), see APM

naming 2-29

sub-projects 2-4

templates 2-25, 2-40

variables 2-27

variants 2-28

viewing 2-9

window 2-16
Properties of variables 3-39
Prototype statement 5-42

Pseudo-instructions, assembly language

ADR 5-27,5-52

ADR (Thumb) 5-27

ADRL 5-27,5-52

LDR 5-22,5-25,5-31

LDR (litera pools) 5-25
PUSH instruction (Thumb) 5-40

Q

Quitting
ADW/ADU 3-10
APM 2-4

R

RAM

at addressO 10-3

measuring requirements 11-4
RB_ Angel register blocks 13-36
RDI (Remote Debug Interface) 3-6

log window 3-24, 3-41
Real-time addresses 3-5
Real-time simulation 11-8
References 8-19
Regionlnit macro (scatter loading)

10-26, 10-30

Register access (Thumb) 5-9
Register banks 5-4

Register-based maps 5-47
Register-relative address 5-11
Registers 5-4
displaying contents 4-3
halting if changed 3-29
REMAP 10-4
usage 6-10
window 3-24
Regular expressions 3-42
Relative maps 5-46
Reloading animage 3-11
REMAP register 10-4
Remote debug information 3-41
Remote A 3-6
configuring 3-59
Reset exception 9-2
handler 9-34
RESET vector 10-4
Return address 9-6
Return instruction 9-6
returning structures 6-13
ROADDR (Angel) 13-27, 13-47,
13-68, 13-69
ROM
at addressO 10-3
measuring requirements 11-4
writing code for 10-1
ROMBase macro 13-69
ROMulator 13-66
ROUT directive 5-11
RTOS
and Angel 13-18
and context switching 13-36
Runto cursor 3-34
Running licensed software A-7
RWADDR (Angel) 13-27, 13-47,
13-68, 13-69

S

Saved program status register 5-5
Scatter |oad description file
examples 10-25, 10-29
Scatter |oading
assembly veneers 10-33
function pointers 10-32

writing codefor ROM 10-24, 10-28

Scope 5-11
Search paths
viewing 3-36
window 3-24
Searching for licensefile A-11
Semihosting 13-3, 13-15, 13-17

enabling and disabling 13-4, 13-15

Semihosting SWIs 13-77
SYS CLOCK 13-87
SYS CLOSE 13-80
SYS ELAPSED 13-91
SYS ERRNO 13-88
SYS FLEN 13-85
SYS GET_CMDLINE 13-89
SYS HEAPINFO 13-90
SYS ISERROR 13-83
SYS ISTTY 13-84
SYS OPEN 13-79
SYS READ 13-82
SYS READC 13-83
SYS REMOVE 13-86
SYS RENAME 13-86
SYS SEEK 13-84
SYS SYSTEM 13-88
SYS TIME 13-87
SYS TMPNAM 13-85
SYS WRITE 13-81
SYS WRITEC 13-80
SYS WRITEO 13-80

serlasm.s 13-33

serlock 13-33

Server for license management A-2

SERVER lineinlicensefile A-9

setjmp()
code speed 11-19

Setting
breakpoints 3-26
environment varigble A-7
profiling interval 3-53
simple breakpoint 3-27
simple watchpoint 3-29

Short integers
to reduce codesize 11-17

Simple
breakpoint 3-26, 3-27
watchpoint 3-29

Register-based long-distance branching 10-32 Simulation
symbols 5-52 rangerestrictions 10-32 real-time 11-8
Index-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0040D

