
TURING AWARD

MICROPIPELINES

IVAN E. SUTHERLAND

The pipeline processor is a common paradigm for very
high speed computing machinery. Pipeline processors
provide high speed because their separate stages can
operate concurrently, much as different people on a
manufacturing assembly line work concurrently on ma-
terial passing down the line. Although the concurrency
of pipeline processors makes their design a demanding
task, they can be found in graphics processors, in signal
processing devices, in integrated circuit components for
doing arithmetic, and in the instruction interpretation
units and arithmetic operations of general purpose
computing machinery.

Because I plan to describe a variety of pipeline pro-
cessors, I will start by suggesting names for their var-
ious forms. Pipeline processors, or more simply just
pipelines, operate on data as it passes along them. The
latency of a pipeline is a measure of how long it takes a
single data value to pass through it. The throughput
rate of a pipeline is a measure of how many data values
can pass through it per unit time.

Pipelines both store and process data; the storage ele-
ments and processing logic in them alternate along
their length. I will describe pipelines in their complete
form later, but first I will focus on their storage ele-
ments alone, stripping away all processing logic.
Stripped of all processing logic, any pipeline acts like a
series of storage elements through which data can pass.

Pipelines can be clocked or event-driven, depending
on whether their parts act in response to some widely-
distributed external clock, or act independently when-
ever local events permit. Some pipelines are inelastic;
the amount of data in them is fixed. The input rate and
the output rate of an inelastic pipeline must match ex-
actly. Stripped of any processing logic, an inelastic pipe-
line acts like a shift register. Other pipelines are elastic;
the amount of data in them may vary. The input rate
and the output rate of an elastic pipeline may differ
momentarily because of internal buffering. Stripped of
all processing logic, an elastic pipeline becomes a flow-
through first-in-first-out memory, or FIFO. FIFOs may
be clocked or event-driven; their important property is

© 1989 ACM OOOl-O782/89/o6oo-o72o $1.5o

that they are elastic.
I assign the name micropipeline to a particularly sim-

ple form of event-driven elastic pipeline with or with-
out internal processing. The micro part of this name
seems appropriate to me because micropipelines con-
tain very simple circuitry, because micropipelines are
useful in very short lengths, and because micropipe-
lines are suitable for layout in microelectronic form.

I have chosen micropipelines as the subject of this
lecture for three reasons. First, micropipelines are sim-
ple and easy to understand. I believe that simple ideas
are best, and I find beauty in the simplicity and sym-
metry of micropipelines. Second, I see confusion sur-
rounding the design of FIFOs. I offer this description of
micropipelines in the hope of reducing some of that
confusion.

The third reason I have chosen my subject addresses
the limitations imposed on us by the clocked-logic con-
ceptual framework now commonly used in the design
of digital systems. I believe that this conceptual frame-
work or mind set masks simple and useful structures
like micropipelines from our thoughts, structures that
are easy to design and apply given a different concep-
tual framework. Because micropipelines are event-
driven, their simplicity is not available within the
clocked-logic conceptual framework. I offer this de-
scription of micropipelines in the hope of focusing at-
tention on an alternative transition-signalling concep-
tual framework.

We need a new conceptual framework because the
complexity of VLSI technology has now reached the
point where design time and design cost often exceed
fabrication time and fabrication cost. Moreover, most
systems designed today are monolithic and resist mid-
life improvement. The transition-signalling conceptual
framework Offers the opportunity to build up complex
systems by hierarchical composition from simpler
pieces. The resulting systems are easily modified. I be-
lieve that the transition-signalling conceptual frame-
work has much to offer in reducing the design time and
cost of complex systems and increasing their useful life-
time. I offer this description of micropipelines as an
example of the transition-signalling conceptual frame-
w o r k .

720 Communications of the ACM June 1989 Volume 32 Number 6

Turing Award

Until recently only a hardy few used the transition-
signalling conceptual framework for design because it
was too hard. It was nearly impossible to design the
small circuits of 10 to 100 transistors that form the
elemental building blocks from which complex systems
are composed. Moreover, it was difficult to prove any-
thing about the resulting compositions. In the past five
years, however, much progress has been made on both
fronts. Charles Molnar and his colleagues at Washing-
ton University have developed a simple way to design
the small basic building blocks [9]. Martin Rem's "VLSI
Club" at the Technical University of Eindhoven has
been working effectively on the mathematics of event-
driven systems [6, 10, 11, 19]. These emerging concep-
tual tools now make transition signalling a lively candi-
date for widespread use.

TWO CONCEPTUAL FRAMEWORKS
In the clocked-logic conceptual framework, registers of
flip flops operating from a common clock separate
stages of processing logic. Each time the clock enters its
active state a new data element enters each register.
Data elements march forward through successive regis-
ters in lock step, each taking a fixed number of clock
cycles to pass through the fixed number of registers and
intervening logic stages built into the system. The
clocked-logic conceptual framework is widely used 1}
because it offers a simple way to design computing
equipment, 2) because it is widely taught and under-
stood, 3) because parts that operate with clocks are
widely available, and 4) because system noise has died
away by the time a clock event occurs.

To build the micropipelines described here we must
discard the clocked-logic conceptual framework and
think instead about a different but equally simple form

of control called transition signalling. In return for
moving into the transition-signalling conceptual flame-
work, we are rewarded with three new types of flexi-
bility. In hardware design we attain a new flexibility to
compose systems from small parts previously designed
and tested; in software, we achieve a new flexibility to
handle vectors of variable length; and in systems we
enjoy a new flexibility to extend system life by replac-
ing isolated parts whenever components with improved
speed or cost become available.

It is often hard to discard a conceptual framework.
The well-known puzzle shown in Figure 1 illustrates
this difficulty by asking us to draw four straight lines
through nine dots without lifting our pencil from the
paper. Our natural conception of figure and ground in
looking at this puzzle suggests that the lines to be
drawn should stay within the square of dots, a concep-
tual framework that renders the task impossible. The
puzzle can be solved only by drawing outside the
boundary of the dots.

Similar difficulty in discarding a conceptual flame-
work can be seen in the design of FIFOs. Conventional
wisdom in the clocked-logic conceptual framework says
that each stage of a flow-through FIFO should have a
clocked register that feeds its output to the input of the
next stage. Now recall that a FIFO must be elastic; it
must be able to store a variable amount of data; and if
it has a fixed number of stages, some of them may be
unoccupied. Continuing with the clocked-logic concep-
tual framework, a "full" or "empty" clocked flip flop for
each stage is required to make the FIFO elastic.

Each stage must also have logic involving the state of
its full or empty flip flop and the states of other stages
to decide when to capture new data. One simple con-
trol rule operates as follows: a) Each stage captures new
data and sets its full flip flop to the full state whenever

f ~

0 0 \ / FIGURE 1. A Puzzle
Without lifting your pencil from the paper, connect the dots

with four straight lines.

June 1989 Volume 32 Number 6 Communications of the ACM 721

Turing Award

it is empty and its predecessor is full. b) Each stage sets
its full flip flop to the empty state whenever it is full
and its successor is empty. This rule delivers output
data only on alternate clock cycles. More complex rules
for the control of synchronous FIFOs get better perfor-
mance by looking ahead many stages to decide if an
entire block of data can move forward during the forth-
coming cycle. The clocked-logic conceptual framework
itself creates this complexity, because all registers must
act together at once; any that fail to act now must suffer
a complete cycle of delay for their next opportunity.

The clocked-logic conceptual framework is poorly
matched to FIFO design for another reason as well:
FIFOs often connect senders and receivers that have
separate clocks. The difficulty of designing a FIFO with
separate clocks at input and output is strikingly evident
when one asks whether to use the input or the output
clock to control the internal stages. There is no natural
point in the FIFO to transfer control from the input
clock to the output clock. Should the transfer occur
near the beginning, at the middle, or near the end of
the pipeline? Why?

If conventional clocks are used at the input and out-
put of a FIFO and the two clocks are separate, then
arbitration or synchronization between these two
clocks is required somewhere in the design. Arbitrat ion
or synchronization is necessary because the data must
pass from control by the input clock to control by the
output clock somewhere, even though the phase rela-
tionship between the clocks is unknown and variable.
There is always some phase relationship between the
separate clocks that violates the setup or hold time re-
quirements of some latch or flip flop.

The fact that arbitration or synchronizat ion is re-
quired somewhere in a clocked FIFO introduces a host
of problems [1]. It is not possible to make an arbiter or
synchronizer that is perfectly reliable; instead one must
design a circuit for which the probabili ty of failure is so
low as to be unimportant . Sadly, although the problems
inherent in synchronizers and arbiters have been
known for many years, synchronizer failures still cause
difficulty, and remarkably, discussions of arbitration
and synchronization are largely absent from the de-
scriptions of FIFOs now on the market. Solutions to the
inherent synchronizer problems are left to the users.

The internal stages of the micropipelines I shall de-
scribe here get their timing signals nei ther directly
from the input control signals nor directly from the
output control signals. Rather, each internal stage cap-
tures a new data value whenever its successor stage has
accepted the present value and its predecessor stage has
the new data ready. Each stage operates at its own
pace, using control information only from adjacent
stages. Letting each stage operate separately, without a
common clock, avoids the need for arbitration and sim-
plifies the design. Although the design of FIFOs and
other micropipelines is very difficult within the
clocked-logic conceptual framework, it is easy once one
abandons that framework in favor of transition signall-
ing, as I shall do throughout this lecture.

