

Abstract— This paper describes a software platform used for
controlling any set of collaborative robots. The platform is
specially designed for users without special skills on hardware
design or communication topics. The platform provides a standard
to simplify the addition of new hardware devices. The system runs
over Linux operating system; it is accessible through different
programming languages. Calls among architecture processes are
performed using XML-RPC. Data transport is TCP-IP based;
therefore the system is accessible from a conventional Internet link.
Some experiments are performed in order to detect the
programming languages that better fit in the architecture and the
better web server for operating. It was found that php, in
comparison with C language, reduces more than three times the
speed of call processing, and more that seven times in comparison
with c-sharp language (MONO implementation). Using CGI to
access an Apache server is twice faster than using s standalone
server.

I. INTRODUCTION

At the moment there is a great demand of robotic systems
to solve complex tasks in fields as manufacturing,
construction, transportation, medicine and others.
Furthermore, in web-controlled systems, robots play the role
of a physical mediator, enabling people to remotely acquire
information, explore, manipulate, communicate, and interact
physically with other people far away [1-6]

Currently, in robotics research groups it is not strange to
find small very specialized research groups in certain
subjects but without any background in others, like the
robotic field. This implies multiple and very diverse
disciplines, it is difficult to find research groups with the
multi-disciplinary degree needed. The main idea of the
present work is to design and implement a development
platform that facilitates the work of researchers in fields like
AI (artificial intelligence), Neuronal Networks, Navigation,
and in general, applications where the use of robots is
required. Additionally, it would be interesting to integrate
this platform with the necessary tools to establish, in a
simple way, the dialogue between different platforms, and
offer support for techniques and algorithms directed towards
collaborative agents and distributed systems. The
development is completed with a software layer that allow to
access from high level to all the resources of the robot, as
well as it is possible an extension or modification.

II. OBJECTIVE
The objective of this work is to present a generic and

flexible platform that allows abstracting of the hardware
problem to the software specialist, especially in the subjects
related to robotic cooperative systems. It also serves as an
aid to the hardware designer, who can count on a finished
and proven system. The hardware specialist can add
peripherals to the system, just fulfilling a simple standard
previously defined. The final result is formed by a hardware
structure and some applications/libraries.

The hardware structure is composed of a movable
platform equipped with sensors and network interfaces to
allow collaboration between different platforms.

The software part is composed of the drivers necessary to
handle the sensors and actuators and the protocols necessary
to intercommunicate robot-robot and robot-application. For
the end user of the platform, the system is a "black box"
accessible through simple remote calls.

III. GDRBOT PLATFORM
In this section we describe the GdRBot platform, specially

its software component. The GdRBot platform is a free and
standard implementation of a robotic system, very flexible
and easy to use.

The platform is formed by two types of elements: Clients
and Servers, see figure 1, running in different types of
hardware platforms. A client makes requests and monitors
the servers through XML-RPC calls. If a client is unable to
use the physical medium of the server’s network, it sends the
requests through a bridge. The server is installed in the
robots, and clients can be installed in the robot or in any
processor based system. Clients installed inside the robots
are used to do survival tasks, as avoiding crashes, and to do
cooperative tasks, as playing a soccer match. In a few words,
the server handles the hardware and the client does the logic
work.

In practice, each robot is built around an element of
relatively powerful control, with numerous network
interfaces and a non-defined number of transducers
/actuators, to support the maximum number of possible
tasks.

The platform must govern all these elements in a simple
and flexible way.

A Generic Software Platform for Controlling Collaborative Robotic
System using XML-RPC

G. Glez. de Rivera, R. Ribalda, J. Colás, and J. Garrido (IEEE Member)
Escuela Politécnica Superior. Universidad Autónoma de Madrid

Email: guillermo.gdrivera@uam.es, ricardo.ribalda@uam.es, jose.colas@uam.es,
javier.garrido@uam.es

The reasoning on which elements compose the server
follows a top/down strategy and it concerns the robot
exclusively.

Fig. 1. System architecture. It is formed by two types of elements:
Clients and Servers connected trought any type of network.

A. Architecture
The design should provide a system that allows to carry out
3 types of actions:
• Survival: The robot must be an autonomous entity with

the possibility of making decisions by itself. For
example: “to avoid crashes”.

• Remote Control: The user should be able to control a
robot in a remote way for carrying out actions, (for
example: moves), or to show us its environment
sensations where it is moving (for example: “show us
the camera”).

• Interoperability: The robots must be able to interact
with each other to carry out common tasks, such as
design a floor plan building.

