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A survey of Field-Programmable Gate Array (FPGA) architec- 
tures and the programming technologies used to customize them is 
presented. Programming technologies are compared on the basis of 
their vola fility, size, parasitic capacitance, resistance, and process 
technology complexity. FPGA architectures are divided into two 
constituents: logic block architectures and routing architectures. 
A classijcation of logic blocks based on their granularity is 
proposed and several logic blocks used in commercially available 
FPGA ’s are described. A brief review of recent results on the effect 
of logic block granularity on logic density and pe$ormance of an 
FPGA is then presented. Several commercial routing architectures 
are described in the contest of a general routing architecture 
model. Finally, recent results on the tradeoff between the fleibility 
of an FPGA routing architecture its routability and density are 
reviewed. 

I. INTRODUCTION 
The architecture of a field-programmable gate array 

(FPGA), as illustrated in Fig. 1, is similar to that of 
a mask-programmable gate array (MPGA), consisting of 
an array of logic blocks that can be programmably 
interconnected to realize different designs. The major 
difference between FPGA’s and MPGA’s is that an MPGA 
is programmed using integrated circuit fabrication to form 
metal interconnections, while an FPGA is programmed 
via electrically programmable switches much the same as 
traditional programmable logic devices (PLD’s). FPGA’s 
can achieve much higher levels of integration than PLD’s, 
however, due to their more complex routing architectures 
and logic implementations. PLD routing architectures are 
very simple but highly ineffiecient crossbar-like structures 
in which every output is directly connectable to every 
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Fig. 1. FPGA architecture 

input through one switch. FPGA routing architectures 
provide a more efficient MPGA-like routing where each 
connection typically passes through several switches. In a 
PDL, logic is implemented using predominantly two-level 
AND-OR logic with wide input AND gates. In an FPGA 
logic is implemented using multiple levels of lower fanin 
gates, which is often much more compact than two-level 
implementations. 

An FPGA logic block can be as simple as a transistor or 
as complex as a microprocessor. It is typically capapble of 
implementing many different combinational and sequential 
logic functions. Current commercial FPGA’s employ logic 
blocks that are based on one or more of the following: 

Transistor pairs. 
Basic small gates such as two-input NAND’s or 
exclusive-OR’ s. 
Multiplexers. 
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Look-up tables (LUT’s). 
Wide-fanin AND-OR structures. 

The routing architecture of an FPGA could be as simple 
as a nearest neighbor mesh [9] or as complex as the perfect 
shuffle used in multiprocessors [42]. More typically, an 
FPGA routing architecture incorporates wire segments of 
varying lengths which can be interconnected via electrically 
programmable switches. The choice of the number of wire 
segments incorporated affects the density achieved by an 
FPGA. If an inadequate number of segments is used, only a 
small fraction of the logic blocks can be utilized, resulting 
in poor FPGA density; conversely the use of an excess 
number of segments that go unused also wastes area. 

The distribution of the lengths of the wire segments 
also greatly affects the density and performance achieved 
by an FPGA. For example, if all segments are chosen to 
be long, implementing local interconnections becomes too 
costly in area and delay. On the other hand if all segments 
are short, long interconnections are implemented using too 
many switches in series, resulting in unacceptably large 
delays. 

Several different programming technologies are used to 
implement the programmable switches. There are three 
types of such programmable switch technologies currently 
in use. These are: 

SRAM, where the switch is a pass transistor controlled 
by the state of a SRAM bit, 
Antifuse, whci, when electrically programmed, forms 
a low resistance path, and 
EPROM, where the switch is a floating-gate transistor 
that can be turned off by injecting charge onto their 
floating gate. 

In all cases, a programmable switch occupies larger 
area and exhibits much higher parasitic resistance and 
capacitance than a typical contact or via used in the 
customization of an MPGA. Additional area is also required 
for programming circuitry. As a result the density and 
performance achievable by today’s FPGA’s are an order 
of magnitude lower than that for MPGA’s manufactured in 
the same technology. 

The adverse effects of the large size and relatively high 
parasitics of programmable switches can be reduced by 
careful architectural choices. By choosing the appropriate 
granularity and functionality of the logic block, and by 
designing the routing architecture to achieve a high degree 
of routability while minimizing the number of switches, 
both density and performance can be optimized. The best 
architectural choices, however, are highly dependent on the 
programming technology used as well as on the type of 
designs implemented, so that no one architecture is likely 
to be best suited for all programming technologies and for 
all designs. 

The complexity of FPGA’s has surpassed the point where 
manual design is either desirable or feasible. Consequently, 
the utility of an FPGA architecture is highly dependent 
on effective automated logic and layout synthesis tools to 
support it. A complex logic block may be underutilized 

without an effective logic synthesis tool, and the overall 
utilization of an FPGA may be low without an effective 
placement and routing tool. 

Commercial P G A ’ s  differ in the type of programming 
technology used, in the architecture of the logic block 
and in the structure of their routing architecture. In this 
paper we survey the architectures of commercially available 
FPGA’s and discuss the dependence of FPGA density 
and performance on these factors. The paper is organized 
as follows: Section I1 describes the most widely used 
programming technologies. Section 111 presents a survey 
of commercial FPGA logic block architectures, classified 
by their granularity. This includes a summary of recent 
research results concerning the effect of granularity on over- 
all FPGA density and performance. Section IV describes 
several commercial routing architectures in the context of a 
general routing architecture model, and summarizes recent 
research results in this area. Section V concludes with a 
discussion of potential future architectural directions for 
FPGA’s. 

11. PROGRAMMING TECHNOLOGIES 
An FPGA is programmed using electrically pro- 

grammable switches. The properties of these programmable 
switches, such as size, on-resistance, and capacitance, 
dictate many of the tradeoffs in FPGA architecture. In this 
section we describe the most commonly used programmable 
switch technologies and at the end will contrast each 
technology with respect to volatility, re-programmability, 
size, series on-resistance, parasitic capacitance, and process 
technology complexity. 

A. SRAM Programming Technology 
The SRAM programming technology uses Static RAM 

cells to control pass gates or multiplexers as illustrated in 
Fig. 2. It is used in the devices from Xilinx [23], Plessey 
[33] Algotronix, [2], Concurrent Logic [13] and Toshiba 
Wl. 

