Towards effective mutation testing for ATL

Esther Guerra, Juan de Lara Universidad Autónoma de Madrid (Spain)

> Jesús Sánchez Cuadrado Universidad de Murcia (Spain)

Model transformations

- Importance of correctness of model transformations
- Testing of transformations helps in detecting errors
- How do you know if you did enough tests?
- Mutation testing to the rescue!
 - It permits quantifying the quality of a test suite
 - Based on injecting artificial faults in the program under test
 - If test suite detects the artificial faults, it will likely detect real errors
- Our focus is on mutation testing for ATL

Mutation testing

Input

- ATL transformation to test
- Test suite made of:
 - input models (manual vs automatic)
 - oracle function (partial vs total)

- Challenge: Identify the best test input model generation technique
 - good at finding errors
 - few models if possible

Mutation testing

Mutation operators

- Mimic errors of competent developers
- Used to create mutants of the program

- Operators for ATL exist, but do not mimic real errors
- Challenge: Design operators based on errors made by ATL developers

Mutation testing

Mutation score

- For each mutant, execute test suite against mutant and original program
- Compare results
 - if different, the mutant is killed
 - otherwise, it is alive (undetected error)
- Mutation score = killed mutants / total mutants
- The higher the score, the better the quality of the test suite

Mutation testing

On effectiveness

- Mutation testing is very expensive (many potential mutants)
- Careful selection of mutation operators
 - do not produce trivial mutants
 - produce hard-to-kill mutants

 Challenge: Analyse the effectiveness of operators for ATL, which is unknown

Mutation testing

Improving the test suite

Add input models that kill live mutants

 Challenge: Devise a technique to synthesize mutant-killer models for ATL

Contributions

- Mutation operators for ATL
 - new operators that mimic frequent ATL developer errors
 - evaluation of efficacy of these and other operators
- Test suite
 - evaluation of efficacy of three test model generation techniques: random, meta-model coverage, transformation coverage
 - novel technique to generate input models that kill live mutants
- Open-source tool for mutation testing of ATL

A Brief Tour

of

ATL

ATL

- Atlas Transformation Language
- Widely used model transformation language
- Dynamic, testing is needed to avoid runtime errors

```
create OUT: Relational from IN: Class
helper context Class!Attribute def: multiValued : Boolean =
  if self.upperBound = -1 then true
  else self.upperBound > 1 endif;
rule Class2Table {
  from c : Class!Class ( not c.isAbstract )
  to out : Relational! Table (
      name < - c.name.
      col < - Sequence {key} \rightarrow union(c.att\rightarrow select(e | not e.multiValued)),
      kev < - Set{kev}).
    key: Relational!Column ( name <- 'objectId' )
rule MultiValuedDataTvpeAttribute2Column {
  from a: Class!Attribute (a.type.ocllsKindOf(Class!DataType) and a.multiValued)
  to out : Relational! Table (
      name < - a.owner.nameOrEmpty + '-' + a.name,
      col < - Sequence {thisModule.createIdColumn(a.owner), value} ).
    value : Relational!Column ( name <- a.name )
lazy rule createIdColumn {
  from ne · Class | Named Fit
  to key: Relational!Column ( name <- ne.name )
```

