A Reprogrammable Gate Array

and Applications

STEPHEN TRIMBERGER

Invited Paper

A field programmable gate array (FPGA) can implement thou-
sands of gates of logic, has no up-front fixed costs, and can be
programmed in a few minutes by users at their site. This paper
describes an FPGA that is programmed by writing into on-chip
static memory. This kind of FPGA can be reprogrammed any
number of times, providing a versatile platform for rapid hardware
implementation. Reprogrammable technology allows software-like
design methodologies to be applied to logic design. This paper
describes the construction of this kind of FPGA, design tradeoffs
and examples of applications that take advantage of reprogramma-
bility.

I. INTRODUCTION

FPGA’s resemble traditional mask-programmed gate ar-

rays in their modular, extensible structure, but differ in that
their programming is done by end users at their site with
no IC masking steps. FPGA’s are currently available in
densities up to 10 000 gates. This size is large enough to
implement many digital systems on a single chip, and larger
systems can be made up of multiple FPGA’s. Although the
unit costs of FPGA’s are higher than mask programmed
gate arrays for the same density, there are no up-front
engineering charges to use an FPGA, so FPGA’s are cost-
effective for many applications [1].
" The design process used to target an FPGA is the same
as that used for a gate array. Input can come from a
schematic netlist, from a hardware description language or
from logic synthesis. Vendor-supplied software converts the
design description into FPGA programming with processing
similar to placement and routing for a gate array. The
resulting programming code can be immediately loaded
into the device and the design tested. This fast turnaround
significantly reduces design risk because a design error can
be corrected quickly and inexpensively.

The combination of multiple-thousand-gate density and
fast turnaround allows hardware designers to use an inter-
active, incremental design methodology previously possible
only in software development. A designer can design a sys-

Mansucript received October 1, 1992.

The author is with Xilinx, Inc., 2100 Logic Dr., San Jose, CA 95124.
IEEE Log Number 9210744.

tem, debug it, then re-work and re-prototype to improve the
design. When the design is complete, the “prototype” may
be sufficiently cost effective and of adequate performance
for production.

Section II of this paper describes the architecture of a
reprogrammable FPGA, Section III describes the design en-
vironment, and Section IV describes innovative applications
of reprogrammable FPGA'’s.

II. A REPROGRAMMABLE GATE ARRAY

Traditional mask-programmed gate arrays have signif-
icant drawbacks. They have manufacturing times from
weeks to months, and large up-front expenses for tooling.
The up-front costs require that gate array designs be ex-
tensively simulated to verify correct functionality before
manufacture. Simulation lengthens the development cycle,
raising the cost of implementation further. Each design
built in a mask-programmed gate array must have an
accompanying test program to catch manufacturing defects.
Test program development may add weeks of effort to the
design and can require redesign. All FPGA’s address the
manufacturing issues, but to solve the simulation and testing
issues requires a reprogrammable gate array.

This paper describes a family of FPGA’s called Logic
Cell Arrays (LCA’s) that are configured by loading a set
of configuration bits into on-chip static memory [2]-[5].
The memory implements logic and controls interconnec-
tions paths for signal routing. The memory is built from
static RAM cells, so the chips are often termed “SRAM
programmable.”

SRAM programming has an obvious drawback, namely
volatility. When the power is turned off, the IC loses its
programming, so the chip must be reprogrammed every
time power comes up. For systems that need active logic
during power-up, an SRAM-programmed part is not a
viable solution. However, SRAM-programmable FPGA’s
include logic to sense power-on and to initialize themselves
automatically, providing “virtual nonvolatility,” provided

0018-9219/93$03.00 © 1993 IEEE

1030

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

the application can wait the tens of milliseconds required
to program the FPGA.

Reprogrammability has some significant advantages. The
FPGA manufacturer can test all paths in the FPGA by
reprogramming it on the tester. Users need not verify
proper manufacture of their individual designs on the part.
They get well-tested parts and 100% “programming yield”
with no design-specific test patterns and no “design for
testability.”

Since the on-chip programming is done with memory
cells, the programming of the part can be re-written an
unlimited number of times. Prototyping and in-circuit ver-
ification can replace extensive simulation for verification.
Prototyping can proceed iteratively, re-using the same chip
for new design iterations.

The EPGA described in this paper allows an application
to read out the contents of ail internal flip flops. The
development system captures these values and displays
them so users can examine the interior nodes to verify
correct operation of their logic. These capabilities allow
a system designer to experiment with a design, try an
implementation and quickly re-implement the design to fix
logic or timing problems. Since there is no cost to proto-
type, prototypes can replace simulation for the final stages
of verification. This methodology is similar to software
development methodology.

Reprogrammability has advantages in systems as well.
In cases where parts of the logic in a system are not
needed simultaneously, they can be implemented in the
same reprogrammable FPGA, and the FPGA logic switched
between applications. This paper describes applications for
which the reconfigurability of the FPGA is essential.

How SRAM Programming Works

This section is a bottom-up description of a simple
SRAM-programmable FPGA. First, the underlying pro-
gramming technology and design methodology are re-
viewed without the details of a particular implementation.
Following the generic description is a discussion of design
tradeoffs. The final section describes the Xilinx XC4000
FPGA and implementation software, discussing how many
of the design tradeoffs were resolved.