When a one is stored in the SRAM cell in Fig. 2(a), 
the pass gate acts as a closed switch, and can be used to 
make a connection between two wire segments. When a 
zero is stored, the switch is open and the transistor presents 
a high resistance between the two wire segments. For the 
multiplexer, the state of the SRAM cells connected to the 
select lines controls which one of the multiplexer inputs are 
connected to the output, as shown in Fig. 2(b). 

Since SRAM is volatile, the FPGA must be loaded and 
configured at the time of chip power-up. This requires 
external permanent memory to provide the programming 
bits such as PROM, EPROM, EEPROM or magnetic disk. 

A major disadvantage of SRAM programming technol- 
ogy is its large area. It takes at least five transistors to 
implement an SRAM cell, plus at least one transistor 
to serve as a programmable switch. However, SRAM 
programming technology has two major advantages; fast 
re-programmability and that it requires only standard inte- 
grated circuitprocess technology. 
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Fig. 2. Static RAM programming technology. 
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B. Antifuse Programming Technology 
An antifuse is a two terminal device with an un- 

programmed state presenting a very high resistance between 
its terminals. When a high voltage (from 11 to 20 volts, 
depending on the type of antifuse) is applied across its 
terminals the antifuse will “blow” and create a low- 
resistance link. This link is permanent. Antifuses in use 
today are built either using an Oxygen-Nitrogen-Oxygen 
(ONO) dielectric between N+ diffusion and poly-silicon 
[ 191, [ 151, [ 11 or amorphous silicon between metal layers 
[6] or between polysilicon and the first layer of metal [31]. 

Programming an antifuse requires extra circuitry to de- 
liver the high programming voltage and a relatively high 
current of 5 mA or more. This is done in [15] through 
fairly sizable pass transistors to provide addressing to each 
antifuse. An associated paper in this issue discusses the 
programming of antifuse structures in more detail [18]. 
Antifuse technology is used in the FPGA’s from Actel [ 151 
[I], Quicklogic [6], and Crosspoint [31]. 

A major advantage of the antifuse is its small size, 
little more than the cross-section of two metal wires. This 
advantage is somewhat reduced by the large size of the 
necessary programming transistors, which must be able 
to handle large currents, and the inclusion of isolation 
transistors that are sometimes needed to protect low voltage 
transistors from high programming voltages. A second 
major advantage of an antifuse is its relatively low series 
resistance. The on-resistance of the ONO antifuse is 300 to 
500 ohms [ 191, while the amorphous silicon antifuse is 50 to 
100 ohms [6] [3 11. Additionally, the parasitic capacitance 
of an unprogrammed amorphous antifuse is significantly 
lower than for other programming technologies. 

C. Floating Gate Programming Technology 
The floating gate programming technology uses technol- 

ogy found in ultraviolet erasable EPROM and electrically 
erasable EEPROM devices. The EPROM-based approach 
is used in devices from Altera [43] and Plus Logic [34]. 

The programmable switch, illustrated in Fig. 3, is a 
transistor that can be permanently “disabled.” This is ac- 
complished by injecting a charge on the floating gate (gate 
2 in the figure) using a high voltage between the control 
gate 1 and the drain of the transistor. This charge increases 

t 

Fig. 3. Floating gate programming technology 

the threshold voltage of the transistor so that it turns off. 
The charge is removed by exposing the floating gate to UV 
light. This lowers the threshold voltage of the transistor and 
makes the transistor function normally. 

Rather than using an EPROM transistor directly as a 
programmable switch, the unprogrammed transistor is used 
to pull down a “bit line” when the “word line” is set high, 
as illustrated in Fig. 3. While this approach can be simply 
used to make a connection between the word and bit lines, 
it can also be used to implement a wired-AND style of 
logic, thereby providing both logic and routing. 

As with the SRAM programming technology, a 
major advantage of the EPROM technology is its re- 
programmability. An advantage over SRAM, though, is 
that no external permanent memory is needed to program 
the chip on power-up. EPROM technology, however, 
requires three additional processing steps over an ordinary 
CMOS process. Two other disadvantages are the high ON- 
resistance of an EPROM transistor (about twice that of a 
similarly sized NMOS pass transistor) and the high static 
power consumption due to the pull-up resistor used (see 
Fig. 3). 

The EEPROM-based programming technology is used in 
the devices from AMD [3] and Lattice [4]. It is similar 
to the EPROM approach, except that removal of the gate 
charge can be done electrically, in-circuit, without UV light. 
This gives the added advantage of easy reprogrammability, 
which can be very helpful in some applications such as 
hardware updates to equipment in remote locations. An 
EEPROM cell, however, is roughly twice the size of an 
EPROM cell. 

E. Summary of Programming Technologies 
Table 1 lists the properties of each programming technol- 

ogy. All data assumes a 1.2 p m  CMOS process technology. 
The first column gives the name of the technology. Note 
that there is separate information for the two different 
types of antifuse. The second column indicates if the 
configuration is lost when power is removed from the 
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Table 1 Comparison of Programming Technologies 
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device. The third column indicates if the technology permits 
reprogramming. The fourth column provides the relative 
size of the programmable switch. The fifth column gives 
the series resistance of an “on” switch, and the sixth 
column gives the parasitic capacitance of an “off’ switch, 
not including any capacitance due to associated wiring 
or programming transistors. For reference, the capacitance 
of a 10 pm length of minimum-width wire in a 1.2 pm 
CMOS process is about 0.6 fF. The seventh column gives 
the number of additional processing steps required beyond 
standard CMOS. 

111. LOGIC BLOCKARCHITECTURE 
In this section we survey the commercial FPGA logic 

block architectures in use today. In the first section we 
discuss the combinational logic portion of the logic block. 
A discussion of the sequential logic portion is deferred to 
Section 111-D. In Section 111-E, we present several recent 
research results on the effect of the choice of the logic 
block on the density and performance of an FPGA. 

A.  Survey of Commercial Logic Block Architectures 
FPGA logic blocks differ greatly in their size and imple- 

mentation capability. The two transistor logic block used 
in the Crosspoint FPGA can only implement an inverter 
but is very small in size, while the look-up table logic 
block used in the Xilinx 3000 series FPGA can implement 
any five-input logic function but is significantly larger. To 
capture these differences we classify logic blocks by their 
granularity. Granularity can be defined in various ways, 
for example, as the number of boolean, functions that the 
logic block can implement, the number of equivalent two- 

(b) 

Fig. 4. 
plementation. 