To provide these actions we have two options:
• One server for each action type in every robot.
• One unique server to carry out the tasks in every robot.

If the first solution is chosen (several servers) we will
have to face problems like the arbitration in the use of the
robot's elements hardware (for example: “when we want to
move a wheel towards remotely and the survival system opts
for the opposite.”). The solution for this problem goes by the
generation of a POSIX like semaphore which arbitrates the
use of the hardware. This solution complicates the
development of the control of the hardware. Likewise, we
will generate three different elements, with different
interfaces, multiplying for three the necessary efforts for the
generation of the same ones. However, as a positive aspect,
we will have an specialized and very efficient software that
supports interruption driver tasks.

If the one-server solution is adopted, we will not have to
face competition problems for the hardware, neither we will
duplicate efforts in the development of the same ones.
However, the software will be less efficient and will not
support interruptions. Nevertheless, these mechanisms can
be substituted by pooling.
Since simplicity is one key in our platform, we have opted

for a system built only with one server.

B. Remote process
Once we have already decided on a architecture based on a
unique server for each control unit, we must decide the way
of communicating with this server. We need a simple
system, (if the development gets complicated the platform
will not make sense), that supports in a simple way, great
quantity of languages (we can not force the development
team to use a particular language), it must be standard (so it
is open to new languages) and that it can works in several
operating systems in a shadow way.
The most mature alternatives that exist at the present are:
Corba, DCOM, SOAP, RMI and XML-RPC (http://xmlrpc-
c.sourceforge.net/xmlrpc-howto/xmlrpc-howto-corba.html).
• Corba: It is a popular language to write distributed

software guided to objects. It is very supported and
possesses an enviable IDL, but it is very complex. It
requires very sophisticated clients and it is difficult to
implement.

• DCOM: It is the answer from Microsoft to Corba. It is
easier of using; however, it only works in MS-
Windows.

• SOAP: It is based on XML+HTTP, but it specification
is not very good, and it has unnecessary elements.

• RMI: It is the system of distribution of Java language. It
is very potent and easy to use, however it can only be
used from Java. It is not a good option for our system
that seeks just the opposite, to be as most supported as
possible.

• XML-RPC: It is based on the HTTP protocol to
transport and XML to code. It is, therefore, a highly
standardized and easy system. Likewise, it possesses
implementations for almost any well-known language.
In the case of using a language that does not have
implementation of XML-RPC, it is very simple to
develop it, the standard does not have more than 10
pages. To summarize: XML-RPC means simple and
standard. As compensation it is necessary to highlight
the overload caused by HTTP and XML. At the present,
there are more than 100 official implementations of
XML-RPC that give support to more than 40
programming languages
(http://xmlrpc.scripting.com/directory/1568/implementa
tions).

Another big advantage of XML-RPC is that it supports
Reflection, that is, the services can be auto-described.
To finish, we would like to highlight the last great advantage
of XML-RPC: our robots are open to the Web world. Today,
the protocol that web systems use to intercommunicate is
usually XML-RPC. To carry out webs applications
integrated with robots has never been easier.

C. Transport
Once we have decided on our server and the

communications nature, we must decide on the way we will
use to transport requests. The answer seems very simple:
TCP/IP.

TCP/IP supports multitude of physical supports and you
can even encapsulate easily in any protocol as ATM.

Working with great quantity of physical supports is a great
utility. In robotic there are some scenarios where the use of a
particular physical support is totally discarded, and others
where the work conditions are so specific that it is only
possible to use a particular one (robots for use in space).
We have chose a set of physical supports among the
following ones: Ethernet, 802.11, Serial port, Parallel port ,
GSM modem , USB, Bluetooth and IrDa, although the use
of another one, due to the use of TCP/IP, will not imply
design changes

In some cases, we will need to adapt the network to work
with lower delays. We will solve this problem using external
tools to the platform

D. Operating system
Once we have selected the high level transport protocol,

the procedure for remote calls and the design of the server,
the following step is the operating system selection.

This selection is one of the most important of the system,
because it will significantly affect the efficiency,
adaptability and flexibility of our platform.

Since the communication will be made through XML-
RPC+TCP/IP, the interoperability is guaranteed, but we will
need to analyse other different elements to these ones, such
as yield, tweaking, connectivity and compatibility with
different hardware architectures (http://www.kernel.org).

The option more indicated in this case is LINUX. Linux
is easily to modify for the final user, because it has a lot of
documentation and sources to the user's disposition, likewise
it supports a great quantity of architectures (32-bit, Compaq
Alpha AXP, Sun SPARC and UltraSPARC, Motorola
68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, IBM
S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD
x86-64, AXIS CRIS, and Renesas M32R architectures).
Thus, we will be able to substitute (interchange) the robot
hardware without problems.

