
Architecture of Field-Programmable
Gate Arrays
JONATHAN ROSE, MEMBER, IEEE, ABBAS EL GAMAL, SENIOR MEMBER, IEEE, AND
ALBERT0 SANGIOVANNI-VINCENTELLI, FELLOW, IEEE

Invited Paper

A survey of Field-Programmable Gate Array (FPGA) architec-
tures and the programming technologies used to customize them is
presented. Programming technologies are compared on the basis of
their vola fility, size, parasitic capacitance, resistance, and process
technology complexity. FPGA architectures are divided into two
constituents: logic block architectures and routing architectures.
A classijcation of logic blocks based on their granularity is
proposed and several logic blocks used in commercially available
FPGA ’s are described. A brief review of recent results on the effect
of logic block granularity on logic density and pe$ormance of an
FPGA is then presented. Several commercial routing architectures
are described in the contest of a general routing architecture
model. Finally, recent results on the tradeoff between the fleibility
of an FPGA routing architecture its routability and density are
reviewed.

I. INTRODUCTION
The architecture of a field-programmable gate array

(FPGA), as illustrated in Fig. 1, is similar to that of
a mask-programmable gate array (MPGA), consisting of
an array of logic blocks that can be programmably
interconnected to realize different designs. The major
difference between FPGA’s and MPGA’s is that an MPGA
is programmed using integrated circuit fabrication to form
metal interconnections, while an FPGA is programmed
via electrically programmable switches much the same as
traditional programmable logic devices (PLD’s). FPGA’s
can achieve much higher levels of integration than PLD’s,
however, due to their more complex routing architectures
and logic implementations. PLD routing architectures are
very simple but highly ineffiecient crossbar-like structures
in which every output is directly connectable to every

Manuscript received October 1, 1992. The work by The second author
was partially supported under contract J-FBI-89-101.

J. Rose i s with the Department of Electrical Engineering, University of
Toronto, 10 King’s College Road, Toronto, Ontario M5S IA4, Canada.

A. El Gama1 is with the Depratment of Electrical Engineering, Stanford
University, Stanford, CA 94305.

A. Sangiovanni-Vincentelli i s with the Department of Electrical Engi-
neering and Computer Science, University of California, Berkeley, CA
94720.

IEEE Log Number 9210745.

Fig. 1. FPGA architecture

input through one switch. FPGA routing architectures
provide a more efficient MPGA-like routing where each
connection typically passes through several switches. In a
PDL, logic is implemented using predominantly two-level
AND-OR logic with wide input AND gates. In an FPGA
logic is implemented using multiple levels of lower fanin
gates, which is often much more compact than two-level
implementations.

An FPGA logic block can be as simple as a transistor or
as complex as a microprocessor. It is typically capapble of
implementing many different combinational and sequential
logic functions. Current commercial FPGA’s employ logic
blocks that are based on one or more of the following:

Transistor pairs.
Basic small gates such as two-input NAND’s or
exclusive-OR’ s.
Multiplexers.

0018-9219/93$03.00 0 1993 IEEE

PROCEEDINGS OF THE IEEE. VOL 81. NO 7 . JULY 1993

I 1- -

1013

Look-up tables (LUT’s).
Wide-fanin AND-OR structures.

The routing architecture of an FPGA could be as simple
as a nearest neighbor mesh [9] or as complex as the perfect
shuffle used in multiprocessors [42]. More typically, an
FPGA routing architecture incorporates wire segments of
varying lengths which can be interconnected via electrically
programmable switches. The choice of the number of wire
segments incorporated affects the density achieved by an
FPGA. If an inadequate number of segments is used, only a
small fraction of the logic blocks can be utilized, resulting
in poor FPGA density; conversely the use of an excess
number of segments that go unused also wastes area.

The distribution of the lengths of the wire segments
also greatly affects the density and performance achieved
by an FPGA. For example, if all segments are chosen to
be long, implementing local interconnections becomes too
costly in area and delay. On the other hand if all segments
are short, long interconnections are implemented using too
many switches in series, resulting in unacceptably large
delays.

Several different programming technologies are used to
implement the programmable switches. There are three
types of such programmable switch technologies currently
in use. These are:

SRAM, where the switch is a pass transistor controlled
by the state of a SRAM bit,
Antifuse, whci, when electrically programmed, forms
a low resistance path, and
EPROM, where the switch is a floating-gate transistor
that can be turned off by injecting charge onto their
floating gate.

In all cases, a programmable switch occupies larger
area and exhibits much higher parasitic resistance and
capacitance than a typical contact or via used in the
customization of an MPGA. Additional area is also required
for programming circuitry. As a result the density and
performance achievable by today’s FPGA’s are an order
of magnitude lower than that for MPGA’s manufactured in
the same technology.

The adverse effects of the large size and relatively high
parasitics of programmable switches can be reduced by
careful architectural choices. By choosing the appropriate
granularity and functionality of the logic block, and by
designing the routing architecture to achieve a high degree
of routability while minimizing the number of switches,
both density and performance can be optimized. The best
architectural choices, however, are highly dependent on the
programming technology used as well as on the type of
designs implemented, so that no one architecture is likely
to be best suited for all programming technologies and for
all designs.

The complexity of FPGA’s has surpassed the point where
manual design is either desirable or feasible. Consequently,
the utility of an FPGA architecture is highly dependent
on effective automated logic and layout synthesis tools to
support it. A complex logic block may be underutilized

without an effective logic synthesis tool, and the overall
utilization of an FPGA may be low without an effective
placement and routing tool.

Commercial P G A ’ s differ in the type of programming
technology used, in the architecture of the logic block
and in the structure of their routing architecture. In this
paper we survey the architectures of commercially available
FPGA’s and discuss the dependence of FPGA density
and performance on these factors. The paper is organized
as follows: Section I1 describes the most widely used
programming technologies. Section 111 presents a survey
of commercial FPGA logic block architectures, classified
by their granularity. This includes a summary of recent
research results concerning the effect of granularity on over-
all FPGA density and performance. Section IV describes
several commercial routing architectures in the context of a
general routing architecture model, and summarizes recent
research results in this area. Section V concludes with a
discussion of potential future architectural directions for
FPGA’s.

11. PROGRAMMING TECHNOLOGIES
An FPGA is programmed using electrically pro-

grammable switches. The properties of these programmable
switches, such as size, on-resistance, and capacitance,
dictate many of the tradeoffs in FPGA architecture. In this
section we describe the most commonly used programmable
switch technologies and at the end will contrast each
technology with respect to volatility, re-programmability,
size, series on-resistance, parasitic capacitance, and process
technology complexity.

A. SRAM Programming Technology
The SRAM programming technology uses Static RAM

cells to control pass gates or multiplexers as illustrated in
Fig. 2. It is used in the devices from Xilinx [23], Plessey
[33] Algotronix, [2], Concurrent Logic [13] and Toshiba
Wl.

When a one is stored in the SRAM cell in Fig. 2(a),
the pass gate acts as a closed switch, and can be used to
make a connection between two wire segments. When a
zero is stored, the switch is open and the transistor presents
a high resistance between the two wire segments. For the
multiplexer, the state of the SRAM cells connected to the
select lines controls which one of the multiplexer inputs are
connected to the output, as shown in Fig. 2(b).

Since SRAM is volatile, the FPGA must be loaded and
configured at the time of chip power-up. This requires
external permanent memory to provide the programming
bits such as PROM, EPROM, EEPROM or magnetic disk.

A major disadvantage of SRAM programming technol-
ogy is its large area. It takes at least five transistors to
implement an SRAM cell, plus at least one transistor
to serve as a programmable switch. However, SRAM
programming technology has two major advantages; fast
re-programmability and that it requires only standard inte-
grated circuitprocess technology.

1014 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

I h PassGate

t
(b)

Fig. 2. Static RAM programming technology.

word

B. Antifuse Programming Technology
An antifuse is a two terminal device with an un-

programmed state presenting a very high resistance between
its terminals. When a high voltage (from 11 to 20 volts,
depending on the type of antifuse) is applied across its
terminals the antifuse will “blow” and create a low-
resistance link. This link is permanent. Antifuses in use
today are built either using an Oxygen-Nitrogen-Oxygen
(ONO) dielectric between N+ diffusion and poly-silicon
[191, [151, [11 or amorphous silicon between metal layers
[6] or between polysilicon and the first layer of metal [31].