Example logic function and two-input NAND gate im- 

input NAND gates, the total number of transistors, total 
normalized area, or the number of inputs and outputs. The 
matter is further confused because in some architectures, 
such as the Altera FPGA [43] or the AMD FPGA [3], the 
logic and routing are tightly intertwined and it is difficult 
to separate their contributions to the architecture. For these 
reasons, we choose to classify the commercial logic blocks 
into just two categories: $ne-grain and coarse-grain. 

For all the logic blocks described below, we show how 
to implement the logic function f = ab + T ,  as illustrated 
in Fig. 4(a). Note that this is equivalent to the two-input 
NAND gate implementation given in Fig. 4(b). 

B. Fine-Grain Logic Blocks 
Fine-grain logic blocks closely resemble MPGA basic 

cells. The most fine grain logic block would be identical to a 
basic cell of an MPGA and would consist of few transistors 
that can be programmably interconnected. 
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Fig. 5. Transistor pair tiles in cross-point FPGA. 
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Fig. 6. Programmed cross-point FPGA for logic function 
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1)  The Crosspoint FPGA: The FPGA from Crosspoint 
Solutions [3 11 uses a single transistor pair in the logic block, 
as illustrated in Fig. 5. 

Figure 6 illustrates how the function of Fig. 4(b) is 
implemented with the transistor pair tiles of the cross-point 
FPGA. Since the transistors are connected together in rows, 
the two two-input NAND gates are isolated by turning off 
the pair of transistors between the gates. 

In addition to the transistor pair tiles, the cross-point 
FPGA has a second type of logic block, called a RAM 
logic tile, that is tuned for the implementation of random 
access memory, but can also be used to build random 
logic functions in a manner similar to the Actel and The 
Quicklogic logic blocks described below. 

2) The Plessey FPGA: A second example of a fine-grain 
FPGA architecture is the FPGA from Plessey [33]. Here 
the basic block is a two-input NAND gate as illustrated in 
Fig. 7. Logic is formed in the usual way by connecting the 
NAND gates to implement the desired function. The logic 
function f = ab + C illustrated in Fig. 4(a) is implemented 
exactly as shown in Fig. 4(b). If the latch in Fig. 7 is not 
needed, then the configuration store is set to make the latch 
permanently transparent. 

Several other commercial FPGA's employ fine grain 
blocks. Algotronix [2] uses a two-input function block 
which can perform any function of two inputs. This is 
implemented using a configurable set of multiplexers. The 
logic block of Concurrent Logic's FPGA [13] contains a 
two-input AND gate and a two-input EXCLUSIVE-OR 
gate. The FPGA recently discussed by Toshiba in [32] also 
uses a two-input NAND gate. 

The main advantage of using fine grain logic blocks is 
that the useable blocks' are fully utilized. This is because 

' In all FPGA's, as well as in  all MPGA's, only a fraction of the logic 
blocks available can be utilized in any design. 

Fig. 7. The Plessey logic block. 

f 
it is easier to use small logic gates efficiently and the logic 
synthesis techniques for such blocks are very similar to 
those for conventional mask-programmed gate arrays and 
standard cells. 

The main disadvantage of fine-grain blocks is that they 
require a relatively large number of wire segments and 
programmable switches. Such routing resources are costly 
in delay and area. As a result, FPGA's employing fine-grain 
blocks are in general slower and achieve lower densities 
than those employing coarse grain blocks. See Section 111-A 
for results supporting this claim. 

C. Coarse-Grain Logic Blocks 
1) The Actel Logic Block: The Actel logic block [ 151, [ 11 

is based on the ability of a multiplexer to implement 
different logic functions by connecting each of its inputs 
to a constant or to a signal [46]. For example, consider 
a two-to-one multiplexer with selector input s, inputs a 
and b and output f = sa + sb. By setting signal b to 
logic 0, the multiplexer can implement the AND function 
f = sa. Setting signal a to logic 1 provides the OR function 
f = s + b. By connecting together a number of multiplexers 
and basic logic gates, a logic block can be constructed 
which can implement a large number of functions in this 
manner. 

The Actel Act-1 logic block [I51 is illustrated in Fig. 
8(a). It consists of three multiplexers and one logic gate, 
has a total of 8 inputs and one output, and implements the 
function 

f = (s3 +s4) (STW + S I X )  + (s3 + sq)(S;jy + s2z) .  

By setting each variable to an input signal, or to a 
constant, 702 logic functions can be realized. For example, 
the logic function f = ab + E is realized by setting 
the variables as shown in Figure 8b: w = 1, x = 1, SI = 
0, y = 0. z = a. s2 = b,  s3 = c, and sq = 0. 

The Act-2 logic block [ I ]  is similar to Act-1, except that 
the separate multiplexers on the first row are joined and 
connected to a two-input AND gate, as shown in Fig. 9. 
The Act-2 combinational logic module can implement 766 
functions. 

2 )  Quicklogic Logic Block: The logic block in the FPGA 
from QuickLogic [6] is similar to the Actel logic blocks in 
that it employs a four to one multiplexer. Each input of the 
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The Actel Act-1 logic block. Fig. 8. 
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Fig. 9. The Actel Act-2 logic block. 

multiplexer (not just the select inputs) is fed by an AND 
gate, as illustrated in Fig. 10. Note that alternating inputs 
to the AND gates are inverted. This allows input signals to 
be passed in true or complement form, thus eliminating the 
need to use extra logic blocks to perform simple inversions. 

Multiplexer-based logic blocks have the advantage of 
providing a large degree of functionality for a relatively 
small number of transistors. This is, however, achieved 
at the expense of a large number of inputs (eight in the 
case of Actel and 14 in the case of QuickLogic), which 
when utilized place high demands on the routing resources. 
Such blocks are, therefore, more suited to FPGA’s that use 

m i%& Ca M El 

Ez 
F1 4 -1 I 

Fig. 10. The Quicklogic logic block. 

