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The pipeline processor is a common paradigm for very 
high speed computing machinery. Pipeline processors 
provide high speed because their separate stages can 
operate concurrently, much as different people on a 
manufacturing assembly line work concurrently on ma- 
terial passing down the line. Although the concurrency 
of pipeline processors makes their design a demanding 
task, they can be found in graphics processors, in signal 
processing devices, in integrated circuit components for 
doing arithmetic, and in the instruction interpretation 
units and arithmetic operations of general purpose 
computing machinery. 

Because I plan to describe a variety of pipeline pro- 
cessors, I will start by suggesting names for their var- 
ious forms. Pipeline processors, or more simply just 
pipelines, operate on data as it passes along them. The 
latency of a pipeline is a measure of how long it takes a 
single data value to pass through it. The throughput 
rate of a pipeline is a measure of how many data values 
can pass through it per unit time. 

Pipelines both store and process data; the storage ele- 
ments and processing logic in them alternate along 
their length. I will describe pipelines in their complete 
form later, but first I will focus on their storage ele- 
ments alone, stripping away all processing logic. 
Stripped of all processing logic, any pipeline acts like a 
series of storage elements through which data can pass. 

Pipelines can be clocked or event-driven, depending 
on whether their parts act in response to some widely- 
distributed external clock, or act independently when- 
ever local events permit. Some pipelines are inelastic; 
the amount of data in them is fixed. The input rate and 
the output rate of an inelastic pipeline must match ex- 
actly. Stripped of any processing logic, an inelastic pipe- 
line acts like a shift register. Other pipelines are elastic; 
the amount of data in them may vary. The input rate 
and the output rate of an elastic pipeline may differ 
momentarily because of internal buffering. Stripped of 
all processing logic, an elastic pipeline becomes a flow- 
through first-in-first-out memory, or FIFO. FIFOs may 
be clocked or event-driven; their important property is 

© 1989 ACM OOOl-O782/89/o6oo-o72o $1.5o 

that they are elastic. 
I assign the name micropipeline to a particularly sim- 

ple form of event-driven elastic pipeline with or with- 
out internal processing. The micro part of this name 
seems appropriate to me because micropipelines con- 
tain very simple circuitry, because micropipelines are 
useful in very short lengths, and because micropipe- 
lines are suitable for layout in microelectronic form. 

I have chosen micropipelines as the subject of this 
lecture for three reasons. First, micropipelines are sim- 
ple and easy to understand. I believe that simple ideas 
are best, and I find beauty in the simplicity and sym- 
metry of micropipelines. Second, I see confusion sur- 
rounding the design of FIFOs. I offer this description of 
micropipelines in the hope of reducing some of that 
confusion. 

The third reason I have chosen my subject addresses 
the limitations imposed on us by the clocked-logic con- 
ceptual framework now commonly used in the design 
of digital systems. I believe that this conceptual frame- 
work or mind set masks simple and useful structures 
like micropipelines from our thoughts, structures that 
are easy to design and apply given a different concep- 
tual framework. Because micropipelines are event- 
driven, their simplicity is not available within the 
clocked-logic conceptual framework. I offer this de- 
scription of micropipelines in the hope of focusing at- 
tention on an alternative transition-signalling concep- 
tual framework. 

We need a new conceptual framework because the 
complexity of VLSI technology has now reached the 
point where design time and design cost often exceed 
fabrication time and fabrication cost. Moreover, most 
systems designed today are monolithic and resist mid- 
life improvement. The transition-signalling conceptual 
framework Offers the opportunity to build up complex 
systems by hierarchical composition from simpler 
pieces. The resulting systems are easily modified. I be- 
lieve that the transition-signalling conceptual frame- 
work has much to offer in reducing the design time and 
cost of complex systems and increasing their useful life- 
time. I offer this description of micropipelines as an 
example of the transition-signalling conceptual frame- 
w o r k .  

720 Communications of the ACM June 1989 Volume 32 Number 6 



Turing Award 

Until recently only a hardy few used the transition- 
signalling conceptual framework for design because it 
was too hard. It was nearly impossible to design the 
small circuits of 10 to 100 transistors that form the 
elemental building blocks from which complex systems 
are composed. Moreover, it was difficult to prove any- 
thing about the resulting compositions. In the past five 
years, however, much progress has been made on both 
fronts. Charles Molnar and his colleagues at Washing- 
ton University have developed a simple way to design 
the small basic building blocks [9]. Martin Rem's "VLSI 
Club" at the Technical University of Eindhoven has 
been working effectively on the mathematics of event- 
driven systems [6, 10, 11, 19]. These emerging concep- 
tual tools now make transition signalling a lively candi- 
date for widespread use. 

TWO CONCEPTUAL FRAMEWORKS 
In the clocked-logic conceptual framework, registers of 
flip flops operating from a common clock separate 
stages of processing logic. Each time the clock enters its 
active state a new data element enters each register. 
Data elements march forward through successive regis- 
ters in lock step, each taking a fixed number of clock 
cycles to pass through the fixed number of  registers and 
intervening logic stages built into the system. The 
clocked-logic conceptual framework is widely used 1} 
because it offers a simple way to design computing 
equipment, 2) because it is widely taught and under- 
stood, 3) because parts that operate with clocks are 
widely available, and 4) because system noise has died 
away by the time a clock event occurs. 

To build the micropipelines described here we must 
discard the clocked-logic conceptual framework and 
think instead about a different but equally simple form 

of control called transition signalling. In return for 
moving into the transition-signalling conceptual flame- 
work, we are rewarded with three new types of flexi- 
bility. In hardware design we attain a new flexibility to 
compose systems from small parts previously designed 
and tested; in software, we achieve a new flexibility to 
handle vectors of variable length; and in systems we 
enjoy a new flexibility to extend system life by replac- 
ing isolated parts whenever components with improved 
speed or cost become available. 

It is often hard to discard a conceptual framework. 
The well-known puzzle shown in Figure 1 illustrates 
this difficulty by asking us to draw four straight lines 
through nine dots without lifting our pencil from the 
paper. Our natural conception of figure and ground in 
looking at this puzzle suggests that the lines to be 
drawn should stay within the square of dots, a concep- 
tual framework that renders the task impossible. The 
puzzle can be solved only by drawing outside the 
boundary of the dots. 

Similar difficulty in discarding a conceptual flame- 
work can be seen in the design of FIFOs. Conventional 
wisdom in the clocked-logic conceptual framework says 
that each stage of a flow-through FIFO should have a 
clocked register that feeds its output to the input of the 
next stage. Now recall that a FIFO must be elastic; it 
must be able to store a variable amount of data; and if 
it has a fixed number of stages, some of them may be 
unoccupied. Continuing with the clocked-logic concep- 
tual framework, a "full" or "empty" clocked flip flop for 
each stage is required to make the FIFO elastic. 

Each stage must also have logic involving the state of 
its full or empty flip flop and the states of other stages 
to decide when to capture new data. One simple con- 
trol rule operates as follows: a) Each stage captures new 
data and sets its full flip flop to the full state whenever 

f ~  

0 0 \ /  FIGURE 1. A Puzzle 
Without lifting your pencil from the paper, connect the dots 

with four straight lines. 
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it is empty and its predecessor is full. b) Each stage sets 
its full flip flop to the empty state whenever  it is full 
and its successor is empty. This rule delivers output 
data only on alternate clock cycles. More complex rules 
for the control of synchronous FIFOs get better perfor- 
mance by looking ahead many stages to decide if an 
entire block of data can move forward during the forth- 
coming cycle. The clocked-logic conceptual framework 
itself creates this complexity, because all registers must 
act together at once; any that fail to act now must suffer 
a complete cycle of delay for their  next opportunity. 

The clocked-logic conceptual framework is poorly 
matched to FIFO design for another reason as well: 
FIFOs often connect senders and receivers that have 
separate clocks. The difficulty of designing a FIFO with 
separate clocks at input  and output is strikingly evident 
when one asks whether  to use the input or the output 
clock to control the internal stages. There is no natural  
point in the FIFO to transfer control from the input  
clock to the output clock. Should the transfer occur 
near the beginning, at the middle, or near the end of 
the pipeline? Why? 

If conventional clocks are used at the input and out- 
put of a FIFO and the two clocks are separate, then 
arbitration or synchronization between these two 
clocks is required somewhere in the design. Arbitrat ion 
or synchronization is necessary because the data must 
pass from control by the input clock to control by the 
output clock somewhere,  even though the phase rela- 
tionship between the clocks is unknown and variable. 
There is always some phase relationship between the 
separate clocks that violates the setup or hold time re- 
quirements of some latch or flip flop. 

The fact that arbitration or synchronizat ion is re- 
quired somewhere in a clocked FIFO introduces a host 
of problems [1]. It is not possible to make an arbiter or 
synchronizer that is perfectly reliable; instead one must 
design a circuit for which the probabili ty of failure is so 
low as to be unimportant .  Sadly, although the problems 
inherent  in synchronizers and arbiters have been 
known for many years, synchronizer  failures still cause 
difficulty, and remarkably,  discussions of arbitration 
and synchronization are largely absent from the de- 
scriptions of FIFOs now on the market.  Solutions to the 
inherent  synchronizer  problems are left to the users. 

