Towards effective mutation testing for ATL J

Esther Guerra, Juan de Lara
Universidad Auténoma de Madrid (Spain)

Jests Sanchez Cuadrado
Universidad de Murcia (Spain)

&

’

miso.es

Towards effective mutation testing for ATL MoDELS 2019 1/30

miso.es

Introduction

Model transformations

Importance of correctness of model transformations

Testing of transformations helps in detecting errors

(]

How do you know if you did enough tests?

Mutation testing to the rescue!

o It permits quantifying the quality of a test suite
e Based on injecting artificial faults in the program under test
o If test suite detects the artificial faults, it will likely detect real errors

@ Our focus is on mutation testing for ATL

Towards effective mutation testing for ATL MoDELS 2019 2/30

Introduction
Mutation testing

Input

e ATL transformation to test

@ Test suite made of: I@---I—N—P—U:r——-\
e input models (manual vs automatic) :upr:gg:at:;t

e oracle function (partial vs total)

H
test cases @

@ Challenge: Identify the best test input
model generation technique

e good at finding errors
o few models if possible

Towards effective mutation testing for ATL MoDELS 2019 3/30

Introduction
Mutation testing

Mutation operators

@ Mimic errors of competent developers mutation

operators

@ Used to create mutants of the program | INPUT g programs
: program E 1 i E
1 under test ——

1

I H
. :
1
1
1
\

1
1
test cases :
1

@ Operators for ATL exist, but do not
mimic real errors

’

@ Challenge: Design operators based on
errors made by ATL developers

Towards effective mutation testing for ATL MoDELS 2019 4/30

Introduction
Mutation testing

Mutation score

@ For each mutant, execute test suite
against mutant and original program

o Compare results

o if different, the mutant is killed
e otherwise, it is alive (undetected error)

e Mutation score =
killed mutants / total mutants

@ The higher the score, the better the
quality of the test suite

mutation
operators

INPUT Y mutant
1 - programs
y 1 y

program H
under test I

1
1
1
1
1
1
1
1
1
1
[}
\

live mutants killed mutants

mutation score

Towards effective mutation testing for ATL MoDELS 2019 5/30

Introduction
Mutation testing

On effectiveness

e Mutation testing is very expensive
(many potential mutants)
o Careful selection of mutation operators

e do not produce trivial mutants
e produce hard-to-kill mutants

@ Challenge: Analyse the effectiveness of
operators for ATL, which is unknown

mutation
operators

INPUT \\ mutant
1 - programs
A I A
program H
under test I

1
1
1
1
1
1
1 "
1
1
1
[}
\

live mutants killed mutants

mutation score

Towards effective mutation testing for ATL MoDELS 2019 6/30

Introduction
Mutation testing

Improving the test suite

@ Add input models that kill live mutants

@ Challenge: Devise a technique to
synthesize mutant-killer models for ATL

mutation
operators

1
1
1
1
1
1
1
1
1
1
[}
\

live mutan

INPUT Y mutant
1 - programs

1
program |
under test ——

additional
test cases

ts killed mutants

mutation score

Towards effective mutation testing for ATL

MoDELS 2019 7/30

Contributions

@ Mutation operators for ATL

@ new operators that mimic frequent ATL developer errors
e evaluation of efficacy of these and other operators

@ Test suite

e evaluation of efficacy of three test model generation techniques:
random, meta-model coverage, transformation coverage
e novel technique to generate input models that kill live mutants