0 1 1  

(a) 

Fig. 11. Lookup table-based logic. 

programmable switches of small size such as antifuses. 
3) The Xilinr Logic Block: The basis for the Xilinx logic 

block is an SRAM functioning as a look-up table (LUT). 
The truth table for a K-input logic function is stored in a 
2K x 1 SRAM. The address lines of the SRAM function 
as inputs and the output of the SRAM provides the value 
of the logic function. For example, consider the truth table 
of the logic function f = ab + given in Fig. ll(a). If 
this logic function is implemented using a three-input LUT, 
then the SRAM would have a 1 stored at address 000, a 0 
at 001 and so on, as specified by the truth table. 

The advantage of look-up tables is that they exhibit 
high functionality-a K-input LUT can implement any 
function of K inputs and there are 2 2 K  such functions. The 
disadvantage is that they are unacceptably large for more 
than about five inputs, since the number of memory cells 
needed for a K-input lookup table is 2”. While the number 
of functions that can be implemented increases very fast, 
these additional functions are not commonly used in logic 
designs and are also difficult to exploit for a logic synthesis 
tool. Hence it is often the case that a large LUT will be 
largely underutilized. 

The Xilinx 3000 series logic block [21] [2a] contains a 
five-input one-output LUT, as illustrated in Fig. 12. This 
block can be reconfigured into two four-input LUTs, with 
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Fig. 13 The Xilinx 4000 logic block. 

the constraint that together they use a total of no more 
than five distinct inputs. This reconfigurability provides 
flexibility that translates into better logic block utilization 
because many common logic functions do not require as 
many as five inputs. The block also contains sequential 
logic and several multiplexers that connect the combina- 
tional inputs and outputs to the flip-flops or outputs. These 
multiplexers are controlled by the SRAM cells that are 
loaded at programming time. 

The Xilinx 4000 series logic block [23]  contains two 
four-input LUT’s feeding into a three-input LUT as il- 
lustrated in Fig. 13. In this block, all of the inputs are 
distinct and available external to the logic block. This block 
introduces two significant architectural changes from the 
3000 series block. First, two differently sized LUT’s are 
used: a four input LUT and a three input LUT, giving the 
complete block a heterogenous flavor. In general, hetero- 
geneity allows for a better tradeoff between performance 
and logic density. 

The second architectural change in the Xilinx 4000 logic 
block is the use of two nonprogrammable connections from 
the two four-input LUT’s to the three-input LUT. These 
connections are significantly faster than any programmable 
interconnection since no programmable switches are used 
in series, and little is present in parallel. If proper use can 
be made of these fast connections FPGA performance can 
be greatly improved. There is a penalty for this type of 
connection, however; since the connection is permanent, 
the inflexibility means that the three-input LUT may often 
go unused, reducing the overall logic density. 

I I+ 
abc 

(b) 

Fig. 14. The Altera 5000 Series logic block. 

The Xilinx 4000 block incorporates several additional 
features. Each LUT can be used directly as an SRAM block. 
This allows small amounts of memory to be more efficiently 
implemented. Another feature is the inclusion of circuitry 
that can be used to implement fast carry addition circuits. 

4)  The Altera Logic Block: The architecture of the Altera 
FPGA [43] has evolved from the PLA-based architecture 
of traditional PLDs [28]  with its logic block consisting of 
wide fanin (20 to over 100 inputs) AND gates feeding into 
an OR gate with three to eight inputs. Figure 14a illustrates 
the Altera MAX 5000 series logic block. Using the floating 
gate transistor-based programmable switch presented in 
Section 11-C, any vertical wire passing by an AND gate 
can be connected as an input to the gate. The three product 
terms are then OR’s together and can be programmably 
inverted by an exclusive OR gate, which can also be used 
to implement other arithmetic functions. Notice that each 
input signal is provided in both true and complement form, 
with two separate wires. This programmable inversion 
significantly increases the functional capability of the block. 

Figure 14(b) illustrates the implementation of the logic 
function f = ab + C. The x’s in the figure indicate the 
wired-AND connections described in Section II-C. 

The advantage of this type of block is that the wide 
AND gate can be used to form logic functions with few 
levels of logic blocks, reducing the need for programmable 
interconnect. It is difficult, however, to make efficient use 
of all of the inputs to all of the gates, resulting in loss of 
density. This loss is not as severe as it first appears because 
of the high packing density of the wired-AND gates, as well 
as the fact that logic connections also serve as the routing 
function. In other architectures where logic and routing are 
separate such unused inputs would incur a high penalty. 

A disadvantage of the wired-AND configuration is the 
use of pull-up devices that consume static power. An array 
full of these pull-ups will consume significant amount of 
power. To mitigate this, each gate in the MAX 7000 series 

ROSE et al.: ARCHITECTURE OF GATE ARRAYS 1019 



block can be programmed to consume about 60% less 
power but at the expense of about 40% increase in delay 
[44]. This feature can be used in noncritical paths to reduce 
power consumption. 

In addition to the wide AND-OR logic block, the MAX 
5000 employs one other type of logic block, called a logic 
expander. This is a wide-input NAND gate whose output 
can be connected to the AND-OR logic block. While a 
logic expander incurs the same delay as the logic block, it 
takes up less area and can be used to increase its effective 
number of product terms. 

The Altera MAX 7000 logic block 1441 is similar to 
the MAX 5000 except that it provides two more product 
terms and has more flexibility because neighboring blocks 
can “borrow” product terms from each other. This is 
accomplished using a small routing structure between the 
AND and OR gates called the product term select matrix. 

Several other FPGA’s use the wide AND-OR style of 
logic block, including those produced by Plus Logic 1341, 
AMD [3], and Lattice [4]. The device in 1341 employs other 
logic types in combination with the wide AND-OR gate. 

D. Sequential Logic 
Most of the logic blocks described above include some 

form of sequential logic. The Xilinx devices 122, 231 have 
two D flip-flops that can be programmably connected to 
the outputs of the two lookup tables. The Altera device 
1431 has one flip-flop per logic block. In the Act-1 device 
from Actel [ 151, the sequential logic is not explicitly present 
and so must be formed using programmable routing and 
the purely combinational logic blocks. In the Act-2 device 
[I], there are two alternating types of logic block: the C- 
module which is the purely combinational block described 
in Section 111-Cl), and the S-module which has similar 
combinational functionality to the C-module but includes 
a D flip-flop. 