TRANSITION SIGNALLING
In transition signalling any transition, either rising or
falling, has the same meaning, as i l lustrated in Figure 2;
either kind of transit ion is called an event. As indicated
in the figure, and suggested by its name, transition sig-
nalling avoids distinguishing between the two types of
transitions even though they may look quite different.
In effect, all responses to transition signals are edge-
triggered, and are triggered on both rising and falling
edges. Because transit ion signalling uses both rising and
falling edges as trigger events, it may offer twice the

I
I l l

FIGURE 2. Two Equivalent Transistors
Rising and falling transitions on signalling wires have the

same meaning. They are called events.

speed potential of conventional clocking.
Transition signalling avoids assigning meanings to the

absolute high or low state of control signals. I will use
the state of a control signal only relative to the states of
other related control signals; the state of a control sig-
nal may be the same as or different from that of an-
other, but its absolute state will never matter. Because
the absolute state of a transit ion control signal is unim-
portant, there is no need to re turn it to some neutral
state between events. By avoiding such returns to a
neutral or low state, transit ion signalling saves the t ime
and energy costs of the re turn transition, as well as the
design confusion of an unnecessary event. Transit ion
signalling is much like non-return- to-zero (NRZ) mag-
netic recording.

Many people find it difficult at first to grasp the no-
tion that both rising and falling edges should have the
same meaning. This is not surprising because a change
in conceptual framework is required. Most people are
accustomed to differentiating high and low levels and
to a clock that returns to a neutral state between ac-
tions. But even though it may seem hard at first, the
transition-signalling conceptual framework quickly be-
comes very easy to use. Abandoning the clocked-logic
conceptual framework in favor of the transition-signall-
ing conceptual framework can provide real advantages
in speed and simplicity that are part icular ly striking in
micropipelines.

Transition signalling circuits must be symmetr ic with
respect to the high and low states of control signals,
since both rising and falling transitions have the same
meaning. Look for this symmetry throughout this lec-
ture. Notice also that my descriptions of circuit action
speak of control signal levels only in relative terms as
being the same or different rather than in absolute
terms as being high or low, again to preserve symmetry.
I use conventional levels, high or low, only for data
values. The symmetry of transit ion signalling provides
appealing simplicity in complementary metal oxide

722 Communications of the ACM June 1989 Volume 32 Number 6

Turing Award

semiconductor (CMOS) circuits because it fits well with
the symmetry of the complementary transistors from
which CMOS circuits are built.

THE TWO-PHASE BUNDLED DATA CONVENTION
If a sender and a receiver communicate using transition
signalling, there will be two control wires and many
data wires between them, as i l lustrated in Figure 3.
The data wires carry conventional high or low states to
convey true or false Boolean data. The sender places a
data value on the data wires and then produces an
event on its control wire, called "request," to indicate
that valid data are available. In some cycles the request
event will be a rising transition and in some it will be a
falling transition; we make no distinction between
them. The receiver accepts the data and then produces
an event on its control wire, called "acknowledge," to
indicate that the data have been accepted. The three
events, data change, request event, acknowledge event,
always follow in cyclic order, as i l lustrated in Figure 4.
Successive cycles may take different amounts of time,
as suggested by the difference in length of the cycles in
the figure. Sometimes names other than "request" and
"acknowledge" are used for the two control wires [7].
You may wish to compare this protocol to the non-
overlapping clock protocol of Figure 5.

Seitz [13] describes the protocol of Figure 4 that we
have come to call the two-phase bundled data conven-
tion. The "two-phase" part of this name indicates that
only two phases of operation are distinguished: the
sender 's active phase and the receiver 's active phase.
An event terminates each phase: the request event ter-
minates the sender 's active phase, and the acknowledge
event terminates the receiver 's active phase. The
sender is free to change the data during its active phase
and makes an event on the request wire after it has
made the data valid; it must then hold the data con-
stant during the receiver 's active phase. The "bundled
data" part of this name indicates that the data wires

SENDER

Request

Acknowledae

Data

RECEIVER

FIGURE 3. A Bundled Data Interface
In addition to an arbitrary number of data wires, an interface
following the two-phase bundled data convention has two sig-
nalling wires here called "request" and "acknowledge." The
sender puts valid data on the data wires and then produces an
event on the acknowledge wire. The receiver takes the data and
then produces an event on the acknowledge wire. The request
and acknowledge wires are sometimes given other names.

and the request signalling wire must be treated as a
bundle; delays in data transmission must be less than
delays in transmitt ing the request event lest the request
event reach the receiver prior to valid data. The ac-

I ® 1 I

, ~ One Cycle ~ , ~ Next Cycle

'•.l•:>ASende r's -- Receiver's
ction /~ i~:>Action

FIGURE 4. The Two-phase Bundled Data Convention
The three events per cycle in the two-phase bundled data
convention occur cyclically in the sequence shown. They
are: O During the sender's active phase, shown with solid ar-
rows, the sender may change the data at will. ~ After the
sender has established correct data values, it ends its active
phase by producing the request event. During the receiver's
active phase, shown with dotted arrows, the sender must hold
the data constant. (~) After the receiver no longer needs these
data values, it ends its active phase by producing the acknowl-
edge event. Either phase may last for as much or as little time
as its controlling unit decrees. Note that request and acknowl-
edge events alternate.

I I I

I I I

L.. One Cycle ~ , ~ Next Cycle ~ ,
F-- v l ~ -,q

FIGURE 5. Nonoverlapping Clocks
Conventional non-overlapping clocks, ~1 and ~2, require
5 events per cycle. They are: O data change, ~) ~1 rises,
® ~1 falls, (~) ~2 rises, and @ ~2 falls. Compare this with the
three events per cycle of Figure 4.

June 1989 Volume 32 Number 6 Communications of the ACM 723

Turing Award

knowledge wire need not be bundled.
In addition to several data wires, an interface using

the two-phase bundled data convention requires two
control wires. One may think that this is more expen-
sive than a conventional clocking system, which re-
quires only a single clock wire. The two wires, how-
ever, serve to replace not only the clock wire, but also
at least two addit ional wires that would be required
between stages in a clocked system to make the pipe-
line elastic.

EVENT LOGIC
Control circuits for transit ion signalling are built out of
modules that form various logical combinations of
events. Here are a few samples:

The exclusive or (XOR) circuit acts as the OR ele-
ment for events. When either input of an XOR circuit
changes state, its output also changes state. Thus an
event received on either the first input OR the second
input of the XOR will produce an output event. For
more than two inputs, XOR generalizes to parity; parity
circuits act as the mult iple- input OR for events. We use
the standard XOR logic symbol with two or more in-
puts to represent these OR elements for events. Such
elements are sometimes called MERGE elements, be-
cause they merge two or more event streams.

The Muller C-element [8], for which I will shortly
show circuits, acts as the AND element for events.
When both inputs of a Muller C-element are in the
same logical state, the Muller C-element 's state and its
output are copies of that state. When the two inputs
differ, the Muller C-element uses internal storage to
retain its previous state and hold its output unchanged.
Thus only after an event takes place on both of its
inputs will a Muller C-element produce an event at its
output. The Muller C-element generalizes easily to
three or more inputs, requiring that all of them reach a
new logical state before copying that new state as out-
put. We use the standard AND logic symbol with a
large C inside it to represent Muller C-elements that
implement logical AND for transit ion events. Such ele-
ments are sometimes called RENDEZVOUS elements,
because they act only after all input events have ar-
rived.

In CMOS an appealingly simple dynamic implemen-
tation of the Muller C-element is possible, as i l lustrated
in Figure 6. This circuit uses the electrical capacitance
of an internal node as the storage element required in
the Muller C-element. If a static Muller C-element is
required, the node capacitance must be augmented
with static logic, one form of which is i l lustrated in
Figure 7.

Although the absolute state of a transit ion signal does
not matter, its state relative to other related signals
does matter. Thus it is sometimes important to invert
transit ion signals. We use "bubbles" on inputs or out-
puts of logic symbols to represent such inversions, as
i l lustrated in Figure 8. Every loop around which events
flow must contain an odd number of inversions. Such
loops are, in effect, oscillators whose oscillations are

I I

¢,.-

FIGURE 6. A Dynamic Muller C-Element

In CMOS the Muller C-element has a particularly simple dy-
namic implementation that uses the electrical capacitance of
an internal node as the storage element, Transistors to initial-
ize the Muller C-element during master clear are not shown.

I i

I I
I I

I
I

I
1 I

! '
I
I
I

I
I

Z

FIGURE 7. A Static Muller C-Element
Replacing the capacitor of Figure 6 with transistors as shown
produces a static Muller C-element. In an integrated circuit
layout, the transistors shown here with smaller symbols can
be very narrow, since they serve only to retain an already-
established value. This circuit generalizes in an obvious way
to three or more inputs.

coordinated with those of other loops by the actions of
Muller C-elements or other modules at loop junctions.

Figure 9 shows block symbols for some other useful
event logic circuits that implement elemental opera-
tions, some of which are familiar to programmers. The
TOGGLE circuit produces events al ternately on its two
outputs in response to events at its input; the first event
after some master clear signal and every other subse-

724 Communications of the ACM June 1989 Volume 32 Number 6

Turing Award

IF inputs match in state
THEN copy it for output
ELSE hold previous state;

::::::::ET- IF inputs match in state
THEN invert it for output
ELSE hold previous state;

~ E ~ IF inputs differ in state
THEN copy upper for output
ELSE hold previous state;

FIGURE 8, Muller C-Elements with Inverters
Muller C-elements contain storage to hold a previous state
on some input conditions. When inverters are included in
input or output wires, as indicated by the bubbles in this
figure, the actions are as listed. Muller C-elements provide
the AND function for events.

quent event pass through it to the output with the dot.
The SELECT module steers an incoming event to one
output or the other depending on the value of a data
input; it serves for testing the Boolean condition in con-
ditional expressions. The Boolean value must be avail-
able before the incoming event that it steers, a require-
ment similar to the bundling condition in the protocol
of Figure 4. The CALL element remembers which of its
inputs most recently received an event, and returns an
event to the matching output terminal after a called
procedure has finished. The memory in the CALL ele-
ment serves the role of subroutine re turn address. The
CALL element operates properly only if each call com-
pletes before a subsequent call occurs. The ARBITER
decides cleanly between two events whose arrival se-
quence is unknown, producing a grant event for only
one of them even if they arrive at very nearly the same
time. Like a semaphore in programming, it delays sub-
sequent grants until after receiving an event on the
done wire corresponding to an earl ier grant so that only
one grant at a time is ever outstanding. An ARBITER
can be connected directly to a CALL element to permit
two entirely independent processes to call on a single
shared procedure.