@ Open-source tool for mutation testing of ATL

Towards effective mutation testing for ATL MoDELS 2019 8/30

A Brief Tour

of
ATL

Towards effective mutation testing for ATL MoDELS 2019 9/30

ATL

@ Atlas Transformation Language
@ Widely used model transformation language

@ Dynamic, testing is needed to avoid runtime errors

Towards effective mutation testing for ATL MoDELS 2019 10 /30

ATL by example

create OUT : Relational from IN : Class

helper context Class!Attribute def: multiValued : Boolean =
if self.upperBound = —1 then true
else self.upperBound > 1 endif;

rule Class2Table {
from c : Class!Class (not c.isAbstract)

to out : Relational!Table (
name <— c.name,

col <— Sequence{key}—union(c.att—select(e | not e.multiValued)),
key <— Set{key}),
key : Relational!Column (name < — 'objectld’)

rule MultiValuedDataTypeAttribute2Column {

from a : Class!Attribute (a.type.ocllsKindOf(Class!DataType) and a.multiValued)

to out : Relational!Table (
name <— a.owner.nameOrEmpty + '_’ + a.name,
col <— Sequence {thisModule.createldColumn(a.owner), value}),
value : Relational!Column (name <— a.name)

lazy rule createldColumn {
from ne : Class!NamedElt
to key : Relational!Column (name <— ne.name)

Towards effective mutation testing for ATL

MoDELS 2019

11/30

ATL by example

create OUT : Relational from IN : Class // input and output meta—models

helper context Class!Attribute def: multiValued : Boolean =
if self.upperBound = —1 then true
else self.upperBound > 1 endif;

rule Class2Table {
from c : Class!Class (not c.isAbstract)
to out : Relational!Table (
name <— c.name,
col <— Sequence{key} —union(c.att—select(e | not e.multiValued)),
key <— Set{key}),
key : Relational!Column (name < — 'objectld’)

}

rule MultiValuedDataTypeAttribute2Column {
from a : Class!Attribute (a.type.ocllsKindOf(Class!DataType) and a.multiValued)
to out : Relational!Table (
name < — a.owner.nameOrEmpty + '’ + a.name,
col <— Sequence {thisModule.createldColumn(a.owner), value}),
value : Relational!Column (name <— a.name)

lazy rule createldColumn {
from ne : Class!NamedElt
to key : Relational!Column (name <— ne.name)

}

Towards effective mutation testing for ATL MoDELS 2019 11 /30

ATL by example

create OUT : Relational from IN : Class
helper context Class!Attribute def: multiValued : Boolean =

if self.upperBound = —1 then true
else self.upperBound > 1 endif;

rule Class2Table { // matched rule

from c : Class!Class (not c.isAbstract) // input pattern with filter

to out : Relational!Table (// output pattern
name <— c.name,

col <— Sequence{key}—union(c.att—select(e | not e.multiValued)),

key <— Set{key}),
key : Relational!Column (name <— 'objectld’)

}

rule MultiValuedDataTypeAttribute2Column {

from a : Class!Attribute (a.type.ocllsKindOf(Class!DataType) and a.multiValued)

to out : Relational!Table (
name <— a.owner.nameOrEmpty + '_’ + a.name,
col <— Sequence {thisModule.createldColumn(a.owner), value}),
value : Relational!Column (name <— a.name)

lazy rule createldColumn {
from ne : Class!NamedElt
to key : Relational!Column (name <— ne.name)

Towards effective mutation testing for ATL

MoDELS 2019

11/30

ATL by example

create OUT : Relational from IN : Class

helper context Class!Attribute def: multiValued : Boolean =
if self.upperBound = —1 then true
else self.upperBound > 1 endif;

rule Class2Table {
from c : Class!Class (not c.isAbstract)
to out : Relationall Table (
name <— c.name, // binding
col <— Sequence{key}—union(c.att—select(e | not e.multiValued)), // binding
key <— Set{key}),
key : Relational!Column (name <— 'objectld’)

}

rule MultiValuedDataTypeAttribute2Column {
from a : Class!Attribute (a.type.ocllsKindOf(Class!DataType) and a.multiValued)
to out : Relational!Table (
name < — a.owner.nameOrEmpty + '’ + a.name,
col <— Sequence {thisModule.createldColumn(a.owner), value}),
value : Relational!Column (name <— a.name)

lazy rule createldColumn {
from ne : Class!NamedElt
to key : Relational!Column (name < — ne.name)