create OUT : Relational from IN : Class // input and output meta-models

```
helper context Class!Attribute def: multiValued : Boolean =
  if self.upperBound = -1 then true
  else self.upperBound > 1 endif;
rule Class2Table {
  from c : Class!Class ( not c.isAbstract )
  to out : Relational! Table (
      name < - c.name.
      col < - Sequence{key}\rightarrowunion(c.att\rightarrowselect(e | not e.multiValued)),
      kev < - Set{kev}).
    key : Relational!Column ( name <- 'objectId' )
rule MultiValuedDataTypeAttribute2Column {
  from a : Class!Attribute ( a.type.ocllsKindOf(Class!DataType) and a.multiValued )
  to out : Relational! Table (
      name < - a.owner.nameOrEmpty + '-' + a.name,
      col < - Sequence {thisModule.createIdColumn(a.owner), value} ).
    value : Relational!Column ( name <- a.name )
lazy rule createIdColumn {
  from ne · Class | Named Fit
  to key: Relational!Column ( name <- ne.name )
```

```
create OUT: Relational from IN: Class
helper context Class!Attribute def: multiValued : Boolean =
 if self.upperBound = -1 then true
 else self.upperBound > 1 endif:
rule Class2Table { // matched rule
 from c : Class!Class ( not c.isAbstract ) // input pattern with filter
 to out : Relational! Table ( // output pattern
     name < - c.name.
     col <- Sequence{key}→union(c.att→select(e | not e.multiValued)),
     kev < - Set{kev}).
   key : Relational!Column ( name <- 'objectId' )
rule MultiValuedDataTypeAttribute2Column {
 from a : Class!Attribute ( a.type.ocllsKindOf(Class!DataType) and a.multiValued )
 to out : Relational! Table (
     name < - a.owner.nameOrEmptv + '-' + a.name.
     col <- Sequence {thisModule.createIdColumn(a.owner), value} ),
   value : Relational!Column ( name <- a.name )
lazy rule createldColumn {
 from ne : Class!NamedElt
 to key: Relational!Column ( name < - ne.name )
```

```
create OUT: Relational from IN: Class
helper context Class!Attribute def: multiValued : Boolean =
 if self.upperBound = -1 then true
 else self.upperBound > 1 endif;
rule Class2Table {
 from c : Class!Class ( not c.isAbstract )
 to out : Relational! Table (
     name <- c.name, // binding
     col < − Sequence{key}→union(c.att→select(e | not e.multiValued)), // binding
     kev < - Set{kev}).
   key : Relational!Column ( name <- 'objectId' )
rule MultiValuedDataTypeAttribute2Column {
 from a: Class!Attribute ( a.type.ocllsKindOf(Class!DataType) and a.multiValued )
 to out : Relational! Table (
     name < - a.owner.nameOrEmptv + '-' + a.name.
     col <- Sequence {thisModule.createIdColumn(a.owner), value} ),
   value : Relational!Column ( name < - a.name )
lazy rule createldColumn
 from ne : Class!NamedElt
 to key: Relational!Column ( name < - ne.name )
```

```
create OUT · Relational from IN · Class
helper context Class!Attribute def: multiValued : Boolean = // helper, similar to a function
  if self.upperBound = -1 then true
  else self.upperBound > 1 endif;
rule Class2Table {
  from c : Class!Class ( not c.isAbstract )
  to out : Relational! Table (
     name < - c.name.
     col <- Sequence{key} \rightarrow union(c.att \rightarrow select(e | not e.multiValued)), // helper invocation
     key < - Set{key}),
    key: Relational!Column ( name < - 'obiectId' )
rule MultiValuedDataTypeAttribute2Column {
  from a : Class!Attribute ( a.type.ocllsKindOf(Class!DataType) and a.multiValued )
  to out : Relational! Table (
     name < - a.owner.nameOrEmpty + '-' + a.name,
     col <- Sequence {thisModule.createIdColumn(a.owner), value} ),
    value : Relational!Column ( name < - a.name )
lazy rule createldColumn {
  from ne : Class!NamedElt
  to key: Relational!Column ( name < - ne.name )
```

Mutation testing for ATL

Mutation Operators

for

ATL

Syntactic operators

- Create-update-delete operations on language elements
- Troya et al. [1]: 18 operators for main elements of ATL meta-model

Concept	Operator
Matched rule	addition
	deletion
	name change
In and out pattern element	addition
	deletion
	class change
	name change
Filter	addition
	deletion
	condition change
Binding	addition
	deletion
	value change
	feature change

¹Troya et al., Towards systematic mutations for and with ATL model transformations, ICST Workshops, 2015, pp ■1-10 ⊃ < ○

Semantic operators

- Operations mimic faults a developer may incur, based on authors' experience not on empirical evidence
- Mottu et al. [1,2]: 10 operators which are language-independent

Navigation operators

Classes association creation addition (CACA)