Besides, Linux also works very well with not very
powerful hardware.

As compensation, we need to highlight that some
manufacturers hide information about their devices, what
disables their use in Linux. However, we can affirm that
with Linux, the platform will be open up to more hardware
than with others that we can choose.

Another reason could be that Linux is focused to network
and security. The nucleus of Linux has support for infinity
of physical mediums for IP, as well as routing, bridging,
firewalling, etc.

To carry the software to other operating systems would
not suppose a great work, although it would reduce their
functionality, when supporting less architectures hardware
and less physical networks.

E. Programming language
The last important decision to make is the programming

language to use to implement the robot server.
It is necessary to keep in mind that XML-RPC protocol

uses HTTP like transport protocol, so we will need also a
Web server. Since we have a powerful control unit and

Linux has a wonderful Web server called Apache, we will
make use of it, although if we do not have enough
computational power or we decide to reduce that cost, it
would be possible to choose a lighter Web server or
implement it by ourselves.

Once solved the problem of the HTTP protocol, we will
need to choose an extensively tested, stable and powerful
language that allows the communication with the hardware
in a simple way. It can seem that the use of an interpreted
language is the solution, because it would allow to absorb of
the operating system, but later we will see that this solution,
in the same way that separates us from the operating system,
and it takes us away from the hardware, it also lowers the
yield. Since the nature of our server is exactly the opposite
(access to the hardware), the language must be compiled.

Now, for what we have argued above, it can seem that the
best option is the use of a language that is very related with
the hardware, just as the assembler. However we will
quickly realize that we must carry out complex tasks at low
level (XML-RPC), and that we would be restricting our
system to a specific platform hardware.

For all this, it seems to be that the inflection point among
a high-level language like Java and a very low level
language like assembler, it is the C language. It allows us to
make very high level tasks, due to the libraries while it does
not move us away from the hardware, to which we can
continue access in a simple way.

F. Final specifications
Finally, the system software specifications are the

following:
TABLE 1

PLATFORM SPECIFICATIONS
Architecture Monoserver
RPC XML-RPC
Transport TCP/IP
Operating System Linux
Language C

IV. PLATFORM DESIGN
Once analysed the development requirements, now the

platform design will be detailed studied.

A. The client
The client is a program or service that carries out requests

or monitors a server. It is composed of three parts:
• Application: It is contributed by the final user and is

developed in the language selected by him. It will be
able to run on any operating system.

• Robotics library: It is contributed by our platform for
some languages. It simply abstracts the user from the
XML-RPC protocol.

• XML-RPC library: It is contributed by a third part. It
implements the XML-RPC protocol. If necessary it is
based in open standards, so it is possible to develop
from zero without being too complex.

Fig. 2. Robot server block diagram.

B. The Robot server
The server is installed in the robot. Basically, it is

composed of the following parts (figure 2):
Network Interfaces: They allow the robot to communicate

in different networks, and different physical media.
Control Unit: It carries out the logical actions of the

server. It receives through the network interfaces XML-RPC
requests which must be dealt independently. It can
communicate with the hardware through different elements,
such as: Serial ports, PCI, Parallel port, USB, etc. From a
global view, it is composed of:
• WEB Server: Its function is to negotiate and process HTTP

requests using CGI, it transmits these requests to the
Sensor Server.

• Sensor Server: It is executed through CGI and its function
is to analyse the Web Server requests. Then, it processes
them and returns a Web page where the answer is coded.
The sensor server is composed of the following elements:

• XML-RCP library: It parses the requests carried out by
the Web server and evaluates their parameters.
Likewise, it executes the corresponding function for
this request. It is composed internally of two libraries:
HTTP and XML.

• Dispatcher: It arbitrates the access to the different
devices to avoid conflicts. Likewise, it distributes the
request to the different drivers.

• Nucleus: It allows to access the hardware (network
devices like the different sensors/actuators).

• Drivers: They carry out the low level access to the
different devices.

V. COMMUNICATION STACK
Once detailed the architecture high level design, we will

describe how a request is manipulated by the different
elements in the platform (figure 3):

An application decides to transmit a request, for that it
uses the robotic library or the XML-RPC library. If the
request is incorrect an error is returned.

The request is transformed into a XML document that
will be transmitted using the HTTP protocol.

The communication is divided into TCP/IP frames that
will travel through one of the different networks in function
of the message destination. In the case of lost frames, TCP
retransmits the frame to obtain semantic transparency.