SRAM Programming: An SRAM-programmable FPGA
contains memory cells that control the logic that per-
forms the application function of the FPGA. There is no
separate RAM area on the chip. The memory cells are
distributed among the logic elements they control. Since
FPGA memories do not change during normal operation,
they are built for stability and density rather than speed.
The Xilinx SRAM cell, shown in Fig. 1, is a five-transistor
single-ended version of a six-transistor memory cell. Low-
resistance paths to the power supplies provide good stabil-
ity. In normal operation, the single sense transistor is off
and does not affect the stability of the cell.

Building Blocks: Figure 2(a) shows a four-input function
generator. A function generator implements combinational
logic as a 2 x 1 memory. The memory is used as a
lookup table, addressed by the w inputs. A designer can

TRIMBERGER: REPROGRAMMABLE GATE ARRAY AND APPLICATIONS

| T 7

Word Line

Vee

I
.

l_

Bit
Line

Fig. 1. The Xilinx five-transistor memory cells.

[T11

(a)

7

T
(b)

]
(

<)

Fig. 2. Three important peices of an SRAM FPGA. (a) 16x1
lookup table; (b) pass transistor controlled by a memory cell; and
(c) mux controlled by a memory cell.

use a function generator to implement any of the 22"
functions of its inputs by preloading the memory with the
bit pattern corresponding to the truth table of the function.
For example, if all bits in the 16-bit lookup table in Fig.
2(a) are 0 except the high-order bit (binary address 1111),
then the function generator implements a four-input AND,
since the output of the function generator is zero unless the
address is binary 1111, selecting the high-order bit.

All functions of a function generator have the same
timing: the time to look up the result in the memory.
Therefore, the inputs to the function generator are fully
swappable by simple rearrangement of the bits in the lookup
table. The routing software described later takes advantage
of pin swappability to improve signal delay and routability.

The second building block is called a programmable
interconnect point, or PIP. The PIP, shown in Fig. 2(b),
is a pass transistor controlled by a memory cell. The PIP
is the atomic unit of configurable interconnect. The wire

1031

1

TTTT

11T

T
i
LT T - I

©

Fig. 3. A simple configurable logic block.

segments on each side of the transistor are connected or
not, depending on the value in the memory cell. The pass
transistor introduces resistance into the interconnect paths,
and hence delay. Interconnect delay issues are addressed
later in the section on design tradeoffs.

The third building block is a multiplexer controlled by
a memory cell [Fig. 2(c)]. The multiplexer is a special-
case one-directional routing structure. Multiplexers may
be of any width, with more configuration bits for wider
multiplexers.

The Logic Block: Figure 3 shows the building blocks
from Fig. 2 combined into a configurable logic block (CLB)
with wiring. The CLB in Fig. 3 contains a single four-
input function generator surrounded by wiring channels.
Each wiring channel contains several segments. Segments
have connections to the CLB and to each other through
multiplexers and PIP’s,

In Fig. 3, multiplexers connect the segments in the left
side channel to the CLB inputs. The CLB output can be
connected to any segment at the right through PIP’s (shown
as diagonal connections). If the block is unused, all PIP’s
are turned off so the block does not drive its signal onto
any wire.

Segments in channels connect to segments in other chan-
nels through PIP’s in switchboxes at the intersection of the
channels. The diamond-shaped connection represents the
six PIP’s that connect any pair of segments independently
of all others. The output signal from the block may be
routed through additional switchboxes to other blocks or
back to the same block to implement sequential circuits.

The Chip: Figure 4 shows a chip composed by building
an array of CLB’s with surrounding wiring, then sur-
rounding the array with configurable /O Blocks (I0B’s).
The simplest form of an 10B is a three-state bidirectional
pad with input, output and three-state connections to the
adjoining interconnect. If the three-state control signal is
always on, it is an output pad; if the three-state signal
is always off, it is an input pad; otherwise the pad is a
bidirectional pad.

Upon initialization, the contents of all memory cells
are loaded to program the chip. Conceptually, they are
connected in a single long shift-register. When the chip

1032

T

[ie] 00 00 0O

D0 00 00 00

Fig. 4. An FPGA chip.

is powered up, the configuration bitstream is shifted into
all programming cells from off-chip memory.

Design Tradeoffs:

Wiring structure versus size and speed: The fraction of
delay incurred due to routing in an FPGA is significantly
greater than that in a traditional mask-programmed gate
array. In a traditional gate array, wiring is implemented
on metal runs with low capacitance and resistance. On an
SRAM-programmable FPGA, a signal must pass through
a transistor resistance at each PIP. Each wiring segment is
loaded with the capacitance of the PIP’s attached to it.

The delay of a signal is due less to the distance it
travels than to the number of PIP’s through which it
passes and on the load on the interconnect segments. Signal
delay can be reduced by implementing longer interconnect
resources without substantially increasing the load on those
interconnects. Buffering in the interconnect eliminates the
effect of side-branch loading, also improving delay.

Fewer PIP’s in the interconnect reduce the load on
the interconnect segments, but also reduce the utility of
the routing. More PIP’s improve routability, but also add
loading and area. Each PIP includes a memory cell, so
a large number of PIP’s leads to a large area devoted
to interconnect. Rose and Brown [6] investigated these
tradeoffs and determined that an interconnect structure with
good connectivity from CLB’s to the interconnect is very
routable even if the switchbox connectivity is low.