Towards effective mutation testing for ATL MoDELS 2019 11 /30

ATL by example

create OUT : Relational from IN : Class

helper context Class!Attribute def: multiValued : Boolean = // helper, similar to a function
if self.upperBound = —1 then true
else self.upperBound > 1 endif;

rule Class2Table {
from c : Class!Class (not c.isAbstract)
to out : Relational!Table (
name < — c.name,
col <— Sequence{key}— union(c.att—select(e | not e. multiValued)), // helper invocation
key <— Set{key}),
key : Relational!Column (name < — 'objectld’)

}

rule MultiValuedDataTypeAttribute2Column {
from a : Class!Attribute (a.type.ocllsKindOf(Class!DataType) and a.multiValued)
to out : Relational!Table (
name < — a.owner.nameOrEmpty + '_' + a.name,
col <— Sequence {thisModule.createldColumn(a.owner), value}),
value : Relational!Column (name <— a.name)

}

lazy rule createldColumn {
from ne : Class!NamedElt
to key : Relational!Column (name <— ne.name)

}

Towards effective mutation testing for ATL MoDELS 2019 11 /30

Mutation testing for ATL

original transformation mutant transformation
rule Class2Table { rule Class2Table {
from c : Class!Class (not c.isAbstract) | CFCP, from c : Class!Class (not c.isAbstract
Y and c.name=")
to out : Relational!Table ... } to out : Relational!Table ... }
\‘ ‘l
Min -supers
:Class > :Class
isAbstract=false isAbstract=true
name=‘Female’ name=‘Person’
| 4 N|
Mour :Table ¥ Mout
name=‘Female’

Towards effective mutation testing for ATL MoDELS 2019 12 /30

Mutation Operators

for

ATL

Towards effective mutation testing for ATL MoDELS 2019 13 /30

Mutation operators for ATL

Syntactic operators

o Create-update-delete operations on language elements

e Troya et al. [1]: 18 operators for main elements of ATL meta-model

Concept Operator

Matched rule addition
deletion
name change

In and out pattern element addition
deletion

class change
name change

Filter addition
deletion
condition change
Binding addition

deletion
value change
feature change

1
Troya et al., Towards systematic mutations for and with ATL model transformations, ICST Workshops, 2015, pp=1-10

Towards effective mutation testing for ATL

MoDELS 2019

14 /30

Mutation operators for ATL

Semantic operators
@ Operations mimic faults a developer may incur, based on authors’
experience not on empirical evidence

e Mottu et al. [1,2]: 10 operators which are language-independent

Navigation operators

Relation to the same class change (RSCC) Replaces navigation by another to the same class

Relation to another class change (ROCC) Replaces navigation by another to a different class

Relation sequence modification with deletion (RSMD)

Removes last step of a navigation sequence

Relation sequence modification with addition (RSMA)

Adds navigation step in a navigation sequence

Filter operators

Collection filtering change with perturbation (CFCP)

Modifies filter, e.g., acting on property or type of class

Collection filtering change with deletion (CFCD)

Deletes filter

Collection filtering change with addition (CFCA)

Adds filter, e.g., returning an arbitrary element

Creation operators

Class compatible creation replacement (CCCR)

Replaces type of created object by a compatible one

Classes association creation deletion (CACD)

Deletes creation of association

Classes association creation addition (CACA)

Adds relation between two target objects

1Mottu et al., Mutation analysis testing for model transformations, ECMDA-FA, LNCS 4066, Springer, 2006, pp. 376-

390

2
Aranega et al., Towards an automation of the mutation analysis dedicated to model transformations, STVR 25(5-7), 2014

MoDELS 2019

Towards effective mutation testing for ATL

15 /30

Mutation operators for ATL

Typing operators

@ Operators introduce typing errors or force runtime errors

@ Sdnchez et al. [1]: 27 operators

o used to test a static analyzer for ATL
e coverage of ATL mm + operators for programming languages

Type Targets
Creation binding
source/target pattern element
rule inheritance relation
Deletion rule, helper, binding

source/target pattern element
rule filter, rule inheritance relation

Type modification

type of source/target pattern element
helper context type, helper return type
type of variable, collection or parameter