reducing timetaken 11-15
Single stepping 3-5
Soft reset 9-2
Software
development toolkit (SDT) 3-1
licensed A-1
software FPA emulator
undefined instruction handlers 9-35
Software interrupt, see SWIis
Sorts profiling example 11-23
Source files
editing 2-19
examining 3-37
inAPM 2-35
list window 3-24
window 3-25
Specid characters 3-42
Specifying strings 3-42
Sprintf()
asformat stringin ADW/ADU 3-70
SPSR 5-5,9-3,9-5
interworking ARM and Thumb 7-2
T bit 9-44
Stacks 5-4, 5-36, 9-3
Angel 13-37
initialization code for ROM images
10-7
stack pointer 9-3
supervisor 9-17
Starting
ADW/ADU 3-9
APM 2-4
license server software A-6
startrom.s 13-56
STARTUPCODE macro 13-56
Statistics
ARMulator 11-6
memory 11-12
Statusbar 3-8
Statusflags 5-17
Stepping through animage 3-34
Steps, build 2-12
STM instruction 5-34, 5-48
Thumb 5-40
Stopping
ADW/ADU 3-10
APM 2-4
execution 3-34

Storage declaration, inline assemblers
8-6
STRinstruction 5-45
String constants, assembly language
5-12
String copying
assembler 8-20
Strings
specifying and matching 3-42
structure passing and returning 6-13
Sub-projects 2-4
Subroutines, assembly language 5-15
Supervisor mode 9-17
and Angel 13-19
entering from Angel 13-92
Supervisor stack 9-17
suppasm.s 13-56, 13-57, 13-61, 13-98
SWI exception 9-2
SWI ingtruction 8-7, 9-14
Thumb 9-44
SWis
Angel Clibrary support SWis 13-77
ARMulator 12-26
caling 9-19
configuring for Angel 13-70
debug interaction SWIs 13-92
handlers 9-14, 9-15, 9-16, 9-17,
9-43
indirect 9-21
returning from 9-7
SYS Write0 10-37
Thumb state 9-44
0x80 - Ox88 12-26
0x90 - 0x98 12-26
Symbol names, mangling 8-18, 8-20
Symbols, high- and low-level 3-43
Symbols, register-based 5-52
System decoder 10-4
System mode 9-46
SYS CLOCK 13-87
SYS CLOSE 13-80
SYS ERRNO 13-88
SYS FLEN 13-85
SYS GET_CMDLINE 13-89
SYS GET_ELAPSED 13-91
SYS_GET_HEAPINFO 13-90
SYS ISERROR 13-83
SYS ISTTY 13-84
SYS OPEN 13-79

SYS READ 13-82

SYS READC 13-83
SYS REMOVE 13-86
SYS RENAME 13-86
SYS SEEK 13-84

SYS SYSTEM 13-88
SYS TIME 13-87

SYS TMPNAM 13-85
SYS WRITE 13-81
SYS WRITEC 13-80
SYS WRITEO 13-80

T

target.s 13-44, 13-55, 13-68, 13-69,
13-98
Task management
Angel 13-31,13-77
Task Queue Items 13-36
tasm 5-10
TDCC 13-59, 13-71
Templates
APM, location of 2-53
blank 2-42
project 2-25, 2-40
using APM 2-54
Terminology and concepts 3-7
this, implicit 8-18