Block structure versus size and speed: Simple blocks
are attractive conceptually, but can lead to slow logic if
many blocks with associated delay-intensive wiring are
required to implement a function. A more complex block,
perhaps containing a larger lookup table, can implement
more complex functions without connections to the wiring,
but may not be fully utilized, leading to poor logic capacity
and lower logic density. .

Flip-flops and other sequential elements are very common
in digital design. Although they can be built from function
generators, a more efficient FPGA results from including
them as an option on the output of every function generator
[71. When a flip-flop is needed, the output of the flip-
flop is selected as the output of the block. Although the
area due to the flip-flop is wasted when the registered

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

output is not needed; when the flip-flop is needed, the
function generator and interconnect area are usable for
other functions. If typical flip-flip usage is high enough,
the result is a denser overall design. This argument can also
be applied to other dedicated logic, such as multiplexers,
memory and carry logic for arithmetic to determine if they
should be implemented directly or if they should be built
from function generators and flip-flops.

The arguments for adding special-purpose logic are based
on analysis of typical designs, but the ideal balance of logic
resources differs for every design. A design that uses none
of the special-purpose logic will use only a fraction of the
available capacity of the CLB. The capacity of a complex
block can also be difficult to predict using gate-array or
PLD measures because the FPGA does not implement logic
with those primitives. Designs that differ by a factor of two
using gate counts and product terms may fit into the same
number of CLB’s due to different CLB utilization. A proper
estimate requires that the logic be mapped into CLB’s.

Large, slow interconnect does not necessarily produce a
large, slow FPGA. Large logic blocks contain more logic
and reduce the need for interconnect. When carefully de-
signed, the large blocks produce complex functions quickly,
so over a range of applications, complex-block SRAM
architectures have been shown to be the fastest FPGA’s
despite the delay-intensive interconnect [8].

Software versus architecture: The capacity and speed
of the parts is related to both the architecture and the
software that maps designs onto that architecture. Without
software capable of automating the design implementation,
the usable capacity and speed of the FPGA will be lower
than that expected from an analysis of the architecture.
Complex blocks require software to partition the logic into
those blocks efficiently. This partitioning step is not part
of physical design for traditional gate array and standard
cell chips. Complex wiring complicates the routing cost
estimate in the placement software. In mask-programmed
gate arrays and standard cells, closer placement is nearly
always better placement. When the FPGA wiring includes
long wire segments, it may be preferable for the placer to
align the cells along the segments rather than to cluster
them.

Architectural Overview of the XC4000 Series FPGA

This section describes the Xilinx XC4000 LCA family
[5]. [9] as an example of a real-world architecture of an
SRAM programmable FPGA. The XC4000 is derived from
similar earlier architectures [2], [3] and shares many of
their logic and interconnect structures. The concerns and
tradeoffs described in previous sections are addressed in
this architecture and lead to an interesting combination of
special-purpose and general-purpose features.

The Logic Block

The XC4000 CLB, shown in Fig. 5, is substantially more
complicated than the simple block in Fig. 3. The CLB
contains three function generators, two flip-flops and sev-

TRIMBERGER: REPROGRAMMABLE GATE ARRAY AND APPLICATIONS

LT

Resal

Ena

Fig. 5. The configuration logic block for the XC4000.

eral programming-controlled multiplexers. The two primary
input function generators, labeled F and G, each implement
a function of four variables. These two results can be
brought out of the CLB independently or they can be
combined in the H function generator into any function
of five inputs and some functions of up to nine inputs.
This allows functions such as nine-input AND, OR, XOR
(parity) or decode to be done in one CLB. The flip-flops
can take their inputs from the function generators or from
an external signal. The clock, clock enable and reset signals
are shared by the two flip-flops.

With more logic capability within a CLB, functions
require less routing outside the block and circuits run faster.
The direct implementation of flip-flops results in not only
better logic density, but also good metastability behavior,
controllable setup and hold times and a powerful pipelining
capability.

The XC4000 allows application logic to write to the F and
G function generator memories using the function generator
inputs to address the bit, and additional inputs to the CLB
for write enable and data-in [Fig. 6(a)]. Reading
the memory is the same as using it to implement a function.
One CLB can implement up to 32 bits of memory.

Figure 6(b) shows a configuration of the CLB in arith-
metic mode. The F and G function generators compute
the sum while special-purpose logic calculates the carry.
Previous-generation FPGA’s [2], [3] implemented arith-
metic with sum in one function generator and carry in the
other. Since the speed of arithmetic operations is dominated
by the speed of the carry chain, special-purpose carry
logic substantially speeds up arithmetic while doubling its
density.

The I/0 Block

Figure 7 shows the details of the IOB. Signals to be
output from the chip can be registered before output and
enabled by a separate control signal to reduce clock-to-
output delays. Output pins can be optionally pulled up or
down. The driver on the pad can be configured in either
fast-slew mode for high performance, or slow-slew mode
for less noise.

Inputs from the pad can be brought into the interior of
the chip either directly or registered or both. By allowing
both, the /O block can de-multiplex external signals such

1033

[o21]

D WE

Aoz —] D

Ci+2

+-
B!+1 G Sis+1

C]

+/—
B; F Si

|

Ci
(b)

Fig. 6. Special CLB configurations: (a) memory function; (b)
arithmetic function.