The internal stages of the micropipelines I shall de- 
scribe here get their  timing signals nei ther  directly 
from the input control signals nor directly from the 
output control signals. Rather, each internal  stage cap- 
tures a new data value whenever  its successor stage has 
accepted the present value and its predecessor stage has 
the new data ready. Each stage operates at its own 
pace, using control information only from adjacent 
stages. Letting each stage operate separately, without  a 
common clock, avoids the need for arbitration and sim- 
plifies the design. Although the design of FIFOs and 
other micropipelines is very difficult within the 
clocked-logic conceptual framework, it is easy once one 
abandons that framework in favor of transition signall- 
ing, as I shall do throughout this lecture. 

TRANSITION SIGNALLING 
In transition signalling any transition, either rising or 
falling, has the same meaning, as i l lustrated in Figure 2; 
either kind of transit ion is called an event. As indicated 
in the figure, and suggested by its name, transition sig- 
nalling avoids distinguishing between the two types of 
transitions even though they may look quite different. 
In effect, all responses to transition signals are edge- 
triggered, and are triggered on both rising and falling 
edges. Because transit ion signalling uses both rising and 
falling edges as trigger events, it may offer twice the 

I 
I l l  

FIGURE 2. Two Equivalent Transistors 
Rising and falling transitions on signalling wires have the 

same meaning. They are called events. 

speed potential of conventional  clocking. 
Transition signalling avoids assigning meanings to the 

absolute high or low state of control signals. I will use 
the state of a control signal only relative to the states of 
other related control signals; the state of a control sig- 
nal may be the same as or different from that of an- 
other, but its absolute state will never matter.  Because 
the absolute state of a transit ion control signal is unim- 
portant, there is no need to re turn it to some neutral  
state between events. By avoiding such returns to a 
neutral  or low state, transit ion signalling saves the t ime 
and energy costs of the re turn transition, as well as the 
design confusion of an unnecessary event. Transit ion 
signalling is much like non-return- to-zero (NRZ) mag- 
netic recording. 

Many people find it difficult at first to grasp the no- 
tion that both rising and falling edges should have the 
same meaning. This is not surprising because a change 
in conceptual framework is required. Most people are 
accustomed to differentiating high and low levels and 
to a clock that returns to a neutral  state between ac- 
tions. But even though it may seem hard at first, the 
transition-signalling conceptual framework quickly be- 
comes very easy to use. Abandoning the clocked-logic 
conceptual framework in favor of the transition-signall- 
ing conceptual framework can provide real advantages 
in speed and simplicity that are part icular ly striking in 
micropipelines. 

Transition signalling circuits must be symmetr ic  with 
respect to the high and low states of control signals, 
since both rising and falling transitions have the same 
meaning. Look for this symmetry  throughout this lec- 
ture. Notice also that my descriptions of circuit action 
speak of control signal levels only in relative terms as 
being the same or different rather than in absolute 
terms as being high or low, again to preserve symmetry.  
I use conventional levels, high or low, only for data 
values. The symmetry  of transit ion signalling provides 
appealing simplicity in complementary  metal  oxide 
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semiconductor (CMOS) circuits because it fits well  with 
the symmetry  of the complementary transistors from 
which CMOS circuits are built. 

THE TWO-PHASE BUNDLED DATA CONVENTION 
If a sender and a receiver communicate  using transition 
signalling, there will be two control wires and many 
data wires between them, as i l lustrated in Figure 3. 
The data wires carry conventional high or low states to 
convey true or false Boolean data. The sender places a 
data value on the data wires and then produces an 
event on its control wire, called "request," to indicate 
that valid data are available. In some cycles the request 
event will be a rising transition and in some it will be a 
falling transition; we make no distinction between 
them. The receiver accepts the data and then produces 
an event on its control wire, called "acknowledge," to 
indicate that the data have been accepted. The three 
events, data change, request event, acknowledge event, 
always follow in cyclic order, as i l lustrated in Figure 4. 
Successive cycles may take different amounts of time, 
as suggested by the difference in length of the cycles in 
the figure. Sometimes names other than "request" and 
"acknowledge" are used for the two control wires [7]. 
You may wish to compare this protocol to the non- 
overlapping clock protocol of Figure 5. 

Seitz [13] describes the protocol of Figure 4 that we 
have come to call the two-phase bundled data conven- 
tion. The "two-phase" part of this name indicates that 
only two phases of operation are distinguished: the 
sender 's active phase and the receiver 's  active phase. 
An event terminates each phase: the request event ter- 
minates the sender 's  active phase, and the acknowledge 
event terminates the receiver 's  active phase. The 
sender is free to change the data during its active phase 
and makes an event on the request wire after it has 
made the data valid; it must  then hold the data con- 
stant during the receiver 's  active phase. The "bundled 
data" part of this name indicates that the data wires 

SENDER 

Request 

Acknowledae 

Data 

RECEIVER 

FIGURE 3. A Bundled Data Interface 
In addition to an arbitrary number of data wires, an interface 
following the two-phase bundled data convention has two sig- 
nalling wires here called "request" and "acknowledge." The 
sender puts valid data on the data wires and then produces an 
event on the acknowledge wire. The receiver takes the data and 
then produces an event on the acknowledge wire. The request 
and acknowledge wires are sometimes given other names. 

and the request signalling wire must be treated as a 
bundle; delays in data transmission must be less than 
delays in transmitt ing the request event lest the request 
event reach the receiver prior to valid data. The ac- 

I ® 1  I 

, ~  One Cycle ~ , ~  Next Cycle 

'•.l•:>ASende r's -- Receiver's 
ction /~ i~:>Action 

FIGURE 4. The Two-phase Bundled Data Convention 
The three events per cycle in the two-phase bundled data 
convention occur cyclically in the sequence shown. They 
are: O During the sender's active phase, shown with solid ar- 
rows, the sender may change the data at will. ~ After the 
sender has established correct data values, it ends its active 
phase by producing the request event. During the receiver's 
active phase, shown with dotted arrows, the sender must hold 
the data constant. (~) After the receiver no longer needs these 
data values, it ends its active phase by producing the acknowl- 
edge event. Either phase may last for as much or as little time 
as its controlling unit decrees. Note that request and acknowl- 
edge events alternate. 

I I I 

I I I 

L..  One Cycle ~ , ~  Next Cycle ~ ,  
F-- v l ~  -,q 

FIGURE 5. Nonoverlapping Clocks 
Conventional non-overlapping clocks, ~1 and ~2, require 
5 events per cycle. They are: O data change, ~) ~1 rises, 
® ~1 falls, (~) ~2 rises, and @ ~2 falls. Compare this with the 
three events per cycle of Figure 4. 
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knowledge wire need not be bundled. 
In addition to several data wires, an interface using 

the two-phase bundled data convention requires two 
control wires. One may think that this is more expen- 
sive than a conventional clocking system, which re- 
quires only a single clock wire. The two wires, how- 
ever, serve to replace not only the clock wire, but  also 
at least two addit ional wires that would be required 
between stages in a clocked system to make the pipe- 
line elastic. 

EVENT LOGIC 
Control circuits for transit ion signalling are built  out of 
modules that form various logical combinations of 
events. Here are a few samples: 

The exclusive or (XOR) circuit acts as the OR ele- 
ment  for events. When either input  of an XOR circuit  
changes state, its output also changes state. Thus an 
event received on either the first input  OR the second 
input of the XOR will produce an output event. For 
more than two inputs, XOR generalizes to parity; parity 
circuits act as the mult iple- input  OR for events. We use 
the standard XOR logic symbol with two or more in- 
puts to represent these OR elements for events. Such 
elements are sometimes called MERGE elements, be- 
cause they merge two or more event streams. 

The Muller  C-element [8], for which I will shortly 
show circuits, acts as the AND element  for events. 
When both inputs of a Muller  C-element are in the 
same logical state, the Muller  C-element 's  state and its 
output are copies of that state. When the two inputs 
differ, the Muller C-element uses internal storage to 
retain its previous state and hold its output unchanged. 
Thus only after an event takes place on both of its 
inputs will a Muller C-element produce an event at its 
output. The Muller  C-element generalizes easily to 
three or more inputs, requiring that all of them reach a 
new logical state before copying that new state as out- 
put. We use the standard AND logic symbol with a 
large C inside it to represent Muller  C-elements that 
implement  logical AND for transit ion events. Such ele- 
ments are sometimes called RENDEZVOUS elements, 
because they act only after all input  events have ar- 
rived. 

In CMOS an appealingly simple dynamic implemen- 
tation of the Muller  C-element is possible, as i l lustrated 
in Figure 6. This circuit uses the electrical capacitance 
of an internal  node as the storage element  required in 
the Muller C-element. If a static Muller C-element is 
required, the node capacitance must be augmented 
with static logic, one form of which is i l lustrated in 
Figure 7. 