Programming an antifuse requires extra circuitry to de-
liver the high programming voltage and a relatively high
current of 5 mA or more. This is done in [15] through
fairly sizable pass transistors to provide addressing to each
antifuse. An associated paper in this issue discusses the
programming of antifuse structures in more detail [18].
Antifuse technology is used in the FPGA’s from Actel [151
[I], Quicklogic [6], and Crosspoint [31].

A major advantage of the antifuse is its small size,
little more than the cross-section of two metal wires. This
advantage is somewhat reduced by the large size of the
necessary programming transistors, which must be able
to handle large currents, and the inclusion of isolation
transistors that are sometimes needed to protect low voltage
transistors from high programming voltages. A second
major advantage of an antifuse is its relatively low series
resistance. The on-resistance of the ONO antifuse is 300 to
500 ohms [191, while the amorphous silicon antifuse is 50 to
100 ohms [6] [3 11. Additionally, the parasitic capacitance
of an unprogrammed amorphous antifuse is significantly
lower than for other programming technologies.

C. Floating Gate Programming Technology
The floating gate programming technology uses technol-

ogy found in ultraviolet erasable EPROM and electrically
erasable EEPROM devices. The EPROM-based approach
is used in devices from Altera [43] and Plus Logic [34].

The programmable switch, illustrated in Fig. 3, is a
transistor that can be permanently “disabled.” This is ac-
complished by injecting a charge on the floating gate (gate
2 in the figure) using a high voltage between the control
gate 1 and the drain of the transistor. This charge increases

t

Fig. 3. Floating gate programming technology

the threshold voltage of the transistor so that it turns off.
The charge is removed by exposing the floating gate to UV
light. This lowers the threshold voltage of the transistor and
makes the transistor function normally.

Rather than using an EPROM transistor directly as a
programmable switch, the unprogrammed transistor is used
to pull down a “bit line” when the “word line” is set high,
as illustrated in Fig. 3. While this approach can be simply
used to make a connection between the word and bit lines,
it can also be used to implement a wired-AND style of
logic, thereby providing both logic and routing.

As with the SRAM programming technology, a
major advantage of the EPROM technology is its re-
programmability. An advantage over SRAM, though, is
that no external permanent memory is needed to program
the chip on power-up. EPROM technology, however,
requires three additional processing steps over an ordinary
CMOS process. Two other disadvantages are the high ON-
resistance of an EPROM transistor (about twice that of a
similarly sized NMOS pass transistor) and the high static
power consumption due to the pull-up resistor used (see
Fig. 3).

The EEPROM-based programming technology is used in
the devices from AMD [3] and Lattice [4]. It is similar
to the EPROM approach, except that removal of the gate
charge can be done electrically, in-circuit, without UV light.
This gives the added advantage of easy reprogrammability,
which can be very helpful in some applications such as
hardware updates to equipment in remote locations. An
EEPROM cell, however, is roughly twice the size of an
EPROM cell.

E. Summary of Programming Technologies
Table 1 lists the properties of each programming technol-

ogy. All data assumes a 1.2 p m CMOS process technology.
The first column gives the name of the technology. Note
that there is separate information for the two different
types of antifuse. The second column indicates if the
configuration is lost when power is removed from the

ROSE er al.: ARCHITECTURE OF GATE ARRAYS 1015

I I - . -

~

Table 1 Comparison of Programming Technologies

300-500

50-100

2 - 4 k

Technolugy Voletlle?

and Process

n u Trsnslato

I2 pm CMOS

Anti-fuae
I2 pm CMOS

5fF 3

1.1-1.3fF 3

10-201F 3

Amorphous

Antl-fuse
I2 pm CMOS

EPROM

12pm CMOS

EEPROM

12 pm CMOS

leProg7

Yes
in

Circuit

No

No

No

No

No

Yes
olnd

arcuk

Yes
in

circuit

Area

Large

Fuse small (via)

Pmg. Tran. Large

Fuse small (via)

Prog. Tran. Large

Small
in array

2x EPROM 10-2OfF 1 >5

device. The third column indicates if the technology permits
reprogramming. The fourth column provides the relative
size of the programmable switch. The fifth column gives
the series resistance of an “on” switch, and the sixth
column gives the parasitic capacitance of an “off’ switch,
not including any capacitance due to associated wiring
or programming transistors. For reference, the capacitance
of a 10 pm length of minimum-width wire in a 1.2 pm
CMOS process is about 0.6 fF. The seventh column gives
the number of additional processing steps required beyond
standard CMOS.

111. LOGIC BLOCKARCHITECTURE
In this section we survey the commercial FPGA logic

block architectures in use today. In the first section we
discuss the combinational logic portion of the logic block.
A discussion of the sequential logic portion is deferred to
Section 111-D. In Section 111-E, we present several recent
research results on the effect of the choice of the logic
block on the density and performance of an FPGA.

A. Survey of Commercial Logic Block Architectures
FPGA logic blocks differ greatly in their size and imple-

mentation capability. The two transistor logic block used
in the Crosspoint FPGA can only implement an inverter
but is very small in size, while the look-up table logic
block used in the Xilinx 3000 series FPGA can implement
any five-input logic function but is significantly larger. To
capture these differences we classify logic blocks by their
granularity. Granularity can be defined in various ways,
for example, as the number of boolean, functions that the
logic block can implement, the number of equivalent two-

(b)

Fig. 4.
plementation.

Example logic function and two-input NAND gate im-

input NAND gates, the total number of transistors, total
normalized area, or the number of inputs and outputs. The
matter is further confused because in some architectures,
such as the Altera FPGA [43] or the AMD FPGA [3], the
logic and routing are tightly intertwined and it is difficult
to separate their contributions to the architecture. For these
reasons, we choose to classify the commercial logic blocks
into just two categories: $ne-grain and coarse-grain.

For all the logic blocks described below, we show how
to implement the logic function f = ab + T , as illustrated
in Fig. 4(a). Note that this is equivalent to the two-input
NAND gate implementation given in Fig. 4(b).

B. Fine-Grain Logic Blocks
Fine-grain logic blocks closely resemble MPGA basic

cells. The most fine grain logic block would be identical to a
basic cell of an MPGA and would consist of few transistors
that can be programmably interconnected.

1016 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

Transistor Pair

Fig. 5. Transistor pair tiles in cross-point FPGA.

I
I
I
I
I
I
I

a C

Transistors T ~ ~ - I ~ ~ ~ ~
Turned Off
for Isolation

NAND
TWO-Input

NAND

Fig. 6. Programmed cross-point FPGA for logic function
f = a b + ?.

1) The Crosspoint FPGA: The FPGA from Crosspoint
Solutions [3 11 uses a single transistor pair in the logic block,
as illustrated in Fig. 5.

Figure 6 illustrates how the function of Fig. 4(b) is
implemented with the transistor pair tiles of the cross-point
FPGA. Since the transistors are connected together in rows,
the two two-input NAND gates are isolated by turning off
the pair of transistors between the gates.

In addition to the transistor pair tiles, the cross-point
FPGA has a second type of logic block, called a RAM
logic tile, that is tuned for the implementation of random
access memory, but can also be used to build random
logic functions in a manner similar to the Actel and The
Quicklogic logic blocks described below.

2) The Plessey FPGA: A second example of a fine-grain
FPGA architecture is the FPGA from Plessey [33]. Here
the basic block is a two-input NAND gate as illustrated in
Fig. 7. Logic is formed in the usual way by connecting the
NAND gates to implement the desired function. The logic
function f = ab + C illustrated in Fig. 4(a) is implemented
exactly as shown in Fig. 4(b). If the latch in Fig. 7 is not
needed, then the configuration store is set to make the latch
permanently transparent.