PAD

Fig. 7. The /O Block for the XC4000.

as address/data busses, storing the address in the 10 flip-
flop and feeding the data directly into the wiring. To further
facilitate bus interfaces, inputs can drive wide decoders,
built into the wiring for fast recognition of addresses.

Wiring Architecture

The XC4000 design has a variety of wiring resources, tar-
geted to different applications. Figure 8 shows an overview
of the general-purpose wiring. This wiring includes single-
length lines, wires that connect from one switchbox to the
next. At each end of each wire segment in the switchbox,
there are three PIP’s controlling the connection of the
segment to other segments from the other three directions

1034

oj|

1IN

]
[]
(=] {1 =]

=]

Bl
=]

il

alfjisl|llila

Bl
o]
Bl

ll
Hli Il

Fig. 8. General-purpose interconnect.

o]

L]l (=]
L[l L]
[T]j1 L]
(o]

11

L1l Lo
[=J]jj]_Le]
L=l [=]
LIl [

clocks] 1

Fig. 9. Long-line interconnect.

in the switchbox. Figure 8 shows a few of the segments
that bypass alternate switchboxes. Since wiring delay is
more dependent on the number of segments through which
signals pass than on the length of those segments, these
double-length lines allow a signal to travel twice the
distance in the same amount of time or to travel a given
distance in half the time.

To reduce delay, signals on general interconnect may
be buffered by routing them through unused CLB’s. The
choice of the CLB and the path through the CLB is left to
the routing software. The router includes a delay estimator,
and uses signal timing to decide when to repower a signal.

General interconnect can lead to significant skew for
clock and other high-fanout signals despite delay-driven
routing. The wiring architecture includes wire segments
called long lines that span the entire height or width of the
chip to support these signals (Fig. 9). Signals are buffered
onto the long line to reduce skew. Six of the long lines
in each channel are general-purpose for high-fanout, high-
speed wiring. In each row of blocks, two of the horizontal
long lines can driven through three-state buffers. Three-
state buffers are an efficient alternative to multiplexers
for large digital systems saving logic, interconnect and
congestion.

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

Four of the vertical long lines in Fig. 9 are global signals
optimized for clock routing. Clocks can originate on-chip or
off-chip and are wired to all logic blocks through low-skew
dedicated wiring. They are driven by dedicated high-drive
clock buffers and pre-wired through dedicated interconnect
to minimize clock skew.

The XC4000 family has members with different amounts
of wiring for different size ranges. The amount of wire
and the distribution among the different wire lengths is
dictated by routability requirements of the FPGA’s in the
target size range. For CLB arrays from 14x14 to 20x20,
each wiring channel includes eight single-length lines, four
double-length lines, six long lines and four global lines. The
distribution was derived from analysis of wiring needs of a
large number of existing designs, from trial placements and
global routing of those designs on the proposed arrays, and
from statistical wirability analysis using Heller’s techniques
[10]. The general distribution was modified to conform with
physical constraints from the IC layout and by the need
to support memories and other multiple-block structures
efficiently.

High-Level System Support

The array of blocks in the XC4000 naturally divides into
two-bit horizontal slices for datapath operations. The logic
blocks contain carry logic to support two bits of addition
or subtraction per block, two 16x 1 memories and two flip-
flops per block. There are two three-state bus lines per row
in the array. These bus lines connect to two I/O blocks per
row. I/O blocks can be configured to continue the three-state
bus off-chip. Interfaces to external systems are simplified by
bus demultiplexers, on-chip address decoders and low-skew
on-chip clocking.

The result is that it is easy to build bus-oriented data-
paths, bit-sliced horizontally, two bits per row. Datapaths
can contain arithmetic, memory or other functions. This
functionality is available in addition to the ability to build
random logic, interconnected in whatever fashion is needed,
using function generators and flip-flops.

Configuration

Xilinx LCA’s include dedicated circuitry to load the
part from external memory. They can load either as a
master, generating clock and enable signals; or as a slave,
accepting those control signals from an external source.
The programming data stream can be a serial bitstream or
a parallel byte-wide stream. The data can come from a
small-footprint serial PROM, or the LCA can be configured
like a microprocessor peripheral, with data loaded from any
other part of the system. LCA’s can configure themselves
when they sense power-up, or they can be re-configured
on command while residing in the circuit. A designer can
create a system in which the FPGA’s program changes
during operation.

The LCA can also read back its programming along with
the contents of internal flip-flops, latches and memories. A
working part can be stopped and its state recovered. The

TRIMBERGER: REPROGRAMMABLE GATE ARRAY AND APPLICATIONS

read-back facility is an extremely valuable verification and
debugging tool for prototypes and is also used extensively
in manufacturing test.

III. DESIGN SYSTEM

An application targeted to an FPGA can be designed on
any one of a number of logic or ASIC design systems,
including schematic capture and hardware description lan-
guages. To target an FPGA, the design is passed to FPGA-
specific implementation software. The interface between
design entry and design implementation is a netlist that
contains the desired nets, gates, and references to hard
macros.