Although the absolute state of a transit ion signal does 
not matter, its state relative to other related signals 
does matter. Thus it is sometimes important  to invert 
transit ion signals. We use "bubbles" on inputs or out- 
puts of logic symbols to represent such inversions, as 
i l lustrated in Figure 8. Every loop around which events 
flow must contain an odd number  of inversions. Such 
loops are, in effect, oscillators whose oscillations are 
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FIGURE 6. A Dynamic Muller C-Element 

In CMOS the Muller C-element has a particularly simple dy- 
namic implementation that uses the electrical capacitance of 
an internal node as the storage element, Transistors to initial- 
ize the Muller C-element during master clear are not shown. 
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FIGURE 7. A Static Muller C-Element 
Replacing the capacitor of Figure 6 with transistors as shown 
produces a static Muller C-element. In an integrated circuit 
layout, the transistors shown here with smaller symbols can 
be very narrow, since they serve only to retain an already- 
established value. This circuit generalizes in an obvious way 
to three or more inputs. 

coordinated with those of other loops by the actions of 
Muller C-elements or other modules at loop junctions. 

Figure 9 shows block symbols for some other useful 
event logic circuits that implement  elemental  opera- 
tions, some of which are familiar to programmers.  The 
TOGGLE circuit produces events al ternately on its two 
outputs in response to events at its input; the first event 
after some master clear signal and every other subse- 
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IF inputs match in state 
THEN copy it for output 
ELSE hold previous state; 

::::::::ET- IF inputs match in state 
THEN invert it for output 
ELSE hold previous state; 

~ E ~  IF inputs differ in state 
THEN copy upper for output 
ELSE hold previous state; 

FIGURE 8, Muller C-Elements with Inverters 
Muller C-elements contain storage to hold a previous state 
on some input conditions. When inverters are included in 
input or output wires, as indicated by the bubbles in this 
figure, the actions are as listed. Muller C-elements provide 
the AND function for events. 

quent event pass through it to the output with the dot. 
The SELECT module steers an incoming event to one 
output or the other depending on the value of a data 
input; it serves for testing the Boolean condition in con- 
ditional expressions. The Boolean value must be avail- 
able before the incoming event that it steers, a require- 
ment  similar to the bundling condition in the protocol 
of Figure 4. The CALL element  remembers  which of its 
inputs most recently received an event, and returns an 
event to the matching output terminal  after a called 
procedure has finished. The memory in the CALL ele- 
ment  serves the role of subroutine re turn address. The 
CALL element operates properly only if each call com- 
pletes before a subsequent call occurs. The ARBITER 
decides cleanly between two events whose arrival se- 
quence is unknown, producing a grant event for only 
one of them even if they arrive at very nearly the same 
time. Like a semaphore in programming, it delays sub- 
sequent grants until  after receiving an event on the 
done wire corresponding to an earl ier  grant so that only 
one grant at a time is ever outstanding. An ARBITER 
can be connected directly to a CALL element to permit  
two entirely independent  processes to call on a single 
shared procedure. 

CONTROL FOR MICROPIPELINES 
A string of Muller C-elements with inverters inter- 
posed, as i l lustrated in Figure 10, is the only logic re- 
quired to control the micropipelines described in this 
lecture. I find it remarkable that the only distinctions 
between the forward and reverse direction of the pipe- 
line to be found in this circuit are the delay required 
for bundling and an inversion in the reverse signal 
path. Observe in Figure 10 that a request and an ac- 
knowledge signal pass between adjacent stages of this 
control. Data wires also pass between stages, as I shall 
shortly describe, but these are not shown in Figure 10. 
At each interface between stages the request and ac- 
knowledge signals and the data values follow exactly 
the two-phase bundled data convention of Figure 4. 

Notice also in Figure 10 that the request and ac- 

knowledge wires at the input interface are identical to 
those at the output interface. The similari ty of the sig- 
nalling form at the input and output ends of the control 
ensure that any number  of such control systems, even 
ones that differ markedly  in raw speed, will operate 
properly when connected in series, albeit at the speed 
of the slowest. This composabili ty of micropipelines 
makes it easy to assemble long signal-processing pipe- 
lines; one simply connects the request, acknowledge, 
and data wires at the output of one micropipeline to the 
corresponding wires at the input  of the subsequent mi- 
cropipeline. The composite control is just a further rep- 
etition of the control system il lustrated in Figure 10. 

One way to see how the control circuit  of Figure 10 

XOR provides the OR 
function for events. 

T O G G L E  

I I 
1 

SELECT I 
true false I 

I I 

--Ii,I R1 
,91,.,.I D1 

' ¢~ D I - , -  

,~--I D2 
-,rot R2 

Muller C-elements 
provide the AND 
function for events. 

TOGGLE steers events 
to its outputs alternately 
starting with the dot. 

SELECT steers events 
according to the Boolean 
value of its diamond input. 

CALL remembers which 
client, R1 or R2, called the 
procedure, R, and after the 
procedure is done, D, 
returns a matching done 
event on D1 or D2. 

--MR1 G1 
D1 

D2 
~ R2 G2 

7. ARBITER grants service, 
G1 or G2, to only one input 
request, R1 or R2, at a time, 
delaying subsequent grants 
until after the matching 
done event, D1 or D2. 

FIGURE 9. Logic Modules for Events 
Modules of 10 to 1 O0 transistors can perform useful logical 
functions on events. The modules whose symbols are shown 
provide the functions indicated. Note the similarity of these 
functions to the basic structures used in programming. One 
might think that the arbiter would require 8 terminals, since 
the request signals at the left seem to lack corresponding 
acknowledge signals. Either the grant or the done signals are 
used to acknowledge incoming requests, depending on the 
application. 
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works requires us to focus on its behavior as a series of 
loops around which events flow. There is a single in- 
verter in each loop, and so each loop will oscillate. The 
Muller  C-elements coordinate the oscillations in adja- 
cent loops. This view makes it easy to see that the 
request and acknowledge events at each interface must 
alternate. 

Another  way to see how this circuit works requires 
us to focus on the state of each Muller  C-element rela- 
tive to the states of predecessor and successor Muller C- 
elements. Remembering the behavior of a Muller  C- 
e lement  with one inverted input, we can easily see that 
each stage of the control of Figure 10 follows a very 
simple stage state rule: 

IF predecessor and successor differ in state 
THEN copy predecessor 's  state 
ELSE hold present state. 

This stage state rule makes the control system stable 
both when all stages are in the same state and when 
alternate stages are in opposite states. The condition in 
which all control elements are in the same state corre- 
sponds to an empty pipeline, and the condit ion in 
which alternate stages are in opposite states corre- 
sponds to a filled pipeline. There are other stable condi- 
tions with stages near the input  end in the same state 
and stages near the output end in al ternating states; 
these conditions correspond to a part ly filled pipeline. 
The stage state rule also makes the control system un- 
stable in some states; such unstable states change im- 
mediately as events propagate through the stages of the 
pipeline. To initialize a micropipeline to the empty con- 
dition, its Muller  C-elements may all be set to the same 
state by a master clear signal. I have omitted the reset 
circuits required to do this from Figures 6 and 7. 

The stage state rule, described above in IF THEN 
ELSE form, is the digital equivalent  of the differential 
equations that describe ocean waves and electromag- 
netic waves. In a wave equation a time derivative, in 
this case copy predecessor 's  state, is set equal to a space 
derivative, in this case IF predecessor and successor 
differ in state. Like the rules of physics described by 

the differential wave equation, the stage state rule re- 
suits in wave propagation. 

Like ocean and electromagnetic waves, events can 
propagate in either direction through the control of Fig- 
ure 10. If all Muller C-elements are init ial ly in the same 
state, an event at the input end of the control will 
propagate forward through the control from input  to 
output. If the control elements are init ially in al ternate 
states, an event introduced at the output end of the 
control will propagate backward through the control 
from output to input. It is interesting that so simple a 
circuit should exhibit  wave propagation in both direc- 
tions. 

Both forward and reverse propagation of events in 
the control system of Figure 10 are useful in controlling 
micropipelines. Forward propagation of events through 
the control circuit will force information forward 
through the micropipeline, much as an ocean wave 
pushes a surfer toward the shore. Reverse propagation 
will sweep empty data spaces created at the end of the 
pipeline back through occupied sections toward the be- 
ginning. Empty spaces move through occupied sections 
much as holes move in a semiconductor  or air bubbles 
rise through water. 

A N  E V E N T - C O N T R O L L E D  S T O R A G E  E L E M E N T  

This section introduces a storage element  suitable for 
use with a transit ion signalling control system. In order 
to make these circuits easier to understand,  I will use a 
switch symbol to represent any one of several configu- 
rations of transistors, one of which is shown in Figure 
11. As you can see in the figure, the transistor imple- 
mentat ion of this switch makes use of both the true and 
the complement  form of its control signal, C and ~C, 
which implies an inversion of the control signal not 
shown explicit ly in the figure. Notice that the circuit  is 
entirely symmetric  with respect to high or low values 
of its control signal, selecting one input  when its con- 
trol is high and the other when its control is low. I will 
always draw such switches in the position they assume 
when their  control signals are low. 