CONTROL FOR MICROPIPELINES
A string of Muller C-elements with inverters inter-
posed, as i l lustrated in Figure 10, is the only logic re-
quired to control the micropipelines described in this
lecture. I find it remarkable that the only distinctions
between the forward and reverse direction of the pipe-
line to be found in this circuit are the delay required
for bundling and an inversion in the reverse signal
path. Observe in Figure 10 that a request and an ac-
knowledge signal pass between adjacent stages of this
control. Data wires also pass between stages, as I shall
shortly describe, but these are not shown in Figure 10.
At each interface between stages the request and ac-
knowledge signals and the data values follow exactly
the two-phase bundled data convention of Figure 4.

Notice also in Figure 10 that the request and ac-

knowledge wires at the input interface are identical to
those at the output interface. The similari ty of the sig-
nalling form at the input and output ends of the control
ensure that any number of such control systems, even
ones that differ markedly in raw speed, will operate
properly when connected in series, albeit at the speed
of the slowest. This composabili ty of micropipelines
makes it easy to assemble long signal-processing pipe-
lines; one simply connects the request, acknowledge,
and data wires at the output of one micropipeline to the
corresponding wires at the input of the subsequent mi-
cropipeline. The composite control is just a further rep-
etition of the control system il lustrated in Figure 10.

One way to see how the control circuit of Figure 10

XOR provides the OR
function for events.

T O G G L E

I I
1

SELECT I
true false I

I I

--Ii,I R1
,91,.,.I D1

' ¢~ D I - , -

,~--I D2
-,rot R2

Muller C-elements
provide the AND
function for events.

TOGGLE steers events
to its outputs alternately
starting with the dot.

SELECT steers events
according to the Boolean
value of its diamond input.

CALL remembers which
client, R1 or R2, called the
procedure, R, and after the
procedure is done, D,
returns a matching done
event on D1 or D2.

--MR1 G1
D1

D2
~ R2 G2

7. ARBITER grants service,
G1 or G2, to only one input
request, R1 or R2, at a time,
delaying subsequent grants
until after the matching
done event, D1 or D2.

FIGURE 9. Logic Modules for Events
Modules of 10 to 1 O0 transistors can perform useful logical
functions on events. The modules whose symbols are shown
provide the functions indicated. Note the similarity of these
functions to the basic structures used in programming. One
might think that the arbiter would require 8 terminals, since
the request signals at the left seem to lack corresponding
acknowledge signals. Either the grant or the done signals are
used to acknowledge incoming requests, depending on the
application.

June 1989 Volume 32 Number 6 Communications of the ACM 725

Turing Award

works requires us to focus on its behavior as a series of
loops around which events flow. There is a single in-
verter in each loop, and so each loop will oscillate. The
Muller C-elements coordinate the oscillations in adja-
cent loops. This view makes it easy to see that the
request and acknowledge events at each interface must
alternate.

Another way to see how this circuit works requires
us to focus on the state of each Muller C-element rela-
tive to the states of predecessor and successor Muller C-
elements. Remembering the behavior of a Muller C-
e lement with one inverted input, we can easily see that
each stage of the control of Figure 10 follows a very
simple stage state rule:

IF predecessor and successor differ in state
THEN copy predecessor 's state
ELSE hold present state.

This stage state rule makes the control system stable
both when all stages are in the same state and when
alternate stages are in opposite states. The condition in
which all control elements are in the same state corre-
sponds to an empty pipeline, and the condit ion in
which alternate stages are in opposite states corre-
sponds to a filled pipeline. There are other stable condi-
tions with stages near the input end in the same state
and stages near the output end in al ternating states;
these conditions correspond to a part ly filled pipeline.
The stage state rule also makes the control system un-
stable in some states; such unstable states change im-
mediately as events propagate through the stages of the
pipeline. To initialize a micropipeline to the empty con-
dition, its Muller C-elements may all be set to the same
state by a master clear signal. I have omitted the reset
circuits required to do this from Figures 6 and 7.

The stage state rule, described above in IF THEN
ELSE form, is the digital equivalent of the differential
equations that describe ocean waves and electromag-
netic waves. In a wave equation a time derivative, in
this case copy predecessor 's state, is set equal to a space
derivative, in this case IF predecessor and successor
differ in state. Like the rules of physics described by

the differential wave equation, the stage state rule re-
suits in wave propagation.

Like ocean and electromagnetic waves, events can
propagate in either direction through the control of Fig-
ure 10. If all Muller C-elements are init ial ly in the same
state, an event at the input end of the control will
propagate forward through the control from input to
output. If the control elements are init ially in al ternate
states, an event introduced at the output end of the
control will propagate backward through the control
from output to input. It is interesting that so simple a
circuit should exhibit wave propagation in both direc-
tions.

Both forward and reverse propagation of events in
the control system of Figure 10 are useful in controlling
micropipelines. Forward propagation of events through
the control circuit will force information forward
through the micropipeline, much as an ocean wave
pushes a surfer toward the shore. Reverse propagation
will sweep empty data spaces created at the end of the
pipeline back through occupied sections toward the be-
ginning. Empty spaces move through occupied sections
much as holes move in a semiconductor or air bubbles
rise through water.

A N E V E N T - C O N T R O L L E D S T O R A G E E L E M E N T

This section introduces a storage element suitable for
use with a transit ion signalling control system. In order
to make these circuits easier to understand, I will use a
switch symbol to represent any one of several configu-
rations of transistors, one of which is shown in Figure
11. As you can see in the figure, the transistor imple-
mentat ion of this switch makes use of both the true and
the complement form of its control signal, C and ~C,
which implies an inversion of the control signal not
shown explicit ly in the figure. Notice that the circuit is
entirely symmetric with respect to high or low values
of its control signal, selecting one input when its con-
trol is high and the other when its control is low. I will
always draw such switches in the position they assume
when their control signals are low.

A suitable storage element for use with a transit ion

R(in) - - - - - {oE~,¥1~-- A (1) - - - r - R(2)-. A(3) R (o u t)
• e" - ~ D E L A Y I) - - - - ~

, ,
i i

' 1
I I

, ; i I
i + i

I I I I
; I I I I = I
I ; I I

' @ Q 1 '
I I

1 ,
1

• ~ - - - - J L - ~ - - - - J <
A(in) R (1) A(2) R(3) A(out)

DIRECTION OF DATA FLOW

FIGURE 10, Control Circuit for a Micropipeline

With data paths omitted, the control circuit for a micropipe-
line is a string of Muller C-elements. In this figure one of four
identical stages is shaded and alternate stages have been
drawn upside down. At the input and output to each stage
there are request, R(n), and acknowledge, A(n), signals. In-
verters in the acknowledge paths are represented by "bub-
bles" at one input of each Muller C-element. The delays
shown explicitly here may not be required for simple data
paths. Notice that each loop in this circuit contains exactly
one inversion, the bubble, and is therefore an oscillator. The
Muller C-elements retard the oscillation in each loop to coor-
dinate it with the actions of adjacent loops. In this and other
figures, dotted wires carry event signals.

726 Communications of the ACM June 1989 Volume 32 Number 6

In

I

: ~ c c
I

t

x I ',Y ;

-I[2 F I z C ~C i

Z

FIGURE 11. Circuit for the Switch Symbol

The double-throw switch symbol at the right of this drawing
represents the transistor circuit shown inside the dotted line.
When the control wire, C, is low, the output terminal, Z, is
controlled by the Y input, as shown. When the control wire is
high, the switch flips to the Z input. The output of this form of
switch is controlled by its selected input, but inverted in value.
Other implementations of such a switch using pass transistors
are also possible.

signalling control system must respond to transition
events. Unlike a conventional latch in which the "high"
and the "low" state of the clock signals can perform
different functions, an event-controlled storage element
must give similar responses to rising and falling transi-
tions. Suitable circuits that use two control wires called
"capture" and "pass" are i l lustrated in Figure 12. Each
of these two circuits uses two latches side by side and

activates them alternately. In the circuit with only
three inverters, the output inverter is shared between
the two latches. Notice that because of the inverters
implied in the control of the switches shown, both of
these circuits are entirely symmetr ic with respect to
high and low values of their control signals. You may
wish to compare these circuits with the conventional D
flip-flop circuit shown in Figure 13.

The behavior of an event-controlled storage element
is easy to describe using only the relative states of its
two control signals. When its two control signals are in
the same state, the condition shown in Figure 12, the
event-controlled storage element is t ransparent and de-
livers its input data directly to its output, not acting as
a storage element at all. You can see a path through the
switches and inverters leading directly from input to
output. When its two control signals differ in state, one
or the other of the switch sets will be flipped from the
position shown in Figure 12. As you can imagine from
the figure, if one of the switches is flipped, a loop is
formed containing two inverters. Such a loop captures
and retains the data value. If one switch is flipped to
form such a loop, no path exists from input to output,
the event-controlled storage element is rendered insen-
sitive to changes on its data input terminal, and it re-
ports at its output only the data captured in the loop.