The capacity of an FPGA and the performance of the
logic in the FPGA are determined by the FPGA architec-
ture, the design software and the interaction between them.
Although many designs are implemented with manual tools,
these designs typically have special density or performance
requirements. Manual and automatic tools can be used in
concert on a design, or an implementation can be done
fully automatically. This section addresses automatic design
implementation, the most common method of implementing
logic on FPGA’s. Implementation consists of three major
pieces: partitioning, placement and routing.

Partitioning

Partitioning is the separation of the logic into CLB’s.
Partitioning has both a logical and physical component.
The connections within a CLB are constrained by the
limited intra-block paths and by the limited number of
block outputs. A partitioning algorithm that ignores these
constraints will build illegal blocks. However, the quality
of the resulting partitioning depends on how well the
subsequent placement can be done, so physically related
logic should be partitioned into the same block.

The logical component has been investigated in the
context of technology mapping in logic optimization, and
work in this area has focused on collecting combinational
logic into function generators [11]-[15]. However, these
techniques do not handle the larger problem of mapping
logic and flip-flops into CLB’s.

Partitioning for the XC4000 has been addressed with
a four-step algorithm that combines logical and physical
optimization [16], [17]. First, a Chortle-based technology-
mapping step builds function generators from combina-
tional logic [12]. Then a pattern-matching step clusters
patterns of logic that match the most-constrained paths
inside a CLB. The third step is a min-cut-based placement
step to cluster physically-related logic [18]. The final step
is a greedy algorithm that builds legal CLB’s from the
partitioned, clustered logic; breaking physical and logical
constraints when necessary to make a legal CLB.

Placement

Placement starts with CLB’s, IOB’s, hard macros and
other structures in the partitioned netlist and decides which
corresponding blocks on the chip should contain them. The

1035

FPGA placement problem is very similar to traditional stan-
dard cell and gate array placement and many of the existing
algorithms are applicable, such as simulated annealing
[19], force-directed relaxation [20] and min-cut [18]. The
rigid interconnect in the FPGA requires different cost
functions in these placement algorithms. Traditional gate
array interconnect is optimized when communicating blocks
are close together, so total wire length is the dominant
component of the cost function. Although wire length is
a good metric for nets wired on LCA general interconnect,
alignment is better for nets wired on long lines. The LCA
placer builds an internal model of how nets are to be routed
and scores its placement accordingly.

Routing

Most standard cell and gate array routers use a model
that assumes a great deal of flexibility in routing—wires
may bend anywhere and may connect to other channels at
any point in the channel. In contrast, the FPGA routing in
Fig. 8 shows very little connectivity between vertical and
horizontal segments. For heavily-constrained problems of
this type, A* maze routing with ripup-and-reroute [21]-[23]
has been very successful and is the primary algorithm in
use for FPGA routing, although other interesting routing
techniques have been proposed, including coarse graph
expansion [24].

In a mask-programmed gate array, interconnect delay
tracks distance, so maze routers that optimize the length of
nets also optimize their delay. This kind of simple resource-
driven maze routing is not adequate for a technology where
the delay of wiring is due not to the distance travelled, but
to the kind of interconnect used to travel that distance. For
example, crossing the width of a chip is faster on a long
line than travelling only a few CLB’s distance on general
interconnect. LCA routers include an incremental delay es-
timator to evaluate timing during the maze expansion. The
delay estimator uses the actual resistance and capacitance
values of the segments and PIP’s, derived from the FPGA
layout. The router trades off timing and resource costs,
improving both the skew and the delay of routed nets, while
limiting resource requirements.

Interactive Design Editing

Interactive tools allow constraints on the automated al-
gorithms, postroute improvements on the design and quick
design iterations. The XDE editor provides this capability
and allows users to program every detail of the design
manually. The manual editing capability allows users to
modify the configuration of any CLB or routing path. XDE
also contains commands that allow interaction with an LCA
in a system. These commands are discussed in the following
section.

Design Environment Support for Rapid Prototyping

Download Hardware

The Xilinx design system includes.a download cable to
connect a PC or workstation to an LCA on a prototype test

1036

board or on the board-level prototype system. Designers
can load the design over the cable, then run the prototype
on the board. If needed, they can connect signal generators
and analyzers to the LCA to verify the design at operating
speed in the system.

Debugging

Interactive software allows designers to insert probe
points into a design. A probe point can be any on-chip
signal that a user wants to examine during operation. The
editor routes the signal on unused interconnect segments to
an unused IOB, and generates delay information for the path
to the pin. Externally, a user may connect a scope or logic
analyzer to the package pin on the LCA that corresponds
to the IOB and observe the signal during operation. This
debugging aid is the equivalent of examining a local
variable in a program during debugging. A designer may
move a probe point and re-load the part to watch some
other internal node. Probe points and their routing are stored
separately from the “real” design and are discarded after
debugging.

Debugging logic may be placed and routed in unused
CLB’s. This logic may replace an external signal analyzer,
performing buffering and checksums, triggering on internal
signals or simply storing important data for a later read-
back.

If there are not enough unused resources on a chip to
support both the design and the debugging logic, a designer
may simply use a larger capacity part available in the
same package. Xilinx LCA’s are available in compatible
packages over a wide range of logic densities, so there
can be a significant amount of space for debugging logic.
The placement and routing software can restrict the “real
design” to part of the larger chip to keep it separate from
the “scaffolding logic.” When debugging is finished, the
debugging logic may be deleted and a smaller “production”
part substituted for the larger “debugging” part.