A suitable storage element  for use with a transit ion 
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DIRECTION OF DATA FLOW 

FIGURE 10, Control Circuit for a Micropipeline 

With data paths omitted, the control circuit for a micropipe- 
line is a string of Muller C-elements. In this figure one of four 
identical stages is shaded and alternate stages have been 
drawn upside down. At the input and output to each stage 
there are request, R(n), and acknowledge, A(n), signals. In- 
verters in the acknowledge paths are represented by "bub- 
bles" at one input of each Muller C-element. The delays 
shown explicitly here may not be required for simple data 
paths. Notice that each loop in this circuit contains exactly 
one inversion, the bubble, and is therefore an oscillator. The 
Muller C-elements retard the oscillation in each loop to coor- 
dinate it with the actions of adjacent loops. In this and other 
figures, dotted wires carry event signals. 
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FIGURE 11. Circuit for the Switch Symbol 

The double-throw switch symbol at the right of this drawing 
represents the transistor circuit shown inside the dotted line. 
When the control wire, C, is low, the output terminal, Z, is 
controlled by the Y input, as shown. When the control wire is 
high, the switch flips to the Z input. The output of this form of 
switch is controlled by its selected input, but inverted in value. 
Other implementations of such a switch using pass transistors 
are also possible. 

signalling control system must respond to transition 
events. Unlike a conventional latch in which the "high" 
and the "low" state of the clock signals can perform 
different functions, an event-controlled storage element  
must give similar responses to rising and falling transi- 
tions. Suitable circuits that use two control wires called 
"capture" and "pass" are i l lustrated in Figure 12. Each 
of these two circuits uses two latches side by side and 

activates them alternately.  In the circuit  with only 
three inverters, the output inverter  is shared between 
the two latches. Notice that because of the inverters 
implied in the control of the switches shown, both of 
these circuits are entirely symmetr ic  with respect to 
high and low values of their  control signals. You may 
wish to compare these circuits with the conventional  D 
flip-flop circuit shown in Figure 13. 

The behavior  of an event-controlled storage element  
is easy to describe using only the relative states of its 
two control signals. When its two control signals are in 
the same state, the condition shown in Figure 12, the 
event-controlled storage element  is t ransparent  and de- 
livers its input data directly to its output, not acting as 
a storage element at all. You can see a path through the 
switches and inverters leading directly from input  to 
output. When its two control signals differ in state, one 
or the other of the switch sets will be flipped from the 
position shown in Figure 12. As you can imagine from 
the figure, if one of the switches is flipped, a loop is 
formed containing two inverters. Such a loop captures 
and retains the data value. If one switch is flipped to 
form such a loop, no path exists from input to output, 
the event-controlled storage element  is rendered insen- 
sitive to changes on its data input  terminal,  and it re- 
ports at its output only the data captured in the loop. 

The behavior  of an event-controlled storage element  
can also be described in terms of events. Let us assume 
that the event-controlled storage element  is init ially 
transparent, as it is shown in Figure 12 and that the 
capture and pass control signal events always alternate. 
An event on its capture control wire flips the two 
switches to which the capture wire is connected, and 
thus causes the storage element  to capture and hold the 
data value then passing through it. This event isolates 
the output value of the element  from changes at the 

In • Out 

k . .  Capture ;-- Pass 

FIGURE 12. Event-Controlled 

An event-controlled storage element responds to events on its 
two control wires, called "capture" and "pass" in this drawing. 
Two different configurations are shown. The form on the right, 
with five inverters, is slightly faster than the form on the left, 
with only three inverters, because its feedback paths contain 
only one switch rather than two. After master clear the 
switches will be in the position shown, making a direct connec- 
tion without loops between input and output, a state in which 

ut 

• m 

' - -  Capture ~-- Pass 

Turing Award 

Storage Elements 

the storage element is said to be transparent. Storage ele- 
ments of either type are formed into registers just as are flip 
flops by connecting their capture and pass control wires in 
parallel. The register symbol includes control outputs, Cd and 
Pd, which are amplified, and thus necessarily delayed, versions 
of the control input signals, C and P. Cd and Pd, named for 
"capture done" and "pass done," deliver output events after 
the register has done its action. 
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FIGURE 13. Conventional D Flip-Flop 

A conventional D flip flop is controlled by non-overlapping 
clock signals ,~1 and ~2 illustrated in Figure 5. Compare this 
circuit to the event-controlled storage element of Figure 12. 

element's input but does not change the output value. 
A subsequent event on the pass control wire flips the 
other switch, returning the element to the transparent 
state, permitting the next data value to appear as its 
output, and possibly changing its output value. After 
each event on the element's pass control wire a new 
output value appears. This is exactly the behavior re- 
quired to make micropipelines with the control system 
already described. 

Event-controlled storage elements are connected in 
groups to form event-controlled registers. Each such 
register consists of a number of event-controlled storage 
elements with their capture and pass control wires con- 
nected in parallel. Because the capture and pass wires 
drive many transistors, suitable amplifiers are included 
in the register design. These amplifiers have some un- 
known delay, and there is further delay introduced by 
the physical length of the wires. I therefore include 
pass done, Pd, and capture done, Cd, event outputs on 
every event-controlled register, as shown on the regis- 
ter symbol in Figure 12. Events on these outputs follow 
exactly the events on the capture and pass control in- 
puts, but are delayed to account for the amplification 
and wiring delays in the register. The explicit done 
signal outputs permit subsequent actions to be further 
delayed if required. Such a delay might be needed if 
the register is composed from simpler parts, as we shall 
shortly see, or performs some side effect. It is interest- 
ing to note~that if two or more event-controlled storage 
registers are connected so that their data paths are in 
series and are provided with the same control signals, 
the result is indistinguishable, except for overall delay, 
from a single event-controlled storage register. 

If wide words are involved and small size is required 
rather than high speed, one may use the circuit of Fig- 
ure 14 as an event-controlled storage register. This cir- 
cuit uses only a single latch per bit, but requires extra 
equipment for control. The extra control equipment is 
required because the latches have only a single control 
wire in which both capture and pass events must flow. 
Naturally, the delays introduced by the extra equip- 
ment also delay the capture done and pass done control 
outputs. 

The operation of the circuit of Figure 14 is easy to 
understand. The XOR circuit shown at the top of the 

figure merges the capture and pass control events from 
the two control inputs onto one wire. Because capture 
and pass events alternate, each capture event will make 
the output of the XOR high, flipping the switches from 
the position shown, and causing the latches to capture 
data. Each pass event will make the output of the XOR 
low, returning the switches to the position shown, and 
making the latches transparent again. The TOGGLE 
module shown at the bottom of the figure separates the 
capture and pass events on the common wire onto the 
"capture done" and "pass done" control outputs labeled 
Cd and Pd in the figure. The toggle suffices for this 
purpose because capture and pass events alternate. The 
capture done and pass done control outputs indicate 
completion of any internal delays involved in the XOR 
and TOGGLE modules and in driving the control wire 
for the many latches in the register. 

MICROPIPELINES WITHOUT PROCESSING 
A micropipeline with no processing in it, which is a 
FIFO, can be built by combining the control of Figure 
10 with the storage registers of Figure 12 or Figure 14. 
A set of event-controlled storage registers in series 

C . . . . . .  ~ F . . . . . .  p 

IN<l> [ ~ e - - ~ e - L  OUT<l>= 

IN<2> , [ ~ ~ . [ ~ o - - [ ~ e - L  OUT<2> 

I:OOOL  I 
Cd • .... J , ..... ~ Pd 

FIGURE 14. Latches Used as an Event-Controlled Storage 

Register 

An event-controlled register made from ordinary latches re- 
quires an XOR module and a TOGGLE module for control. A 
2-bit register is shown; dashed wires carry events. Capture 
and pass events arrive alternately at the separate control 
inputs, C and P, but the XOR merges them onto one wire. At 
the XOR output, each capture event becomes a rising transi- 
tion in the latch control wire and flips the switches, causing 
the latches to capture data. Each pass event becomes a 
falling transition in the latch control wire and flips the 
switches back to the position shown, making the latches 
transparent again. The TOGGLE module separates the cap- 
ture and pass events back into two separate output paths, 
Cd and Pd, after the register has done its action. This circuit 
is slower than the event-controlled register of Figure 12 and 
delays its output events, Cd and Pd, accordingly, but except 
for delay provides exactly the same function. 
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serves as its data path while a string of Muller C-ele- 
ments serves as its control, as illustrated in Figure 15. 
Each event-controlled storage register uses the control 
signal from its stage of the control as its capture control 
signal, and the control signal from the successor stage 
as its pass control signal. When this FIFO is empty, all 
of its storage registers are transparent, and so a path 
exists through it directly from its data input terminals 
to its data output terminals. 

I have arranged the layout of Figure 15 not only to 
make it easy to read but also to suggest a layout for an 
integrated circuit implementation. The Muller C-ele- 
ments are located at either ends of the registers, just as 
shown, so that control signals zigzag across the chip. 
The wires that control the registers are driven from one 
side of the register and are used to control the Muller 
C-elements of adjacent stages at the other side of the 
register. Because the control signals for the register 
must be amplified to drive all the switches in the many 
storage elements involved, and because the wires that 
carry control signals across the register are long, there 
is always some delay in controlling the register. The 
arrangement of driving registers from one side and sen- 
sing their control signals at the other side accommo- 
dates not only the delay in the driving amplifiers but 
also any delay in the wires themselves. 