The behavior of an event-controlled storage element
can also be described in terms of events. Let us assume
that the event-controlled storage element is init ially
transparent, as it is shown in Figure 12 and that the
capture and pass control signal events always alternate.
An event on its capture control wire flips the two
switches to which the capture wire is connected, and
thus causes the storage element to capture and hold the
data value then passing through it. This event isolates
the output value of the element from changes at the

In • Out

k . . Capture ;-- Pass

FIGURE 12. Event-Controlled

An event-controlled storage element responds to events on its
two control wires, called "capture" and "pass" in this drawing.
Two different configurations are shown. The form on the right,
with five inverters, is slightly faster than the form on the left,
with only three inverters, because its feedback paths contain
only one switch rather than two. After master clear the
switches will be in the position shown, making a direct connec-
tion without loops between input and output, a state in which

ut

• m

' - - Capture ~-- Pass

Turing Award

Storage Elements

the storage element is said to be transparent. Storage ele-
ments of either type are formed into registers just as are flip
flops by connecting their capture and pass control wires in
parallel. The register symbol includes control outputs, Cd and
Pd, which are amplified, and thus necessarily delayed, versions
of the control input signals, C and P. Cd and Pd, named for
"capture done" and "pass done," deliver output events after
the register has done its action.

June 1989 Volume 32 Number 6 Communications of the ACM 727

Turing Award

, i
I I

L_ ~1 L-Q2

= D(out)

FIGURE 13. Conventional D Flip-Flop

A conventional D flip flop is controlled by non-overlapping
clock signals ,~1 and ~2 illustrated in Figure 5. Compare this
circuit to the event-controlled storage element of Figure 12.

element's input but does not change the output value.
A subsequent event on the pass control wire flips the
other switch, returning the element to the transparent
state, permitting the next data value to appear as its
output, and possibly changing its output value. After
each event on the element's pass control wire a new
output value appears. This is exactly the behavior re-
quired to make micropipelines with the control system
already described.

Event-controlled storage elements are connected in
groups to form event-controlled registers. Each such
register consists of a number of event-controlled storage
elements with their capture and pass control wires con-
nected in parallel. Because the capture and pass wires
drive many transistors, suitable amplifiers are included
in the register design. These amplifiers have some un-
known delay, and there is further delay introduced by
the physical length of the wires. I therefore include
pass done, Pd, and capture done, Cd, event outputs on
every event-controlled register, as shown on the regis-
ter symbol in Figure 12. Events on these outputs follow
exactly the events on the capture and pass control in-
puts, but are delayed to account for the amplification
and wiring delays in the register. The explicit done
signal outputs permit subsequent actions to be further
delayed if required. Such a delay might be needed if
the register is composed from simpler parts, as we shall
shortly see, or performs some side effect. It is interest-
ing to note~that if two or more event-controlled storage
registers are connected so that their data paths are in
series and are provided with the same control signals,
the result is indistinguishable, except for overall delay,
from a single event-controlled storage register.

If wide words are involved and small size is required
rather than high speed, one may use the circuit of Fig-
ure 14 as an event-controlled storage register. This cir-
cuit uses only a single latch per bit, but requires extra
equipment for control. The extra control equipment is
required because the latches have only a single control
wire in which both capture and pass events must flow.
Naturally, the delays introduced by the extra equip-
ment also delay the capture done and pass done control
outputs.

The operation of the circuit of Figure 14 is easy to
understand. The XOR circuit shown at the top of the

figure merges the capture and pass control events from
the two control inputs onto one wire. Because capture
and pass events alternate, each capture event will make
the output of the XOR high, flipping the switches from
the position shown, and causing the latches to capture
data. Each pass event will make the output of the XOR
low, returning the switches to the position shown, and
making the latches transparent again. The TOGGLE
module shown at the bottom of the figure separates the
capture and pass events on the common wire onto the
"capture done" and "pass done" control outputs labeled
Cd and Pd in the figure. The toggle suffices for this
purpose because capture and pass events alternate. The
capture done and pass done control outputs indicate
completion of any internal delays involved in the XOR
and TOGGLE modules and in driving the control wire
for the many latches in the register.

MICROPIPELINES WITHOUT PROCESSING
A micropipeline with no processing in it, which is a
FIFO, can be built by combining the control of Figure
10 with the storage registers of Figure 12 or Figure 14.
A set of event-controlled storage registers in series

C ~ F p

IN<l> [~ e - - ~ e - L OUT<l>=

IN<2> , [~ ~ . [~ o - - [~ e - L OUT<2>

I:OOOL I
Cd • J , ~ Pd

FIGURE 14. Latches Used as an Event-Controlled Storage

Register

An event-controlled register made from ordinary latches re-
quires an XOR module and a TOGGLE module for control. A
2-bit register is shown; dashed wires carry events. Capture
and pass events arrive alternately at the separate control
inputs, C and P, but the XOR merges them onto one wire. At
the XOR output, each capture event becomes a rising transi-
tion in the latch control wire and flips the switches, causing
the latches to capture data. Each pass event becomes a
falling transition in the latch control wire and flips the
switches back to the position shown, making the latches
transparent again. The TOGGLE module separates the cap-
ture and pass events back into two separate output paths,
Cd and Pd, after the register has done its action. This circuit
is slower than the event-controlled register of Figure 12 and
delays its output events, Cd and Pd, accordingly, but except
for delay provides exactly the same function.

728 Communications of the ACM June 1989 Volume 32 Number 6

Turing Award

serves as its data path while a string of Muller C-ele-
ments serves as its control, as illustrated in Figure 15.
Each event-controlled storage register uses the control
signal from its stage of the control as its capture control
signal, and the control signal from the successor stage
as its pass control signal. When this FIFO is empty, all
of its storage registers are transparent, and so a path
exists through it directly from its data input terminals
to its data output terminals.

I have arranged the layout of Figure 15 not only to
make it easy to read but also to suggest a layout for an
integrated circuit implementation. The Muller C-ele-
ments are located at either ends of the registers, just as
shown, so that control signals zigzag across the chip.
The wires that control the registers are driven from one
side of the register and are used to control the Muller
C-elements of adjacent stages at the other side of the
register. Because the control signals for the register
must be amplified to drive all the switches in the many
storage elements involved, and because the wires that
carry control signals across the register are long, there
is always some delay in controlling the register. The
arrangement of driving registers from one side and sen-
sing their control signals at the other side accommo-
dates not only the delay in the driving amplifiers but
also any delay in the wires themselves.

If no processing is required in the micropipeline, i.e.,
for a FIFO, the simpler data path circuit of Figure 16
will serve [17]. In this circuit the side-by-side latch
configuration of the event-controlled storage element is
extended between stages. The two separate data paths
are brought together again only at the output end of the
FIFO by an output selector switch very similar to that
used in the event-controlled storage element. The first,
third and other odd-indexed data values pass through
the upper data path while even-indexed values pass
through the lower data path.

Look at all the symmetry in Figure 16. Except at its
output, shown at the right of the figure, there is no
distinction at all in its data path between the forward
and reverse directions of the FIFO. It seemed at first to
me that this must indicate a flaw in its design. There is
no flaw; the circuit of Figure 16, though unconven-
tional, works well. Abandoning the conventional notion

R(in) A(t) R(2) A(3) R(out)

i i

~;."-z-" ! \ / ,I,-;'-'$-' I \ /
I , . ' ; ! ¥ I , . [I ¥ 1 7 .

DOn) ~ -~ ~, • i~i = .. I n ",,f,~,=_r-~._= ~D(out)

"~"~- i = ~ ~ ',-~-.i= i ~ i ~ ' ~ "

i i i I

;v i~ , ;v i~ i

A(in) R(1) A(2) R(3) A(out)

FIGURE 16. A FIFO Circuit
If no processing is required, as in a FIFO, the event-controlled
storage elements in Figure 15 can be replaced with this simpler
circuit [17]. In this figure, dashed lines carry control signals, solid
lines carry data values, and four stages are shown. The
switches are drawn as they would be in an empty FIFO. The
FIFO illustrated is one bit wide and can therefore store four bits;
more length or width comes with further repetition of the internal
parts of this data path. Alternate inputs pass through the upper
and lower rails of the data path and merge again only at the
output. When the FIFO is empty, as it is illustrated, it is transpar-
ent; one can trace a direct path from data input to data output.
When each switch changes, identical data is presented to each
of its inputs; thus the switches may momentarily short their two
inputs together when changing. The micropipeline shown has an
odd number of inversions and thus inverts its data value.

of a latch produces a simple and effective circuit for a
FIFO.

Naturally, data must propagate through a micropipe-
line faster than the control events propagate through its
control. This is usually assured by three factors. First,
the Muller C-element used in the control circuit is
more complex than the storage element used in the
data path and therefore inherently slower. Second,
since each single stage of the control system must drive
the many storage elements that hold a parallel word in
each register, the control signals must be amplified to

R(in) A(1) __.. .~b.R!2) A(3)

i i

n.~ P~r c~7 ~ D(i D(ou~

J P c Pd

I I I I i

• ~ - ~ -
A(in) R(1) A(2) R(3)

R(out) ; - - - ~ : - - - .

D(ou~)

A(out)

FIGURE 15. Micropipeline without Processing

A micropipeline without processing has event-controlled reg-
isters for data path and Muller C-elements for control. Four
stages are shown; one of them is shaded. Each interface
between stages conforms to the two-phase bundled data
convention of Figure 4. This drawing suggests the form of an
integrated circuit layout; the control signals pass back and
forth across the data path to accommodate transmission
delays.

June 1989 Volume 32 Number 6 Communications of the ACM 729

Turing Award

drive multiple loads. This amplification inevitably de-
lays the control signals. Third, the layout suggested in
Figure 15 ensures that the zigzag path of the control
signals has longer wires in it than those in the data
path. Of course, when the circuit of Figure 14 is used as
the register, the capture done and pass done control
outputs from each register should be used to drive the
Muller C-element inputs of adjacent stages so that any
delays in the TOGGLE and XOR modules are included
in the overall control signal delay. If no significant pro-
cessing logic is placed in the data path, one can easily
develop confidence that the data path is faster than the
control path. Special delays are required in the control
path only when significant processing logic is put be-
tween storage cells in the data path.