Thumb
and scatter loading 10-33
and__irg 9-24

Angel breakpoint instruction 13-30

Angel SWI number 13-70

APM template 2-42

breakpoint setting 3-31

BX instruction 5-16, 7-5

Clibraries 7-19

changing to Thumb state, example
7-6

channel viewer 3-49

code for ROM applications 10-9

code, interworking template 2-53

conditional execution 5-17

C++ APM template 2-53

datain code areas 7-12

debug communications channel
3-49, 13-71

direct loading 5-24

ARM DUI 0040D

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Index-11

disassembly mode 3-21, 3-41
example assembly language 5-16
exception handler 9-41
handling exceptions 9-41
inline assemblers 8-2
instruction set 5-8
instruction set overview 5-8
interworking libraries 7-19
interworking veneers and profiling
restrictions 11-21
interworking with ARM 7-2, 7-8
LDM and STM instructions 5-40
popping pc 5-37
procedure call standard 6-11
return address 9-43
using duplicate function names
7-19
Time
analysis 3-43
Tool configurationin APM 2-21
Toolbar 3-8
Toolkit for software development 3-1
Toolsfor license management A-14
TPCS 6-11
interworking ARM and Thumb 7-2
register names and usage 6-11
TQI 13-36, 13-37
Tracefiles
address 12-10
disassembly 12-11
event lines 12-9
events 12-11
instruction addresses 12-11
instruction lines 12-9, 12-11
locked access 12-10
memory access 12-10
memory cycles 12-10
memory lines 12-9, 12-10
opcode 12-11
opcode fetch 12-10
output 12-9
read/write operations 12-10
return address 12-10
speculative instruction fetch 12-10
Tracer
configuring under ARMulator 12-6
debug support 12-8
disabling 12-8
disassembling instructions 12-7

enabling 12-8
events 12-7,12-8
flushing output to thetracefile 12-6
idlecycles 12-7
initializing 12-6
output to the RDI log window 12-7
quitting from 12-6
source of trace data 12-7
tracefile 12-7
tracing options 12-7
unaccounted RDI access 12-7
tracer.c ARMulator model 12-3, 12-4
Tracer_Close ARMulator function
12-6
Tracer_Dispatch ARMulator function
12-6
Tracer_Flush ARMulator function
12-6
Tracer_Open ARMulator function
12-6
Tracing 11-27
trickbox.c ARMulator model 12-4

U

UDP/IP 13-96
Undefined instruction exception 9-2
Undefined instruction handler 9-7,
9-35, 9-43
Undefined symbols
ROM code 10-37
Unhandled ADP_Stopped exception
13-94
UNMAPROM macro 13-56, 13-69
User mode 9-3
Using
ADW/ADU with C++ 3-62
APM 2-4
APM templates 2-54
APM with C++ 2-53
the classview window 3-64
Utilities for license management A-14

Vv

validate.c ARMulator model 12-4
Variables

changing contentsof,in ADW/ADU
3-70
formatting watches 3-69
halt if changed 3-29
project 2-27
propertiesof 3-39
setting watches, in ADW/ADU
3-66
viewing 3-37
$memstate 12-21
$statistics 12-21
Variants of projects 2-28
building 2-12
Vector table 9-3, 9-9, 9-23, 9-41
Vector table and caches 9-13
Vectors
exception 10-6
RESET 10-4
VENDOR lineinlicensefile A-9
Veneers, see Interworking
View
menu 3-14
of project, expanding/collapsing
2-18
window 2-20
Viewing
codein ADW/ADU 3-65
debugger variables 3-12
files,in APM 2-38
memory 3-13, 3-40
project 2-9
search paths 3-36
sourcefiles 3-37
variables 3-37
watchpoints 3-29

w

Watch window, in ADW/ADU 3-66
Watchpoints 4-7
simple 3-29
simple and complex 3-26, 3-29
viewing 3-29
window 3-25
Window
backtrace 3-18, 3-33
breakpoints 3-18, 3-26
command 3-17

Index-12

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0040D

console 3-16 Z

debugger internals 3-18

disassembly 3-21 Zero wait state memory system 12-19
execution 3-15

expression 3-22

function names 3-22, 3-43 Numerics

globals 3-22

locals 3-22 O-init data 11-4

low level symbols 3-23 64-bit

memory 3-23 integer addition 6-6

project 2-16 multiplication result 6-16

RDI log 3-24,3-41

registers 3-24

search paths 3-24 Symbols

sourcefile 3-25

sourcefileslist 3-24 # directive 5-45

view 2-20 $semihosting_enabled variable 13-4,

watch window 3-66 13-15

watchpoints 3-25 $top_of _memory debugger variable
winglass.c ARMulator model 12-3 13-90
Writing code for ROM 10-1 $vector_catch debugger variable 13-94