Placement and Routing Support for Iterative Prototyping

In support of an iterative design methodology, Xilinx’s
automatic place and route system has built-in incremental
design facilities. Small changes in a design are incorporated
without changing unaffected parts of a design. Large,
complex CLB’s facilitate incremental changes because a
small change can more easily be isolated to a change in a
single CLB or a single new routing connection. Where the
original placement and routing took hours, the incremental
change may take a few minutes.

Design Flow Changes Allowed by Reprogrammability

This combination of moderate density, reprogrammability
and powerful prototyping tools provides a novel capability
for systems designers: hardware that can be designed with
a software-like iterative-implementation methodology.

Figure 10(a) shows a typical ASIC design methodology
in which the design is verified by simulation at each stage
of refinement. Accurate simulators are slow; fast simulators

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7. JULY 1993

Logic Design <———
Logic Simulation ——» A

Place and Route <€—

Timing Simulation —>‘

'

Test Pattern Generation
Fault Simulation —-—FA
Wafer Fabrication

Testing

Prototype Debug —
Prod#cﬁon

(a)

Logic Design
Place and Route
Configure

Prototype Debug —>

(b)

Fig. 10. Contrasting design methodologies: (a) Traditional gate
arrays; and (b) FPGA.

trade away simulation accuracy. ASIC designers use a
battery of simulators across the speed/accuracy spectrum
in an attempt to verify the design. Although this design
flow works with FPGA’s as well, an FPGA designer can
replace simulation with in-circuit verification, “simulating”
the circuitry in real time with a prototype [Fig. 10(b)]. The
path from design to prototype is short, allowing a designer
to verify operation over a wide range of conditions at high
speed and high accuracy.

This fast design-place—route-load loop is similar to the
software edit-compile-run loop and provides the same ben-
efits. Designs can be verified by trial rather than reduction
to first principles or by mental execution. A designer can
verify that the design works in the real system, not merely
in a potentially-erroneous simulation model of the system.
This makes it possible to build proof-of-concept prototype
designs easily.

Design-by-prototype does not verify proper operation
with worst-case timing, merely that the design works on

TRIMBERGER: REPROGRAMMABLE GATE ARRAY AND APPLICATIONS

T

the presumed-typical prototype part. To verify worst-case
timing, designers may check speed margins in actual volt-
age and temperature corners with a scope, speeding up
marginal signals; they may use a software timing analyzer
or simulator after debugging to verify worst-case paths; or
simply use faster speed-grade parts in production to ensure
sufficient speed margin over the complete temperature and
voltage range.

Prototype versus Production

As with software development, the dividing line be-
tween prototyping and production can be blurred with a
reprogrammable FPGA. A working prototype may qualify
as a production part if it meets cost and performance
goals. Rather than re-design, an engineer may choose to
substitute a faster speed FPGA using the same programming
bitstream, or a smaller, cheaper compatible FPGA with
more manual work to squeeze the design into a smaller IC.
A third solution is to substitute a mask-programmed version
of the LCA for the field-programmed version. All three of
these options are much simpler than a system redesign.
Rapid prototyping is most effective when it becomes rapid
product development.

Field Upgrades

Reprogrammability allows a systems designer another
option: that of modifying the design in the FPGA by
changing the programming bitstream after the design is
in the customer’s hands. The bitstream can be stored in a
dedicated PROM or elsewhere in the system. For example,
an FPGA used as a peripheral on a computer may be
loaded from the computer’s disk. In some existing systems,
manufacturers send modified hardware to customers as a
new bitstream on a floppy disk or as a file sent over a
modem.

IV. REPROGRAMMABLE FPGA APPLICATIONS

Most applications of SRAM-programmable FPGA’s are
straightforward logic integration and, although repro-
grammability may be crucial to verification of the design,
they do not use reprogrammability in the system. However,
this section is devoted to designs that use reprogrammability
in an interesting manner. Therefore, these designs are not
necessarily typical of the designs that are implemented in
SRAM-programmable FPGA'’s, but serve to emphasize the
unique capabilities of reprogrammable FPGA’s.

Reprogrammability for Board-Level Test

The most common system use of reprogrammability is
for board-level test circuitry. Since FPGA’s are commonly
used for logic integration, they naturally have connections
to major subsystems and chips on the board. This puts the
FPGA in an ideal location to provide system-level test
access to major subsystems. The board designer makes
one configuration of the FPGA for normal operation and a
separate configuration for test mode. The “operating” logic
and the “test” logic need not operate simultancously, so

1037

or

\ FPGA
nfiguration
Me

mory

Fig. 11. Pivoting display system block diagram.

they can share the same FPGA. The test logic is simply
a different configuration of the FPGA, so it requires no
additional on-board logic or wiring. The test configuration
can be shipped with the board, so the test mode can also
be invoked as a diagnostic after delivery without requiring
external logic.

Rosendahl [25] exploited reprogrammability-for-test in
a bus interface built with a reprogrammable FPGA. One
configuration of the FPGA is the bus interface. Additional
test configurations of the FPGA include an IEEE 1149.1
boundary scan Test Access Port for the board. Specific tests
are loaded with the TAP, including a /3N pattern test for
on-board RAM. The RAM tester generates addresses and
patterns, captures and compares the results and keeps an
error vector for later analysis.

