
CONVERGENCE PROPERTIES OF THE
NELDER–MEAD SIMPLEX METHOD IN LOW DIMENSIONS∗

JEFFREY C. LAGARIAS† , JAMES A. REEDS‡ , MARGARET H. WRIGHT§ , AND

PAUL E. WRIGHT¶

SIAM J. OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 9, No. 1, pp. 112–147

Abstract. The Nelder–Mead simplex algorithm, first published in 1965, is an enormously pop-
ular direct search method for multidimensional unconstrained minimization. Despite its widespread
use, essentially no theoretical results have been proved explicitly for the Nelder–Mead algorithm.
This paper presents convergence properties of the Nelder–Mead algorithm applied to strictly convex
functions in dimensions 1 and 2. We prove convergence to a minimizer for dimension 1, and various
limited convergence results for dimension 2. A counterexample of McKinnon gives a family of strictly
convex functions in two dimensions and a set of initial conditions for which the Nelder–Mead algo-
rithm converges to a nonminimizer. It is not yet known whether the Nelder–Mead method can be
proved to converge to a minimizer for a more specialized class of convex functions in two dimensions.

Key words. direct search methods, Nelder–Mead simplex methods, nonderivative optimization

AMS subject classifications. 49D30, 65K05

PII. S1052623496303470

1. Introduction. Since its publication in 1965, the Nelder–Mead “simplex” al-
gorithm [6] has become one of the most widely used methods for nonlinear uncon-
strained optimization. The Nelder–Mead algorithm should not be confused with the
(probably) more famous simplex algorithm of Dantzig for linear programming; both
algorithms employ a sequence of simplices but are otherwise completely different and
unrelated—in particular, the Nelder–Mead method is intended for unconstrained op-
timization.

The Nelder–Mead algorithm is especially popular in the fields of chemistry, chem-
ical engineering, and medicine. The recent book [16], which contains a bibliography
with thousands of references, is devoted entirely to the Nelder–Mead method and vari-
ations. Two measures of the ubiquity of the Nelder–Mead method are that it appears
in the best-selling handbook Numerical Recipes [7], where it is called the “amoeba
algorithm,” and in Matlab [4].

The Nelder–Mead method attempts to minimize a scalar-valued nonlinear func-
tion of n real variables using only function values, without any derivative information
(explicit or implicit). The Nelder–Mead method thus falls in the general class of di-
rect search methods; for a discussion of these methods, see, for example, [13, 18]. A
large subclass of direct search methods, including the Nelder–Mead method, maintain
at each step a nondegenerate simplex, a geometric figure in n dimensions of nonzero
volume that is the convex hull of n+ 1 vertices.

Each iteration of a simplex-based direct search method begins with a simplex,
specified by its n + 1 vertices and the associated function values. One or more test
points are computed, along with their function values, and the iteration terminates

∗Received by the editors May 13, 1996; accepted for publication (in revised form) November 24,
1997; published electronically December 2, 1998.

http://www.siam.org/journals/siopt/9-1/30347.html
†AT&T Labs–Research, Florham Park, NJ 07932 (jcl@research.att.com).
‡AT&T Labs–Research, Florham Park, NJ 07932 (reeds@research.att.com).
§Bell Laboratories, Murray Hill, NJ 07974 (mhw@research.bell-labs.com).
¶AT&T Labs–Research, Florham Park, NJ 07932 (pew@research.att.com).

112



PROPERTIES OF NELDER–MEAD 115

with bounded level sets, section 4 analyzes the Nelder–Mead method in one dimen-
sion, and section 5 presents limited convergence results for the standard Nelder–Mead
algorithm in two dimensions. Finally, section 6 discusses open problems.