attribute conflict in linker 10-39 @ and ~ indicators 3-43

Clibrary 10-9

common problems 10-37

converting ELF output 10-34

critical 1/0O devices 10-7

embedded Clibrary 10-21

enabling interrupts 10-8

entry point 10-6

exception vectors 10-6

initidization 10-6

main function 10-9

memory for C code 10-8

MMU 10-7

processor mode 10-8

processor state 10-9

RAM at addressO0 10-3

RAM variables 10-7

ROM at addressO 10-3, 10-10,
10-19

ROM at its base address 10-10

scatter loading 10-24, 10-28
execution regions 10-26, 10-30
variables 10-8

stack pointers 10-7

suitable output formats 10-35

SWI SYS WriteO 10-37

undefined symbols 10-37

undefined _main 10-39

ARM DUI 0040D Copyright © 1997 and 1998 ARM Limited. All rights reserved. Index-13

	Preface
	About this book
	Organization

	Further reading
	ARM publications
	Other publications

	Typographical conventions
	Feedback
	Feedback on this book
	Feedback on the ARM Software Development Toolkit

	Introduction
	1.1 About the ARM Software Development Toolkit
	1.1.1 Components of the SDT
	1.1.2 Components of C++ version 1.10

	1.2 Supported platforms
	1.3 What is new?
	1.3.1 Functionality enhancements and new functionality
	1.3.2 Changes in default behavior
	1.3.3 Obsolete and deprecated features

	ARM Project Manager
	2.1 About the ARM Project Manager
	2.1.1 Online help

	2.2 Getting started
	2.2.1 Starting and stopping APM
	2.2.2 Projects and sub-projects
	2.2.3 Build
	2.2.4 Correcting problems
	2.2.5 Project output

	2.3 The APM desktop
	2.3.1 Project window
	2.3.2 Changing the way a project is displayed
	2.3.3 Edit window
	2.3.4 View window

	2.4 Additional APM functions
	2.4.1 Configuring tools
	2.4.2 Partitions
	2.4.3 Project templates
	2.4.4 Project hierarchy
	2.4.5 Variables
	2.4.6 Variants
	2.4.7 Changing a project name
	2.4.8 Converting old projects

	2.5 Setting preferences
	2.5.1 APM preferences
	2.5.2 Editor preferences

	2.6 Working with source files
	2.6.1 Creating a new source file with APM
	2.6.2 When a file type is associated with multiple partitions
	2.6.3 Performing a single build step

	2.7 Viewing object and executable files
	2.7.1 decaof
	2.7.2 decaxf

	2.8 Working with project templates
	2.8.1 General information
	2.8.2 Blank templates supplied with APM
	2.8.3 Editing a variable
	2.8.4 Editing a path
	2.8.5 Editing a project template
	2.8.6 Creating a new template
	2.8.7 Editing project template details

	2.9 Build step patterns
	2.9.1 Specifying input and output patterns in a build step pattern
	2.9.2 Editing a build step pattern
	2.9.3 Adding a build step pattern

	2.10 Using APM with C++
	2.10.1 APM templates for C++
	2.10.2 Using the ARM Project Manager C++ Templates

	ARM Debuggers for Windows and UNIX
	3.1 About the ARM Debuggers
	3.1.1 Online help
	3.1.2 Debugging an ARM application
	3.1.3 Debugging systems
	3.1.4 Debugger concepts

	3.2 Getting started
	3.2.1 The ARM Debugger desktop
	3.2.2 Starting and closing the debugger
	3.2.3 Loading, reloading, and executing a program image
	3.2.4 Examining and setting variables, registers, and memory

	3.3 ARM Debugger desktop windows
	3.3.1 Main windows
	3.3.2 Optional windows

	3.4 Breakpoints, watchpoints, and stepping
	3.4.1 Simple breakpoints
	3.4.2 Simple watchpoints
	3.4.3 Complex breakpoints
	3.4.4 Complex watchpoints
	3.4.5 Backtrace
	3.4.6 Stepping through an image