Several other commercial FPGA's employ fine grain
blocks. Algotronix [2] uses a two-input function block
which can perform any function of two inputs. This is
implemented using a configurable set of multiplexers. The
logic block of Concurrent Logic's FPGA [13] contains a
two-input AND gate and a two-input EXCLUSIVE-OR
gate. The FPGA recently discussed by Toshiba in [32] also
uses a two-input NAND gate.

The main advantage of using fine grain logic blocks is
that the useable blocks' are fully utilized. This is because

' In all FPGA's, as well as in all MPGA's, only a fraction of the logic
blocks available can be utilized in any design.

Fig. 7. The Plessey logic block.

f
it is easier to use small logic gates efficiently and the logic
synthesis techniques for such blocks are very similar to
those for conventional mask-programmed gate arrays and
standard cells.

The main disadvantage of fine-grain blocks is that they
require a relatively large number of wire segments and
programmable switches. Such routing resources are costly
in delay and area. As a result, FPGA's employing fine-grain
blocks are in general slower and achieve lower densities
than those employing coarse grain blocks. See Section 111-A
for results supporting this claim.

C. Coarse-Grain Logic Blocks
1) The Actel Logic Block: The Actel logic block [151, [11

is based on the ability of a multiplexer to implement
different logic functions by connecting each of its inputs
to a constant or to a signal [46]. For example, consider
a two-to-one multiplexer with selector input s, inputs a
and b and output f = sa + sb. By setting signal b to
logic 0, the multiplexer can implement the AND function
f = sa. Setting signal a to logic 1 provides the OR function
f = s + b. By connecting together a number of multiplexers
and basic logic gates, a logic block can be constructed
which can implement a large number of functions in this
manner.

The Actel Act-1 logic block [I51 is illustrated in Fig.
8(a). It consists of three multiplexers and one logic gate,
has a total of 8 inputs and one output, and implements the
function

f = (s3 +s4) (STW + S I X) + (s3 + sq)(S;jy + s2z) .

By setting each variable to an input signal, or to a
constant, 702 logic functions can be realized. For example,
the logic function f = ab + E is realized by setting
the variables as shown in Figure 8b: w = 1, x = 1, SI =
0, y = 0. z = a. s2 = b, s3 = c, and sq = 0.

The Act-2 logic block [I] is similar to Act-1, except that
the separate multiplexers on the first row are joined and
connected to a two-input AND gate, as shown in Fig. 9.
The Act-2 combinational logic module can implement 766
functions.

2) Quicklogic Logic Block: The logic block in the FPGA
from QuickLogic [6] is similar to the Actel logic blocks in
that it employs a four to one multiplexer. Each input of the

ROSE ef d' ARCHITECTURE OF GATE ARRAYS I O 1 7

I 03 04
02

(a)

b
(b)

The Actel Act-1 logic block. Fig. 8.

X

81
P2

Y

2

- f

a3 a4

Fig. 9. The Actel Act-2 logic block.

multiplexer (not just the select inputs) is fed by an AND
gate, as illustrated in Fig. 10. Note that alternating inputs
to the AND gates are inverted. This allows input signals to
be passed in true or complement form, thus eliminating the
need to use extra logic blocks to perform simple inversions.

Multiplexer-based logic blocks have the advantage of
providing a large degree of functionality for a relatively
small number of transistors. This is, however, achieved
at the expense of a large number of inputs (eight in the
case of Actel and 14 in the case of QuickLogic), which
when utilized place high demands on the routing resources.
Such blocks are, therefore, more suited to FPGA’s that use

m i%& Ca M El

Ez
F1 4 -1 I

Fig. 10. The Quicklogic logic block.

0 1 1

(a)

Fig. 11. Lookup table-based logic.

programmable switches of small size such as antifuses.
3) The Xilinr Logic Block: The basis for the Xilinx logic

block is an SRAM functioning as a look-up table (LUT).
The truth table for a K-input logic function is stored in a
2K x 1 SRAM. The address lines of the SRAM function
as inputs and the output of the SRAM provides the value
of the logic function. For example, consider the truth table
of the logic function f = ab + given in Fig. ll(a). If
this logic function is implemented using a three-input LUT,
then the SRAM would have a 1 stored at address 000, a 0
at 001 and so on, as specified by the truth table.

The advantage of look-up tables is that they exhibit
high functionality-a K-input LUT can implement any
function of K inputs and there are 2 2 K such functions. The
disadvantage is that they are unacceptably large for more
than about five inputs, since the number of memory cells
needed for a K-input lookup table is 2”. While the number
of functions that can be implemented increases very fast,
these additional functions are not commonly used in logic
designs and are also difficult to exploit for a logic synthesis
tool. Hence it is often the case that a large LUT will be
largely underutilized.

The Xilinx 3000 series logic block [21] [2a] contains a
five-input one-output LUT, as illustrated in Fig. 12. This
block can be reconfigured into two four-input LUTs, with

1018 PROCEEDINGS OF THE IEEE, VOL. 81. NO. 7 , JULY 1993

Dap, In

X
A

Fig. 12. The Xilinx 3000 logic block

Cl cz w U
I l l 1

w
G3
02

G1

a2

G

F4

F3 ai

Fl

uocll

Fig. 13 The Xilinx 4000 logic block.

the constraint that together they use a total of no more
than five distinct inputs. This reconfigurability provides
flexibility that translates into better logic block utilization
because many common logic functions do not require as
many as five inputs. The block also contains sequential
logic and several multiplexers that connect the combina-
tional inputs and outputs to the flip-flops or outputs. These
multiplexers are controlled by the SRAM cells that are
loaded at programming time.

The Xilinx 4000 series logic block [23] contains two
four-input LUT’s feeding into a three-input LUT as il-
lustrated in Fig. 13. In this block, all of the inputs are
distinct and available external to the logic block. This block
introduces two significant architectural changes from the
3000 series block. First, two differently sized LUT’s are
used: a four input LUT and a three input LUT, giving the
complete block a heterogenous flavor. In general, hetero-
geneity allows for a better tradeoff between performance
and logic density.

The second architectural change in the Xilinx 4000 logic
block is the use of two nonprogrammable connections from
the two four-input LUT’s to the three-input LUT. These
connections are significantly faster than any programmable
interconnection since no programmable switches are used
in series, and little is present in parallel. If proper use can
be made of these fast connections FPGA performance can
be greatly improved. There is a penalty for this type of
connection, however; since the connection is permanent,
the inflexibility means that the three-input LUT may often
go unused, reducing the overall logic density.

I I+
abc

(b)

Fig. 14. The Altera 5000 Series logic block.

The Xilinx 4000 block incorporates several additional
features. Each LUT can be used directly as an SRAM block.
This allows small amounts of memory to be more efficiently
implemented. Another feature is the inclusion of circuitry
that can be used to implement fast carry addition circuits.

4) The Altera Logic Block: The architecture of the Altera
FPGA [43] has evolved from the PLA-based architecture
of traditional PLDs [28] with its logic block consisting of
wide fanin (20 to over 100 inputs) AND gates feeding into
an OR gate with three to eight inputs. Figure 14a illustrates
the Altera MAX 5000 series logic block. Using the floating
gate transistor-based programmable switch presented in
Section 11-C, any vertical wire passing by an AND gate
can be connected as an input to the gate. The three product
terms are then OR’s together and can be programmably
inverted by an exclusive OR gate, which can also be used
to implement other arithmetic functions. Notice that each
input signal is provided in both true and complement form,
with two separate wires. This programmable inversion
significantly increases the functional capability of the block.

Figure 14(b) illustrates the implementation of the logic
function f = ab + C. The x’s in the figure indicate the
wired-AND connections described in Section II-C.

The advantage of this type of block is that the wide
AND gate can be used to form logic functions with few
levels of logic blocks, reducing the need for programmable
interconnect. It is difficult, however, to make efficient use
of all of the inputs to all of the gates, resulting in loss of
density. This loss is not as severe as it first appears because
of the high packing density of the wired-AND gates, as well
as the fact that logic connections also serve as the routing
function. In other architectures where logic and routing are
separate such unused inputs would incur a high penalty.