M I C R O P I P E L I N E S W I T H P R O C E S S I N G
The micropipeline framework provides a basis for a
variety of pipeline processors [18]. My colleagues and I
have designed multipliers, binary to one-out-of-N de-
coders, a memory controller, and other circuits using
the micropipeline framework. In each case the micro-
pipeline control template of Figure 10 provides the ba-
sis for the design. In some cases this simple template is
embellished with circuits composed from the event
logic modules of Figure 9 to provide more complex con-
trol functions. For example, using only one TOGGLE
module and one XOR module it is easy to construct a
circuit that performs two operations for each input
event. The same two modules connected differently
form a circuit that performs an operation only for every
other input event.

When logical processing is required, suitable combi-
natorial circuits are placed between the storage regis-

A(1) R (2) A(3) R (o u t)

,

i i " r j ' , '
i c~ : Po , ,

D (i n) ~ = o ~'~'~= " ~ (o u t)

I i I i i

• L

A(in) R(1) A(2) R(3) A(out)

FIGURE 17. Micropipeline with Processing
A micropipeline with processing uses combinatorial logic be-
tween the event-controlled registers of Figure 15. Four
stages are shown; one of them is shaded. The delay ele-
ments in the request event path model the processing logic
delay to preserve the bundling convention. All interfaces be-
tween stages, taken either before or after the logic circuits,
conform to the two-phase bundled data convention of Fig-
ure 4. The capture done, Cd, output of each register is
shown connected to the pass, P, input of its predecessor, a
more conservative connection than was used in Figure 15;
either connection works.

ters, as illustrated in block form in Figure 17. One can
trade off the number of stages of storage and the com-
plexity of the intervening logic to obtain a suitable bal-
ance between latency and throughput rate. With less
combinatorial logic between stages and more stages of
storage, one obtains higher throughput rate at the cost
of greater latency. The decoder circuits of Figures 18
and 19 perform the same function using different
amounts of storage.

A (i n) y 1

> .

.c_
m

.Q

W

R(out)

A(out)
i

i

i '
,

i
. ~ - . : :._.

>

PX
©

FIGURE 18. A Decoder with Two Micropipeline Stages

This two stage micropipeline decodes three binary input bits into
eight unary output bits. It can store two values, one not yet
decoded and the other fully decoded. The processing logic at
the center of the figure is formed from three ranks of ordinary
AND gates. The delay at the bottom of the figure must delay the
request event at least as much as the three ranks of combinato-
rial logic delay the data.

The number of bits of storage in the registers of suc-
cessive stages in a micropipeline may vary widely ac-
cording to the needs of different processing steps. For
example, the decoder of Figure 19 has 3 binary inputs
but 8 unary outputs, and increases the width of the
data word as each internal stage decodes an additional
bit of the input. The 12-bit x 12-bit micropipeline mul-
tiplier whose layout is illustrated in Figure 20 has 24-
bit data paths at input and output. It uses 24 stages of
micropipeline: 12 to do the multiplication and 12 to
resolve the carry-save form of product that results. At
the center of the pipeline, 36-bit registers are required,
since half of the product is in a carry-save form that re-
quires two bits of data to represent each bit of product.

730 Communications of the ACM June 1989 Volume 32 Number 6

Turing Award

R(in),-L,~..~ I ' ~

A (i n) V , i , , A (o u t)
4 I ' i - , c

i ~_ ~ , , r ";;f:3 :

~ J l ' ' '

~5

i i , ,

i i '

. . ~ , I I

= /r'~"~ I ~ - r - " ~ i I .,' I L.r--, , ~ I

I i '
i 1 '

' I t i

I I , ,
, I 1
1 i , ,
' ; , 1

i

i ; i , , Q

FIGURE 19. A Decoder with Four Micropipeline Stages

This four stage micropipeline also decodes three binary input
bits into eight unary output bits. It does the same thing as the
circuit of Figure 18, but it has more storage for partially decoded
results. It can store four values, the first not yet decoded, two
partially decoded values, and the final one fully decoded. The
three delays in these request paths can each be shorter than the
one in Figure 18, because each delay models only a single rank
of combinatorial logic. This decoder has a higher throughput rate
than the functionally equivalent decoder of Figure 18.

Because it has 24 stages, this mult ipl ier can hold as
many as 24 part ial ly processed products. It can also
hold fewer. It automatical ly processes any part ial ly
complete products as much and as fast as possible, con-
sidering the products already queued for output. At full
operating speed, it provides the very high throughput of
a pipeline process. When empty, however, it has no
storage and acts as a combinatorial mult ipl ier to pro-
duce individual products. It is never necessary to insert
dummy data to flush previously entered information
out of a micropipeline.

As a more complex example, we designed a memory
controller using the micropipeline framework. This
memory controller is intended for byte-serial access to
a dynamic random access memory (DRAM) of 224 words
of 16 bits each. Its input and output registers are 8 bits
wide to accommodate the byte-serial data format. We
used the two-phase bundled data convention of Fig-
ure 4 as the byte transfer protocol at the input and out-
put of this memory controller. It contains seven parts:
four event-controlled storage registers and three stages
of logic between them.

Each stage of control in the memory controller oper-
ates much like one of the simple stages in micropipe-
line control of Figure 10. Like those of Figure 10, each
stage includes a Muller C-element and each stage com-
municates only with adjacent stages using exactly the
two-phase bundled data convention of Figure 4. The
control for each stage is composed from the event logic
elements shown in Figure 9: XORs, Muller C-elements,
SELECTs, TOGGLEs, and CALLs. In some stages these
elements are connected in loops to permit several ac-
tions to take place within the stage before it acknowl-
edges data from a previous stage or requests service
from a subsequent stage. Such loops pack and unpack
data. A separate memory refresh procedure interrupts
normal operation using an ARBITER.

The logic in each stage of the memory controller per-
forms a different function. The first stage decodes byte-
serial input from the 8-bit input register, converting it
into a 54-bit parallel word containing all of the address,
data, and control information required for a memory
cycle. This stage accepts and acknowledges several
bytes of input before requesting action from the next
stage. Between the first and second logic stages is a 54-
bit event-controlled register. The second stage uses
each 54-bit parallel word to control one access to the
external DRAM chips. When reading from memory,
this access converts the 54-bit address and control in-
formation into a 16-bit data value. The control includes
a t iming model for the memory chips and waits for the
memory cycle to finish before requesting action from
the next stage. Between the second and third stage of
logic is a 16-bit event-controlled register that captures
the data output from the DRAM chips. The third stage
repacks the 16-bit output data into byte-serial form and
presents it at the output terminals through the 8-bit
event-controlled output register.

This memory controller, operating as a pipeline, can
be carrying out a memory access while concurrently
packing up the previously accessed data and unpacking
the byte-serial address and control information for the
next access. Because the stages are free of a common
clock and each runs at its own pace, the pipeline is
elastic. The elasticity permits a memory cycle to occur
whenever a single set of address and command values
is presented at the input, which may require several
input bytes, even if no further input is provided.

The behavior of micropipelines is a blend of combi-
natorial behavior and pipeline processing. Remember
that event-controlled storage elements are transparent
when empty, and can behave like combinatorial cir-
cuits, storing nothing. Thus when a micropipeline is
empty it behaves just like a combinatorial circuit. After
their data path delay, the decoders of Figures 18 and
19, if empty, faithfully report as output the correct one-
out-of-N code for any given binary input. You can con-
firm this by examining Figures 18 and 19 and remem-
bering that the switches are all drawn in the positions
they occupy when the data path is empty. Notice that
complete paths involving no storage are available from
input to output. Similarly, the mult ipl ier of Figure 20, if

June 1989 Volume 32 Number 6 Communications of the ACM 731

Turing Award

FIGURE 20. A Micropipeline Multiplier Chip
The experimental micropipeline multiplier shown in this pho-
tograph was built by Austek Microsystems. It multiplies pairs
of 12-bit numbers using 24 stages of micropipeline; the first
12 stages are in the multiplication array, and the final 12
resolve the carry-save form of multiplier output. When
empty, the multiplier acts just like a storage-free combinato-
rial multiplier, but when used as a pipeline it can accept up to
24 operand pairs before delivering its first product.

empty, faithfully reports as output the product of its
input operands after its data path delay. This behavior
makes the data path of a micropipeline easy to test.

The pipeline behavior of micropipelines is evident
when they are given several inputs in rapid succession.
Transit ion events on the request and acknowledge
wires at the input end of the micropipeline serve to
separate one input data e lement from another accord-
ing to the two-phase bundled data convention of Fig-
ure 4. The "handshake" events on the request and ac-
knowledge wires are like the rubber rods used in a
grocery store check-out line to separate one customer 's
groceries from another 's. Each request-acknowledge
pair of events separates one data set from preceding or
following data sets. The wave propagation properties of
the Muller C-element control system move these data-
separation events forward through the control circuits,
and the control events force the data forward through

the event-controlled storage registers, just as motion of
the conveyer belt in the grocery store moves rubber
rods and groceries forward toward the cashier.

The pipeline behavior of micropipelines is also evi-
dent when they deliver several outputs in rapid succes-
sion. Again the "handshake" events on the request and
acknowledge wires at the output end of the micropipe-
line serve to separate one output value from another.
Again the two-phase bundled data convention of Fig-
ure 4 is used, each handshake bringing a new value to
the output data terminals. Micropipelines can exhibit
very high burst input and output data rates.

The two-phase bundled data convention of Figure 4
automatical ly takes care of the "full" and "empty" con-
ditions of the micropipeline. If the micropipeline be-
comes full, it will delay the acknowledge event on its
input end, thus preventing further input. Remember
that the device feeding the micropipeline must conform
to the two-phase bundled data convention of Figure 4,
and therefore cannot change the input data until after
it receives an acknowledgment for the present data.
Similarly, if the micropipeline becomes empty, it will
delay the request event at its output end, thus prevent-
ing the output device from taking erroneous data. At
every internal stage of the micropipeline the same sig-
nalling convention applies. Thus if a section is full, it
will automatical ly delay new data from earlier sections
in the micropipeline.