Another configuration of the FPGA performs parametric
tests. The FPGA test logic samples the input data at various
times during the read cycle and compares it with the
expected pattern. The earliest match gives the speed of the
memory subsystem. Without a reprogrammable FPGA, the
test and parameter measurement logic would have required
thousands of additional gates of on-board logic as well as
a significantly more complex board layout.

Reprogrammable Logic in a Configurable Display Device

The Radius Pivot monitor is a Macintosh-compatible
display device that can display data either in portrait mode,
which is preferred for word processing; or landscape mode,
which is preferred for spreadsheets. A user of the display
manually rotates the dislay to select the display style.
Because the scan direction in the monitor is the same
regardless of the orientation of the display, the display
hardware must change the order of presentation of bits to
the display in portrait mode to maintain Macintosh software
compatibility.

The display interface board contains the frame buffers
in video RAM, a Xilinx FPGA and the digital to analog
converter for preparing the signal for display [26] (Fig. 11).
Part of the bitstream rotation is done when the pixels are
stored in the dispay memory, part is done when the pixels
are sent to the monitor. The VRAM addresses generated
by the FPGA are different for portrait and landscape
orientation. In addition, the data is scanned out of the video
memory differently in each of the two display modes. The
final bitstream sent to the monitor is 50MHz.

1038

The Pivot display actually has six formatting modes:
one, two or four bits per pixel, aligned either vertically
or horizontally. The modes are all mutually exclusive, so
one reprogrammable XC2018-100 FPGA with six different
programs implements all six options. When the pivoting
display orientation changes, an orientation-sensitive switch
in the cabinet starts the reconfiguration process and the
FPGA is reconfigured with the appropriate bitstream from
the PROM that contains all six bitstreams. The XC2018
is rated at about 1800 gates, but this application replaces
about six thousand gates of logic.

Teaching Advanced Logic Design

Instructional labs need reprogrammability and fast pro-
totyping. All student projects are prototypes, and the more
laborious the design implementation, the less students learn
about design. Since 1988, Professor Pak Chan at the Uni-
versity of California, Santa Cruz has been using Xilinx
FPGA’s in an Advanced Logic Design class [27]. Professor
Chan interfaced tools from the UC Berkeley Oct tool set
including bdsyn, misIT and mustang with placement
and routing tools APR and XACT from Xilinx. Students
use hardware description languages and schematic entry to
specify the design, and use simulation to verify the designs.
They implement the logic using placement and routing and
load the design by programming an EPROM that they plug
into the prototyping board with the LCA.

This teaching method has significant advantages over the
more traditional solder-and-wirewrap method. Students use
a design style very much like commercial ASIC design:
they spend more time designing and less time implement-
ing. Class projects include high-speed addition, multiplica-
tion, division and bit-slice processors. When the course is
finished, the hardware used by students is reused.

The prospect of “soft hardware” for teaching may be
upsetting to those who believe it is important for stu-
dents to have a good, hard, practical understanding of the
implementation technology. Although this understanding
is important, so is exposure to a large range of design
issues. The less time students spend on the mechanics of
implementation, the more time they spend doing design.
Computer science curricula have already addressed this
issue: nearly all computer science projects use a high-level
language, even though it is machine code that actually gets
executed. Once or twice in a student’s career, he or she
is required to actually deal with assembly language and
machine code, but the bulk of the teaching is intended
to broaden the student’s experience with large-scale “real
world” problems. Reprogrammable FPGA’s may allow
electrical engineering courses to broaden the scope of
exposure they give their students.

Large-Scale Applications

Several large-scale uses of reprogrammable gate arrays
have been reported in the literature recently [28]-[33]. In
this section, we describe a few of these systems and their

PROCEEDINGS OF THE IEEE. VOL. 81, NO. 7. JULY 1993

[

ASIC Socket

Processor O

gooooooo
a00o0oao

Control Imimimim)
D rl;opmgmmmab'ka1 D
Gate Arrays

~ 1 O0uwuwuuBo
Oo0o00ooanono
Ooooooooaga | -
ooooooon

Target
System

[

Logic
Analyzer

Stimulus Component
Generator Adapters

Fig. 12. RPM emulation system.

use of reprogrammable FPGA’s. Readers are directed to
the references for more details.

The Quickturn Logic Emulator

Quickturn Systems, Inc. addressed the problem of pro-
totyping large-scale ASIC’s and systems in their RPM
Logic Emulator by using an array of LCA’s [28]. The
RPM hardware includes a SCSI or Ethernet connection to a
control processor, an array of Xilinx XC3090 FPGA’s and
external component adapters (Fig. 12). The FPGA’s in the
array are connected in a hypercube arrangement with fixed
interconnects at the board level.

The RPM software accepts a netlist of hundreds of
thousands of gates, partitions the gates into FPGA’s to
optimize interconnection and density, places and routes
designs on the FPGA’s and adjusts the resulting timing
to match that of the incoming netlist. The emulated design
executes up to a million times faster than simulation. Small
changes are handled incrementally across all FPGA’s in
the system, limiting re-implementdtion times to minutes.
The RPM includes adapter cards that allow a designer to
interface with external logic—IC’s or complete systems. It
includes configurable signal generators and analyzers also
built out of LCA’s to monitor the running system.