Relation to the same class change (RSCC)	Replaces navigation by another to the same class			
Relation to another class change (ROCC)	Replaces navigation by another to a different class			
Relation sequence modification with deletion (RSMD)	Removes last step of a navigation sequence			
Relation sequence modification with addition (RSMA)	Adds navigation step in a navigation sequence			
Filter operators				
Collection filtering change with perturbation (CFCP)	Modifies filter, e.g., acting on property or type of class			
Collection filtering change with deletion (CFCD)	Deletes filter			
Collection filtering change with addition (CFCA)	Adds filter, e.g., returning an arbitrary element			
Creation operators				
Class compatible creation replacement (CCCR)	Replaces type of created object by a compatible one			
Classes association creation deletion (CACD)	Deletes creation of association			

Adds relation between two target objects

¹Mottu et al., *Mutation analysis testing for model transformations*, ECMDA-FA, LNCS 4066, Springer, 2006, pp. 376-390

² Aranega et al., Towards an automation of the mutation analysis dedicated to model transformations, STVR 25(5), 2014

Typing operators

- Operators introduce typing errors or force runtime errors
- Sánchez et al. [1]: 27 operators
 - used to test a static analyzer for ATL
 - coverage of ATL mm + operators for programming languages

Туре	Targets		
Creation	binding		
	source/target pattern element		
	rule inheritance relation		
Deletion	rule, helper, binding		
	source/target pattern element		
	rule filter, rule inheritance relation		
Type modification	type of source/target pattern element		
	helper context type, helper return type		
	type of variable, collection or parameter		
Feature name modification	navigation expression, target of binding		
Operation name modification	predefined operator (e.g., and) or operation (e.g., size)		
	collection operation (e.g., includes), iterator (e.g., exists, collect)		
	operation/helper invocation		

¹Sánchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017, pp. 868-897 () > () ()

Operators based on errors made in practice (zoo)

- Operators emulate errors made by competent developers
- Zoo set (new!!!): 7 operators emulating the 5 most frequent typing errors in the ATL zoo [1]

Error	Frequency	Operator
No binding for compulsory target feature	48.8%	Remove binding of compulsory feature (RBCF)
Invalid actual parameter type	11.9%	Replace helper call parameter (RHCP)
Feature access over possibly undefined receptor	11.22%	Remove enclosing conditional (REC)
		Add navigation after optional feature (ANAOF)
Feature found in subtype	3.75%	Replace feature access by subtype feature (RSF)
Binding possibly unresolved	3.7%	Restrict rule filter (RRF)
		Delete rule (DR)

Esther Guerra

¹Sánchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017, pp. 868<u>8</u>897 < ₱ → ⟨ ₱

Operators based on errors made in practice (zoo)

- Operators emulate errors made by competent developers
- Zoo set (new!!!): 7 operators emulating the 5 most frequent typing errors in the ATL zoo [1]

Error	Frequency	Operator
No binding for compulsory target feature	48.8%	Remove binding of compulsory feature (RBCF)
Invalid actual parameter type	11.9%	Replace helper call parameter (RHCP)
Feature access over possibly undefined receptor	11.22%	Remove enclosing conditional (REC)
		Add navigation after optional feature (ANAOF)
Feature found in subtype	3.75%	Replace feature access by subtype feature (RSF)
Binding possibly unresolved	3.7%	Restrict rule filter (RRF)
		Delete rule (DR)

Esther Guerra

Operators based on errors made in practice (zoo)

- Operators emulate errors made by competent developers
- Zoo set (new!!!): 7 operators emulating the 5 most frequent typing errors in the ATL zoo [1]

Error	Frequency	Operator
No binding for compulsory target feature	48.8%	Remove binding of compulsory feature (RBCF)
Invalid actual parameter type	11.9%	Replace helper call parameter (RHCP)
Feature access over possibly undefined receptor	11.22%	Remove enclosing conditional (REC)
		Add navigation after optional feature (ANAOF)
Feature found in subtype	3.75%	Replace feature access by subtype feature (RSF)
Binding possibly unresolved	3.7%	Restrict rule filter (RRF)
		Delete rule (DR)