OTHER DEVICES USING THE SAME PROTOCOL
The two-phase bundled data convention used in micro-
pipelines can be applied to other types of devices as
well. For example, one can bui ld a ring-buffer FIFO
whose interface characterist ics are the same as those of
the micropipeline FIFOs of Figure 15 or Figure 16. Such
a device might use an external random access memory
for the required storage and two address counters as
pointers, one for reading and one for writing, to treat
the memory as a ring buffer. It would compare the
values of the two pointers to recognize if the ring buffer
were full or empty, and if so to delay the handshake
signals at its terminals. The ring buffer pointers and the
full and empty signals that result from comparing them
could be private internal signals not available outside
the control.

If a single port memory is used in such a ring-buffer
FIFO, an arbiter must be used to decide whether the
next memory cycle will be devoted to reading or to
writing. Arbitrat ion is required because a single re-
source, namely the memory access port, must be shared
between two independent ly t imed processes, the input
process and the output process. If, at precisely the same
instant, the input process delivers a new input value
and the output process asks for a new output value, the
arbiter must decide cleanly which request to service
first. A transit ion logic control for such a ring-buffer
FIFO is shown in Figure 21.

Although the circuit of Figure 21 looks like a flow
diagram, it is in fact a circuit. It is composed of simple
transit ion control modules, all of which use transit ion

732 Communications of the ACM June 1989 Volume 32 Number 6

Turing Award

R(in) A(out)

FIGURE 21. Ring-Buffer FIFO Control Logic
The control logic for a ring-buffer FIFO can be composed
from the event logic modules shown in Figure 9. Except for
the test values, all wires shown here carry event signals; the
data path, the address pointers and the memory are not
shown. In each of the four SELECT modules I have written
the name of its test; the wires labeled "E" and "F" carry the
required Boolean values. The functions described in the four
lozenges include memory access and incrementing the read
and write pointers, RP and WP. Although this figure looks
like a block diagram, it is actually a circuit ready for direct
implementation. It has been proven [5] than an external ob-
server cannot distinguish this ring-buffer FIFO control circuit
from the micropipeline control circuit of Figure 10.

signalling. Because these modules are insensitive to de-
lay, composing them into circuits is much like drawing
flow diagrams. Using tools developed by David Dill, my
colleague, Bob Sproull, proved that if the FIFO controls
of Figures 10 and 21 work at all, then for equivalent
memory sizes they are functionally equivalent [5]. We
can be assured, therefore, that such a ring-buffer FIFO
and the micropipeline FIFO are interchangeable. The
ability to make such proofs is one of the appealing
things about the transition-signalling conceptual frame-
work.

Using the two-phase bundled data convention of Fig-
ure 4 between micropipeline stages leaves wide latitude
to make individual stages perform their functions in
diverse ways. For example, a pipeline device for arith-
metic normalization can be built with many stages or
with a single stage. The multi-stage version performs a
single bit shift in each stage, has very high throughput,
exhibits long latency, and provides much buffer space.

The single stage device performs its shifts sequentially,
has reduced throughput and buffer space, but requires
substantially less circuitry.

Three bits of a data path for such a single stage se-
quential normalizer are shown in Figure 22. Two regis-
ters of the form il lustrated in Figure 14 are used in
series to capture and hold the data. Switches at the top
of the diagram select whether input data or shifted data
enter the registers. The XOR and TOGGLE modules at
the left of this circuit serve a similar role to those in
Figure 14. Each event on the wire labeled "start latch
data procedure" produces two events on each latch
control wire and thus flips the register switches out of
the position shown and then back into the position
shown, capturing a new data value in the register.
You should think of Figure 22 as the definition of the
LATCH DATA PROCEDURE. This procedure has one
input parameter, the "shift control" signal shown, and
one output parameter, the "normalized or all zero" sig-
nal, which is generated by circuits omitted from the
figure.

The sequential form of normalizer operates just as
would a normalization program for a computer able to
shift left only one place at a time. The control circuit is
shown in Figure 23. At the top of the figure is a Muller
C-element, similar to those we have seen in other mi-
cropipeline stages. After an event leaves the Muller C-
element, its first action is to capture an input datum by
using the upper client terminal, R1, of the CALL mod-
ule to access the latch data procedure represented by
the lozenge and defined in Figure 22. When the latch
data procedure is done, it returns an event to the D
terminal of the CALL module, which in turn returns an
event to its D1 terminal. Thus shortly after the data are
captured and before they are normalized, the control
produces an event on its input acknowledge wire, A(in).
From the point of view of a micropipeline stage, the
rest of the algorithm below A(in) is just a delay before
R(out).

After capturing the input datum, the control uses a
while loop to shift the data into normalized form. The
while loop contains an XOR module, a SELECT mod-
ule, and the latch data procedure via the lower client
terminals of the CALL module. An event circulates
around the while loop and through the latch data pro-
cedure as long as the data are not yet normalized, caus-
ing one shift per trip around the loop. The time be-
tween shifts is established by the loop delay, and may
be as fast or as slow as the circuits involved. When the
while loop finishes, the event exits from the loop via
the "true" output of the SELECT module. Thus when
shifting is complete the control makes an event on the
output request wire, R(out).

The shift control wire shown at the left of Figure 23
deserves special mention. We can think about it in two
ways. First, thinking in terms of events, we should put
an event on this control wire just before the while loop
starts to flip the shift control switches into the shift
position, and we need another event on it when the
while loop finishes to flip the switches back into the

June 1989 Volume 32 Number 6 Communications of the ACM 733

Turing Award

start shift Data Input
latch data control
procedurey T_ TI~ ~ ~I~

, - -

_-Z2 _-Z2 2_, lower
order
bits

done*
latch data
procedure Data Output

FIGURE 22. Data Path for Sequential Normalizer
The data patch for a sequential normalizer defines the
LATCH DATA PROCEDURE. Only three bits of the register
are shown. Circuits to detect the all zeros case or that the
number is correctly normalized are not shown. The switches
at the top of the data path select whether the register gets
input data or shifted data. The TOGGLE and XOR modules
at the left of the diagram are connected into two "do twice"
loops in sequence. After an event arrives on the terminal
labeled "start latch data procedure," the two ranks of latches
in turn capture the data. After the data are latched, the final
TOGGLE module delivers a single event to the terminal la-
beled "done latch data procedure."

input position. The two inputs to the XOR element that
drives the shift control wire serve to bracket the while
loop and thus deliver the two required events. The
other way of thinking about the shift control considers
the value of the XOR module output. So long as the
while loop is active, its input and output control termi-
nals will be in different states, and thus the output of
the XOR module will be high, setting the switches in
the correct position for shifting.

Designing control circuits like the ones illustrated
here is rather like making block diagrams for programs.
Not only do the event logic modules provide condition-
als, procedure call, and other elements familiar to pro-
grammers, but also their response to events makes
them easy to compose into loops and other structures
similar to those found in programs. Using the form of
the micropipeline control, it is also easy to build con-
current processing devices. We and others have built
and tested libraries of such event logic modules and
found them remarkably easy to use; the similarity of
composing event-driven modules and programming has
been recognized and used to advantage in a few places
at least since the macromodule project [2, 3] during the
1960s. It provides, I think, an exciting alternative to
conventional hardware design.

MICROPIPELINES IN GENERAL PURPOSE
COMPUTING
General purpose computing machines use pipelines for
two purposes: computation data paths and instruction

decoding. They could also use pipelines in memory
fetch operations if common memory parts and control-
lers were built using the micropipeline framework. Let
us consider each of these three applications in turn to
see how the micropipeline framework might improve
system performance or usability.

Let us imagine a general purpose computing machine
with micropipelines for arithmetic vector processing.
Because the micropipelines provide an amount of stor-
age that varies on demand, there need be no fixed vec-
tor length built into the machine. The program would
be free to load vectors of any length, up to a maximum,
into such a micropipeline, and subsequently unload the
results. Using a micropipeline adder, for example, a
program might pile in a set of address and offset addi-
tion tasks required to compute indexed memory refer-
ences and use the internal storage of the micropipeline
to hold the resulting sequence of addresses until
needed. A program for multiplying short vectors by
small matrices, an operation useful in computer graph-
ics, might load the vector and matrix elements into a
micropipeline multiplier followed by an accumulator.
Vectors of 2, 3, or 4 components could be handled eas-
ily and efficiently by the same equipment. Moreover,
because input and output operations might be sepa-
rated in time, the indexing required for memory access
might be simplified.

. , , - L o _ 4 t) <

9
i

A(in) L , , ,17- I 7

. I "]~.~ ~ i I ~ o ~ c L ~
• I i

i - - ~,,,,,,,,,,Jl,~ I ~ I ~ J n o I I
, ~ o ~ ~,~ I

' .-~ ~ r " - " l '~- ' ; • ', "~N \ 1~. . ',
. . , , I E - - ~ / Wh i l e i

sn,r[I ~'~ ,Y Ioop l
contro l I c o I, I

I I
, L.l i SELECT '1
, | t r e fa e , , ,u ,~ ,
i i i _ _ _ 1
, , R(out)
, ~ .

FIGURE 23. Control Circuit for a Sequential Normalizer
The control circuit for the sequential normalizer uses a call
module to make the latch data procedure available for two
separate purposes. The upper client uses the latch data pro-
cedure to capture input data with the shift control switches in
the position illustrated at the top of Figure 22. The lower
client is part of a while loop containing also an XOR and a
SELECT module. An event circulates around this loop while
the value is not yet normalized. Notice that an event is given
to the shift control wire when the while loop starts, thus
flipping the shift switches in the data path to the shifting
position. Another even passes to the shift control wire when
the while loop finishes, thus returning the shift switches to
the input data position.