Feature name modification

navigation expression, target of binding

Operation name modification

predefined operator (e.g., and) or operation (e.g., size)
collection operation (e.g., includes), iterator (e.g., exists, collect)
operation/helper invocation

1
Sénchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017,:pp. 868-897

Towards effective mutation testing for ATL MoDELS 2019

16 /30

Mutation operators for ATL

Operators based on errors made in practice (zoo)

@ Operators emulate errors made by competent developers

@ Zoo set (new!!!): 7 operators emulating the 5 most frequent typing
errors in the ATL zoo [1]

Error Frequency | Operator
No binding for compulsory target feature 48.8% Remove binding of compulsory feature (RBCF)
Invalid actual parameter type 11.9% Replace helper call parameter (RHCP)

Feature access over possibly undefined receptor 11.22% Remove enclosing conditional (REC)

Add navigation after optional feature (ANAOF)
Feature found in subtype 3.75% Replace feature access by subtype feature (RSF)
Binding possibly unresolved 3.7% Restrict rule filter (RRF)

Delete rule (DR)

1
Sénchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017,:pp. 868-897

Towards effective mutation testing for ATL MoDELS 2019 17 /30

Mutation operators for ATL

Operators based on errors made in practice (zoo)

@ Operators emulate errors made by competent developers

@ Zoo set (new!!!): 7 operators emulating the 5 most frequent typing
errors in the ATL zoo [1]

Error Frequency | Operator
No binding for compulsory target feature 48.8% Remove binding of compulsory feature (RBCF)

1
Sénchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017,:pp. 868-897

Towards effective mutation testing for ATL MoDELS 2019 17 /30

Mutation operators for ATL

Operators based on errors made in practice (zoo)

@ Operators emulate errors made by competent developers

@ Zoo set (new!!!): 7 operators emulating the 5 most frequent typing
errors in the ATL zoo [1]

Error Frequency | Operator

Invalid actual parameter type 11.9% Replace helper call parameter (RHCP)

1
Sénchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017,:pp. 868-897

Towards effective mutation testing for ATL MoDELS 2019 17 /30

Mutation operators for ATL

Operators based on errors made in practice (zoo)

@ Operators emulate errors made by competent developers

@ Zoo set (new!!!): 7 operators emulating the 5 most frequent typing
errors in the ATL zoo [1]

Error Frequency | Operator

Feature access over possibly undefined receptor 11.22% Remove enclosing conditional (REC)
Add navigation after optional feature (ANAOF)

1
Sénchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017,:pp. 868-897

Towards effective mutation testing for ATL MoDELS 2019 17 /30

Mutation operators for ATL

Operators based on errors made in practice (zoo)

@ Operators emulate errors made by competent developers

@ Zoo set (new!!!): 7 operators emulating the 5 most frequent typing
errors in the ATL zoo [1]

Error Frequency | Operator

Feature found in subtype 3.75% Replace feature access by subtype feature (RSF)

1
Sénchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017,:pp. 868-897

Towards effective mutation testing for ATL MoDELS 2019 17 /30

Mutation operators for ATL

Operators based on errors made in practice (zoo)

@ Operators emulate errors made by competent developers

@ Zoo set (new!!!): 7 operators emulating the 5 most frequent typing
errors in the ATL zoo [1]

Error Frequency | Operator
Binding possibly unresolved 3.7% Restrict rule filter (RRF)
Delete rule (DR)

1
Sénchez et al., Static analysis of model transformations, IEEE TSE 43(9), 2017,:pp. 868-897

Towards effective mutation testing for ATL MoDELS 2019 17 /30

Tool Support

Towards effective mutation testing for ATL MoDELS 2019 18 /30

Tool support

@ Java framework for mutation testing of ATL:
https://github.com/jdelara/MDETesting

Implementation of all presented mutation operators (extensible)
Operators can use transformation typing info (anATLyzer)
Generator of test models (random, mm coverage, path coverage)
Generator of mutant-killer models (explained later)