A disadvantage of the wired-AND configuration is the
use of pull-up devices that consume static power. An array
full of these pull-ups will consume significant amount of
power. To mitigate this, each gate in the MAX 7000 series

ROSE et al.: ARCHITECTURE OF GATE ARRAYS 1019

block can be programmed to consume about 60% less
power but at the expense of about 40% increase in delay
[44]. This feature can be used in noncritical paths to reduce
power consumption.

In addition to the wide AND-OR logic block, the MAX
5000 employs one other type of logic block, called a logic
expander. This is a wide-input NAND gate whose output
can be connected to the AND-OR logic block. While a
logic expander incurs the same delay as the logic block, it
takes up less area and can be used to increase its effective
number of product terms.

The Altera MAX 7000 logic block 1441 is similar to
the MAX 5000 except that it provides two more product
terms and has more flexibility because neighboring blocks
can “borrow” product terms from each other. This is
accomplished using a small routing structure between the
AND and OR gates called the product term select matrix.

Several other FPGA’s use the wide AND-OR style of
logic block, including those produced by Plus Logic 1341,
AMD [3], and Lattice [4]. The device in 1341 employs other
logic types in combination with the wide AND-OR gate.

D. Sequential Logic
Most of the logic blocks described above include some

form of sequential logic. The Xilinx devices 122, 231 have
two D flip-flops that can be programmably connected to
the outputs of the two lookup tables. The Altera device
1431 has one flip-flop per logic block. In the Act-1 device
from Actel [151, the sequential logic is not explicitly present
and so must be formed using programmable routing and
the purely combinational logic blocks. In the Act-2 device
[I], there are two alternating types of logic block: the C-
module which is the purely combinational block described
in Section 111-Cl), and the S-module which has similar
combinational functionality to the C-module but includes
a D flip-flop.

The Plessey logic block 1331 also incorporates one D
latch. It thus requires two blocks to make a master-slave
flip-flop. The Algotronix logic block [2] forms sequential
logic using feedback around the basic combinational logic
module.

E. EfSect of Logic Block Granularity on FPGA Density
and Performance

In recent years research efforts have been directed at
determining choices for FPGA logic blocks that optimize
density and performance 1351, 1361, [37l, [39l, 1241, [401,
1201, 1261, [41]. In this section we briefly survey this
research. For a more complete survey see [8]. The section
is divided into two parts: the first deals with the effect of
logic block granularity on FPGA density, while the second
covers the effect of granularity on performance.

I) Effect of Granularify on Density As the granularity of
a logic block increases, the number of blocks needed to
implement a design should decrease. On the other hand
a more functional (larger granularity) logic block requires
more circuitry to implement it, and therefore occupies more

-41

Y‘
(a)

u n u r d i+f (b)

!a‘
(C)

Three implementations o f f = abd + bcd + ab?. Fig. 15.

area. This tradeoff suggests the existence of an “optimal”
logic block granularity for which the FPGA area devoted
to logic implementation is minimized. While this argument
for logic area is straightforward, the effect of granularity on
routing area is not as simple, and has a significant impact
on the overall FPGA routing area, as discussed below.

As an example of the effect of block functionality on
logic area, consider the implementation of the logic function
f = abd + bcd + abc using logic blocks of three different
granularities as illustrated in Fig. 15. The three logic blocks
are a 2-input lookup table (denoted 2-LUT), a 3-LUT, and
a 4-LUT. As shown, the 2-LUT implementation requires
seven logic blocks, the 3-LUT needs three blocks, and the
4-LUT only one. As an area measure, consider the number
of memory bits required to implement this logic function
using a K-LUT. Since each K-LUT requires 2” bits, the
2-LUT implementation requires a total of 28 bit, the 3-LUT
needs 24 bits and the 4-LUT needs just 16. Using this area
measure the 4-LUT achieves the minimum logic area.

To date, all research aimed at determining the logic block
granularity that minimizes the overall area of an FPGA
has been experimental. A variety of benchmark designs are
mapped into FPGA’s with different logic block granularities
and the total logic block area as well as routing area are
determined for each mapping. Results are then averaged
and compared.

Figure 16 gives an example of such experimental results
from 1361. It plots, for one benchmark design, both the

1020 PROCEEDINGS OF THE IEEE, VOL. 81. NO. 7, JULY 1993

2.5 1

Number Blocks of

Number of jq 30 Block pm':? Area

500 10

2 3 4 5 6 7

Number of Inputs, K

Blocks 6oo x10 3

- *Blocks - 300
A Route AreaE3lwY

Route Area
200 PerBlock ::[A ' A ' - x pm"2 10-3

Fig. 16. Number of blocks and block area, for one circuit.

500i A L t loo
I I

2 3 4 5 6 7

Number of Inputs, K

Fig. 17. Number of blocks and routing areahlock, for one design.

number of K-LUT blocks needed to implement that design
as well as the size of one K-LUT, versus K. These results
assume the use of an SRAM programming technology and
a 1.2 pm CMOS process. The number of logic blocks
decreases rapidly as K increases, while the block size
increases exponentially in K. The total logic block area (the
product of the two curves) achieves a minimum at K=4. The
total logic block area minimum exhibits a weak dependence
on the size of the programmable switch as discussed in
1361, WI.

Active logic area is only part of the total area. The
area for routing is usually larger than the active area,
particularly in FPGA's, representing from 70 to 90% of the
total area. Figure 17 plots the routing area per logic block
and the number of logic blocks used versus K for the same
benchmark design. While the number of wires decreases as
K increases, experimental results show a contrary effect: as
K increases the routing area per block increases, which is
not only consistent with the results of other experimental
studies [27], but also predicted by theoretical studies [14].
The total routing area, obtained by the product of the two
curves in Fig. 17, again exhibits a minimum at K=4 as
concluded in [36].

The total chip area needed for an FPGA is the sum of the
logic block area plus the routing area. This can be simply
calculated by multiplying the curves in Figs. 16 and 17 and
summing them. The normalized and averaged results for 12
benchmark designs are plotted in Fig. 18.

As the figure shows, total normalized area is minimized
for K=4. Figure 18 uses a programming technology size
equivalent to a static RAM cell, but these results appear to
be only weakly dependent on the size of the programmable
switch [36]. These results also appear to be insensitive to
the tools used for logic synthesis and layout.

0 A - 41 S ! m * * Z

Normalized A::: ,:I 4,
2 3 4 5 6 7

1

Number 01 Inputs. K

Fig. 18. Average normalized total area versus K for a K-LUT.

In [25], [26] Kouloheris and El Gama1 investigated
granularity versus density for K-input M-output LUT's [25]
and K-input M-output N-product term programmable logic
arrays. For K-input M-output LUT's it was shown that:

A 4-input 1-output lookup table yields the minimum
total area of any K-input M-output lookup table logic
block for a wide range of programming technologies
and routing pitches.
The best K for area is determined largely by the ratio
of memory bit area to the fixed overhead area and
exhibits little dependence on the switch area.

For K-input M-output N-product term programmable
logic array blocks it was shown that:

A PLA with eight-10 inputs, three-four outputs, and
12-13 product terms logic block gave the smallest
overall FPGA area.
Assuming the same programming technology, the over-
all FPGA area using the best PLA logic block is com-
parable to that using a four-input one-output lookup
table.

One other study has investigated another dimension of
logic block architecture. Hill and Woo [20] observed that,
as in the Xilinx 2000 and 3000 blocks, any K-LUT can
be implemented by two (K-1)-LUT's connected by a two-
to-one multiplexer, where the Kth input is the input to the
multiplexer. If the outputs of the smaller LUT's are made
accessible, then the entire block can be used as either two
(K-I)-LUT's or one K-LUT. Hill and Woo investigate the
benefits and drawbacks of this kind of flexibility.