If it is necessary, a bridge will retransmit the request to a
different physical network without modifying its content.

Once this frame has arrived to its destination, the
packages will be decoded to form a HTTP request which
will be transmitted to the WEB server.

The Web server will identify the message and it will send
the message to the robotic server using CGI. If the HTTP
protocol is not completed an error page will be generated.

The robotic server obtains the XML document which will
be parsed by the XML-RPC library. If a nonexistent method
is requested, or the protocol is not completed, a XML
document it is returned with an error message.

The drivers will pass the request to the different hardware
elements.

The answer obtained from the drivers will be transformed
into a XML document using the XML-RPC library.

The XML document is transmitted to the Web server that
retransmits it to the client making all the previous steps in
inverse order.

VI. AN EXAMPLE OF USING THE APPLICATION
As one example of the platform capacity for collaborative

work, we will try to solve the problem of carrying out a
work coordinated among a group of robots, supervised by a
client PC [7]. For this case, in the platform we will install
two different clients located at the robots:

Survival Client: It constantly pools over error conditions
inside the robot, such as crashes.

Collaboration Client: It carries out the collaborative tasks
among the robots.

A client installed in the PC that will take charge of
monitoring the robots.

The client inside the robot, can be developed in any
programming language, but for the same operating system
used by the robot (in this case Linux).

The client inside the PC can be developed in any
language and in any operating system. If operating system is
not compatible with the physical medium of robots network,
a bridge will be used.

VII. EXPERIMENTAL RESULTS
Because of the platform architecture can be adapted to
different languages and different web servers, a set of
experiments are made to evaluate the best configuration.

4.1.- Choosing a language: In this first experiment, we do
a number of calls to the robotic server from different clients
implemented in the robot but in different programming
languages.

Web Server

Network

HTTP/CGI Lib.

XML Lib.

XML-RPC Library

Dispatcher

Sound
Driver

Sensor
Driver

Camera
Driver

Fig. 3. Protocol Stack example. It is showed how an order (Go Right) is processed from the user or simulator to the involved sensor or actuator.

All calls are made to a server running as an Apache's CGI,
and because calls are from one robot to itself, the network
delays are inappreciable. In this case delays that affected to
this experiment are delays for creating TCP/IP frames
(managed by the kernel, so they are constant in every
language), delays dued to inserting a XML petition on
HTTP protocol (they depend on how they are implemented),
delays dued to XML parsing (they also depend on how they
are implemented, but they are harder process than managing
HTTP protocol) and finally delays dued to calls processing.
These different representative languages have been chosen:
1. C using XML-RPC-c library available at http://XML-

RPC-c.sourceforge.net/: it is a general purpose compiled
language.

2. PHP using The Inutio XML-RPC Library available at
http://scripts.incutio.com/XML-RPC/: Interpreted
language designed for creating dynamic web pages.

3. Java using The Apache's Library available at
http://ws.apache.org/XML-RPC/: Object based language
interpreted with precompilation to bytecode.

4. c# (Mono platform available at http://www.mono-
project.com/ using the XML-RPC.NET library available
at http://www.xml-rpc.net/: New object based language,
interpreted with precompilation to bytecode.

Figure 4 shows the results of such experiment. As it can
be observed, the most efficient language is PHP, this is
because the library used for XML-RPC makes XML parsing
very fast. Also, the HTTP transport is made by a PHP's core
library, which is also very fast. After PHP, the next fastest
language is C. The reason for C been slower than PHP
(despite being a compiled language) is that the library used

for XML-RPC uses internally very slow libraries for HTTP
transport (http://www.w3c.org/Library/) and XML parsing
(http://www.jclark.com/XML/expat.html). The worse
behaviours are produced by c-sharp and Java clients. Java
shows some dispersion in its graphic; this is because, its
virtual machine is unpredictable. Mono is the slowest
language, and this is because the implementation used
(MONO) is still too immature.

Fig. 4. Language comparative. It is represented time taken by calls
realized by different languages.

4.2.- Choosing Web server Type: In this experiment, two
different clients (PHP and C) are tested over two different
servers. One server is an Apache's CGI , and the other is an
standalone server with the robotic server as part of it. The
standalone server is based on Abyss web server available at
http://abyss.sourceforge.net/.