	3.5 Debugger further details
	3.5.1 Working with source files
	3.5.2 Working with variables
	3.5.3 Displaying disassembled and interleaved code
	3.5.4 Remote debug information
	3.5.5 Using regular expressions
	3.5.6 High level and low level symbols
	3.5.7 Profiling
	3.5.8 Saving or changing an area of memory
	3.5.9 Specifying command-line arguments for your program
	3.5.10 Using command-line debugger instructions
	3.5.11 Changing the data width for reads and writes
	3.5.12 Flash download

	3.6 Channel viewers (Windows only)
	3.6.1 ThumbCV channel viewer

	3.7 Configurations
	3.7.1 Debugger configuration
	3.7.2 ARMulator configuration
	3.7.3 Angel remote configuration
	3.7.4 EmbeddedICE configuration

	3.8 ARM Debugger with C++
	3.8.1 About ADW for C++
	3.8.2 Using the C++ debugging tools
	3.8.3 Using the Class View window
	3.8.4 Using the Watch window
	3.8.5 Evaluating expressions
	3.8.6 Debug Format Considerations

	Command-Line Development
	4.1 The hello world example
	4.1.1 Create, compile, link, and run
	4.1.2 Debugging hello.c
	4.1.3 Separating the compile and link stages
	4.1.4 Generating interleaved C and assembly language
	4.1.5 For more information

	4.2 armsd
	4.2.1 Starting armsd and loading an image
	4.2.2 Obtaining help on the armsd commands
	4.2.3 Setting and removing simple breakpoints
	4.2.4 Setting and removing simple watchpoints
	4.2.5 Executing the program
	4.2.6 Stepping through the program
	4.2.7 Exiting the debugger
	4.2.8 Viewing and setting program variables
	4.2.9 Displaying source code
	4.2.10 Viewing and setting debugger variables

	Basic Assembly Language Programming
	5.1 Introduction
	5.1.1 Code examples

	5.2 Overview of the ARM architecture
	5.2.1 Architecture versions
	5.2.2 ARM and Thumb state
	5.2.3 Address space
	5.2.4 Processor mode
	5.2.5 Registers
	5.2.6 ARM instruction set overview
	5.2.7 Thumb instruction set overview

	5.3 Structure of assembly language modules
	5.3.1 Layout of assembly language source files
	5.3.2 An example ARM assembly language module
	5.3.3 Calling Subroutines
	5.3.4 An example Thumb assembly language module

	5.4 Conditional execution
	5.4.1 The ALU status flags
	5.4.2 Execution conditions
	5.4.3 Using conditional execution in ARM state

	5.5 Loading constants into registers
	5.5.1 Direct loading with MOV and MVN
	5.5.2 Loading with LDR Rd, =const

	5.6 Loading addresses into registers
	5.6.1 Direct loading with ADR and ADRL
	5.6.2 Loading addresses with LDR Rd, = label

	5.7 Load and store multiple register instructions
	5.7.1 ARM LDM and STM Instructions
	5.7.2 LDM and STM addressing modes
	5.7.3 Implementing stacks with LDM and STM
	5.7.4 Block copy with LDM and STM
	5.7.5 Thumb LDM and STM instructions

	5.8 Using macros
	5.8.1 Test and branch macro example
	5.8.2 Unsigned integer division macro example

	5.9 Describing data structures with MAP and # directives
	5.9.1 Absolute maps
	5.9.2 Relative maps
	5.9.3 Register based maps
	5.9.4 Program-relative maps
	5.9.5 Finding the end of the allocated data
	5.9.6 Forcing correct alignment
	5.9.7 Using register-based MAP and # directives
	5.9.8 Using two register-based structures
	5.9.9 Avoiding problems with MAP and # directives

	Using the Procedure Call Standards
	6.1 About the procedure call standards
	6.2 Using the ARM Procedure Call Standard
	6.2.1 APCS register names and usage
	6.2.2 An example of APCS register usage: 64-bit integer addition
	6.2.3 A more detailed look at APCS register usage

	6.3 Using the Thumb Procedure Call Standard
	6.3.1 TPCS register names and usage

	6.4 Passing and returning structures
	6.4.1 The default method
	6.4.2 Returning integer-like structures
	6.4.3 Returning non integer-like structures in registers