If no processing is required in the micropipeline, i.e., 
for a FIFO, the simpler data path circuit of Figure 16 
will serve [17]. In this circuit the side-by-side latch 
configuration of the event-controlled storage element is 
extended between stages. The two separate data paths 
are brought together again only at the output end of the 
FIFO by an output selector switch very similar to that 
used in the event-controlled storage element. The first, 
third and other odd-indexed data values pass through 
the upper data path while even-indexed values pass 
through the lower data path. 

Look at all the symmetry in Figure 16. Except at its 
output, shown at the right of the figure, there is no 
distinction at all in its data path between the forward 
and reverse directions of the FIFO. It seemed at first to 
me that this must indicate a flaw in its design. There is 
no flaw; the circuit of Figure 16, though unconven- 
tional, works well. Abandoning the conventional notion 
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FIGURE 16. A FIFO Circuit 
If no processing is required, as in a FIFO, the event-controlled 
storage elements in Figure 15 can be replaced with this simpler 
circuit [17]. In this figure, dashed lines carry control signals, solid 
lines carry data values, and four stages are shown. The 
switches are drawn as they would be in an empty FIFO. The 
FIFO illustrated is one bit wide and can therefore store four bits; 
more length or width comes with further repetition of the internal 
parts of this data path. Alternate inputs pass through the upper 
and lower rails of the data path and merge again only at the 
output. When the FIFO is empty, as it is illustrated, it is transpar- 
ent; one can trace a direct path from data input to data output. 
When each switch changes, identical data is presented to each 
of its inputs; thus the switches may momentarily short their two 
inputs together when changing. The micropipeline shown has an 
odd number of inversions and thus inverts its data value. 

of a latch produces a simple and effective circuit for a 
FIFO. 

Naturally, data must propagate through a micropipe- 
line faster than the control events propagate through its 
control. This is usually assured by three factors. First, 
the Muller C-element used in the control circuit is 
more complex than the storage element used in the 
data path and therefore inherently slower. Second, 
since each single stage of the control system must drive 
the many storage elements that hold a parallel word in 
each register, the control signals must be amplified to 
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FIGURE 15. Micropipeline without Processing 

A micropipeline without processing has event-controlled reg- 
isters for data path and Muller C-elements for control. Four 
stages are shown; one of them is shaded. Each interface 
between stages conforms to the two-phase bundled data 
convention of Figure 4. This drawing suggests the form of an 
integrated circuit layout; the control signals pass back and 
forth across the data path to accommodate transmission 
delays. 
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drive multiple loads. This amplification inevitably de- 
lays the control signals. Third, the layout suggested in 
Figure 15 ensures that the zigzag path of the control 
signals has longer wires in it than those in the data 
path. Of course, when the circuit of Figure 14 is used as 
the register, the capture done and pass done control 
outputs from each register should be used to drive the 
Muller C-element inputs of adjacent stages so that any 
delays in the TOGGLE and XOR modules are included 
in the overall control signal delay. If no significant pro- 
cessing logic is placed in the data path, one can easily 
develop confidence that the data path is faster than the 
control path. Special delays are required in the control 
path only when significant processing logic is put be- 
tween storage cells in the data path. 

M I C R O P I P E L I N E S  W I T H  P R O C E S S I N G  
The micropipeline framework provides a basis for a 
variety of pipeline processors [18]. My colleagues and I 
have designed multipliers, binary to one-out-of-N de- 
coders, a memory controller, and other circuits using 
the micropipeline framework. In each case the micro- 
pipeline control template of Figure 10 provides the ba- 
sis for the design. In some cases this simple template is 
embellished with circuits composed from the event 
logic modules of Figure 9 to provide more complex con- 
trol functions. For example, using only one TOGGLE 
module and one XOR module it is easy to construct a 
circuit that performs two operations for each input 
event. The same two modules connected differently 
form a circuit that performs an operation only for every 
other input event. 

When logical processing is required, suitable combi- 
natorial circuits are placed between the storage regis- 
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FIGURE 17. Micropipeline with Processing 
A micropipeline with processing uses combinatorial logic be- 
tween the event-controlled registers of Figure 15. Four 
stages are shown; one of them is shaded. The delay ele- 
ments in the request event path model the processing logic 
delay to preserve the bundling convention. All interfaces be- 
tween stages, taken either before or after the logic circuits, 
conform to the two-phase bundled data convention of Fig- 
ure 4. The capture done, Cd, output of each register is 
shown connected to the pass, P, input of its predecessor, a 
more conservative connection than was used in Figure 15; 
either connection works. 

ters, as illustrated in block form in Figure 17. One can 
trade off the number of stages of storage and the com- 
plexity of the intervening logic to obtain a suitable bal- 
ance between latency and throughput rate. With less 
combinatorial logic between stages and more stages of 
storage, one obtains higher throughput rate at the cost 
of greater latency. The decoder circuits of Figures 18 
and 19 perform the same function using different 
amounts of storage. 
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FIGURE 18. A Decoder with Two Micropipeline Stages 

This two stage micropipeline decodes three binary input bits into 
eight unary output bits. It can store two values, one not yet 
decoded and the other fully decoded. The processing logic at 
the center of the figure is formed from three ranks of ordinary 
AND gates. The delay at the bottom of the figure must delay the 
request event at least as much as the three ranks of combinato- 
rial logic delay the data. 

The number of bits of storage in the registers of suc- 
cessive stages in a micropipeline may vary widely ac- 
cording to the needs of different processing steps. For 
example, the decoder of Figure 19 has 3 binary inputs 
but 8 unary outputs, and increases the width of the 
data word as each internal stage decodes an additional 
bit of the input. The 12-bit x 12-bit micropipeline mul- 
tiplier whose layout is illustrated in Figure 20 has 24- 
bit data paths at input and output. It uses 24 stages of 
micropipeline: 12 to do the multiplication and 12 to 
resolve the carry-save form of product that results. At 
the center of the pipeline, 36-bit registers are required, 
since half of the product is in a carry-save form that re- 
quires two bits of data to represent each bit of product. 
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FIGURE 19. A Decoder with Four Micropipeline Stages 

This four stage micropipeline also decodes three binary input 
bits into eight unary output bits. It does the same thing as the 
circuit of Figure 18, but it has more storage for partially decoded 
results. It can store four values, the first not yet decoded, two 
partially decoded values, and the final one fully decoded. The 
three delays in these request paths can each be shorter than the 
one in Figure 18, because each delay models only a single rank 
of combinatorial logic. This decoder has a higher throughput rate 
than the functionally equivalent decoder of Figure 18. 

Because it has 24 stages, this mult ipl ier  can hold as 
many as 24 part ial ly processed products. It can also 
hold fewer. It automatical ly processes any part ial ly 
complete products as much and as fast as possible, con- 
sidering the products already queued for output. At full 
operating speed, it provides the very high throughput  of 
a pipeline process. When empty, however,  it has no 
storage and acts as a combinatorial  mult ipl ier  to pro- 
duce individual  products. It is never necessary to insert 
dummy data to flush previously entered information 
out of a micropipeline. 

As a more complex  example, we designed a memory 
controller using the micropipeline framework. This 
memory controller is intended for byte-serial  access to 
a dynamic random access memory (DRAM) of 224 words 
of 16 bits each. Its input and output registers are 8 bits 
wide to accommodate the byte-serial  data format. We 
used the two-phase bundled data convention of Fig- 
ure 4 as the byte transfer protocol at the input and out- 
put of this memory controller. It contains seven parts: 
four event-controlled storage registers and three stages 
of logic between them. 

Each stage of control in the memory controller oper- 
ates much like one of the simple stages in micropipe- 
line control of Figure 10. Like those of Figure 10, each 
stage includes a Muller  C-element and each stage com- 
municates only with adjacent  stages using exactly the 
two-phase bundled  data convention of Figure 4. The 
control for each stage is composed from the event logic 
elements shown in Figure 9: XORs, Muller C-elements, 
SELECTs, TOGGLEs, and CALLs. In some stages these 
elements are connected in loops to permit  several ac- 
tions to take place within the stage before it acknowl- 
edges data from a previous stage or requests service 
from a subsequent stage. Such loops pack and unpack 
data. A separate memory refresh procedure interrupts 
normal operation using an ARBITER. 

The logic in each stage of the memory controller per- 
forms a different function. The first stage decodes byte- 
serial input  from the 8-bit input  register, converting it 
into a 54-bit parallel  word containing all of the address, 
data, and control information required for a memory 
cycle. This stage accepts and acknowledges several 
bytes of input before requesting action from the next 
stage. Between the first and second logic stages is a 54- 
bit event-controlled register. The second stage uses 
each 54-bit parallel  word to control one access to the 
external  DRAM chips. When reading from memory, 
this access converts the 54-bit address and control in- 
formation into a 16-bit data value. The control includes 
a t iming model  for the memory chips and waits for the 
memory cycle to finish before requesting action from 
the next stage. Between the second and third stage of 
logic is a 16-bit event-controlled register that captures 
the data output from the DRAM chips. The third stage 
repacks the 16-bit output data into byte-serial  form and 
presents it at the output terminals  through the 8-bit 
event-controlled output register. 