The Plessey logic block 1331 also incorporates one D 
latch. It thus requires two blocks to make a master-slave 
flip-flop. The Algotronix logic block [2] forms sequential 
logic using feedback around the basic combinational logic 
module. 

E. EfSect of Logic Block Granularity on FPGA Density 
and Performance 

In recent years research efforts have been directed at 
determining choices for FPGA logic blocks that optimize 
density and performance 1351, 1361, [37l, [39l, 1241, [401, 
1201, 1261, [41]. In this section we briefly survey this 
research. For a more complete survey see [8]. The section 
is divided into two parts: the first deals with the effect of 
logic block granularity on FPGA density, while the second 
covers the effect of granularity on performance. 

I )  Effect of Granularify on Density As the granularity of 
a logic block increases, the number of blocks needed to 
implement a design should decrease. On the other hand 
a more functional (larger granularity) logic block requires 
more circuitry to implement it, and therefore occupies more 

-41 

Y‘ 
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u n u r d  i+f (b) 
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Three implementations o f f  = abd + bcd + ab?. Fig. 15. 

area. This tradeoff suggests the existence of an “optimal” 
logic block granularity for which the FPGA area devoted 
to logic implementation is minimized. While this argument 
for logic area is straightforward, the effect of granularity on 
routing area is not as simple, and has a significant impact 
on the overall FPGA routing area, as discussed below. 

As an example of the effect of block functionality on 
logic area, consider the implementation of the logic function 
f = abd + bcd + abc using logic blocks of three different 
granularities as illustrated in Fig. 15. The three logic blocks 
are a 2-input lookup table (denoted 2-LUT), a 3-LUT, and 
a 4-LUT. As shown, the 2-LUT implementation requires 
seven logic blocks, the 3-LUT needs three blocks, and the 
4-LUT only one. As an area measure, consider the number 
of memory bits required to implement this logic function 
using a K-LUT. Since each K-LUT requires 2” bits, the 
2-LUT implementation requires a total of 28 bit, the 3-LUT 
needs 24 bits and the 4-LUT needs just 16. Using this area 
measure the 4-LUT achieves the minimum logic area. 

To date, all research aimed at determining the logic block 
granularity that minimizes the overall area of an FPGA 
has been experimental. A variety of benchmark designs are 
mapped into FPGA’s with different logic block granularities 
and the total logic block area as well as routing area are 
determined for each mapping. Results are then averaged 
and compared. 

Figure 16 gives an example of such experimental results 
from 1361. It plots, for one benchmark design, both the 
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Fig. 17. Number of blocks and routing areahlock, for one design. 

number of K-LUT blocks needed to implement that design 
as well as the size of one K-LUT, versus K. These results 
assume the use of an SRAM programming technology and 
a 1.2 pm CMOS process. The number of logic blocks 
decreases rapidly as K increases, while the block size 
increases exponentially in K. The total logic block area (the 
product of the two curves) achieves a minimum at K=4. The 
total logic block area minimum exhibits a weak dependence 
on the size of the programmable switch as discussed in 
1361, WI. 

Active logic area is only part of the total area. The 
area for routing is usually larger than the active area, 
particularly in FPGA's, representing from 70 to 90% of the 
total area. Figure 17 plots the routing area per logic block 
and the number of logic blocks used versus K for the same 
benchmark design. While the number of wires decreases as 
K increases, experimental results show a contrary effect: as 
K increases the routing area per block increases, which is 
not only consistent with the results of other experimental 
studies [27], but also predicted by theoretical studies [14]. 
The total routing area, obtained by the product of the two 
curves in Fig. 17, again exhibits a minimum at K=4 as 
concluded in [36]. 

The total chip area needed for an FPGA is the sum of the 
logic block area plus the routing area. This can be simply 
calculated by multiplying the curves in Figs. 16 and 17 and 
summing them. The normalized and averaged results for 12 
benchmark designs are plotted in Fig. 18. 

As the figure shows, total normalized area is minimized 
for K=4. Figure 18 uses a programming technology size 
equivalent to a static RAM cell, but these results appear to 
be only weakly dependent on the size of the programmable 
switch [36]. These results also appear to be insensitive to 
the tools used for logic synthesis and layout. 

0 A  - 41 S ! m * * Z  

Normalized A::: ,:I 4, 
2 3 4 5 6 7  

1 

Number 01 Inputs. K 

Fig. 18. Average normalized total area versus K for a K-LUT. 

In [25], [26] Kouloheris and El Gama1 investigated 
granularity versus density for K-input M-output LUT's [25] 
and K-input M-output N-product term programmable logic 
arrays. For K-input M-output LUT's it was shown that: 

A 4-input 1-output lookup table yields the minimum 
total area of any K-input M-output lookup table logic 
block for a wide range of programming technologies 
and routing pitches. 
The best K for area is determined largely by the ratio 
of memory bit area to the fixed overhead area and 
exhibits little dependence on the switch area. 

For K-input M-output N-product term programmable 
logic array blocks it was shown that: 

A PLA with eight-10 inputs, three-four outputs, and 
12-13 product terms logic block gave the smallest 
overall FPGA area. 
Assuming the same programming technology, the over- 
all FPGA area using the best PLA logic block is com- 
parable to that using a four-input one-output lookup 
table. 

One other study has investigated another dimension of 
logic block architecture. Hill and Woo [20] observed that, 
as in the Xilinx 2000 and 3000 blocks, any K-LUT can 
be implemented by two (K-1)-LUT's connected by a two- 
to-one multiplexer, where the Kth input is the input to the 
multiplexer. If the outputs of the smaller LUT's are made 
accessible, then the entire block can be used as either two 
(K-I)-LUT's or one K-LUT. Hill and Woo investigate the 
benefits and drawbacks of this kind of flexibility. 