2. The Nelder–Mead algorithm. The Nelder–Mead algorithm [6] was pro-
posed as a method for minimizing a real-valued function f(x) for x ∈ Rn. Four scalar
parameters must be specified to define a complete Nelder–Mead method: coefficients
of reflection (ρ), expansion (χ), contraction (γ), and shrinkage (σ). According to the
original Nelder–Mead paper, these parameters should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, and 0 < σ < 1.(2.1)

(The relation χ > ρ, while not stated explicitly in the original paper, is implicit in
the algorithm description and terminology.) The nearly universal choices used in the
standard Nelder–Mead algorithm are

ρ = 1, χ = 2, γ = 1
2 , and σ = 1

2 .(2.2)

We assume the general conditions (2.1) for the one-dimensional case but restrict our-
selves to the standard case (2.2) in the two-dimensional analysis.

2.1. Statement of the algorithm. At the beginning of the kth iteration, k ≥ 0,
a nondegenerate simplex ∆k is given, along with its n + 1 vertices, each of which is
a point in Rn. It is always assumed that iteration k begins by ordering and labeling

these vertices as x
(k)
1 , . . . , x

(k)
n+1, such that

f
(k)
1 ≤ f (k)

2 ≤ · · · ≤ f (k)
n+1,(2.3)

where f
(k)
i denotes f(x

(k)
i ). The kth iteration generates a set of n + 1 vertices that

define a different simplex for the next iteration, so that ∆k+1 6= ∆k. Because we seek

to minimize f , we refer to x
(k)
1 as the best point or vertex, to x

(k)
n+1 as the worst point,

and to x
(k)
n as the next-worst point. Similarly, we refer to f

(k)
n+1 as the worst function

value, and so on.
The 1965 paper [6] contains several ambiguities about strictness of inequalities

and tie-breaking that have led to differences in interpretation of the Nelder–Mead
algorithm. What we shall call “the” Nelder–Mead algorithm (Algorithm NM) includes
well-defined tie-breaking rules, given below, and accepts the better of the reflected
and expanded points in step 3 (see the discussion in section 3.1 about property 4 of
the Nelder–Mead method).

A single generic iteration is specified, omitting the superscript k to avoid clutter.
The result of each iteration is either (1) a single new vertex—the accepted point—
which replaces xn+1 in the set of vertices for the next iteration, or (2) if a shrink is
performed, a set of n new points that, together with x1, form the simplex at the next
iteration.

One iteration of Algorithm NM (the Nelder–Mead algorithm).
1. Order. Order the n + 1 vertices to satisfy f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1),

using the tie-breaking rules given below.
2. Reflect. Compute the reflection point xr from

xr = x̄ + ρ(x̄− xn+1) = (1 + ρ)x̄− ρxn+1,(2.4)



116 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

where x̄ =
∑n
i=1 xi/n is the centroid of the n best points (all vertices except for

xn+1). Evaluate fr = f(xr).
If f1 ≤ fr < fn, accept the reflected point xr and terminate the iteration.

3. Expand. If fr < f1, calculate the expansion point xe,

xe = x̄ + χ(xr − x̄) = x̄ + ρχ(x̄− xn+1) = (1 + ρχ)x̄− ρχxn+1,(2.5)

and evaluate fe = f(xe). If fe < fr, accept xe and terminate the iteration; otherwise
(if fe ≥ fr), accept xr and terminate the iteration.

4. Contract. If fr ≥ fn,
perform a contraction between x̄ and the better of xn+1 and xr.
a. Outside. If fn ≤ fr < fn+1 (i.e., xr is strictly better than xn+1), perform an
outside contraction: calculate

xc = x̄ + γ(xr − x̄) = x̄ + γρ(x̄− xn+1) = (1 + ργ)x̄− ργxn+1,(2.6)

and evaluate fc = f(xc). If fc ≤ fr, accept xc and terminate the iteration; otherwise,
go to step 5 (perform a shrink).
b. Inside. If fr ≥ fn+1, perform an inside contraction: calculate

xcc = x̄− γ(x̄− xn+1) = (1− γ)x̄ + γxn+1,(2.7)

and evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and terminate the iteration;
otherwise, go to step 5 (perform a shrink).

5. Perform a shrink step. Evaluate f at the n points vi = x1 + σ(xi − x1),
i = 2, . . . , n+ 1. The (unordered) vertices of the simplex at the next iteration consist
of x1, v2, . . . , vn+1.