2) Effect of Granularity on Pe$ormance: The granularity
of the logic block has a significant effect on the performance
of an FPGA. For example, Fig. 19(a) gives the implemen-
tation of the logic function f = abd + abc + acd
using two-input NAND gate logic blocks. The longest
path requires four levels of blocks. Figure 19(b) shows
an implementation of the same function using three-input
lookup tables requiring only two levels of blocks. Assuming
a 1.2pm CMOS technology, a two-input NAND gate delay
is estimated at 0.7ns while a three-input LUT delay is
estimated at 1.4 ns. Clearly, for a nonzero routing delay
between the blocks, the higher granularity of the 3-LUT
will result in a faster implementation.

The effect of logic block granularity on FPGA per-
formance has also been studied using an experimental

ROSE c'f d.: ARCHITECTURE OF GATE ARRAYS 1021

(b)

Fig. 19. Two implementations of the same logic function.

approach [24], [39], [40], and [41]. Figure 20 plots both
the average number of logic block levels in the critical
path and the logic block delay for an FPGA employing a K-
LUT versus K. The curve was obtained by normalizing the
results for each of 20 benchmarks of different complexities
to the K=2 case and then averaging the normalized data
over the benchmarks. This figure corroborates the tradeoff
illustrated by the example in Fig. 19; as the logic block
granularity increases, the number of levels of logic in the
critical path decreases, while the delay of the logic block
increases.

The routing delay per stage is also an increasing function
of K as illustrated in Fig. 21 for the following reasons:
Firstly, the average fanout is increasing, and secondly, the
number of switches loading each wire is increasing because
there are more pins per logic block. Finally, the wires
increase in length as the logic block grows in size.

The tradeoff between the decrease in the number of
levels of logic with increasing K and the increase in block
and routing delay determines the granularity for “optimal”
FPGA performance. Figure 22 is a plot of normalized
critical path delay versus number of inputs to the lookup
table. The figure gives several curves for different values of
RC delay in the programmable switch, T,. If the RC delay
is relatively small the best granularity is relatively small,
around K=3 or 4. On the other hand, if the RC delay is
larger the best granularity is larger, around 6 or 7. Figure 23
plots the granularity which achieves the best performance
as a function of the programmable switch time constant
T, = RC. (See Table 1 for typical values of R and C for
various programming technologies.)

For more details on these results see [24], [41]. In
addition, [41] investigates the delay properties of several
other types of block, including NAND gates, multiplexers
and wide AND-OR gates.

o.2 t 1“‘
01 lo

2 3 4 5 6 7 8 9 10

Number d B 1 d lnpuu. K

Fig. 20.
for I<-LUT’s.

Average number of logic block levels and block delay

I-------

0

Number of lnpuU

Fig. 21. Net delay versus I<, number of inputs to lookup table

o.2 t
01 I
2 3 4 5 6 1 8 9 10

Nmber Of I n p m

Fig. 22. Critical path delay versus I<, number of inputs.

IV. ROUTING ARCHITECTURE
The routing architecture of an FPGA is the manner in

which the programmable switches and wiring segments
are positioned to allow the programmable interconnection
of the logic blocks. In this section we survey several
commercial routing architectures and present a summary of
recent research results on the tradeoff between the flexibility
of a routing architecture and FPGA routability and density.

1022

I 1

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7. JULY 1993

....

Fig. 23. Best performance I< versus T,

A. Survey of Commercial Routing Architectures

Figure 24 illustrates a routing architecture model which
we use to describe several commercial FPGA routing archi-
tectures. Before proceeding, a few definitions are necessary.

A wire segment is a wire unbroken by programmable
switches. One or more switches may attach to the wire
segment. Each end of a wire segment typically has a switch
attached.

A track is a sequence of one or more wire segments in
a line.

A routing channel is a group of parallel tracks, as
illustrated in Figure 24.

As shown in Fig. 24, the model contains two basic
structures. The first is the connection block which appears in
all architectures. A connection block provides connectivity
from the inputs and outputs of a logic block to the wire
segments in the channels. Although not shown in the figure,
there can be connection blocks in the vertical direction as
well as in the horizontal direction. The second structure
is the switch block, which provides connectivity between
the horizontal as well as vertical wire segments. In Fig.
24, the switch block provides connectivity among the wire
segments incident to its four sides. In some architectures,
the switch block and connection block are intermingled,
and in others they are combined into a single structure.

The following four sections describe four commercial
FPGA routing architectures beginning with the context of
the general model of Fig. 24, then proceeding to more
unique features.

I) The Xilinx Routing Architecture: Figure 25 illustrates
the routing architecture used in the Xilinx 3000 series
FPGA [21] [22]. Connections are made from the logic block
into the channel through a connection block. Since each
connection site is large because of the SRAM programming
technology, the Xilinx 3000 connection block typically
connects each pin to only two or three out of the five tracks
passing by a block as the expanded figure in the upper left
comer of Fig. 25 illustrates. On all four sides of the logic
block there are connection blocks that connect a total of
11 different logic block pins to the wire segments. The
connections are implemented with pass transistors for the
output pins and multiplexers for the input pins. The use
of multiplexers reduces the number of SRAM cells needed
per pin.

Fig. 24. General FPGA routing architecture.

Once the logic block pin is connected via the connec-
tion block, the switch block makes connections between
segments in intersecting horizontal and vertical channels.
As the expanded picture in the lower right-hand comer
shows, each wire segment can connect to a subset of the
wire segments on opposing sides of the block. Each wire
segment can typically connect to five or six out of a possible
15 wire segments on the opposing sides. Again, this number
is limited by the large size and capacitance of the SRAM
programmable switches.

There are four types of wire segments provided in the
Xilinx 3000 architecture:

General-purpose interconnect consisting of wire seg-
ments that pass through switches in the switch block.
Direct interconnect consisting of wire segments that
connect each logic block output directly to four near-
est neighbors as illustrated by the thick black lines
emanating from the center block in Fig. 25.
Long lines, which span the length or width of the
chip, providing high-fanout uniform delay connections,
indicated by the dashed lines in Fig. 25.
A clock line, which is a single net that spans the entire
chip and is driven by a high-drive buffer. This line is
connected only to the clock inputs of the flip-flops, and
provides for a low-skew clocking scheme.

The Xilinx 4000 series architecture [23] is similar to
the 3000 series, with the key architectural differences
being that there are many more general purpose tracks per
channel-1 8 versus five. Also, connectivity between the
logic block pins and the tracks is much higher as each logic
block pin connects to almost all of the tracks. Finally, four
of the tracks pass through a switch only every second switch
block. These double-length lines are depicted in Fig. 26.

ROSE er al.: ARCHITECTURE OF GATE ARRAYS 1023

hpn segment Ouput segmmt

Ver6cal Tradc

LE

Fig. 25. Xilinx 3000 routing architecture.

LE LB E LB

(Sib-bnglh Linet
ammtrham)

Fig. 26. Xilinx 4000 segments of length 2.

The advantage of longer wire segments is that the signal
passes through less series resistance in travelling the same
distance compared to wire segments of length one. In
addition, since there are fewer switches and associated
programming cells the FPGA logic density is superior.

2) The Actel Routing Architecture: Figure 27 illustrates
the general Actel routing architecture [151. The routing
architecture is asymmetric because there are more
uncommitted general purpose tracks in the horizontal
direction than the vertical. While mask-programmed gate
arrays and standard cell layout styles have always had
this kind of directional bias, to our knowledge there is no
definitive result that determines whether a biased approach
is better or worse than an unbiased one.

The connection block (or routing channel) of the Actel
routing architecture is shown in the middle of Fig. 27. The
connectivity is different for input pins and output pins. For
input pins, each pin can connect to all of the tracks in the
channel that are on the same side as the, pin. The output
pins extend across two channels above the logic block and

wiring segment

ttttt--w---/
LE LB LB

- an6-luse

Clock back

Fig. 27. Actel FPGA routing architecture.

two channels below it. An output pin can connect to every
track in all four channels that it crosses.