2) Effect of Granularity on Pe$ormance: The granularity 
of the logic block has a significant effect on the performance 
of an FPGA. For example, Fig. 19(a) gives the implemen- 
tation of the logic function f = abd + abc + acd 
using two-input NAND gate logic blocks. The longest 
path requires four levels of blocks. Figure 19(b) shows 
an implementation of the same function using three-input 
lookup tables requiring only two levels of blocks. Assuming 
a 1.2pm CMOS technology, a two-input NAND gate delay 
is estimated at 0.7ns while a three-input LUT delay is 
estimated at 1.4 ns. Clearly, for a nonzero routing delay 
between the blocks, the higher granularity of the 3-LUT 
will result in a faster implementation. 

The effect of logic block granularity on FPGA per- 
formance has also been studied using an experimental 
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Fig. 19. Two implementations of the same logic function. 

approach [24], [39], [40], and [41]. Figure 20 plots both 
the average number of logic block levels in the critical 
path and the logic block delay for an FPGA employing a K- 
LUT versus K. The curve was obtained by normalizing the 
results for each of 20 benchmarks of different complexities 
to the K=2 case and then averaging the normalized data 
over the benchmarks. This figure corroborates the tradeoff 
illustrated by the example in Fig. 19; as the logic block 
granularity increases, the number of levels of logic in the 
critical path decreases, while the delay of the logic block 
increases. 

The routing delay per stage is also an increasing function 
of K as illustrated in Fig. 21 for the following reasons: 
Firstly, the average fanout is increasing, and secondly, the 
number of switches loading each wire is increasing because 
there are more pins per logic block. Finally, the wires 
increase in length as the logic block grows in size. 

The tradeoff between the decrease in the number of 
levels of logic with increasing K and the increase in block 
and routing delay determines the granularity for “optimal” 
FPGA performance. Figure 22 is a plot of normalized 
critical path delay versus number of inputs to the lookup 
table. The figure gives several curves for different values of 
RC delay in the programmable switch, T,. If the RC delay 
is relatively small the best granularity is relatively small, 
around K=3 or 4. On the other hand, if the RC delay is 
larger the best granularity is larger, around 6 or 7. Figure 23 
plots the granularity which achieves the best performance 
as a function of the programmable switch time constant 
T, = RC. (See Table 1 for typical values of R and C for 
various programming technologies.) 

For more details on these results see [24], [41]. In 
addition, [41] investigates the delay properties of several 
other types of block, including NAND gates, multiplexers 
and wide AND-OR gates. 
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Fig. 21. Net delay versus I<, number of inputs to lookup table 
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Fig. 22. Critical path delay versus I<, number of inputs. 

IV. ROUTING ARCHITECTURE 
The routing architecture of an FPGA is the manner in 

which the programmable switches and wiring segments 
are positioned to allow the programmable interconnection 
of the logic blocks. In this section we survey several 
commercial routing architectures and present a summary of 
recent research results on the tradeoff between the flexibility 
of a routing architecture and FPGA routability and density. 
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Fig. 23. Best performance I< versus T, 

A. Survey of Commercial Routing Architectures 

Figure 24 illustrates a routing architecture model which 
we use to describe several commercial FPGA routing archi- 
tectures. Before proceeding, a few definitions are necessary. 

A wire segment is a wire unbroken by programmable 
switches. One or more switches may attach to the wire 
segment. Each end of a wire segment typically has a switch 
attached. 

A track is a sequence of one or more wire segments in 
a line. 

A routing channel is a group of parallel tracks, as 
illustrated in Figure 24. 

As shown in Fig. 24, the model contains two basic 
structures. The first is the connection block which appears in 
all architectures. A connection block provides connectivity 
from the inputs and outputs of a logic block to the wire 
segments in the channels. Although not shown in the figure, 
there can be connection blocks in the vertical direction as 
well as in the horizontal direction. The second structure 
is the switch block, which provides connectivity between 
the horizontal as well as vertical wire segments. In Fig. 
24, the switch block provides connectivity among the wire 
segments incident to its four sides. In some architectures, 
the switch block and connection block are intermingled, 
and in others they are combined into a single structure. 

The following four sections describe four commercial 
FPGA routing architectures beginning with the context of 
the general model of Fig. 24, then proceeding to more 
unique features. 

I )  The Xilinx Routing Architecture: Figure 25 illustrates 
the routing architecture used in the Xilinx 3000 series 
FPGA [21] [22]. Connections are made from the logic block 
into the channel through a connection block. Since each 
connection site is large because of the SRAM programming 
technology, the Xilinx 3000 connection block typically 
connects each pin to only two or three out of the five tracks 
passing by a block as the expanded figure in the upper left 
comer of Fig. 25 illustrates. On all four sides of the logic 
block there are connection blocks that connect a total of 
11 different logic block pins to the wire segments. The 
connections are implemented with pass transistors for the 
output pins and multiplexers for the input pins. The use 
of multiplexers reduces the number of SRAM cells needed 
per pin. 

Fig. 24. General FPGA routing architecture. 

Once the logic block pin is connected via the connec- 
tion block, the switch block makes connections between 
segments in intersecting horizontal and vertical channels. 
As the expanded picture in the lower right-hand comer 
shows, each wire segment can connect to a subset of the 
wire segments on opposing sides of the block. Each wire 
segment can typically connect to five or six out of a possible 
15 wire segments on the opposing sides. Again, this number 
is limited by the large size and capacitance of the SRAM 
programmable switches. 

There are four types of wire segments provided in the 
Xilinx 3000 architecture: 

General-purpose interconnect consisting of wire seg- 
ments that pass through switches in the switch block. 
Direct interconnect consisting of wire segments that 
connect each logic block output directly to four near- 
est neighbors as illustrated by the thick black lines 
emanating from the center block in Fig. 25. 
Long lines, which span the length or width of the 
chip, providing high-fanout uniform delay connections, 
indicated by the dashed lines in Fig. 25. 
A clock line, which is a single net that spans the entire 
chip and is driven by a high-drive buffer. This line is 
connected only to the clock inputs of the flip-flops, and 
provides for a low-skew clocking scheme. 

The Xilinx 4000 series architecture [23] is similar to 
the 3000 series, with the key architectural differences 
being that there are many more general purpose tracks per 
channel-1 8 versus five. Also, connectivity between the 
logic block pins and the tracks is much higher as each logic 
block pin connects to almost all of the tracks. Finally, four 
of the tracks pass through a switch only every second switch 
block. These double-length lines are depicted in Fig. 26. 
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Fig. 26. Xilinx 4000 segments of length 2. 

