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‘ Outline

= Assessment of evidence evaluation methods
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o Likelihood ratios for evidence evaluation and interpretation

= Assessment of likelihood-ratio-based evidence
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o Empirical approach
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= Tippett plots
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= Limit Tippett plots (novel assessment methodology)
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OIATVS EAFS 2009. Daniel Ramos et al. 10 September.  2/29

UNIVERSIDAD AL TOXOMA
[DE MADRID]



Assessment of
Evidence Evaluation Methods
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Assessment of Performance: Motivation

= Increasing interest for the scientific assessment of any
processes involved in forensic science

o The effect of Daubert rules
o Two recent and important references found in the literature

Committee on Identifying the Needs of the Forensic Sciences Community,
“Strengthening Forensic Science in the United States: A Path Forward,
National Research Council, National Academy of Sciences, 2009.

The Law Comission, The admissibility of Expert Evidence in Criminal
Proceedings in England and Wales. A New Approach to the
Determination of Evidentiary Reliability. Consultation paper no. 190, 20009.

= Assessment of evidence evaluation methods is a key point
towards this aim
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 Evidence Evaluation with Likelihood Ratios
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Assessing Performance of
Likelihood-Ratio-Based

Evidence Evaluation Methods
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‘ Empirically Measuring Performance

= Experimental test
o Database of materials with known sources
o E.g., speech utterances of known origin

= Generate comparisons (LR values) where:
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False Positive and False Negative Rates

= Classical measure of performance

= For a given decision threshold, percentage of false positive and
false negative cases

o They depend on the decision threshold (typically LR=1)

= Measure of discriminating power (separatlon among both
histograms) ,

I -Same source\
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False Positive and False Negative Rates

= Classical measure of performance

= For a given decision threshold, percentage of false positive and
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False Positive and False Negative Rates

= Classical measure of performance

= For a given decision threshold, percentage of false positive and
false negative cases

o They depend on the decision threshold (typically LR=1)
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Tippett Plots

= Cumulative histograms of same-source and different-source LR
values

o Interpretable as probabilities
= Probability of finding LR values greater than... (value in the x-axis)

= Equivalent to plot false positive and (the complementary of)
false negative rates for any threshold in the x-axis

. Misleading Ev.: SS=16.04%, DS=16.22%
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| Performance in Tippett Plots: ROME

= Rates of Misleading Evidence (ROME)
o “Proportion of LR values that will give support to the wrong

hypothesis”
= Can be interpreted as probabilities ieading Ev. S5016.045, DS-16.22%
Same source ROME ----- o
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Problems with Tippett Plots

= ROME is far from enough to determine performance
by itself

o Strong misleading evidence is also very important

Misleading Ev.: Method M1 S$5=16.04%, DS=16.22%; Method M2 55=19.0095%, DS=19.0952%;

= Methods M, and M, have *
very similar ROME
o But M, presents much

higher strong misleading
evidence

a M, should be much better

= ROME do not highlight this A

= And Tippett plots do not ol
numerically measure that
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‘ Problems with Tippett Plots

= Performance with Tippett plots is not numerically
measured

o Sometimes their interpretation is subjective
o And sometimes it is difficult to identify the best method
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Problems with Tippett Plots

= Discriminating power is not easily comparable
o Methods M, and Mg have the same discriminating power

= They have very different Tippett plots
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‘ Empirical Cross-Entropy (ECE)

= Objective measure of performance: numerical value
o The higher its value, the worse the evidence evaluation method
o Allows easy comparison of methods

= Discriminating power is clearly stated
= Takes into account strong misleading evidence
= Based on the logarithmic scoring rule

= Information-theoretical interpretation
o Intuitive and understandable

D. Ramos, J. Gonzalez-Rodriguez, G. Zadora, J. Zieba-Palus and C. G. G. Aitken
(2007). “Information-theoretical comparison of likelihood ratio methods of
forensicevidence evaluation”. Proceedings of International Workshop on
Computational Forensics (in IAS 2007), pp. 411-416.