There is no clearly separable switch block in the Actel
architecture. Instead, the switching is distributed throughout
the horizontal channels. Depending on the direction of the
connection, different degrees of connectivity are available.
All vertical tracks can make a connection with every
incident horizontal track. Note that this provides a great
deal more connectivity than the switch block in the Xilinx
architectures. This flexibility allows the routing of the
horizontal channels to be performed independently, because
for a given route that travels through two channels, the
choice of a track in one channel has no effect on the number
of choices available in another channel. By contrast, in the
Xilinx approach, the choice of a particular track in one
channel severely limits the choice of tracks in subsequent
channels. This flexibility simplifies the routing problem.
The drawback is that more switches are needed which
contribute extra capacitive loading.

Each horizontal channel consists of 22 routing tracks, and
each track is broken up into segments of different lengths.
Segments vary in length from two logic blocks long (allow-
ing connections between just two blocks) to segments that
are equal in length to the entire track. This wide distribution
of segment lengths makes it likely that a segment of the
exact or close length of any given connection can be found,
so that very few series programmable switches are needed
in any intra-channel connection.

As mentioned above, there are fewer uncommitted ver-
tical segments than horizontal segments. There are three
types of vertical segments. In addition to the input segments
and output segments already described, there are uncom-
mitted vertical freeways that either travel the entire height
of the chip, or some significant portion of it. There is one
freeway per logic block. This allows signals to travel longer
vertical distances than permitted by the output segments.

The routing architecture of the Crosspoint FPGA [31] is
similar to that of Actel. The Quicklogic architecture [6],
which also uses antifuses, is again similar except that the
segments are of two classes: short tracks of length one, and
long tracks that traverse the entire chip.

3) The Altera Routing Architecture: The routing architec-
ture of the Altera FPGA is illustrated in Figs. 28 and 29 This

1024

T I -
PROCEEDINGS OF THE IEEE, VOL. 81. NO. 7, JULY 1993

.

Lou1 Bru: Global Bw:
LAB PIA LAB

LAB LAB

Fig. 28. Altera MAX SO00 global routing architecture.

Local InWmnneCt B L ~ Logic Bb&

Fig. 29.

architecture is novel in that it has a two-level hierarchy.
This is an important feature because most designs exhibit
some form of locality which a hierarchical organization may
be able to utilize to obtain better density and performance.
At the first level of the hierarchy, 16 or 32 of the logic
blocks are grouped into a Logic Array Block, or LAB. The
inner details of the LAB are illustrated in Figure 29, and
it can be seen that the structure of the LAB is very similar
to a traditional PLD [28]. Each ‘x’ in the figure indicates
a point where a connection can be made. As described
in Section 2.3, the connection is formed using EPROM-
like floating-gate transistors. Here the channel is a set of
dedicated vertical tracks that run the entire length of the
LAB. The tracks are dedicated to one of four types of
connections:

1) Connections from the outputs of all logic blocks in
this LAB.

2) Connections from the logic expanders, described in
Section IIILC4).

3) Connections from outputs of logic blocks in other
LAB’s. These connections come from the global
interconnect structure at the next level of hierarchy,
called the PIA, and are described below.

4) Connections from the I/O pads of the chip.
All four types of tracks pass by every logic block in the

LAB. In the connection block every such track can connect
into every logic block pin. This makes the routing very
simple, since any input can directly connect to any track.

Altera MAX SO00 local routing architecture.

!!! - z

Fig. 30. Plessey routing architecture.

S Complete

30.00 1
20.00 1 , ,

5.00 10.00

R=10 F~-~ii-’
______- -
Fs = E
F s = 7
F s = 6
F s = 5
R = 4
F s = 3
F s = 2

- - - -

- - -

Fc

Fig. 31. Percent routing completion versus F,, one circuit.

Using fewer connection points results in better density and
performance, but yields a more complex routing problem.
The intra-LAB routing structure could be considered a
segmented channel, where the segments are all as long
as possible. Recall that connections also perform wire-
ANDing, and so the transistors in effect have two purposes.

Referring again to Fig. 28, connections are made among
different LABS using a global interconnect structure called
the Programmable Interconnect Array (PIA). It connects
outputs from each LAB to inputs of other LAB’s, and acts
as one large switch block. Its internal structure is similar
to that of the internal routing scheme within the LAB-a
large number of vertical tracks (180 in the EPM 5128
device) are connected to the logic block outputs. There is
full connectivity among the logic block outputs and LAB
inputs within the PIA. Again, the advantage of this scheme
is that it makes the routing problem very easy, and the
regularity of the physical design of the silicon allows it
to be packed tightly and efficiently. The disadvantage is
that many switches are needed, and these may add more
capacitive load than necessary.

A second advantage of this approach is that the delay
through the PIA is the same regardless of which track is
used since all tracks have identical loading. This is very
helpful when attempting to predict system performance.

ROSE er nl.: ARCHITECTURE OF GATE ARRAYS 1025

The price, however, may be circuits that are much slower
than is possible with segmented tracks.

The routing architecture of AMD [3] and Plus Logic [34]
are similar to that of Altera.

4) The Plessey Routing Architecture: The routing archi-
tecture of the Plessey FPGA is illustrated in Fig. 30. There
are two alternating types of logic block. The Master block
is indicated by an “M,” and the Slave block is indicated
by an “S.” Also, the rows of logic blocks alternate in their
direction of flow. Programmable routing is achieved using
only a multiplexer as a connection block on the inputs of
the two-input NAND gate as described in Section 111-B2).
The multiplexers are controlled by SRAM cells. Each input
of the NAND gate comes from a four-to-one multiplexer.
In Fig. 30, the connections for one logic block are shown,
and indicate the basic pattern of connectivity. The inputs
to each multiplexer are connected to:

1) The output of the previous NAND gate in the row.
2) The output of the NAND gate above or below this

3) A vertical long track.
4) One of the following three connections depending on

logic block, whichever is closer.

which NAND input the multiplexer drives:

the connection block, Fc, to be the number of tracks in
the adjacent channel to which each logic block pin can
connect. The flexibility of the switch block, F,, as depicted
in Fig. 24, is defined as the number of tracks to which
each track entering the switch block can connect. Both of
these definitions assume that all wires or pins has the same
degree of connectivity.

The research in [38], [7] uses an experimental approach
similar to the logic block experiments described in Section
3.5. Several benchmark designs are “implemented” using
routing architectures with different flexibilities. For each
benchmark the following was determined: 1) the percentage
of connections successfully routed with a fixed number of
tracks per channel and 2) the number of tracks per channel
required to achieve 100% routing completion, assuming that
every channel has the same number of tracks.

Figure 31 plots results of the first type for one benchmark
design. The Y-axis is the percentage of connections that
were successfully completed with a connection block of
flexibility F, as indicated on the X-axis, and a switch block
of flexibility F, varying from 2 to 10 across the nine curves.
These data lead to two conclusions that are consistent across
all benchmark designs considered. These are:

1) The connection block requires flexibility F, greater
than half the tracks for 100% routing completion to
be possible.

2) The switch block requires little flexibility to achieve
100% routing completion. This is because a flexibility
of F, = 3 easily achieves completion and the

A horizontal long track (the upper input).
The NAND gate output two blocks previous to
the current one (lower input of Master block).
The output of the block diagonally away from
the current one (lower input of Slave block).

Although not shown, the other logic blocks are con-
nected similarly.

There are three vertical long tracks per column of logic
blocks, and two horizontal long tracks per row. There are
two types of long tracks in each direction: short range tracks
which travel 10 blocks, and long range tracks which travel
the width or length of the entire chip.

While this type of nearest-neighbour routing architecture
works well for circuits with primarily local connections,
there. is an insufficient number of longer horizontal and ver-
tical routing tracks for typical circuits with more non-local
connections. For this reason the logic blocks themselves
must be used for routing which can be costly in area and
performance.

The routing architectures of Algotronix [2] , Concurrent
Logic [131, and Toshiba [32] exhibit a similar mix of many
local and few long range connections.

B. Routing Architecture Tradeoffs
In this section we summarize several recent results con-

cerning FPGA routing architecture. The work in [37], [38],
[7] [8] considers the relationship between the flexibility
of FPGA routing architecture and both the routability and
area-efficiency. A basic tradeoff is as follows: using a
large number of programmable switches makes it easier
to achieve routing completion, but these switches con-
sume area, and therefore it is desirable to minimize the
number used. The work in [38] defines the flexibility of

maximum value of F, is 36 if there are 12 tracks
in a channel. These results make intuitive sense, as
explained in [38].