1 ginal
IMadeIGeneratorH DifferentialTester]%I ATL Transformation I

r
Path

1
MM

<
TN%, 1‘[‘executes
1 &5 -
TestDriver

Random

Coverage

Coverage

has

USE Validator EMF random r b
model finder instantiator static analyzer

Type
Information

Mutant
KillerModel
Generator

0.1

1| mutant provider

uses

MutantGenerator
1
I MutationRegistry]M)I Mutation I
Y S
[Typing][semantic | [syntactic |[zoo | [Rscc |..[RrsF |

> 50 operators

Towards effective mutation testing for ATL MoDELS 2019

19/30

https://github.com/jdelara/MDETesting

Efficacy of

Operators and

Test Model Generation Techniques

Towards effective mutation testing for ATL MoDELS 2019 20/30

Evaluation of mutation operators

Experiment design

@ 6 syntactically correct transformations from the ATL zoo

@ For each transformation:

e create test suite with models generated by our three techniques
(random, meta-model coverage, path coverage)

e create transformation mutants

e compute mutation score

@ Overall, >32 000 mutants, >1 million executions

Towards effective mutation testing for ATL MoDELS 2019 21/30

Evaluation of mutation operators
Applicability of operators

@ 61% operators were applicable to all transformations

@ 4 operators with poor applicability (i.e., frequently useless):
[typ] deletion of parent rule (1 application)

[typ] modification of type of variable (1 application)

[zoo] deletion of enclosing conditional (1 application)

[syn] deletion of input pattern element (0 applications)

Towards effective mutation testing for ATL MoDELS 2019 22/30

Evaluation of mutation operators

Resilience and stubbornness of mutants

@ overall, 88% mutants were killed

@ most operators produced stubborn mutants (killed by few models)

Id | Type Operator Mutants %Killed mutants %Killer models
0 | syn In pattern element deletion 0 - -
1 | sem Classes association creation addition (CACA) 14 100.00 17.87
2 | zoo Replace feature access by subtype feature 48 100.00 3.97
3| typ Parent rule deletion 21 100.00 3.72
4 | typ Variable modification 43 100.00 2.08
5 | sem Relation sequence modification with deletion (RSMD) 72 100.00 1.94
[18] typ.syn | In pattern element creation [3818 100.00 0.03]
[21] typ,syn [Remove binding [724 99.45 0.13 |
[24 | z00 [Remove binding of compulsory feature [260 99.23 0.36]
52 | typ Helper deletion 780 89.87 0.12
53 | typ Parameter deletion 513 89.47 0.15
54 | typ Parameter type modification 570 89.47 0.13
55 | zoo Add navigation after optional feature 44 83.33 1.04

Towards effective mutation testing for ATL MoDELS 2019 23/30

Evaluation of mutation operators

Resilience and stubbornness of mutants

@ operators 1 to 18 only produced trivial mutants (always killed)

Id | Type Operator Mutants %Killed mutants %Killer models
0 | syn In pattern element deletion 0 - -

1 | sem Classes association creation addition (CACA) 14 100.00 17.87

2 | zoo Replace feature access by subtype feature 48 100.00 3.97

3| typ Parent rule deletion 21 100.00 3.72

4 | typ Variable modification 48 100.00 2.08

5 | sem Relation sequence modification with deletion (RSMD) 72 100.00 1.94

[18] typ.syn | In pattern element creation [3818 100.00 0.03]

(2] [[l

(24] [[l

Towards effective mutation testing for ATL MoDELS 2019 23/30

Evaluation of mutation operators

Resilience and stubbornness of mutants

@ operators 52 to 55 produced the hardest-to-kill mutants

e mutants of 52-54 were among the stubbornnest
e mutants of 55 were crash-prone and not so sttuborn

Id | Type Operator Mutants %Killed mutants %Killer models
52 | typ Helper deletion 780 89.87 0.12
53 | typ Parameter deletion 513 89.47 0.15
54 | typ Parameter type modification 570 89.47 0.13
55 | zoo Add navigation after optional feature 44 83.33 1.04