D. Ramos (2007). “Forensic Evidence Evaluation Using Automatic Speaker
Recognition Systems”. Ph.D. Thesis, Dept. of Computer Science, Univ. Autonoma
de Madrid.
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ECE Plots: LR Performance P(6)1) 1
= 3 curves are represented S P(6,]1) 10

o ECE (solid): overall performance

= The higher its value, the worse the S5 R iR
method el P /AN R s

o Calibrated (dashed): discriminating
power

= Difference among ECE & Calibrated
IS the calibration performance

o Always LR=1 (dotted)

= A method that does not take into o
account the evidence (“does nothing”) ¢~ :
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= Separation of roles

o Forensic scientist: ECE computation for a wide range of priors

o Fact finder: prior establishment (allows measuring ECE)

Method M4

o
»
T

entropy
o
ul

I
0.4

o
W
T

Empirical cross

o
[N

°|ATVS EAFS 2009. Daniel Ramos et al. 10 September.  17/29

v UNIVERSIDAD AL TOXOMA
[DE MADRID]




‘ ECE Plots vs. Tippett Plots

= ECE plots solve many problems of Tippett plots

o Takes into account strong misleading evidence

= Strong misleading evidence in M, makes ECE (solid curve) grow

0 In fact, using M, is even worse than not evaluating the evidence
(dotted curve) at extreme prior probabilities

= |t also degrades calibration performance for M,
0 Difference among solid and dashed curves increases
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‘ ECE Plots vs. Tippett Plots

= Which method is better, M; or M,?
a M, is slightly worse (slightly higher ECE, solid curve)
o However, ECE (solid curve) similar in M; and M,
= Both methods perform similarly
o Overall performance (ECE, solid curve) is not outstanding
= Solid curve near dotted curve (not evaluating evidence) in both M; and M,
o Calibration (difference among solid and dashed curves) is bad in M,

Misleading Ev.: Method M3 SS5=30.98%, DS=16.42%; Method M4 §5=1.99%, DS=50.08%;
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Proportion of cases (%)

ECE Plots vs. Tippett Plots

= Discriminating power (dashed curve) is easily seen and
compared

o Mg and My have the same discriminating power (dashed curve)

o Mg has a big calibration problem (big difference among solid and
dashed curves)
= That makes Mg to be even worse than not evaluating the evidence
(solid curve higher than dotted curve)
o Conclusion: do not use Mg for evidence evaluation
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‘ Limit Tippett Plots: Novel Assessment Tool
= Let assume that LR values are computed properly

= Then, there is a universal bound for the probabillity of strong
misleading evidence

o P(E|0,)
P(E|6,)

Universal upper bound

Upper bound of Pd(V>k) and Pd(V<1/k)
al
o

P(LR>K )<Yk i 1
P(LR<H6,)<Yk | L

. - 0 0.5 1 1.5
............................................. Value of k

R. Royall, 2000. “On the probability of observing misleading evidence.”
Journal of the American Statistical Association, v. 95(451), pp. 760-768.
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Proportion of cases (%)

Limit Tippett Plots: Novel Assessment Tool

= Such limits can be drawn in Tippett plots
o Way of detecting if LR values are correctly obtained

Good (inside bounds) Bad (outside bounds)
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Limit Tippett Plots: Novel Assessment Tool

= Violation of universal bounds related with bad calibration

o Can be seen in ECE plots

= Limit Tippett plots useful to detect calibration problems

Proportion of cases (%)

Bad (outside bounds) Bad calibration
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Experimental Example:
Forensic Automatic
Speaker Recognition
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Example with Forensic Speaker Recognition

Common database and protocol for comparisons
o NIST Speaker Recognition Evaluation (SRE) 2008
o More than 100,000 comparisons...

Background data for model tuning
o Past NIST SRE databases

Two different evidence evaluation methods for score-based biometric
systems

o Gaussian modelling
o Logistic Regression

D. Ramos (2007). “Forensic Evidence Evaluation Using Automatic Speaker Recognition Systems”. Ph.D.
Thesis, Dept. of Computer Science, Univ. Autonoma de Madrid.

J. Gonzalez-Rodriguez, P. Rose, D. Ramos, D. T. Toledano and J. Ortega-Garcia (2007). “Emulating
DNA: Rigorous Quantification of Evidential Weight in Transparent and Testable Forensic Speaker
Recognition.” IEEE Transactions on Audio, Speech and Language Processing, 15(7), pp. 2072-2084.
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Proportion of cases (%)

Example with Forensic Speaker Recognition

= Limit Tippett plots

o Gaussian method slightly out from theoretical bounds
= Reason: distributions in testing data were not exactly Gaussian
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Example with Forensic Speaker Recognition

= ECE plots

o Calibration is not optimal for Gaussian method
= Limit Tippett plots detected a calibration problem

Empirical cross—entropy
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= LR values ! = LR values
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Conclusions

The importance of scientific and objective performance
assessment of forensic evidence evaluation methods is
recently increasing

o How good are we?

Likelihood-ratio-based evidence evaluation methods
have been assessed in several ways In the literature,
e.g..

o False positive and false negative rates

o Tippett plots

We have reviewed such frameworks, identified their
problems and proposed alternatives and improvements
o ECE plots

o Limit Tippett plots
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