As flexibility increases, the number of tracks needed to
obtain 100% routing completion decreases. Table 2 gives
the average, over five circuits, of the number of tracks
in excess of channel density needed to successfully route
architectures with different values of E, and 5. The table
illustrates the diminishing returns, in terms of track count,
of increasing the flexibility of the routing architecture.

Table 3 gives the average number of switches per logic
block for the data in Table 2. This data shows that there
is a point where the higher flexibility of the switch and
connection blocks would cost more than the reduction in
tracks, in terms of total number of programmable switches.
By inspection of the table, the best architecture, in terms
of total number of programmable switches, appears to be
with a value of F, between three and four, and the fraction
% (where W is the number of tracks per channel) between
0.7 and 0.8 [38], [SI.

Asymptotic Results on Channel Segmentation In [16], El
Gama1 et al. give asymptotic results on the number of ex-
cess tracks (above channel density) needed to successfully
route a segmented routing channel of the type used in the
Actel FPGA. Another paper in this special section contains
more details on this work.

In this paper various architectural and programming
technology features of commercial FPGA’s have been

1026 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

Table 2 Average Number of Switches per Logic Block Tile for Each Routing Architecture

0.6
nr
4.6
3.0
2.4
1.8

3 N N N
4 N nr 6.2
5 N N 4.2
6 N 7.6 3.8
7 N 5.2 3.4
8 N 4.4 1.4
9 10.0 4.2 1.0
10 8.0 3.2 1.4

0.7 0.8 0.9
nr 11.2 10.8
2.4 1.2 0.8
1.6 0.6 0.6
1.0 0.4 0.2
0.8 0.4 0.4

1.4 I 0.2 I 0.2 I 0.2 qyy-g
0.6 0.2

1 .o
9.0
0.8
0.6

- -
-
-

0.2
0.4
0.2
0.2
0.0
0.0

-
-
-

Table 3 Average Excess Tracks for Each Routing Architecture

surveyed. The logic block architectures have been classified
by granularity and the routing architectures have been de-
scribed in terms of connectivity, symmetry, and hierarchy.
The effects of logic block choice and routing architecture
on FPGA density and performance.

v. SUMMARY AND FUTURE DIRECTIONS
In the future, we expect to see an even greater pro-

liferation of architectural innovations as well as research
that answers basic questions about FPGA architecture. We
expect these to include:

Development of “special-purpose” FPGA’s tuned to-
ward specific applications such as datapath circuits,
DSP applications, finite state machines, and FPGA-
based compute engines [5] .
The development of multi-chip field-programmable
systems for emulation, acceleration and rapid proto-

Development of nonhomogeneous logic block archi-
tectures. These hold the promise of providing better
aredperformance tradeoffs, because larger granular-
ity blocks achieve better performance while smaller
granularity blocks achieve higher density.
Segmented routing architectures provide important per-
formance and density advantages over nonsegmented
architectures (those with only one or two lengths

typing (e.g. [51).

of segment). New insight is needed in determining
segment length distribution.
It is possible that the success of the FPGA in the digital
world may be reproduced in the analog domain, with a
field-programmable analog array (FPAA). Such work
has already begun with the chip presented in [29] [30].

In addition, computer-aided design tools for FPGA’s will
become more sophisticated, enabling the development of
architectural features aimed at improving performance and
density.

ACKNOWLEDGMENT
The second author would like to thank Dana How and

Jack Kouloheris for their useful comments on earlier drafts
of this paper.

REFERENCES
[I] M. Ahrens, et. al., “An FPGA family optimized for high

densities and reduced routing delay,” in Proc. 1990 CICC, M
pp. 31.5.1-31.5.4, May 1990.

[2] CAL 1024 Datasheet, Algotronix Ltd. Edinburgh, Scotland,
1989.

[3] Mach Devices High Density EE Programmable Logic Data
Book. AMD, 1990.

[4] S. Baker, “Lattice fields FPGA,” Elect. Eng. Times, no. 645,
page 1 , June 10, 1991.

[5] P. Bertin, D. Roncin, and J . Vuillemin, “Programmable active
memories: Performance measurements,” in ACM First Inter-

ROSE er a/ ARCHITECTURE OF GATE ARRAYS

I I -

1027

national Workshop on Field-Programmable Gate Arrays, pp.
57-59, Feb. 1992.

[6] J. Birkner, A. Chan, H. T. Chua, A. Chao, K. Gordon, B.
Kleinman, P. Kolze, and R. Wong, “A very high-speed field
programmable gate array using metal-to-metal anti-fuse pro-
grammable elements,” in New Hardware Product Introduction
at CICC ’91.

[7] S. Brown, “Routing architectures and algorithms for field-
programmable gate arrays,” Ph.D. Thesis, Dept. of Electrical
Engineering University of Toronto, February 1992.

[8] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-
Programmable Gate Arrays, Kluwer Academic Publishers,
1992.

[9] W. Carter et. al., “A user programmable reconfigurable gate
array,” Proc. 1986 CICC, pp. 233-235, May 1986.

[lo] D. Chen, J. Rabaey, “A Reconfigurable Multiprocessor IC for
Rapid Prototyping of Real-Time Data Paths,” in Proc. ISSCC
92,, pp. 74-57, Feb. 1992.

[l l] K. Chung, S. Singh, J. Rose, P. Chow, “Using hierarchical
logic blocks to improve the speed of field-programmable gate
arrays,” in FPGAs, W. Moore and W. Luk Eds., Abingdon
1991. edited from the Oxford 1991 International Workshop on
Field Programmable Logic and Applications.

[12] K. Chung and J. Rose, “TEMPT: Technology mapping for ex-
ploration of FPGA architectures with hard-wired connections,”
in Proc. 29th Design Automation Conf, June 1992, Anaheim,

[131 Concurrent Logic CFA6006 Field-Programmable Gate Array
Dura Sheet, Sunnyvale, CA, 1991.

[14] A. El Gamal, “Two-dimensional stochastic model for inter-
connections in master slice integrated circuits,” IEEE Trans.
Circuits Systems, vol. CAS-28, no. 2, pp. 127-138, February
1981.

[15] A. El Gamal, et al., “An architecture for electrically config-
urable gate arrays,” IEEE JSSC, vol. 124, No. 2, pp. 394-398,
Apr. 1989.

[161 A. El Gamal, J. Greene, and V. Roychowdhury, “Segmented
channel routing is nearly as efficient as channel routing (and just
as hard),” in Advanced Research in VLSI, University Califomia,
Santa Cruz, March 25-27, 1991.

[17] J. Greene, et al, “Segmented channel routing,” in Proc. 27th
Design Automation Conf., pp. 567-572, June 1990.

[18] J. Greene, “Antifuse field programmable gate array,” Proc.
IEEE, vol. 81, no. 7, July 1993..

[19] E. Hamdy, J. McCollum, S. Chen, S. Chiang, S. Eltoukhy, J.
Chang, T. Speers, and A. Mohsen, “Dielectric based antifuse
for logic and memory ics,” Int. Electron Devices Meeting Tech.
Digest, pp. 786-789, 1988.

[20] D. Hill and N . 3 . Woo, “The benefits of flexibility in look-
up table FPGAs,” in FPGAs, W. Moore and W. Luk, Eds.,
Abingdon 1991, edited from the Oxford 1991 In?. Workshop on
Field Programmable Logic and Applications, pp. 127-136.

1211 H. Hsieh, et al., “A second generation user programmable gate
array,” in Proc. 1987 CICC, pp. 515-521, May 1987.

[22] H. Hsieh, et al, “A 9000-gate user-programmable gate array,”
in Proc. 1988 CICC, pp. 15.3.1-15.3.7, May 1988.

[23] H. Hsieh, et al., “Third-generation architecture boosts speed
and density of field-programmable gate arrays,” in Proc. 1990
CICC, pp. 31.2.1-31.2.7, May 1990.