Towards effective mutation testing for ATL

MoDELS 2019

23/30

Evaluation of mutation operators

Resilience and stubbornness of mutants

@ operators 21 & 24 had similar resilience, but 24 created fewer mutants

o similarly, matched rule deletion preferrable to rule deletion

Id | Type Operator Mutants %Killed mutants %Killer models
(] l l l
[.2”1”i“typ,syn [Remove binding [724 99.45 0.13]
[.2-4.1.1”100 [Remove binding of compulsory feature [260 99.23 0.36 |

Towards effective mutation testing for ATL MoDELS 2019 23/30

Evaluation of mutation operators

Resilience and stubbornness of mutants

@ no operator set was more efficient than the others

@ zoo operators: 1 hard-to-kill, 3 trivial, 3 intermediate

Type %Killed mutants

syn Z

sem 100.00

z00 100.00

typ 100.00

typ 100.00

sem 100.00
(i i”t}’PYS)’n [T 100.00]
[| typ,syn [[99.45]
B3 i”zoo [[99.23]

typ 89.87

typ 89.47

typ 89.47

00 83.33

Towards effective mutation testing for ATL MoDELS 2019 23/30

Evaluation of test model generation techniques

@ Mutation score of test suites generated by:

e random instantiation (50 models with 100 objects)
e coverage of input meta-model

e coverage of transformation execution path

Meta-model Transformation path Random

#M. typ sem syn zoo | #M. typ sem syn zoo | #M. typ sem syn z00
tl 62 69.98 80.73 100.00 97.14 27 77.53 75.23 100.00 97.14 50 67.15 58.33 59.86 97.14
t2 200 87.44 31.68 45.54 30.33 18 82.47 71.66 89.31 95.08 50 65.64 56.71 48.36 23.58
t3 50 81.21 81.44 84.50 97.04 1 8485 87.37 90.56 99.26 50 64.18 81.05 69.01 95.56
t4 50 98.71 68.52 86.17 100.00 92 98.14 98.60 96.33 100.00 50 99.22 98.33 95.74 100.00
t5 710 73.48 82.05 73.37 92.16 24 76.83 84.62 81.41 92.16 50 15.67 65.81 22.22 78.00
t6 26 7591 7284 60.96 87.88 6 8270 70.37 60.56 87.88 50 21.60 19.28 23.51 45.45

@ Transformation path is the best option

e produced the highest-quality test suite more often

o produced the smallest test suites (less testing time)

Towards effective mutation testing for ATL

MoDELS 2019

24 /30

Synthesis

of

Mutant-Killer Models

sther Guerra Towards effective mutation testing for ATL MoDELS 2019 25 /30

Synthesis of mutant-killer models
Method (intuition)

live mutant
helper context Class!Attribute def: multivalued : Boolean =

if self.upperBound = -1 then #rue false «——

else self.upperBound > 1 endif;

1) AST node of mutated code

Towards effective mutation testing for ATL MoDELS 2019 26 /30

Synthesis of mutant-killer models
Method (intuition)

live mutant
helper context Class!Attribute def: multivalued : Boolean =

if self.upperBound = -1 then #rue false «——
else self.upperBound > 1 endif;
control flow graph ‘

[ve e K> |

| upperBound = -1 /then@
multiVaIue
L

MVDataType Class2Table

Attribute2Column
Matched rule

Qs J

2) execution paths from matched rules to mutation

Towards effective mutation testing for ATL MoDELS 2019 26 /30

Synthesis of mutant-killer models

Method (intuition)

live mutant

else self.upperBound > 1 endif;

helper context Class!Attribute def: multivalued : Boolean =

if self.upperBound = -1 then #rue false «——

control flow graph ‘

| upperBound = -1 /then@
multiVaIue
L

MVDataType Class2Table

Attribute2Column
Matched rule

Qs J

OCL path condition
Class.allInstances()-> -- rule input
@ select(c | not c.isAbstract)-> -- rule filter

exists(c | c.att->exists(e |
not e.upperBound = -1)) -- inlining of helper
or

Attribute.allInstances()->
exists(a | a.upperBound = -1)