This memory controller, operating as a pipeline, can 
be carrying out a memory access while concurrently 
packing up the previously accessed data and unpacking 
the byte-serial  address and control information for the 
next access. Because the stages are free of a common 
clock and each runs at its own pace, the pipeline is 
elastic. The elasticity permits a memory cycle to occur 
whenever  a single set of address and command values 
is presented at the input, which may require several 
input  bytes, even if no further input  is provided. 

The behavior  of micropipelines is a blend of combi- 
natorial behavior  and pipeline processing. Remember  
that event-controlled storage elements are transparent  
when empty, and can behave like combinatorial  cir- 
cuits, storing nothing. Thus when a micropipeline is 
empty it behaves just like a combinatorial  circuit. After 
their data path delay, the decoders of Figures 18 and 
19, if empty, faithfully report as output the correct one- 
out-of-N code for any given binary input. You can con- 
firm this by examining Figures 18 and 19 and remem- 
bering that the switches are all drawn in the positions 
they occupy when the data path is empty. Notice that 
complete paths involving no storage are available from 
input  to output. Similarly, the mult ipl ier  of Figure 20, if 
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FIGURE 20. A Micropipeline Multiplier Chip 
The experimental micropipeline multiplier shown in this pho- 
tograph was built by Austek Microsystems. It multiplies pairs 
of 12-bit numbers using 24 stages of micropipeline; the first 
12 stages are in the multiplication array, and the final 12 
resolve the carry-save form of multiplier output. When 
empty, the multiplier acts just like a storage-free combinato- 
rial multiplier, but when used as a pipeline it can accept up to 
24 operand pairs before delivering its first product. 

empty, faithfully reports as output the product of its 
input operands after its data path delay. This behavior 
makes the data path of a micropipeline easy to test. 

The pipeline behavior  of micropipelines is evident  
when they are given several inputs in rapid succession. 
Transit ion events on the request and acknowledge 
wires at the input  end of the micropipeline serve to 
separate one input  data e lement  from another  accord- 
ing to the two-phase bundled  data convention of Fig- 
ure 4. The "handshake" events on the request and ac- 
knowledge wires are like the rubber rods used in a 
grocery store check-out  line to separate one customer 's  
groceries from another 's.  Each request-acknowledge 
pair of events separates one data set from preceding or 
following data sets. The wave propagation properties of 
the Muller  C-element control system move these data- 
separation events forward through the control circuits, 
and the control events force the data forward through 

the event-controlled storage registers, just as motion of 
the conveyer belt in the grocery store moves rubber 
rods and groceries forward toward the cashier. 

The pipeline behavior  of micropipelines is also evi- 
dent when they deliver several outputs in rapid succes- 
sion. Again the "handshake" events on the request and 
acknowledge wires at the output end of the micropipe- 
line serve to separate one output value from another. 
Again the two-phase bundled data convention of Fig- 
ure 4 is used, each handshake bringing a new value to 
the output data terminals.  Micropipelines can exhibit  
very high burst input  and output data rates. 

The two-phase bundled  data convention of Figure 4 
automatical ly takes care of the "full" and "empty" con- 
ditions of the micropipeline. If the micropipeline be- 
comes full, it will delay the acknowledge event on its 
input end, thus preventing further input. Remember  
that the device feeding the micropipeline must conform 
to the two-phase bundled data convention of Figure 4, 
and therefore cannot change the input  data until  after 
it receives an acknowledgment  for the present data. 
Similarly, if the micropipeline becomes empty, it will 
delay the request event at its output end, thus prevent-  
ing the output device from taking erroneous data. At 
every internal  stage of the micropipeline the same sig- 
nalling convention applies. Thus if a section is full, it 
will automatical ly delay new data from earlier  sections 
in the micropipeline. 

OTHER DEVICES USING THE SAME PROTOCOL 
The two-phase bundled  data convention used in micro- 
pipelines can be applied to other types of devices as 
well. For example,  one can bui ld a ring-buffer FIFO 
whose interface characterist ics are the same as those of 
the micropipeline FIFOs of Figure 15 or Figure 16. Such 
a device might use an external  random access memory 
for the required storage and two address counters as 
pointers, one for reading and one for writing, to treat  
the memory as a ring buffer. It would compare the 
values of the two pointers to recognize if the ring buffer 
were full or empty, and if so to delay the handshake 
signals at its terminals.  The ring buffer pointers and the 
full and empty signals that result from comparing them 
could be private internal  signals not available outside 
the control. 

If a single port memory is used in such a ring-buffer 
FIFO, an arbiter  must be used to decide whether  the 
next memory cycle will be devoted to reading or to 
writing. Arbitrat ion is required because a single re- 
source, namely the memory access port, must  be shared 
between two independent ly  t imed processes, the input  
process and the output process. If, at precisely the same 
instant, the input  process delivers a new input  value 
and the output  process asks for a new output value, the 
arbiter  must decide cleanly which request to service 
first. A transit ion logic control for such a ring-buffer 
FIFO is shown in Figure 21. 

Although the circuit  of Figure 21 looks like a flow 
diagram, it is in fact a circuit. It is composed of simple 
transit ion control modules,  all of which use transit ion 
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R(in) A(out)  

FIGURE 21. Ring-Buffer FIFO Control Logic 
The control logic for a ring-buffer FIFO can be composed 
from the event logic modules shown in Figure 9. Except for 
the test values, all wires shown here carry event signals; the 
data path, the address pointers and the memory are not 
shown. In each of the four SELECT modules I have written 
the name of its test; the wires labeled "E" and "F" carry the 
required Boolean values. The functions described in the four 
lozenges include memory access and incrementing the read 
and write pointers, RP and WP. Although this figure looks 
like a block diagram, it is actually a circuit ready for direct 
implementation. It has been proven [5] than an external ob- 
server cannot distinguish this ring-buffer FIFO control circuit 
from the micropipeline control circuit of Figure 10. 

signalling. Because these modules are insensitive to de- 
lay, composing them into circuits is much like drawing 
flow diagrams. Using tools developed by David Dill, my 
colleague, Bob Sproull, proved that if the FIFO controls 
of Figures 10 and 21 work at all, then for equivalent  
memory sizes they are functionally equivalent [5]. We 
can be assured, therefore, that such a ring-buffer FIFO 
and the micropipeline FIFO are interchangeable.  The 
ability to make such proofs is one of the appealing 
things about the transition-signalling conceptual frame- 
work. 

Using the two-phase bundled data convention of Fig- 
ure 4 between micropipeline stages leaves wide latitude 
to make individual  stages perform their  functions in 
diverse ways. For example, a pipeline device for arith- 
metic normalization can be built  with many stages or 
with a single stage. The multi-stage version performs a 
single bit shift in each stage, has very high throughput,  
exhibits long latency, and provides much buffer space. 

The single stage device performs its shifts sequentially, 
has reduced throughput  and buffer space, but  requires 
substantially less circuitry. 

Three bits of a data path for such a single stage se- 
quential  normalizer  are shown in Figure 22. Two regis- 
ters of the form il lustrated in Figure 14 are used in 
series to capture and hold the data. Switches at the top 
of the diagram select whether  input  data or shifted data 
enter the registers. The XOR and TOGGLE modules at 
the left of this circuit serve a similar role to those in 
Figure 14. Each event on the wire labeled "start latch 
data procedure" produces two events on each latch 
control wire and thus flips the register switches out of 
the position shown and then back into the position 
shown, capturing a new data value in the register. 
You should think of Figure 22 as the definition of the 
LATCH DATA PROCEDURE. This procedure has one 
input parameter,  the "shift control" signal shown, and 
one output parameter,  the "normalized or all zero" sig- 
nal, which is generated by circuits omitted from the 
figure. 

The sequential  form of normalizer  operates just as 
would a normalization program for a computer  able to 
shift left only one place at a time. The control circuit is 
shown in Figure 23. At the top of the figure is a Muller 
C-element, similar to those we have seen in other mi- 
cropipeline stages. After an event leaves the Muller C- 
element, its first action is to capture an input  datum by 
using the upper client terminal,  R1, of the CALL mod- 
ule to access the latch data procedure represented by 
the lozenge and defined in Figure 22. When the latch 
data procedure is done, it returns an event to the D 
terminal  of the CALL module, which in turn returns an 
event to its D1 terminal.  Thus shortly after the data are 
captured and before they are normalized, the control 
produces an event on its input acknowledge wire, A(in). 
From the point of view of a micropipeline stage, the 
rest of the algorithm below A(in) is just a delay before 
R(out). 

After capturing the input  datum, the control uses a 
while loop to shift the data into normalized form. The 
while loop contains an XOR module, a SELECT mod- 
ule, and the latch data procedure via the lower client 
terminals of the CALL module. An event circulates 
around the while loop and through the latch data pro- 
cedure as long as the data are not yet normalized, caus- 
ing one shift per trip around the loop. The time be- 
tween shifts is established by the loop delay, and may 
be as fast or as slow as the circuits involved. When the 
while loop finishes, the event exits from the loop via 
the "true" output of the SELECT module. Thus when 
shifting is complete the control makes an event on the 
output request wire, R(out). 