1241 J. Kouloheris and A. El Gamal, “FPGA performance vs. cell
granularity,” in Custom Integrated Circuits Conf. 91, CICC, pp.
61.2.1-6.2.4, May 191.

[25] J. Kouloheris and A. El Gamal, “FPGA area versus cell granu-
larity - lookup tables and PLA cells,” in FPGA 92, ACM First
Int. Workshop on Field-Programmable Gate Arrays, pp. 9-14,
Feb. 1992.

[26] J. Kouloheris and A. El Gamal, “FPGa area versus cell gran-
ularity - PLA cells,” in Custom Integrated Circuits Conference
92, CICC, May 1992.

1271 J. Kouloheris, private communication.
[28] P. K. LaIa, Digital System Design Using Programmable Logic

Devices. Prentice Hall, 1990.
[291 E. Lee, “Field-programmable analog arrays - a cmos real-

ization,” M.A.Sc. thesis, Univ. of Toronto, Toronto, Ontario,
Canada.

[30] E. Lee and P. G. Gulak, “A CMOS field-programmable analog
array,”lEEEJSSC, vol. 26, no. 12, pp. 1860-1867, Dec. 1991.

1311 D. Marple and L. Cooke, “An MPGA compatible FPGA ar-

CA, pp. 361-367.

chitecture,” in FPGA 92, ACM First In?. Workshop on Field-
Programmable Gate Arrays, pp. 3 9 4 4 , Feb. 1992.

[32] H. Muroga, H. Murata, Y. Saeki, T. Hibi, Y. Ohashi, T.
Noguchi, and T. Nishimura, “A large scale FPGA with 10K
core cells with CMOS 0.8 pm 3-layered metal process,” Custom
Integrated Circuits Con6 ’91, CICC, pp. 6.4.1-6.4.4, May 1991.

[33] Plessey Semiconductor ERA60100 preliminary data sheet,
Swindon, England, 1989.

1341 Plus Logic FPGA2040 Field-Programmable Gate Array Data
Sheet, Plus Logic, San Jose, CA, 1989.

[35] J. S. Rose, R. J. Francis, P. Chow and D. Lewis, “The effect of
logic block complexity on area of programmable gate arrays,”
in Proc. 1989 Custom Integrated Circuits Conf., pp. 5.3.1-5.3.5,
May 1989.

[36] J. S. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture
of field-programmable gate arrays: The effect of logic block
functionality on area efficiency,” IEEE JSSC, Vol. 25, No. 5,

1371 J. S. Rose and S. Brown, “The effect of switch box flexibility
on routability of field programmable gate arrays,” in Proc. 1990
Custom Integrated Circuits Conf, pp. 27.5.1-27.5.4, May 1990.

[38] J. S. Rose and S. Brown, “Flexibility of Interconnection Struc-
tures for Field-Programmable Gate Arrays,” IEEE JSSC, Vol.

1391 S. Singh, J. S. Rose, D. Lewis, K. Chung, and P. Chow,
“Optimization of Field-Programmable Gate Array Logic Block
Architecture for Speed,” in Custom Integrated Circuits Confer-
ence 91, CICC, pp. 6.1.1-6.1.6, May 1991.

[40] S. Singh, “The effect of logic block architecture on the speed of
field-programmable gate arrays,” M.A.Sc. Thesis, Department
of Electrical Engineering, University of Toronto, August 1991.

[41] S. Singh, J. Rose, D. Lewis, and P. Chow, “The effect of logic
block architecture on FPGA performance,” IEEE JSSC, vol. 27,
no. 3, pp. 281-287, Mar. 1992.

[42] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE
Trans. Comput., vol. C-20, pp. 153-161, 1971.

[43] S. C. Wong, H. C. So, J. H. Ou, and J. Costello, “A 5000-gate
CMOS EPLD with multiple logic and interconnect arrays,” in
Proc. I989 CICC, pp. 5.8.1-5.8.4, May 1989.

[44] S. Vij, B. Ahanim, “A high density, high speed, array-
based erasable programmable logic device with programmable
speedlpower optimization,” in ACM First Int. Workshop on
Field-Programmable Gate Arrays, pp. 29-32, Feb. 1992.

1451 Jean-Michel Vuillamy, “Performance enhancement in field-
programmable gate arrays,” M.A.Sc. Thesis, Department of
Electrical Engineering, University of Toronto, April 1991.

[461 S. Yau and C. Tang, “Universal logic modules and their appli-
cation,” IEEE Trans. Comput., Vol. C-19, pp. 141-149.

pp. 1217-1225, Oct. 1990.

26, NO. 3, pp. 277-282, March 1991.

Jonathan Rose (Member. IEEE) received the
B.A.Sc. degree in engineering science in 1980,
and the M.A.Sc. and the Ph.D. degree in electri-
cal engineering, in 1982 and 1986, respectively,
from the University of Toronto.

During the summer of 1983, he was with
Bell-Northem Research Ltd., Ottawa. in the In-
tegrated Cicuits CAD/CAM group. From 1986
to 1989, he was a Research Associate in the
Computer Systems Laboratory at Stanford Uni-
versitv. In 1989. he ioined the facultv of the , ”

University of Toronto, where he is currently an Assistant Professor of
electrical engineering. He has served as General and Program Cochair for
the 1992 ACM First International Workshop on Field Programmable Gate
Arrays, and on the program committees of the Oxford Field-Programmable
Logic workshop in 1991 and the Vienna Field-Programmable Logic
Workshop in 1992, as well as the program committees for ICCD ’92
and ICCAD ’92. In 1990, a paper coauthored with Stephen Brown on
detailed routing for FF’GA’s received a distinguished paper citation at the
ICCAD conference. His research interests include CAD and architecture
for Field-Programmable Gate Arrays, automatic layout, and parallel CAD
algorithms.

Abbas El Gamal (Senior Member, IEEE), for photograph and biogra-
phy please see the Prolog to the Special Section in this issue of the
PROCEEDINGS.

I 028 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

Albert0 Sangiovanni-Vincentilli (Fellow, IEEE)
received the Dr. of Eng:degree from Polytech-
nico di Milano, Italy, in 1971.

He is currently a Professor of electrical engi-
neering and computer science at the University
of California at Berkeley, where he has been
on the Faculty since 1976. He was a Visiting
Scientist at the IBM T.J. Watson Research
Center in 1980, Consultant in residence at Harris
in 1981, and Visiting Professor at MIT in 1987.
He has held a number of visitine urofessor

Y I

positions at the University of Torino, University of Bologna, University of
Pavia, University of Pisa, and University of Rome. He is a member of the
Berkeley Roundtable for Intemational Economy (BRIE). He is a Corporate
Fellow at Harris and Thinking Machines, has been a Director of ViewLogic
and Pie Design System, on the Strategic Advisory Council of Cadence,
and on the Technical Advisory Board of Cadence Analog Division and
Synopses, companies that he helped funding. he consulted for several
major U.S. (including A n , IBM, DEC. GTE, Intel, NYNEX, General
Electric, Texas Instruments), European (Alcatel, Bull, Olivetti, SGS-
Thompson, Fiat), and Japanese companies (Kawasaki Steel), in addition
to start-ups (Actel, Crosscheck, Biocad, Redwood Design Automation,
SiArc, Wireless Access). He is the Technology Adviser to Greylock
Management. He is on the Intemational Advisory Board of the Institute
for Micro-Electronics of Singapore.

In 1981 he received the Distinguished Teaching Award of the
University of Califomia. He has received three Best Paper Awards (1982,
1983, and 1990) and a Best Presentation Award (1982) at the Design
Automation Conference and is the corecipient of the Guillemin-Cauer
Award (1982-1983), the Darlington Award (1987-1988), and the Best
Paper Award of the Cicuits and Systems Society of the IEEE (1989-1990).
He has published over 250 papers and three books in the are of CAD
for VLSI. He has been a Technical Program Chair of the Intemational
Conference on CAD for 1989 and the General Chair for 1990.

ROSE et 01 ARCHITECTURE OF GATE ARRAYS

- -~

I 1

1029