3) requirements for a test model to reach the mutated code

Towards effective mutation testing for ATL MoDELS 2019

26 /30

Synthesis of mutant-killer models

Method (intuition)

live mutant

helper context Class!Attribute def: multivalued

if self.upperBound = -1 then #rue false «——
else self.upperBound > 1 endif;

: Boolean =

control flow graph ‘

OCL path condition

et K oo

| upperBound = -1 /then@
multiVaIue
L

MVDataType Class2Table
Attribute2Column
J

Class.allInstances()-> -- rule input

select(c | not c.isAbstract)-> -- rule filter
exists(c | c.att->exists(e |

not e.upperBound = -1)) -- inlining of helper
or

Attribute.allInstances()->

exists(a | a.upperBound = -1)
input test model ‘model finding
: Class : Attribute
att
isAbstract = false upperBound =-1

4) synthesis of input test model by model finding

Towards effective mutation testing for ATL

MoDELS 2019

26 /30

Synthesis of mutant-killer models
Method (intuition)

live mutant
helper context Class!Attribute def: multivalued : Boolean =

if self.upperBound = -1 then #rue false «——
else self.upperBound > 1 endif;

control flow graph ‘ OCL path condition
/ Class.allInstances()-> -- rule input
@ } select(c | not c.isAbstract)-> -- rule filter
exists(c | c.att->exists(e |
|upperBound =-1/then(If not e.upperBound = -1)) -- inlining of helper
multiVaIue or
7 Attribute.allInstances()->

exists(a | a.upperBound = -1)
MVDataType Class2Table —
Attribute2Column input test model ‘model finding

Matched rule i
L) : Class : Attribute
N % att

isAbstract = false upperBound =-1

However, reachability is necessary but not sufficient...

Towards effective mutation testing for ATL MoDELS 2019 26 /30

Synthesis of mutant-killer models

Evaluation of efficacy

@ For each mutant:

o generate a killer test model
e execute mutant and original transformation with the test model
e compare the results

typ sem syn z00

| Mutants %Killed | Mutants %Killed | Mutants %Killed | Mutants %Killed |
tl 266 93.94 58 96.55 187 87.57 15 100.00
t2 2200 97.14 550 83.82 4045 97.11 60 81.67
t3 151 93.10 32 100.00 175 94.08 21 95.24
t4 3161 82.76 649 71.19 5993 78.66 65 73.85
t5 382 92.25 75 94.67 363 86.76 41 92.68
t6 153 59.48 42 54.76 143 58.04 16 43.75

@ Overall, 85% mutants killed
@ By cases, killed mutants >90% in 12/24 (in green)
@ Altogether, reasonable good results

Towards effective mutation testing for ATL MoDELS 2019 27 /30

Wrap-up

Towards effective mutation testing for ATL MoDELS 2019 28/30

Wrap-up

Today’s presentation
@ Analyse some steps in mutation testing for ATL

e mutation operators
o test model generation techniques
e synthesis of mutant-killer models

to make it more effective
(and ATL transformations less buggy)

Towards effective mutation testing for ATL MoDELS 2019 29/30

Wrap-up

Today’s presentation
@ Analyse some steps in mutation testing for ATL

e mutation operators
o test model generation techniques
e synthesis of mutant-killer models

to make it more effective
(and ATL transformations less buggy)

Future plans
@ Replica of evaluation with partial oracles
@ Method to detect equivalent mutants for ATL

@ Improve synthesis of mutant-killer models

Towards effective mutation testing for ATL MoDELS 2019 29/30

Towards effective mutation testing for ATL J

Esther Guerra, Juan de Lara
Universidad Auténoma de Madrid (Spain)

Jestis Sanchez Cuadrado
Universidad de Murcia (Spain)

esther.guerra@uam.es

Questions?

Towards effective mutation testing for ATL MoDELS 2019 30/30