The shift control wire shown at the left of Figure 23 
deserves special mention. We can think about it in two 
ways. First, thinking in terms of events, we should put 
an event on this control wire just before the while loop 
starts to flip the shift control switches into the shift 
position, and we need another event on it when the 
while loop finishes to flip the switches back into the 
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FIGURE 22. Data Path for Sequential Normalizer 
The data patch for a sequential normalizer defines the 
LATCH DATA PROCEDURE. Only three bits of the register 
are shown. Circuits to detect the all zeros case or that the 
number is correctly normalized are not shown. The switches 
at the top of the data path select whether the register gets 
input data or shifted data. The TOGGLE and XOR modules 
at the left of the diagram are connected into two "do twice" 
loops in sequence. After an event arrives on the terminal 
labeled "start latch data procedure," the two ranks of latches 
in turn capture the data. After the data are latched, the final 
TOGGLE module delivers a single event to the terminal la- 
beled "done latch data procedure." 

input position. The two inputs to the XOR element that 
drives the shift control wire serve to bracket the while 
loop and thus deliver the two required events. The 
other way of thinking about the shift control considers 
the value of the XOR module output. So long as the 
while loop is active, its input and output control termi- 
nals will be in different states, and thus the output of 
the XOR module will be high, setting the switches in 
the correct position for shifting. 

Designing control circuits like the ones illustrated 
here is rather like making block diagrams for programs. 
Not only do the event logic modules provide condition- 
als, procedure call, and other elements familiar to pro- 
grammers, but also their response to events makes 
them easy to compose into loops and other structures 
similar to those found in programs. Using the form of 
the micropipeline control, it is also easy to build con- 
current processing devices. We and others have built 
and tested libraries of such event logic modules and 
found them remarkably easy to use; the similarity of 
composing event-driven modules and programming has 
been recognized and used to advantage in a few places 
at least since the macromodule project [2, 3] during the 
1960s. It provides, I think, an exciting alternative to 
conventional hardware design. 

MICROPIPELINES IN GENERAL PURPOSE 
COMPUTING 
General purpose computing machines use pipelines for 
two purposes: computation data paths and instruction 

decoding. They could also use pipelines in memory 
fetch operations if common memory parts and control- 
lers were built using the micropipeline framework. Let 
us consider each of these three applications in turn to 
see how the micropipeline framework might improve 
system performance or usability. 

Let us imagine a general purpose computing machine 
with micropipelines for arithmetic vector processing. 
Because the micropipelines provide an amount of stor- 
age that varies on demand, there need be no fixed vec- 
tor length built into the machine. The program would 
be free to load vectors of any length, up to a maximum, 
into such a micropipeline, and subsequently unload the 
results. Using a micropipeline adder, for example, a 
program might pile in a set of address and offset addi- 
tion tasks required to compute indexed memory refer- 
ences and use the internal storage of the micropipeline 
to hold the resulting sequence of addresses until 
needed. A program for multiplying short vectors by 
small matrices, an operation useful in computer graph- 
ics, might load the vector and matrix elements into a 
micropipeline multiplier followed by an accumulator. 
Vectors of 2, 3, or 4 components could be handled eas- 
ily and efficiently by the same equipment. Moreover, 
because input and output operations might be sepa- 
rated in time, the indexing required for memory access 
might be simplified. 
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FIGURE 23. Control Circuit for a Sequential Normalizer 
The control circuit for the sequential normalizer uses a call 
module to make the latch data procedure available for two 
separate purposes. The upper client uses the latch data pro- 
cedure to capture input data with the shift control switches in 
the position illustrated at the top of Figure 22. The lower 
client is part of a while loop containing also an XOR and a 
SELECT module. An event circulates around this loop while 
the value is not yet normalized. Notice that an event is given 
to the shift control wire when the while loop starts, thus 
flipping the shift switches in the data path to the shifting 
position. Another even passes to the shift control wire when 
the while loop finishes, thus returning the shift switches to 
the input data position. 
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Perhaps the most important applications of micro- 
pipelines will involve operations in which the vector 
length changes. One such example is the clipping oper- 
ation widely used in computer graphics [14, 15]. The 
clipping operation removes the parts of a set of objects 
that lie outside a reference window. Clipping may re- 
sult in an increase or decrease in the number of objects 
in the set. Because whole objects may be removed, 
there may be less output than input, but because con- 
nected edges may also be broken into multiple pieces, 
there may also be more output than input. Such a clip- 
ping device with very simple interface characteristics 
can be built using the micropipeline framework. 

Sorting is another important application for micro- 
pipelines in which the vector length changes. Micro- 
pipelines can be applied to both the partitioning and 
merging operations used in sorting. For partitioning, 
suppose that two micropipelines are connected to the 
outputs of a rapid micropipeline partitioner. Given a 
vector of input values, the partitioner can separate 
them into two output vectors according to some parti- 
tioning criterion, delivering elements from each vector 
into the corresponding output micropipeline. Of course, 
the number of elements in each of the two output vec- 
tors is data dependent, but the micropipelines are elas- 
tic and can easily accommodate variable length vectors 
by increasing or decreasing on demand the amount of 
storage available. The outputs of the two micropipe- 
lines can deliver the partitioned values without any 
need for priming or flushing. 

Micropipelines can be applied to the merging opera- 
tion as well. In this case two micropipelines for storing 
input vectors are connected to the two inputs of a 
merging device. This merging device can make what- 
ever comparison is appropriate between the data values 
it is presented and select one of them for output. The 
elastic property of the input micropipelines permits the 
merging device to take data from either of them in 
whatever sequence the data values require. Partitioning 
and merging devices can be useful in signal-processing 
pipelines as well, for example, to divide a workload 
between several parallel pipelines. 

Let us now turn from arithmetic to instruction pro- 
cessing. Pipeline instruction processing has become 
very common, and with reduced instruction set com- 
puter (RISC) architectures, is by now very well under- 
stood. One of its side effects is called "delayed branch." 
This name describes the fact that some precise number 
of instructions, for example exactly 2, will be per- 
formed in sequence after each jump or conditional 
jump instruction before the branch actually takes ef- 
fect. These "overhang" instructions are necessary to 
keep the inelastic instruction processing pipeline busy 
while the new jump address takes effect. If nothing 
useful can be done in these overhang instructions, 
NOPs must be inserted as input to the instruction pro- 
cessing pipeline while it completes work on the jump 
instruction. 

Let us imagine a micropipeline instruction processor. 
Such a processor can avoid the requirement for over- 

hang instructions, but permit them to be included for 
additional speed. Although the micropipeline latency 
may create a time delay equivalent to two instructions 
after a jump, such a processor need not impose the 
storage cost of NOPs. If there is nothing useful to do, 
the NOPs can be omitted to save the storage. If some 
other number of instructions can usefully be done after 
the jump, for example, one or three, they may be in- 
serted. By expanding or contracting the amount of stor- 
age used in the instruction processing pipeline on de- 
mand, the micropipeline framework can increase the 
programmer's flexibility. No longer does the pipeline 
have to contain exactly a fixed number of storage cells. 

Condition codes can usefully be passed through a 
micropipeline. Conditions such as arithmetic compari- 
son or parity for which a pipeline offers high through- 
put can be computed in vector fashion. For maximum 
throughput, the program should insert other operations 
between computing a condition and testing its result. If 
there is nothing useful to do between computing a con- 
dition and testing its result, intervening instructions 
may be omitted and the condition micropipeline be- 
haves like a combinatorial circuit. Such a program may 
suffer the delay of the micropipeline latency, but will 
work properly. 

With a micropipeline for storing condition codes, a 
program can compute several conditions before testing 
the first of them. The condition codes remain in the 
micropipeline in first-in-first-out sequence until tested. 
This is particularly useful in multi-way decoding trees, 
for example where three conditions control an 8-way 
branch. Instructions to compute each condition are re- 
quired only once, and the three codes thus generated 
are stored in the micropipeline until tested in the 
branch tree. In conventional machines the instructions 
that compute the second and third conditions must be 
duplicated in each branch of the test tree. 

Finally, memory systems obviously fit well into the 
micropipeline framework. One might design a dynamic 
random access memory (DRAM) part using a micro- 
pipeline. Such a memory part can provide at least a 
factor of two improvement in throughput over conven- 
tional DRAM parts. This improvement comes about be- 
cause such a memory part can access its memory array 
concurrently with decoding the next address and with 
driving its data output pin or pins with the previously 
retrieved data. Such an improved part requires rela- 
tively little additional circuitry, since many of the ac- 
tions in a DRAM are already driven from an internal 
timing chain. Only suitable event-controlled latches 
and Muller C-elements to form a micropipeline need be 
added to the existing DRAM logic, control mechanisms, 
and delay models. When concurrency is not needed, 
the micropipeline will be empty, making the event- 
controlled storage elements transparent, and permitting 
the micropipeline DRAM part to behave much like the 
one-cycle-at-a-time DRAM parts now in widespread 
u s e .  