Figures 1 and 2 show the effects of reflection, expansion, contraction, and shrink-
age for a simplex in two dimensions (a triangle), using the standard coefficients ρ = 1,
χ = 2, γ = 1

2 , and σ = 1
2 . Observe that, except in a shrink, the one new vertex always

lies on the (extended) line joining x̄ and xn+1. Furthermore, it is visually evident that
the simplex shape undergoes a noticeable change during an expansion or contraction
with the standard coefficients.

The Nelder–Mead paper [6] did not describe how to order points in the case of
equal function values. We adopt the following tie-breaking rules, which assign to

the new vertex the highest possible index consistent with the relation f(x
(k+1)
1 ) ≤

f(x
(k+1)
2 ) ≤ · · · ≤ f(x

(k+1)
n+1 ).

Nonshrink ordering rule. When a nonshrink step occurs, the worst vertex

x
(k)
n+1 is discarded. The accepted point created during iteration k, denoted by v(k),

becomes a new vertex and takes position j + 1 in the vertices of ∆k+1, where

j = max
0≤`≤n

{ ` | f(v(k)) < f(x
(k)
`+1) };

all other vertices retain their relative ordering from iteration k.

Shrink ordering rule. If a shrink step occurs, the only vertex carried over

from ∆k to ∆k+1 is x
(k)
1 . Only one tie-breaking rule is specified, for the case in which

x
(k)
1 and one or more of the new points are tied as the best point: if

min{f(v
(k)
2 ), . . . , f(v

(k)
n+1)} = f(x

(k)
1 ),



PROPERTIES OF NELDER–MEAD 117

x̄

xr

x3

x̄

xr

xe

x3

Fig. 1. Nelder–Mead simplices after a reflection and an expansion step. The original simplex is
shown with a dashed line.

x̄

xr

xc

x3

x̄

xcc

x3

x1

Fig. 2. Nelder–Mead simplices after an outside contraction, an inside contraction, and a shrink.
The original simplex is shown with a dashed line.

then x
(k+1)
1 = x

(k)
1 . Beyond this, whatever rule is used to define the original ordering

may be applied after a shrink.

We define the change index k∗ of iteration k as the smallest index of a vertex
that differs between iterations k and k + 1:

k∗ = min{ i | x
(k)
i 6= x

(k+1)
i }.(2.8)

(Tie-breaking rules are needed to define a unique value of k∗.) When Algorithm NM
terminates in step 2, 1 < k∗ ≤ n; with termination in step 3, k∗ = 1; with termination
in step 4, 1 ≤ k∗ ≤ n + 1; and with termination in step 5, k∗ = 1 or 2. A statement
that “xj changes” means that j is the change index at the relevant iteration.

The rules and definitions given so far imply that, for a nonshrink iteration,



146 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

It is interesting that, apart from this further requirement, the conditions (2.1) given
in the original Nelder–Mead paper suffice to ensure convergence in one dimension.
The behavior of the algorithm in dimension 1 can nonetheless be very complicated;
for example, there can be an infinite number of expansions even when convergence is
M -step linear (Theorem 4.2).

In two dimensions, the behavior of even the standard Nelder–Mead method (with
ρ = 1, χ = 2, and γ = 1

2 ) is more difficult to analyze for two reasons:
1. The space of simplex shapes is not compact, where the shape of a simplex

is its similarity class; see the discussion at the end of section 2. It appears that the
Nelder–Mead moves are dense in this space, i.e., any simplex can be transformed by
some sequence of Nelder–Mead moves to be arbitrarily close to any other simplex
shape; this property reflects the intent expressed by Nelder and Mead [6] that the
simplex shape should “adapt itself to the local landscape.” This contrasts strongly
with the nature of many pattern search methods [13], in which the simplex shapes
remain constant.

2. The presence of the expansion step means that vol(∆) is not a Lyapunov
function3 for the iteration.

The two-dimensional results proved in section 5 seem very weak but conceivably
represent the limits of what can be proved for arbitrary strictly convex functions.
In particular, Theorem 5.2 leaves open the possibility that the ever-smaller simplices
endlessly “circle” the contour line f(x) = f∗. Since no examples of this behavior
are known, it may be possible to prove the stronger result that the simplices always
converge to a single point x∗.