734 Communications of the ACM June 1989 Volume 32 Number 6

Turing Award

Perhaps the most important applications of micro-
pipelines will involve operations in which the vector
length changes. One such example is the clipping oper-
ation widely used in computer graphics [14, 15]. The
clipping operation removes the parts of a set of objects
that lie outside a reference window. Clipping may re-
sult in an increase or decrease in the number of objects
in the set. Because whole objects may be removed,
there may be less output than input, but because con-
nected edges may also be broken into multiple pieces,
there may also be more output than input. Such a clip-
ping device with very simple interface characteristics
can be built using the micropipeline framework.

Sorting is another important application for micro-
pipelines in which the vector length changes. Micro-
pipelines can be applied to both the partitioning and
merging operations used in sorting. For partitioning,
suppose that two micropipelines are connected to the
outputs of a rapid micropipeline partitioner. Given a
vector of input values, the partitioner can separate
them into two output vectors according to some parti-
tioning criterion, delivering elements from each vector
into the corresponding output micropipeline. Of course,
the number of elements in each of the two output vec-
tors is data dependent, but the micropipelines are elas-
tic and can easily accommodate variable length vectors
by increasing or decreasing on demand the amount of
storage available. The outputs of the two micropipe-
lines can deliver the partitioned values without any
need for priming or flushing.

Micropipelines can be applied to the merging opera-
tion as well. In this case two micropipelines for storing
input vectors are connected to the two inputs of a
merging device. This merging device can make what-
ever comparison is appropriate between the data values
it is presented and select one of them for output. The
elastic property of the input micropipelines permits the
merging device to take data from either of them in
whatever sequence the data values require. Partitioning
and merging devices can be useful in signal-processing
pipelines as well, for example, to divide a workload
between several parallel pipelines.

Let us now turn from arithmetic to instruction pro-
cessing. Pipeline instruction processing has become
very common, and with reduced instruction set com-
puter (RISC) architectures, is by now very well under-
stood. One of its side effects is called "delayed branch."
This name describes the fact that some precise number
of instructions, for example exactly 2, will be per-
formed in sequence after each jump or conditional
jump instruction before the branch actually takes ef-
fect. These "overhang" instructions are necessary to
keep the inelastic instruction processing pipeline busy
while the new jump address takes effect. If nothing
useful can be done in these overhang instructions,
NOPs must be inserted as input to the instruction pro-
cessing pipeline while it completes work on the jump
instruction.

Let us imagine a micropipeline instruction processor.
Such a processor can avoid the requirement for over-

hang instructions, but permit them to be included for
additional speed. Although the micropipeline latency
may create a time delay equivalent to two instructions
after a jump, such a processor need not impose the
storage cost of NOPs. If there is nothing useful to do,
the NOPs can be omitted to save the storage. If some
other number of instructions can usefully be done after
the jump, for example, one or three, they may be in-
serted. By expanding or contracting the amount of stor-
age used in the instruction processing pipeline on de-
mand, the micropipeline framework can increase the
programmer's flexibility. No longer does the pipeline
have to contain exactly a fixed number of storage cells.

Condition codes can usefully be passed through a
micropipeline. Conditions such as arithmetic compari-
son or parity for which a pipeline offers high through-
put can be computed in vector fashion. For maximum
throughput, the program should insert other operations
between computing a condition and testing its result. If
there is nothing useful to do between computing a con-
dition and testing its result, intervening instructions
may be omitted and the condition micropipeline be-
haves like a combinatorial circuit. Such a program may
suffer the delay of the micropipeline latency, but will
work properly.

With a micropipeline for storing condition codes, a
program can compute several conditions before testing
the first of them. The condition codes remain in the
micropipeline in first-in-first-out sequence until tested.
This is particularly useful in multi-way decoding trees,
for example where three conditions control an 8-way
branch. Instructions to compute each condition are re-
quired only once, and the three codes thus generated
are stored in the micropipeline until tested in the
branch tree. In conventional machines the instructions
that compute the second and third conditions must be
duplicated in each branch of the test tree.

Finally, memory systems obviously fit well into the
micropipeline framework. One might design a dynamic
random access memory (DRAM) part using a micro-
pipeline. Such a memory part can provide at least a
factor of two improvement in throughput over conven-
tional DRAM parts. This improvement comes about be-
cause such a memory part can access its memory array
concurrently with decoding the next address and with
driving its data output pin or pins with the previously
retrieved data. Such an improved part requires rela-
tively little additional circuitry, since many of the ac-
tions in a DRAM are already driven from an internal
timing chain. Only suitable event-controlled latches
and Muller C-elements to form a micropipeline need be
added to the existing DRAM logic, control mechanisms,
and delay models. When concurrency is not needed,
the micropipeline will be empty, making the event-
controlled storage elements transparent, and permitting
the micropipeline DRAM part to behave much like the
one-cycle-at-a-time DRAM parts now in widespread
u s e .

One might worry that a DRAM part with a micro-
pipeline would require four control wires, two at the

June 1989 Volume 32 Number 6 Communications of the ACM 135

Turing Award

input port and two at the output port, where existing
parts have only two, called RAS and CAS. This is not
so, because it will prove better to use an external tim-
ing model of the DRAM behavior, based on the manu-
facturer's worst case specifications, rather than to have
each and every DRAM part in a system report comple-
tion on its own. The pins for completion signals at both
input and output port can be omitted from the individ-
ual DRAM parts, because the external timing model
provides the two missing completion signals on behalf
of the entire memory system, using its model of the
DRAM behavior to provide suitable delays. The input
port of individual DRAM parts needs only the request
wire, and the output port of individual DRAM parts
needs only the acknowledge wire. Events on these two
control wires respectively tell the DRAM part when to
accept new address information or data to be written,
and when to present a new output value. The external
timing model will itself be a micropipeline built with
stage delays that equal or exceed, stage by stage, the
corresponding delays in the micropipeline in the
DRAM parts.

Cache memories also fit well into the micropipeline
framework. A very high throughput cache built within
this framework can perform decode, detect "hits," and
drive its output all concurrently. Such a cache memory
has two interface pairs, both using a signalling conven-
tion similar to the two-phase bundled data convention
of Figure 4. One pair of interfaces connects the cache to
the processor and the other pair connects it to memory,
as shown in Figure 24. The pair of interfaces between
the processor and the cache should be identical to the
pair of interfaces between the cache and the memory,
so that the system can operate with or without the
cache as shown in Figures 24 and 25.

The processor, cache, and memory, taken together
form a micropipeline. Memory requests from the pro-
cessor flow into the cache and back in micropipeline
fashion, going to memory and back only when neces-
sary. The processor can give the cache several memory
requests concurrently before getting any data back. For
highest throughput, the processor should deliver a con-
tinuous stream of memory requests, but it operates cor-
rectly, albeit at reduced throughput, if it gives only one
request at a time. Because the two-phase bundled data
convention of Figure 4 permits either sender or re-
ceiver to delay the next transaction arbitrarily, cache
or memory access delays automatically delay subse-
quent requests from the processor. Similarly, the part of
the processor that consumes memory data waits how-
ever long is required for the events that signal the pres-
ence of valid data.

If the cache does not contain the required informa-
tion, it passes the request on to the memory. In this
case the processor suffers the additional delay required
to fetch information from memory. Because the proces-
sor accepts data from the cache only when it detects a
validating request event, the processor easily accommo-
dates to any additional memory delay. In fact, if the

Inter face (1) and (2): Addresses & wr i te data

£E
0
O9
Or)
LU
0
0
CE
13_

IJJ >
I I i -

R 4 < R 3

A 4 ('~ A 3

_ _ < 4

>-

0

LU

L - "~<

Interface (3) and (4): Read data and inst ruct ions

FIGURE 24. Memory Interface with Cache

A processor, cache, and memory system can use interfaces
that follow the two-phase bundled data convention of Fig-
ure 4. Interfaces 1 and 2 carry addresses and data to be
written; interfaces 3 and 4 carry data and instructions. The
entire system can operate as a micropipeline at the maxi-
mum throughput rate of its slowest participant.

cache sent every request to the memory, or if the cache
were omitted, the system would still operate properly,
albeit at reduced throughput.

This leads me to the most important implication of
micropipelines. Because they use event-controlled in-
terfaces rather than a common clock, micropipelines
with different inherent speeds can be composed di-
rectly into systems that function correctly, albeit at the
speed of the slowest part. If the cache of Figure 24 were
omitted or replaced with a cache with different cost
and performance characteristics, the system would still
operate correctly. Similarly the processor performance
or the memory performance can be upgraded and the
system will still work, taking advantage of any avail-
able speed improvements.

CONCLUSION
FIFOs and pipelines are simple to design and easy to
understand in the transition-signalling conceptual
framework. They are relatively difficult to design
within the clocked-logic conceptual framework. By
abandoning clocked logic in favor of transition signall-
ing, one is able to make very simple micropipelines that
assemble easily into larger structures. The change in
conceptual framework suggested here simplifies system
design because simple modules and compositions of
them can be further composed into large systems.

The composability offered by micropipelines and
transition signalling may be their most important prop-
erty. Complex functions are easy to compose from sim-
ple modules that provide basic functions already famil-
iar in programming. More complex systems can be built
by composing them as a hierarchy of the basic modules
and previously designed compositions. Even if the basic
building blocks were hard to design, and they no longer
are, they would be worthwhile, because they are so

738 Communications of the ACM June 1989 Volume 32 Number 6

Turing Award

Interface {1/: Addresses & write data

O
o0
CO
UJ
0
0

13..