One might worry that a DRAM part with a micro- 
pipeline would require four control wires, two at the 
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input port and two at the output port, where existing 
parts have only two, called RAS and CAS. This is not 
so, because it will prove better to use an external tim- 
ing model of the DRAM behavior, based on the manu- 
facturer's worst case specifications, rather than to have 
each and every DRAM part in a system report comple- 
tion on its own. The pins for completion signals at both 
input and output port can be omitted from the individ- 
ual DRAM parts, because the external timing model 
provides the two missing completion signals on behalf 
of the entire memory system, using its model of the 
DRAM behavior to provide suitable delays. The input 
port of individual DRAM parts needs only the request 
wire, and the output port of individual DRAM parts 
needs only the acknowledge wire. Events on these two 
control wires respectively tell the DRAM part when to 
accept new address information or data to be written, 
and when to present a new output value. The external 
timing model will itself be a micropipeline built with 
stage delays that equal or exceed, stage by stage, the 
corresponding delays in the micropipeline in the 
DRAM parts. 

Cache memories also fit well into the micropipeline 
framework. A very high throughput cache built within 
this framework can perform decode, detect "hits," and 
drive its output all concurrently. Such a cache memory 
has two interface pairs, both using a signalling conven- 
tion similar to the two-phase bundled data convention 
of Figure 4. One pair of interfaces connects the cache to 
the processor and the other pair connects it to memory, 
as shown in Figure 24. The pair of interfaces between 
the processor and the cache should be identical to the 
pair of interfaces between the cache and the memory, 
so that the system can operate with or without the 
cache as shown in Figures 24 and 25. 

The processor, cache, and memory, taken together 
form a micropipeline. Memory requests from the pro- 
cessor flow into the cache and back in micropipeline 
fashion, going to memory and back only when neces- 
sary. The processor can give the cache several memory 
requests concurrently before getting any data back. For 
highest throughput, the processor should deliver a con- 
tinuous stream of memory requests, but it operates cor- 
rectly, albeit at reduced throughput, if it gives only one 
request at a time. Because the two-phase bundled data 
convention of Figure 4 permits either sender or re- 
ceiver to delay the next transaction arbitrarily, cache 
or memory access delays automatically delay subse- 
quent requests from the processor. Similarly, the part of 
the processor that consumes memory data waits how- 
ever long is required for the events that signal the pres- 
ence of valid data. 

If the cache does not contain the required informa- 
tion, it passes the request on to the memory. In this 
case the processor suffers the additional delay required 
to fetch information from memory. Because the proces- 
sor accepts data from the cache only when it detects a 
validating request event, the processor easily accommo- 
dates to any additional memory delay. In fact, if the 
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FIGURE 24. Memory Interface with Cache 

A processor, cache, and memory system can use interfaces 
that follow the two-phase bundled data convention of Fig- 
ure 4. Interfaces 1 and 2 carry addresses and data to be 
written; interfaces 3 and 4 carry data and instructions. The 
entire system can operate as a micropipeline at the maxi- 
mum throughput rate of its slowest participant. 

cache sent every request to the memory, or if the cache 
were omitted, the system would still operate properly, 
albeit at reduced throughput. 

This leads me to the most important implication of 
micropipelines. Because they use event-controlled in- 
terfaces rather than a common clock, micropipelines 
with different inherent speeds can be composed di- 
rectly into systems that function correctly, albeit at the 
speed of the slowest part. If the cache of Figure 24 were 
omitted or replaced with a cache with different cost 
and performance characteristics, the system would still 
operate correctly. Similarly the processor performance 
or the memory performance can be upgraded and the 
system will still work, taking advantage of any avail- 
able speed improvements. 

CONCLUSION 
FIFOs and pipelines are simple to design and easy to 
understand in the transition-signalling conceptual 
framework. They are relatively difficult to design 
within the clocked-logic conceptual framework. By 
abandoning clocked logic in favor of transition signall- 
ing, one is able to make very simple micropipelines that 
assemble easily into larger structures. The change in 
conceptual framework suggested here simplifies system 
design because simple modules and compositions of 
them can be further composed into large systems. 

The composability offered by micropipelines and 
transition signalling may be their most important prop- 
erty. Complex functions are easy to compose from sim- 
ple modules that provide basic functions already famil- 
iar in programming. More complex systems can be built 
by composing them as a hierarchy of the basic modules 
and previously designed compositions. Even if the basic 
building blocks were hard to design, and they no longer 
are, they would be worthwhile, because they are so 
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FIGURE 25. Memory Interface without Cache 

With the cache omitted, the processor and memory can still 
function together. Because each interface accommodates arbi- 
trary delay, no further design change is required when the 
cache is omitted or when substituting a cache with different 
performance characteristics, 

easy to compose into systems. 
This same composability offers a simple way to up- 

grade system performance as improved circuitry be- 
comes available. Event-driven interface protocols per- 
mit old components to be replaced by new ones with 
improved throughput, latency, or cost characteristics. 
Because the handshake used here automatically takes 
care of delays in delivering or making use of data, such 
replacements can be made with assurance that the sys- 
tem will still operate properly. On the other hand, large 
systems built in the clocked-logic conceptual frame- 
work resist incremental improvement, because any in- 
crease in clock speed must be accommodated through- 
out the system. As improvements are made to systems 
built as I have outlined here, one can expect that the 
slowest or most expensive parts of a system will be 
replaced first, and thus that each replacement will im- 
prove system performance or decrease system cost. 
Thus the transition-signalling conceptual framework, 
micropipelines, and the two-phase bundled data con- 
vention of Figure 4 taken together not only simplify 
initial system design but also permit rapid mid-life up- 
grade of systems as new technology becomes available. 

I hope that this lecture may help system design to 
keep pace with advancing component technology. To- 
day, new integrated circuit technology makes available 
significant improvements in cost or performance every 
six months or so. It is often difficult to make use of 
such improved performance, because speeding up the 
clock in an entire system is a formidable task fraught 
with dangers. Today's system designers, constrained by 
the clocked-logic conceptual framework, take several 
years to produce a new system. Thus the systems being 
sold may lag by several years the potential speed or cost 
benefits offered by the most modern technology. I be- 

lieve that the micropipeline framework that I have de- 
scribed here can reduce the opportunity cost imposed 
by the clocked-logic conceptual framework. 

A c k n o w l e d g m e n t s .  The transition-signalling concep- 
tual framework has been used in a few places over a 
long period of time. I know of early work at the Univer- 
sity of Illinois by David Muller, at the University of 
Utah by A1 Davis, and at the Massachusetts Institute of 
Technology by Jack Dennis; I apologize in advance for 
omitting mention of other projects. 

I owe my own education in the transition-signalling 
conceptual framework to a few able people. I first be- 
came aware of transition signalling in the early 1960s 
when a group at Washington University in Saint Louis, 
led by Wes Clark, used it in the design of a set of 
macromodules [2,3]. I learned much more about it from 
Charles Seitz, now on the faculty at Caltech, over a 
dozen years starting in 1966 when, as an MIT graduate 
student, he taught me most of what I know about digi- 
tal design. We worked together at Harvard and at the 
Evans and Sutherland Computer Corporation using an 
almost-correct version of micropipelines in processors 
for computer graphics, including the original "clipping 
divider" [14]. His chapter in the well-known Mead and 
Conway book on VLSI is one of the best presented and 
most accessible references on transition signalling [13]. 

Two other people have been important to my educa- 
tion. Most important to me over a long period of time is 
Bob Sproull, from whom I first started a lifelong educa- 
tion twenty-five years ago and of whose knowledge and 
ability I remain in awe. He has regularly fixed my 
thinking when it was fuzzy, and has made this lecture 
more accurate than I alone could have. During the past 
five years he and I led an "Asynchronous Systems 
Study" to learn and teach transition signalling. As part 
of it we designed micropipelines for various purposes, 
including those I have described here. We have taught 
our subject to a few hundred people, and we have two 
books in preparation. Finally, I want to mention 
Charles Molnar, whose group at Washington University 
continues the pioneering work I mentioned before. He 
has given unstintingly to my education not only his 
time and ideas but also his enthusiasm. His contribu- 
tions to the transition-signalling conceptual framework 
include not only the absolutely essential synthesis 
method for logic modules [9] without which the new 
framework was difficult to use, but also many impor- 
tant parts of an overall mathematical theory, and new 
conceptions of useful circuits [12]. The theoretical work 
[6,10,11,19], in which he collaborates with Martin 
Rem's group in Eindhoven, is beginning to prove theo- 
rems about the correctness of systems designed in the 
transition-signalling conceptual framework. 

The work reported here led to a broader "Asynchro- 
nous Systems Study," conducted by Sutherland, Sproull 
and Associates, Inc., and supported by six industrial 
sponsors: Apple Computer, Austek Microsystems Ltd., 
Digital Equipment Corp., Evans and Sutherland Corn- 
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pute r  Corp., Float ing Point  Systems,  and  the  Sch lum-  
berger  Research  Laboratory.  We did the  work  wi th  the  
coopera t ion  of Carnegie  Mel lon  Univers i ty  and  Imperia l  
College of the  Univers i ty  of London.  Erik Brunvand ,  Ed 

Frank,  Ian Jones, Char les  Molnar,  and  Bert Su the r l and  
col laborated  wi th  us. We w e r e  able to test  micropipe-  
l ine c i rcui ts  fabr ica ted  for us by the  MOSIS in tegra ted  
circui t  fabr icat ion service  opera ted  by the  Informat ion  
Sciences  Ins t i tu te  of the  Univers i ty  of Sou the rn  Califor- 
nia. We are p roud  to have  b e e n  the  very  first c o m m e r -  
cial MOSIS client.  
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