The advantage of longer wire segments is that the signal 
passes through less series resistance in travelling the same 
distance compared to wire segments of length one. In 
addition, since there are fewer switches and associated 
programming cells the FPGA logic density is superior. 

2) The Actel Routing Architecture: Figure 27 illustrates 
the general Actel routing architecture [ 151. The routing 
architecture is asymmetric because there are more 
uncommitted general purpose tracks in the horizontal 
direction than the vertical. While mask-programmed gate 
arrays and standard cell layout styles have always had 
this kind of directional bias, to our knowledge there is no 
definitive result that determines whether a biased approach 
is better or worse than an unbiased one. 

The connection block (or routing channel) of the Actel 
routing architecture is shown in the middle of Fig. 27. The 
connectivity is different for input pins and output pins. For 
input pins, each pin can connect to all of the tracks in the 
channel that are on the same side as the, pin. The output 
pins extend across two channels above the logic block and 

wiring segment 

ttttt--w---/ 
LE LB LB 

- an6-luse 

Clock back 

Fig. 27. Actel FPGA routing architecture. 

two channels below it. An output pin can connect to every 
track in all four channels that it crosses. 

There is no clearly separable switch block in the Actel 
architecture. Instead, the switching is distributed throughout 
the horizontal channels. Depending on the direction of the 
connection, different degrees of connectivity are available. 
All vertical tracks can make a connection with every 
incident horizontal track. Note that this provides a great 
deal more connectivity than the switch block in the Xilinx 
architectures. This flexibility allows the routing of the 
horizontal channels to be performed independently, because 
for a given route that travels through two channels, the 
choice of a track in one channel has no effect on the number 
of choices available in another channel. By contrast, in the 
Xilinx approach, the choice of a particular track in one 
channel severely limits the choice of tracks in subsequent 
channels. This flexibility simplifies the routing problem. 
The drawback is that more switches are needed which 
contribute extra capacitive loading. 

Each horizontal channel consists of 22 routing tracks, and 
each track is broken up into segments of different lengths. 
Segments vary in length from two logic blocks long (allow- 
ing connections between just two blocks) to segments that 
are equal in length to the entire track. This wide distribution 
of segment lengths makes it  likely that a segment of the 
exact or close length of any given connection can be found, 
so that very few series programmable switches are needed 
in any intra-channel connection. 

As mentioned above, there are fewer uncommitted ver- 
tical segments than horizontal segments. There are three 
types of vertical segments. In addition to the input segments 
and output segments already described, there are uncom- 
mitted vertical freeways that either travel the entire height 
of the chip, or some significant portion of it. There is one 
freeway per logic block. This allows signals to travel longer 
vertical distances than permitted by the output segments. 

The routing architecture of the Crosspoint FPGA [31] is 
similar to that of Actel. The Quicklogic architecture [6], 
which also uses antifuses, is again similar except that the 
segments are of two classes: short tracks of length one, and 
long tracks that traverse the entire chip. 

3) The Altera Routing Architecture: The routing architec- 
ture of the Altera FPGA is illustrated in Figs. 28 and 29 This 
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Fig. 28. Altera MAX SO00 global routing architecture. 
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architecture is novel in that it has a two-level hierarchy. 
This is an important feature because most designs exhibit 
some form of locality which a hierarchical organization may 
be able to utilize to obtain better density and performance. 
At the first level of the hierarchy, 16 or 32 of the logic 
blocks are grouped into a Logic Array Block, or LAB. The 
inner details of the LAB are illustrated in Figure 29, and 
it can be seen that the structure of the LAB is very similar 
to a traditional PLD [28]. Each ‘x’ in the figure indicates 
a point where a connection can be made. As described 
in Section 2.3, the connection is formed using EPROM- 
like floating-gate transistors. Here the channel is a set of 
dedicated vertical tracks that run the entire length of the 
LAB. The tracks are dedicated to one of four types of 
connections: 

1) Connections from the outputs of all logic blocks in 
this LAB. 

2) Connections from the logic expanders, described in 
Section IIILC4). 

3) Connections from outputs of logic blocks in other 
LAB’s. These connections come from the global 
interconnect structure at the next level of hierarchy, 
called the PIA, and are described below. 

4) Connections from the I/O pads of the chip. 
All four types of tracks pass by every logic block in the 

LAB. In the connection block every such track can connect 
into every logic block pin. This makes the routing very 
simple, since any input can directly connect to any track. 

Altera MAX SO00 local routing architecture. 

!!! - z 

Fig. 30. Plessey routing architecture. 
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Fig. 31. Percent routing completion versus F,, one circuit. 

Using fewer connection points results in better density and 
performance, but yields a more complex routing problem. 
The intra-LAB routing structure could be considered a 
segmented channel, where the segments are all as long 
as possible. Recall that connections also perform wire- 
ANDing, and so the transistors in effect have two purposes. 

Referring again to Fig. 28, connections are made among 
different LABS using a global interconnect structure called 
the Programmable Interconnect Array (PIA). It connects 
outputs from each LAB to inputs of other LAB’s, and acts 
as one large switch block. Its internal structure is similar 
to that of the internal routing scheme within the LAB-a 
large number of vertical tracks (180 in the EPM 5128 
device) are connected to the logic block outputs. There is 
full connectivity among the logic block outputs and LAB 
inputs within the PIA. Again, the advantage of this scheme 
is that it makes the routing problem very easy, and the 
regularity of the physical design of the silicon allows it 
to be packed tightly and efficiently. The disadvantage is 
that many switches are needed, and these may add more 
capacitive load than necessary. 

A second advantage of this approach is that the delay 
through the PIA is the same regardless of which track is 
used since all tracks have identical loading. This is very 
helpful when attempting to predict system performance. 
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The price, however, may be circuits that are much slower 
than is possible with segmented tracks. 

The routing architecture of AMD [3] and Plus Logic [34] 
are similar to that of Altera. 