1
>-

O
R 4 ILl
A 4

<
m

Interface (4): Read data and instructions
FIGURE 25. Memory Interface without Cache

With the cache omitted, the processor and memory can still
function together. Because each interface accommodates arbi-
trary delay, no further design change is required when the
cache is omitted or when substituting a cache with different
performance characteristics,

easy to compose into systems.
This same composability offers a simple way to up-

grade system performance as improved circuitry be-
comes available. Event-driven interface protocols per-
mit old components to be replaced by new ones with
improved throughput, latency, or cost characteristics.
Because the handshake used here automatically takes
care of delays in delivering or making use of data, such
replacements can be made with assurance that the sys-
tem will still operate properly. On the other hand, large
systems built in the clocked-logic conceptual frame-
work resist incremental improvement, because any in-
crease in clock speed must be accommodated through-
out the system. As improvements are made to systems
built as I have outlined here, one can expect that the
slowest or most expensive parts of a system will be
replaced first, and thus that each replacement will im-
prove system performance or decrease system cost.
Thus the transition-signalling conceptual framework,
micropipelines, and the two-phase bundled data con-
vention of Figure 4 taken together not only simplify
initial system design but also permit rapid mid-life up-
grade of systems as new technology becomes available.

I hope that this lecture may help system design to
keep pace with advancing component technology. To-
day, new integrated circuit technology makes available
significant improvements in cost or performance every
six months or so. It is often difficult to make use of
such improved performance, because speeding up the
clock in an entire system is a formidable task fraught
with dangers. Today's system designers, constrained by
the clocked-logic conceptual framework, take several
years to produce a new system. Thus the systems being
sold may lag by several years the potential speed or cost
benefits offered by the most modern technology. I be-

lieve that the micropipeline framework that I have de-
scribed here can reduce the opportunity cost imposed
by the clocked-logic conceptual framework.

A c k n o w l e d g m e n t s . The transition-signalling concep-
tual framework has been used in a few places over a
long period of time. I know of early work at the Univer-
sity of Illinois by David Muller, at the University of
Utah by A1 Davis, and at the Massachusetts Institute of
Technology by Jack Dennis; I apologize in advance for
omitting mention of other projects.

I owe my own education in the transition-signalling
conceptual framework to a few able people. I first be-
came aware of transition signalling in the early 1960s
when a group at Washington University in Saint Louis,
led by Wes Clark, used it in the design of a set of
macromodules [2,3]. I learned much more about it from
Charles Seitz, now on the faculty at Caltech, over a
dozen years starting in 1966 when, as an MIT graduate
student, he taught me most of what I know about digi-
tal design. We worked together at Harvard and at the
Evans and Sutherland Computer Corporation using an
almost-correct version of micropipelines in processors
for computer graphics, including the original "clipping
divider" [14]. His chapter in the well-known Mead and
Conway book on VLSI is one of the best presented and
most accessible references on transition signalling [13].

Two other people have been important to my educa-
tion. Most important to me over a long period of time is
Bob Sproull, from whom I first started a lifelong educa-
tion twenty-five years ago and of whose knowledge and
ability I remain in awe. He has regularly fixed my
thinking when it was fuzzy, and has made this lecture
more accurate than I alone could have. During the past
five years he and I led an "Asynchronous Systems
Study" to learn and teach transition signalling. As part
of it we designed micropipelines for various purposes,
including those I have described here. We have taught
our subject to a few hundred people, and we have two
books in preparation. Finally, I want to mention
Charles Molnar, whose group at Washington University
continues the pioneering work I mentioned before. He
has given unstintingly to my education not only his
time and ideas but also his enthusiasm. His contribu-
tions to the transition-signalling conceptual framework
include not only the absolutely essential synthesis
method for logic modules [9] without which the new
framework was difficult to use, but also many impor-
tant parts of an overall mathematical theory, and new
conceptions of useful circuits [12]. The theoretical work
[6,10,11,19], in which he collaborates with Martin
Rem's group in Eindhoven, is beginning to prove theo-
rems about the correctness of systems designed in the
transition-signalling conceptual framework.

The work reported here led to a broader "Asynchro-
nous Systems Study," conducted by Sutherland, Sproull
and Associates, Inc., and supported by six industrial
sponsors: Apple Computer, Austek Microsystems Ltd.,
Digital Equipment Corp., Evans and Sutherland Corn-

June 1989 Volume 32 Number 6 Communications of the ACM 737

Turing Award

pute r Corp., Float ing Point Systems, and the Sch lum-
berger Research Laboratory. We did the work wi th the
coopera t ion of Carnegie Mel lon Univers i ty and Imperia l
College of the Univers i ty of London. Erik Brunvand , Ed

Frank, Ian Jones, Char les Molnar, and Bert Su the r l and
col laborated wi th us. We w e r e able to test micropipe-
l ine c i rcui ts fabr ica ted for us by the MOSIS in tegra ted
circui t fabr icat ion service opera ted by the Informat ion
Sciences Ins t i tu te of the Univers i ty of Sou the rn Califor-
nia. We are p roud to have b e e n the very first c o m m e r -
cial MOSIS client.

REFERENCES
1. Chaney, T.J., and Molnar, C.E. Anomalous behavior of synchronizer

and arbiter circuits. IEEE Trans. Comput. C-22, 4 (Apr. 1973}, 421-
422.

2. Clark, W.A. Macromodular computer systems. In Proceedings of the
Spring Joint Computer Conference, AFIPS, April 1967.

3. Clark, W.A., and Molnar, C.E. Macromodular computer systems.
Computers in Biomedical Research, Vol. 4, R. Stacy and B. Waxman,
Eds., Academic Press, New York, 1974, 45-85.

4. Dally, W.J., Seitz, C.L. Deadlock-flee message routing in multipro-
cessor interconnection networks IEEE Trans. Comput. 36, 5 (May
1987}, 547-553.

5. Dill, D.L., Nowick, S.M., and Sproull, R.F. Specification and auto-
matic verification of self-timed queues. Computer Systems Labora-
tory Report, Stanford University, 1988.

6. Ebergen, J.C. Translating programs into delay-insensitive circuits.
Ph.D. dissertation, Eindhoven University of Technology, 1987.

7. Levy, J.V. Buses, the skeleton of computer structures. In Computer
Engineering, C.G. Bell, J.C. Mudge, and J.E. McNamara, Eds., Digital
Press, 1978.

8. Miller, R.E. "Sequential Circuits", Chapter 10, In Switching Theory,
Vol 2, Wiley, NY, 1965.

9. Molnar, C.E., Fang, T.P., and Rosenberger, F.U. Synthesis of delay-
insensitive modules. In Proceedings of the 1985 Chapel Hill Conference
on VLSI, H. Fuchs, Ed., Computer Science Press, 1985.

10. Rem, M., van de Snepscheut, J.L.A., and Udding, J.T. Trace theory
and the definition of hierarchical components. In Proceedings of the
Caltech Conference on VLSI, 1983.

11. Rein, M. Trace theory and systolic computations. In Prec. PARLE
(Parallel Architectures and Languages Europe), Vol 1, }.W. deBakker,
A.J. Nijman, and P.C. Treleaven, Eds, Springer-Verlag, 1987, pp. 14-
34.

12. Rosenberger, F.U., Molnar, C.E., Chaney, T.J., et al. Q-modules: Lo-
cally clocked delay-insensitive modules. IEEE Trans. Comput. 37, 9
(Sept. 1988), 1005-1018.

13. Seitz, C.L. System Timing. In Introduction to VLSI Systems, C.A. Mead
and L.A. Conway, Eds., Addison-Wesley, 1980.

14. Sproull, R.F., and Sutherland, I.E. A clipping divider. FJCC 1968,
Thompson Books, Washington, D.C., 765.

15. Sutherland, I.E., and Hodgman, G.W. Reentrant polygon clipping.
Commun. ACM 17,1 {Jan. 1974}, 32-42.

16. Sutherland, I.E. Asynchronous queue system, U.S. Patent 4,679,213,
July 7, 1987.

17. Sutherland, I.E., Asynchronous first-in-first-out register structure.
US Patent Pending.

18. Sutherland, I.E. Asynchronous pipelined data processing system. US
Patent pending.

19. Udding, J.T. A formal model for defining assifying delay-insensitive
circuits and systems. J. Distrib. Comptg. 1, 1986, 197-204.

CR Categories and Subject Descriptors: B.2.1 [Arithmetic and Logic
Structures]: Design Styles--pipeline; B.5.1 [Register Transfer-Level Im-
plementation]: Design--styles(e.g., parallel, pipeline, special-purpose; B.7.1
[Integrated Circuits]: Types and Design Styles--Input~Output circuits

General Terms: Design
Additional Key Words and Phrases: Asynchronous handshake, FIFO,

pipeline processing, transition signalling

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Offers you exciting, significant, and original work in all
aspects of the use and development of computer graphics...

acm Transactions
on Graphics

Editor-in-Chief John C. Beatty
University of Waterloo, Ontario, Canada

K
eep pace with the fast-breaking
advances in computer graphics with A C M
Transactions on Graphics (TOG). Offering
exciting, significant, and original work in all

aspects of the use and development of computer
graphics, TOG covers topics such as image synthesis,
geometric modeling, CAD/CAM/CAE, algorithm
design and analysis, graphics programming language
design and packages, person-machine interaction
techniques, computer graphics hardware, and design
and implementation of applications systems.

Making liberal use of high-quality color images in
many articles, TOG is divided into two sections:
Research Contributions and Practice and Experience.
A unique feature, "The Interactive Technique
Notebook," thumbnails such techniques and serves as
a source for designers of interactive graphic applica-
tions programs.

Whether you are just discovering the diverse possi-
bilities in the field or are already an expert, TOG is
the journal for you. Published quarterly.
ISSN: 0730-0301

Included in Science Abstracts, Automatic Subject
Citation Alert, Computer Literature Index, Computing
Reviews, Compumath Citation Index, Computer Aided
Design~Computer Aided Manufacturing, Ergonomics
Abstracts and International Aerospace Abstracts.

Order No. 109000
Subscriptions: $75.00/year - - Mbrs. $26.00
Single Issues: $27.00 - - Mbrs. $14.00
Back Volumes: $108.00 - - Mbrs. $56.00
Student Mbrs. $21/year

Please send all orders and inquiries to:
P.O. Box 12115
Church Street Station
New York, NY 10249

?38 Communications of the ACM June 1989 Volume 32 Number 6