Esther Guerra

¹Sánchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017, pp. 868<u>8</u>897 < ₱ → ⟨ ₱

Operators based on errors made in practice (zoo)

- Operators emulate errors made by competent developers
- Zoo set (new!!!): 7 operators emulating the 5 most frequent typing errors in the ATL zoo [1]

Error	Frequency	Operator		
No binding for compulsory target feature	48.8%	Remove binding of compulsory feature (RBCF)		
Invalid actual parameter type	11.9%	Replace helper call parameter (RHCP)		
Feature access over possibly undefined receptor	11.22%	Remove enclosing conditional (REC)		
		Add navigation after optional feature (ANAOF)		
Feature found in subtype	3.75%	Replace feature access by subtype feature (RSF)		
Binding possibly unresolved	3.7%	Restrict rule filter (RRF)		
		Delete rule (DR)		

¹ Sánchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017, pp. 868-897 () + (

Operators based on errors made in practice (zoo)

- Operators emulate errors made by competent developers
- Zoo set (new!!!): 7 operators emulating the 5 most frequent typing errors in the ATL zoo [1]

Error	Frequency	Operator
No binding for compulsory target feature	48.8%	Remove binding of compulsory feature (RBCF)
Invalid actual parameter type	11.9%	Replace helper call parameter (RHCP)
Feature access over possibly undefined receptor	11.22%	Remove enclosing conditional (REC)
		Add navigation after optional feature (ANAOF)
Feature found in subtype	3.75%	Replace feature access by subtype feature (RSF)
Binding possibly unresolved	3.7%	Restrict rule filter (RRF)
		Delete rule (DR)

¹ Sánchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017, pp. 868-897 () + (

Operators based on errors made in practice (zoo)

- Operators emulate errors made by competent developers
- Zoo set (new!!!): 7 operators emulating the 5 most frequent typing errors in the ATL zoo [1]

Error	Frequency	Operator
No binding for compulsory target feature	48.8%	Remove binding of compulsory feature (RBCF)
Invalid actual parameter type	11.9%	Replace helper call parameter (RHCP)
Feature access over possibly undefined receptor	11.22%	Remove enclosing conditional (REC)
		Add navigation after optional feature (ANAOF)
Feature found in subtype	3.75%	Replace feature access by subtype feature (RSF)
Binding possibly unresolved	3.7%	Restrict rule filter (RRF)
		Delete rule (DR)

¹ Sánchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017, pp. 868-897 () + (

Tool Support

Tool support

- Java framework for mutation testing of ATL: https://github.com/jdelara/MDETesting
- Implementation of all presented mutation operators (extensible)
- Operators can use transformation typing info (anATLyzer)
- Generator of test models (random, mm coverage, path coverage)
- Generator of mutant-killer models (explained later)

Efficacy of

Operators and

Test Model Generation Techniques

Experiment design

- 6 syntactically correct transformations from the ATL zoo
- For each transformation:
 - create test suite with models generated by our three techniques (random, meta-model coverage, path coverage)
 - create transformation mutants
 - compute mutation score
- Overall, >32 000 mutants, >1 million executions

Applicability of operators

- 61% operators were applicable to all transformations
- 4 operators with poor applicability (i.e., frequently useless):
 - [typ] deletion of parent rule (1 application)
 - [typ] modification of type of variable (1 application)
 - [zoo] deletion of enclosing conditional (1 application)
 - [syn] deletion of input pattern element (0 applications)

- overall, 88% mutants were killed
- most operators produced stubborn mutants (killed by few models)

ld	Туре	Operator	Mutants	%Killed mutants	%Killer models	
0	syn	In pattern element deletion	0	=	-	
1	sem	Classes association creation addition (CACA)	14	100.00	17.87	
2	Z00	Replace feature access by subtype feature	48	100.00	3.97	
3	typ	Parent rule deletion	21	100.00	3.72	
4	typ	Variable modification	48	100.00	2.08	
5	sem	Relation sequence modification with deletion (RSMD)	72	100.00	1.94	
18	typ,syn	In pattern element creation	3818	100.00	0.03	
21	typ,syn	Remove binding	724	99.45	0.13	
24	Z00	Remove binding of compulsory feature	260	99.23	0.36	
52	typ	Helper deletion	780	89.87	0.12	
53	typ	Parameter deletion	513	89.47	0.15	
54	typ	Parameter type modification	570	89.47	0.13	
55	Z00	Add navigation after optional feature	44	83.33	1.04	