XML-RPC Call
 (XMLCall(go_right arg1,arg2));

 Actuator Sensor Simulator User

Go Right

APPLICATION ACTUATOR/SENSOR
DRIVER

XML-RPC LIBRARY WEB SERVER

NETWORK STACK

TCP

IP

NETWORK STACK

TCP

IP

WIRELESS
INTERFACE

ETHERNET
INTERFACE

SERIAL
INTERFACE

WIRELESS
INTERFACE

ETHERNET
INTERFACE

SERIAL
INTERFACE

ROBOT LIBRARY XML-RPC LIBRARY

go_right (arg1, arg2)

XML-RPC Call
 (XMLCall (go_right arg1,arg2));

HTTP Conection (XML)
(GETrobot.cgi <xml coding =…>)
 (XMLCall(go_right arg1,arg2));

IP Frames (1s & 0s)

HTTP Conection (XML)
(GETrobot.cgi…)
 (XMLCall(go_right arg1, arg2));

XML (<xml coding=…>)

IP Frames

go_right (arg1, arg2)

The graphic of figure 5 shows that C works much better
with the Apache's CGI than the standalone server. In other
hand, PHP work better on the standalone server, but in a
lower order.
 In all cases, every language shows a linear behaviour.
 If the server is standalone, it is always running, and a fault
in a driver can make the whole robotic system crash.
4.3.- Multiple Calls: When its needed to make polling to the
server, its possible to choose between two different methods.

 Fig. 5. Web server comparative. It is represented time taken by
calls realized by c and php languages to two different servers
Apache-CGI and standalone.

 The first option is doing these calls synchronously (before
doing next call, we wait for the response to came back). The
second option is doing the calls asynchronously (all the calls
are made at once, without waiting for the responses).
 In these experiments (figure 6), some calls have been
done synchronously and asynchronously, from a C client
running in the robot and in a PC on the Internet to a robot
server running as an Apache's CGI.

If the client is located in the robot, the best method is the
synchronous one, because the asynchronous method
produces an overhead, and the network latency is zero.

Fig. 6. Call method comparative. It is represented time taken by
calls from a client inside the server or from an external client. Also
it is represented the time taken comparative if calls are performed in
asyncronal or syncronal way.

On the other hand, if the client is located in a PC in the
Internet, the best method is the asynchronous, because the
network latency is not negligible. In the asynchronous
method, this latency just affect once, but in the synchronous
it affects every call.

VIII. CONCLUSIONS AND FUTURE WORK
To reduce the time for robotic developments, it has been

designed a platform that allows a non technical user to
program and use a set of robots with great flexibility and
simplicity.

The use of this platform guarantees the user will be able
to create great variety of new applications, at the same time
it allows the reusability of old platform elements. This
platform is not dependent of any element, and so it is able to
guarantee their durability in the future.

The platform described in this document completes all
these characteristics. As future work we have created a
directory system inside the platform, that will show which
servers are working at each moment and which are the
functionalities that they offer in order to facilitate
cooperative tasks.

Because XML/RPC is not specially efficient for video
streams transmission, two solutions are being studied:
communication through RTP or HTTP without loading of
XML/RPC. In last case it has been carried out some
satisfactory tests.

REFERENCES
[1] D. Wang; X. Ma and X. Dai, “Web-based robotic control system with

flexible framework”. Proc. ICRA '04. 2004 IEEE International
Conference on Robotics and Automation, Volume: 4, pp:3351-3356.

[2] S. Dissanaike; P. Wijkman and M. Wijkman, “Utilizing XML-RPC or
SOAP on an embedded system”, Proc. 24th International Conference
on Distributed Computing Systems Workshops, 2004, pp438–440.

[3] X. Wang; M. Moallem and R.V. Patel.” An Internet-based distributed
multiple-telerobot system”. IEEE Transactions on Systems, Man and
Cybernetics, Part A, Vol:33, Issue: 5, Sept. 2003, pp:627 – 634.

[4] R. Marin, P.J. Sanz, P. Nebot and R. Esteller, “Multirobot Internet-
Based Architecture for Telemanipulation: Experimental Validation”
IEEE International Conference Systems, Man and Cybernetics, 2003,
Vol: 4, 5-8 Oct. pp:3565-3570.

[5] K. Taylor and B. Dalton, “Internet robots: a new robotics niche”, IEEE
Robotics & Automation Magazine, Vol: 7 , Issue: 1 , March 2000,
pp:27-34.

[6] H. Hiraishi, H. Ohwada and F. Mizoguchi. “Web-based
Communication and Control for Multiagent Robots”. Proc.IEEE/RSJ
Int. Conference on Intelligence Robots and Systems. Victoria B.C. ,
(Canada), 1998, pp 120-125.

[7] G. Glez. de Rivera, K. Koroutchev, R. Ribalda and J. Garrido,
“Occlusion Avoiding using Group Evolution Learning”. In preparation