	Interworking ARM and Thumb
	7.1 About interworking
	7.1.1 When to use interworking

	7.2 Basic assembly language interworking
	7.2.1 The Branch Exchange instruction
	7.2.2 Implementing interworking assembly language subroutines
	7.2.3 Data in Thumb code areas

	7.3 C and C++ interworking and veneers
	7.3.1 Specifying APCS options
	7.3.2 Compiling code for Interworking
	7.3.3 Simple rules for interworking
	7.3.4 Detecting interworking calls
	7.3.5 Using two copies of the same function
	7.3.6 The C and C++ interworking libraries

	7.4 Assembly language interworking using veneers
	7.4.1 Assembly-only interworking using veneers
	7.4.2 C, C++, and assembly language interworking using veneers

	7.5 ARM-Thumb interworking with the ARM Project Manager
	7.5.1 Choosing a template
	7.5.2 Using the Thumb-ARM interworking image project
	7.5.3 Modifying a project to support interworking
	7.5.4 C library usage and the ARM Project Manager

	Mixed Language Programming
	8.1 Using the inline assemblers
	8.1.1 Invoking the inline assembler
	8.1.2 ARM and Thumb instruction sets
	8.1.3 Differences between the inline assemblers and armasm
	8.1.4 Restrictions
	8.1.5 Usage
	8.1.6 Examples

	8.2 Accessing C global variables from assembly code
	8.3 Using C header files from C++
	8.3.1 Including system C header files
	8.3.2 Including your own C header files

	8.4 Calling between C, C++, and ARM assembly language
	8.4.1 General rules for calling between languages
	8.4.2 C++ specific information
	8.4.3 Examples

	Handling Processor Exceptions
	9.1 Overview
	9.1.1 The vector table
	9.1.2 Use of modes and registers by exceptions
	9.1.3 Exception priorities

	9.2 Entering and leaving an exception
	9.2.1 The processor response to an exception
	9.2.2 Returning from an exception handler
	9.2.3 The return address and return instruction

	9.3 Installing an exception handler
	9.3.1 Installing the handlers at reset
	9.3.2 Installing the handlers from C

	9.4 SWI handlers
	9.4.1 SWI handlers in assembly language
	9.4.2 SWI handlers in C and assembly language
	9.4.3 Using SWIs in supervisor mode
	9.4.4 Calling SWIs from an application
	9.4.5 Calling SWIs dynamically from an application

	9.5 Interrupt handlers
	9.5.1 Simple interrupt handlers in C
	9.5.2 Reentrant interrupt handlers
	9.5.3 Example interrupt handlers in assembly language

	9.6 Reset handlers
	9.7 Undefined instruction handlers
	9.8 Prefetch abort handler
	9.9 Data abort handler
	9.10 Chaining exception handlers
	9.10.1 A single extended handler
	9.10.2 Several chained handlers

	9.11 Handling exceptions on Thumb-capable processors
	9.11.1 Thumb processor response to an exception
	9.11.2 The return address
	9.11.3 Determining the processor state

	9.12 System mode

	Writing Code for ROM
	10.1 About writing code for ROM
	10.2 Memory map considerations
	10.2.1 ROM at 0x0
	10.2.2 RAM at 0x0

	10.3 Initializing the system
	10.3.1 Defining the entry point
	10.3.2 Setting up exception vectors
	10.3.3 Initializing the memory system
	10.3.4 Initializing the stack pointers
	10.3.5 Initializing any critical I/O devices
	10.3.6 Initializing RAM variables required by the interrupt system
	10.3.7 Initializing memory required by C code
	10.3.8 Enabling interrupts
	10.3.9 Changing processor mode
	10.3.10 Changing processor state
	10.3.11 Entering C code

	10.4 Example 1: Building a ROM to be loaded at address 0
	10.4.1 Area listing for the code
	10.4.2 Output from -info Sizes option
	10.4.3 Sample code