An obvious question concerns how the Nelder–Mead method can fail to converge
to a minimizer in the two-dimensional case. Further analysis suggests that, for suitable
strictly convex functions (C1 seems to suffice), failure can occur only if the simplices
elongate indefinitely and their shape goes to “infinity” in the space of simplex shapes
(as in the McKinnon counterexample).

An interesting open problem concerns whether there exists any function f(x)
in R2 for which the Nelder–Mead algorithm always converges to a minimizer. The
natural candidate is f(x, y) = x2 + y2, which by affine-invariance is equivalent to
all strictly convex quadratic functions in two dimensions. A complete analysis of
Nelder–Mead for x2 + y2 remains an open problem.

Our general conclusion about the Nelder–Mead algorithm is that the main mys-
tery to be solved is not whether it ultimately converges to a minimizer—for general
(nonconvex) functions, it does not—but rather why it tends to work so well in practice
by producing a rapid initial decrease in function values.

Acknowledgments. The authors greatly appreciate the referee’s detailed and
constructive comments, which helped us to improve the content and presentation of
the paper. We also thank Virginia Torczon for making us aware of the connections
described in section 4.4. Margaret Wright is extremely grateful to Steve Fortune for
many interesting discussions and his consistently enlightening geometric insights.

REFERENCES

[1] J. E. Dennis and V. Torczon, Direct search methods on parallel machines, SIAM J. Optim.,
1 (1991), 448–474.

3See the discussion of Lyapunov functions in, for example, [11, pp. 23–27] in the context of
stability of nonlinear fixed points.



PROPERTIES OF NELDER–MEAD 147

[2] C. T. Kelley, Detection and Remediation of Stagnation in the Nelder-Mead Algorithm Using
a Sufficient Decrease Condition, Technical report, Department of Mathematics, North
Carolina State University, Raleigh, NC, 1997.

[3] J. C. Lagarias, B. Poonen, and M. H. Wright, Convergence of the restricted Nelder-Mead
algorithm in two dimensions, in preparation, 1998.

[4] Math Works, Matlab, The Math Works, Natick, MA, 1994.
[5] K. I. M. McKinnon, Convergence of the Nelder-Mead simplex method to a nonstationary

point, SIAM J. Optim., 9 (1998), 148–158.
[6] J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal

7 (1965), 308–313.
[7] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipes

in C, Cambridge University Press, Cambridge, UK, 1988.
[8] A. Rykov, Simplex direct search algorithms, Automation and Robot Control, 41 (1980), 784–

793.
[9] A. Rykov, Simplex methods of direct search, Engineering Cybernetics, 18 (1980), 12–18.

[10] A. Rykov, Simplex algorithms for unconstrained optimization, Problems of Control and Infor-
mation Theory, 12 (1983), 195–208.

[11] A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge
University Press, New York, 1996.

[12] V. Torczon, Multi-directional Search: A Direct Search Algorithm for Parallel Machines, Ph.D.
thesis, Rice University, Houston, TX, 1989.

[13] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
1–25.

[14] V. Torczon, Private communication, 1997.
[15] P. Tseng, Fortified-Descent Simplicial Search Method: A General Approach, Technical re-

port, Department of Mathematics, University of Washington, Seattle, WA, 1995; SIAM J.
Optim., submitted.

[16] F. H. Walters, L. R. Parker, S. L. Morgan, and S. N. Deming, Sequential Simplex Opti-
mization, CRC Press, Boca Raton, FL, 1991.

[17] D. J. Woods, An Interactive Approach for Solving Multi-objective Optimization Problems,
Ph.D. thesis, Rice University, Houston, TX, 1985.

[18] M. H. Wright, Direct search methods: Once scorned, now respectable, in Numerical Analysis
1995: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis, D. F.
Griffiths and G. A. Watson, eds., Addison Wesley Longman, Harlow, UK, 1996, 191–208.


	begin
	algorithm
	figures
	references