Resilience and stubbornness of mutants

• operators 1 to 18 only produced trivial mutants (always killed)

ld	Type	Operator	Mutants	%Killed mutants	%Killer models	
0	syn	In pattern element deletion	0	=	-	
1	sem	Classes association creation addition (CACA)	14	100.00	17.87	
2	Z00	Replace feature access by subtype feature	48	100.00	3.97	
3	typ	Parent rule deletion	21	100.00	3.72	
4	typ	Variable modification	48	100.00	2.08	
5	sem	Relation sequence modification with deletion (RSMD)	72	100.00	1.94	
18	typ,syn	In pattern element creation	3818	100.00	0.03	
21	typ,syn	Remove binding	724	99.45	0.13	
24	Z00	Remove binding of compulsory feature	260	99.23	0.36	
52	typ	Helper deletion	780	89.87	0.12	
53	typ	Parameter deletion	513	89.47	0.15	
54	typ	Parameter type modification	570	89.47	0.13	
55	Z00	Add navigation after optional feature	44	83.33	1.04	

- operators 52 to 55 produced the hardest-to-kill mutants
 - mutants of 52–54 were among the stubbornnest
 - mutants of 55 were crash-prone and not so sttuborn

ld	Туре	Operator	Mutants	%Killed mutants	%Killer models
0	syn	In pattern element deletion	0	-	-
1	sem	Classes association creation addition (CACA)	14	100.00	17.87
2	Z00	Replace feature access by subtype feature	48	100.00	3.97
3	typ	Parent rule deletion	21	100.00	3.72
4	typ	Variable modification	48	100.00	2.08
5	sem	Relation sequence modification with deletion (RSMD)	72	100.00	1.94
18	typ,syn	In pattern element creation	3818	100.00	0.03
			•		
21	typ,syn	Remove binding	724	99.45	0.13
24	Z00	Remove binding of compulsory feature	260	99.23	0.36
52	typ	Helper deletion	780	89.87	0.12
53	typ	Parameter deletion	513	89.47	0.15
54	typ	Parameter type modification	570	89.47	0.13
55	Z00	Add navigation after optional feature	44	83.33	1.04

- operators 21 & 24 had similar resilience, but 24 created fewer mutants
- similarly, matched rule deletion preferrable to rule deletion

ld	Туре	Operator	Mutants	%Killed mutants	%Killer models			
0	syn	In pattern element deletion	0	=	-			
1	sem	Classes association creation addition (CACA)	14	100.00	17.87			
2	Z00	Replace feature access by subtype feature	48	100.00	3.97			
3	typ	Parent rule deletion	21	100.00	3.72			
4	typ	Variable modification	48	100.00	2.08			
5	sem	Relation sequence modification with deletion (RSMD)	72	100.00	1.94			
18	typ,syn	In pattern element creation	3818	100.00	0.03			
			•					
21	typ,syn	Remove binding	724	99.45	0.13			
24	Z00	Remove binding of compulsory feature	260	99.23	0.36			
52	typ	Helper deletion	780	89.87	0.12			
53	typ	Parameter deletion	513	89.47	0.15			
54	typ	Parameter type modification	570	89.47	0.13			
55	Z00	Add navigation after optional feature	44	83.33	1.04			

- no operator set was more efficient than the others
- zoo operators: 1 hard-to-kill, 3 trivial, 3 intermediate