4 )  The Plessey Routing Architecture: The routing archi- 
tecture of the Plessey FPGA is illustrated in Fig. 30. There 
are two alternating types of logic block. The Master block 
is indicated by an “M,” and the Slave block is indicated 
by an “S.” Also, the rows of logic blocks alternate in their 
direction of flow. Programmable routing is achieved using 
only a multiplexer as a connection block on the inputs of 
the two-input NAND gate as described in Section 111-B2). 
The multiplexers are controlled by SRAM cells. Each input 
of the NAND gate comes from a four-to-one multiplexer. 
In Fig. 30, the connections for one logic block are shown, 
and indicate the basic pattern of connectivity. The inputs 
to each multiplexer are connected to: 

1) The output of the previous NAND gate in the row. 
2) The output of the NAND gate above or below this 

3) A vertical long track. 
4) One of the following three connections depending on 

logic block, whichever is closer. 

which NAND input the multiplexer drives: 

the connection block, Fc, to be the number of tracks in 
the adjacent channel to which each logic block pin can 
connect. The flexibility of the switch block, F,, as depicted 
in Fig. 24, is defined as the number of tracks to which 
each track entering the switch block can connect. Both of 
these definitions assume that all wires or pins has the same 
degree of connectivity. 

The research in [38], [7] uses an experimental approach 
similar to the logic block experiments described in Section 
3.5. Several benchmark designs are “implemented” using 
routing architectures with different flexibilities. For each 
benchmark the following was determined: 1) the percentage 
of connections successfully routed with a fixed number of 
tracks per channel and 2) the number of tracks per channel 
required to achieve 100% routing completion, assuming that 
every channel has the same number of tracks. 

Figure 31 plots results of the first type for one benchmark 
design. The Y-axis is the percentage of connections that 
were successfully completed with a connection block of 
flexibility F, as indicated on the X-axis, and a switch block 
of flexibility F, varying from 2 to 10 across the nine curves. 
These data lead to two conclusions that are consistent across 
all benchmark designs considered. These are: 

1) The connection block requires flexibility F, greater 
than half the tracks for 100% routing completion to 
be possible. 

2) The switch block requires little flexibility to achieve 
100% routing completion. This is because a flexibility 
of F, = 3 easily achieves completion and the 

A horizontal long track (the upper input). 
The NAND gate output two blocks previous to 
the current one (lower input of Master block). 
The output of the block diagonally away from 
the current one (lower input of Slave block). 

Although not shown, the other logic blocks are con- 
nected similarly. 

There are three vertical long tracks per column of logic 
blocks, and two horizontal long tracks per row. There are 
two types of long tracks in each direction: short range tracks 
which travel 10 blocks, and long range tracks which travel 
the width or length of the entire chip. 

While this type of nearest-neighbour routing architecture 
works well for circuits with primarily local connections, 
there. is an insufficient number of longer horizontal and ver- 
tical routing tracks for typical circuits with more non-local 
connections. For this reason the logic blocks themselves 
must be used for routing which can be costly in area and 
performance. 

The routing architectures of Algotronix [ 2 ] ,  Concurrent 
Logic [ 131, and Toshiba [32] exhibit a similar mix of many 
local and few long range connections. 

B. Routing Architecture Tradeoffs 
In this section we summarize several recent results con- 

cerning FPGA routing architecture. The work in [37], [38], 
[7] [8] considers the relationship between the flexibility 
of FPGA routing architecture and both the routability and 
area-efficiency. A basic tradeoff is as follows: using a 
large number of programmable switches makes it easier 
to achieve routing completion, but these switches con- 
sume area, and therefore it is desirable to minimize the 
number used. The work in [38] defines the flexibility of 

maximum value of F, is 36 if there are 12 tracks 
in a channel. These results make intuitive sense, as 
explained in [38]. 

As flexibility increases, the number of tracks needed to 
obtain 100% routing completion decreases. Table 2 gives 
the average, over five circuits, of the number of tracks 
in excess of channel density needed to successfully route 
architectures with different values of E, and 5. The table 
illustrates the diminishing returns, in terms of track count, 
of increasing the flexibility of the routing architecture. 

Table 3 gives the average number of switches per logic 
block for the data in Table 2. This data shows that there 
is a point where the higher flexibility of the switch and 
connection blocks would cost more than the reduction in 
tracks, in terms of total number of programmable switches. 
By inspection of the table, the best architecture, in terms 
of total number of programmable switches, appears to be 
with a value of F, between three and four, and the fraction 
% (where W is the number of tracks per channel) between 
0.7 and 0.8 [38], [SI. 

Asymptotic Results on Channel Segmentation In [16], El 
Gama1 et al. give asymptotic results on the number of ex- 
cess tracks (above channel density) needed to successfully 
route a segmented routing channel of the type used in the 
Actel FPGA. Another paper in this special section contains 
more details on this work. 

In this paper various architectural and programming 
technology features of commercial FPGA’s have been 

1026 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993 



Table 2 Average Number of Switches per Logic Block Tile for Each Routing Architecture 
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Table 3 Average Excess Tracks for Each Routing Architecture 

surveyed. The logic block architectures have been classified 
by granularity and the routing architectures have been de- 
scribed in terms of connectivity, symmetry, and hierarchy. 
The effects of logic block choice and routing architecture 
on FPGA density and performance. 

v. SUMMARY AND FUTURE DIRECTIONS 
In the future, we expect to see an even greater pro- 

liferation of architectural innovations as well as research 
that answers basic questions about FPGA architecture. We 
expect these to include: 

Development of “special-purpose” FPGA’s tuned to- 
ward specific applications such as datapath circuits, 
DSP applications, finite state machines, and FPGA- 
based compute engines [5 ] .  
The development of multi-chip field-programmable 
systems for emulation, acceleration and rapid proto- 

Development of nonhomogeneous logic block archi- 
tectures. These hold the promise of providing better 
aredperformance tradeoffs, because larger granular- 
ity blocks achieve better performance while smaller 
granularity blocks achieve higher density. 
Segmented routing architectures provide important per- 
formance and density advantages over nonsegmented 
architectures (those with only one or two lengths 

typing (e.g. [51). 

of segment). New insight is needed in determining 
segment length distribution. 
It is possible that the success of the FPGA in the digital 
world may be reproduced in the analog domain, with a 
field-programmable analog array (FPAA).  Such work 
has already begun with the chip presented in [29] [30]. 

In addition, computer-aided design tools for FPGA’s will 
become more sophisticated, enabling the development of 
architectural features aimed at improving performance and 
density. 
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