	10.5 Example 2: Building a ROM to be entered at its base address
	10.5.1 Building the ROM image
	10.5.2 Sample disassembly

	10.6 Example 3: Using the embedded C library
	10.6.1 Initialization code
	10.6.2 C code
	10.6.3 Compiling, linking, and running the program
	10.6.4 Code listings for example 3

	10.7 Example 4: Simple scatter loading example
	10.7.1 Memory map
	10.7.2 Scatter load description file
	10.7.3 Initialization code
	10.7.4 Initializing execution regions
	10.7.5 C code
	10.7.6 Building the example

	10.8 Example 5: Complex scatter load example
	10.8.1 Memory map
	10.8.2 Scatter load description file
	10.8.3 Initialization code
	10.8.4 Initializing execution regions
	10.8.5 Building the example
	10.8.6 Running the example

	10.9 Scatter loading and long-distance branching
	10.9.1 Range restrictions

	10.10 Converting ARM linker ELF output to binary ROM formats
	10.10.1 Multiple output formats
	10.10.2 Configuration

	10.11 Troubleshooting hints and tips
	10.11.1 Replacing the Write0() SWI call
	10.11.2 Linker errors

	Benchmarking, Performance Analysis, and Profiling
	11.1 About benchmarking and profiling
	11.2 Measuring code and data size
	11.2.1 Interpreting size information
	11.2.2 Calculating ROM and RAM requirements
	11.2.3 Code and data sizes example: Dhrystone

	11.3 Performance benchmarking
	11.3.1 Measuring performance
	11.3.2 Cycle counting example: Dhrystone
	11.3.3 Real-time simulation
	11.3.4 Reading the simulated time
	11.3.5 Map files
	11.3.6 Real-time simulation example: Dhrystone
	11.3.7 Reducing the time required for simulation

	11.4 Improving performance and code size
	11.4.1 Compiler options
	11.4.2 Improving image size with the linker
	11.4.3 Changing the source

	11.5 Profiling
	11.5.1 Availability of profiling
	11.5.2 About armprof
	11.5.3 Collecting profile data
	11.5.4 Saving profile data
	11.5.5 Generating the profile report
	11.5.6 Profiling example: sorts
	11.5.7 Profiling and instruction tracing with ARMulator

	ARMulator
	12.1 About the ARMulator
	12.2 ARMulator models
	12.2.1 Sample models
	12.2.2 Model stub exports

	12.3 Tracer
	12.3.1 Configuring the Tracer
	12.3.2 Debugger support for tracing
	12.3.3 Interpreting trace file output

	12.4 Profiler
	12.4.1 Configuring the profiler

	12.5 Windows Hourglass
	12.6 Watchpoints
	12.6.1 Enabling watchpoints

	12.7 Page table manager
	12.7.1 Controlling the MMU and cache
	12.7.2 Controlling registers 2 and 3
	12.7.3 Pagetable contents

	12.8 armflat
	12.8.1 Selecting the ARMflat memory model

	12.9 armfast
	12.9.1 Selecting the ARMfast memory model

	12.10 armmap
	12.10.1 Clock frequency
	12.10.2 Selecting the ARMmap memory model
	12.10.3 How ARMmap calculates wait-states
	12.10.4 Configuring the ARMmap memory model

	12.11 Dummy MMU
	12.11.1 Configuring the Dummy MMU

	12.12 Angel
	12.12.1 Configuring Angel
	12.12.2 ARMulator SWIs

	12.13 Controlling the ARMulator using the debugger
	12.13.1 About RDI
	12.13.2 Using the armul.cnf configuration file
	12.13.3 The armsd.map File

	12.14 A sample memory model
	12.14.1 The memory map
	12.14.2 Implementation

	12.15 Rebuilding the ARMulator
	12.15.1 Rebuilding on UNIX
	12.15.2 Rebuilding on Windows

	12.16 Configuring ARMulator to use the example

	Angel
	13.1 About Angel
	13.1.1 Angel system features
	13.1.2 Angel component overview
	13.1.3 Angel system resource requirements