Id	Type	Operator	Mutants	%Killed mutants	%Killer models			
0	syn	In pattern element deletion	0	-	-			
1	sem	Classes association creation addition (CACA)	14	100.00	17.87			
2	Z00	Replace feature access by subtype feature	48	100.00	3.97			
3	typ	Parent rule deletion	21	100.00	3.72			
4	typ	Variable modification	48	100.00	2.08			
5	sem	Relation sequence modification with deletion (RSMD)	72	100.00	1.94			
18	typ,syn	In pattern element creation	3818	100.00	0.03			
21	typ,syn	Remove binding	724	99.45	0.13			
·								
24	Z00	Remove binding of compulsory feature	260	99.23	0.36			
52	typ	Helper deletion	780	89.87	0.12			
53	typ	Parameter deletion	513	89.47	0.15			
54	typ	Parameter type modification	570	89.47	0.13			
55	Z00	Add navigation after optional feature	44	83.33	1.04			

Evaluation of test model generation techniques

- Mutation score of test suites generated by:
 - random instantiation (50 models with 100 objects)
 - coverage of input meta-model
 - coverage of transformation execution path

	Meta-model				Transformation path					Random					
	#M.	typ	sem	syn	Z00	#M.	typ	sem	syn	Z00	#M.	typ	sem	syn	zoo
t1	62	69.98	80.73	100.00	97.14	27	77.53	75.23	100.00	97.14	50	67.15	58.33	59.86	97.14
t2	200	87.44	31.68	45.54	30.33	18	82.47	71.66	89.31	95.08	50	65.64	56.71	48.36	23.58
t3	50	81.21	81.44	84.50	97.04	1	84.85	87.37	90.56	99.26	50	64.18	81.05	69.01	95.56
t4	50	98.71	68.52	86.17	100.00	92	98.14	98.60	96.33	100.00	50	99.22	98.33	95.74	100.00
t5	710	73.48	82.05	73.37	92.16	24	76.83	84.62	81.41	92.16	50	15.67	65.81	22.22	78.00
t6	26	75.91	72.84	60.96	87.88	6	82.70	70.37	60.56	87.88	50	21.60	19.28	23.51	45.45

- Transformation path is the best option
 - produced the highest-quality test suite more often
 - produced the smallest test suites (less testing time)

Synthesis

of

Mutant-Killer Models

Method (intuition)

1) AST node of mutated code

Method (intuition)

2) execution paths from matched rules to mutation

Method (intuition)

3) requirements for a test model to reach the mutated code

Method (intuition)

4) synthesis of input test model by model finding

Method (intuition)

However, reachability is necessary but not sufficient...

Evaluation of efficacy

- For each mutant:
 - generate a killer test model
 - execute mutant and original transformation with the test model
 - compare the results

	ty	р	se	m	sy	'n	Z00		
	Mutants	%Killed	Mutants	%Killed	Mutants	%Killed	Mutants	%Killed	
t1	266	93.94	58	96.55	187	87.57	15	100.00	
t2	2200	97.14	550	83.82	4045	97.11	60	81.67	
t3	151	93.10	32	100.00	175	94.08	21	95.24	
t4	3161	82.76	649	71.19	5993	78.66	65	73.85	
t5	382	92.25	75	94.67	363	86.76	41	92.68	
t6	153	59.48	42	54.76	143	58.04	16	43.75	

- Overall, 85% mutants killed
- By cases, killed mutants >90% in 12/24 (in green)
- Altogether, reasonable good results

Wrap-up

Wrap-up

Today's presentation

- Analyse some steps in mutation testing for ATL
 - mutation operators
 - test model generation techniques
 - synthesis of mutant-killer models

to make it more effective (and ATL transformations less buggy)

Wrap-up

Today's presentation

- Analyse some steps in mutation testing for ATL
 - mutation operators
 - test model generation techniques
 - synthesis of mutant-killer models

to make it more effective (and ATL transformations less buggy)

Future plans

- Replica of evaluation with partial oracles
- Method to detect equivalent mutants for ATL
- Improve synthesis of mutant-killer models

Towards effective mutation testing for ATL

Esther Guerra, Juan de Lara Universidad Autónoma de Madrid (Spain)

> Jesús Sánchez Cuadrado Universidad de Murcia (Spain)

esther.guerra@uam.es

Questions?