	13.2 Developing applications with Angel
	13.2.1 Full Angel debug agent
	13.2.2 Minimal Angel
	13.2.3 Overview of the development procedure
	13.2.4 Developing an application under full Angel
	13.2.5 Developing an application under minimal Angel
	13.2.6 Application communications
	13.2.7 Downloading new application versions

	13.3 Angel in operation
	13.3.1 Initialization
	13.3.2 Waiting for debug communications
	13.3.3 Angel debugger functions
	13.3.4 Angel task management
	13.3.5 Context switching
	13.3.6 Example of Angel processing: a simple IRQ

	13.4 Porting Angel to new hardware
	13.4.1 Angel source code directory structure
	13.4.2 Overview of porting steps and recommendations
	13.4.3 Modifying the UNIX makefile
	13.4.4 Modifying an APM project
	13.4.5 Modifying target-specific files
	13.4.6 Writing the device drivers
	13.4.7 Downloading a new version of Angel
	13.4.8 Debugging your Angel port

	13.5 Configuring Angel
	13.5.1 Configuring the memory map
	13.5.2 Configuring timers and profiling
	13.5.3 Configuring exception handlers
	13.5.4 Configuring where Angel runs
	13.5.5 Configuring SWI numbers

	13.6 Angel communications architecture
	13.6.1 Overview of the Angel communications layers
	13.6.2 Boot support
	13.6.3 Channels layer and buffer management
	13.6.4 Device driver layer

	13.7 Angel C library support SWIs
	13.7.1 Angel task management and SWIs
	13.7.2 SYS_OPEN (0x01)
	13.7.3 SYS_CLOSE (0x02)
	13.7.4 SYS_WRITEC (0x03)
	13.7.5 SYS_WRITE0 (0x04)
	13.7.6 SYS_WRITE (0x05)
	13.7.7 SYS_READ (0x06)
	13.7.8 SYS_READC (0x07)
	13.7.9 SYS_ISERROR (0x08)
	13.7.10 SYS_ISTTY (0x09)
	13.7.11 SYS_SEEK (0x0a)
	13.7.12 SYS_FLEN (0x0c)
	13.7.13 SYS_TMPNAM (0x0d)
	13.7.14 SYS_REMOVE (0x0e)
	13.7.15 SYS_RENAME (0xf)
	13.7.16 SYS_CLOCK (0x10)
	13.7.17 SYS_TIME (0x11)
	13.7.18 SYS_SYSTEM (0x12)
	13.7.19 SYS_ERRNO (0x13)
	13.7.20 SYS_GET_CMDLINE (0x15)
	13.7.21 SYS_HEAPINFO (0x16)
	13.7.22 SYS_ELAPSED (0x30)
	13.7.23 SYS_TICKFREQ (0x31)

	13.8 Angel debug agent interaction SWIs
	13.8.1 angel_SWIreason_EnterSVC (0x17)
	13.8.2 angel_SWIreason_ReportException (0x18)
	13.8.3 angel_SWIreason_LateStartup (0x20)

	13.9 The Fusion IP stack for Angel
	13.9.1 How Angel, Fusion, and the PID hardware fit together

	FlexLM License Manager
	A.1 About license management
	A.1.1 Installing FlexLM software

	A.2 Obtaining your license file
	A.3 What to do with your license file
	A.4 Starting the server software
	A.5 Running your licensed software
	A.5.1 Setting the environment variable ARMLMD_LICENSE_FILE
	A.5.2 Running your application

	A.6 Customizing your license file
	A.6.1 Server and Vendor lines
	A.6.2 Feature lines

	A.7 Finding a license
	A.8 Using FlexLM with more than one product
	A.8.1 All products use the same server
	A.8.2 All products use different license servers

	A.9 FlexLM license management utilities
	A.9.1 License administration tools

	A.10 Frequently asked questions about licensing
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	Numerics
	Symbols