Prototyping Hardware/Software Algorithms

Perle-0 is a platform for experimentation with logic
and architectures for highly-parallel computation [29]. The
board consists of an array of 25 reconfigurable FPGA’s
with local memory and bus interface circuitry. It has been
used for a variety of algorithms, including image filtering,
very-long word size arithmetic, RSA encryption and data
compression. Changes in the algorithm may take weeks
to describe and optimize, and design iterations can take
several days. Compared to turnaround times for custom
ASIC’s, these delays are short, there are no tooling charges,
and the hardware can be re-used. Because the designers

TRIMBERGER: REPROGRAMMABLE GATE ARRAY AND APPLICATIONS

can continually hone their algorithms, Perle-0 has achieved
performance on some problems superior to the best custom
IC solutions.

Another example of this kind of system is the Splash
processor [30], [31]. Splash consists of an array of LCA’s
with external memory and a fixed interconnection pattern.
The Splash processor is targeted to one-dimensional systolic
problems and has been used for pattern matching DNA
sequences. The general-purpose Splash board out-performs
a Cray supercomputer by as much as a factor of 300 and
out-performs a custom single-chip integrated circuit by a
factor of 45.

The Anyboard is a general-purpose board for rapid-
prototyping [32]. The hardware consists of several FPGA’s
with fixed connections to each other and to on-board
memories. The FPGA array has a fixed interface to a host
processor bus. The host loads programming and passes
other instructions to the board. To support large-scale logic
implementation, the Anyboard development environment
includes a logic partitioner to divide the prototype system
among the FPGA’s and to generate programming for each
part. The Anyboard has been tested with such diverse
elements as a systolic linear convolver and an ALU.

Key to attaining high-quality designs in all the above
systems is the ability to repeatedly prototype algorithms
and to bring to bear large amounts of reusable hardware.
The system designers built powerful debugging features
into their systems to debug their highly-parallel designs.
The debuggers access the read-back facilities on the LCA’s
to observe interior nodes. In some cases, read-back is used
to unload the results of computations, saving the need to
generate extra upload logic in the FPGA array.

A Flexible Processor

Wolfe and Shen [34] used several reprogrammable
FPGA’s to implement a “flexible processor.” Eight
reconfigurable FPGA’s are used to implement instruction

1039

decoding, address generation and datapath operations in a
single-board computer. They can be configured to imple-
ment a wide variety of virtual processor architectures with
different instructions, addressing mechanisms, pipelining
schemes and ALU operations. Wolfe and Shen used the
flexible processor for prototyping processor architectures
for solving systems of linear equations, and the same
flexible processor computer can be used to prototype other
processor architectures.

Flexible processors may change our definition of algo-
rithmic complexity. For example, a searching algorithm
that requires O(n?) operations on a standard processor
may require only O(n) time on a flexible processor con-
figured with an array of comparators. The optimal choice
of processor configuration may be dynamic and problem-
size dependent. The processor configuration may change
during operation. Such a development has been called a new
paradigm of computation [34], [35]. Reprogrammability
gives a system designer new capabilities: reconfigurable
hardware or even virtual hardware, similar to virtual mem-
ory in computer systems. Eventually such virtual hardware
may be swapped or timeshared in a manner analogous
to multiple-process-management in computer systems, em-
ploying a software-like operational methodology as well as
a software-like design methodology.

V. SUMMARY

Reprogrammable FPGA'’s provide a new implementation
target for logic and digital systems. They can implement
thousands of gates of logic at clock speeds in the tens of
megahertz, and both these numbers are improving rapidly.
New generations of FPGA’s provide both powerful logic
and system implementation features.

Reprogrammable FPGA’s allow a change in the IC
and systems design methodology to emphasize prototyp-
ing rather than simulation. FPGA’s and the software that
surrounds them include features that facilitate this method-
ology, and many current users of FPGA’s have adopted
these techniques.

Designers are using reprogrammable FPGA’s to replace
multiple functions on a board. The systems allow experi-
mentation with large amounts of logic, systolic processors
and computer architecture. These systems require repro-
grammable logic, since they would not be cost effective if
the hardware could be used only once.

REFERENCES

[1] The Programmable Gate Array Data Book. Xilinx, 1989, 1991,
1992,

[2] W. Carter, K. Duong, R H. Freeman, H.-C. Hsieh, J.Y. Ja,
J.E. Mahoney, L.T. Ngo, and S.L. Sze, “A user programmable
reconfigurable gate array,” in IEEE 1986 Custom Integrated
Circuits Conference, pp. 233-235,1986.

[3]1 H.C. Hsich, K. Duong, J.Y. Ja, R. Kanazawa, L.T. Ngo, L.G.
Tinkey, W.S. Carter, R.H. Freeman, “A Second generation user-
programmed gate array,” IEEE 1987 Custom Integrated Circuits
Conference, pp. 515-521, 1987.

[4] HC. Hsieh, K. Duong, J.Y. Ja, R. Kanazawa, L.T. Ngo,
L.G. Tinkey, W.S. Carter, R.H. Freeman, “A 9000 gate user-
programmable gate array,” in IEEE 1988 Custom Integrated
Circuits Conference, pp. 15.3.1-15.3.7, 1988.

[5]

[6

=

[7

[8

—_

[9

—

[10]

[

(12]

[13]

[14]

[15]

[16]

(171
[18]
[19]
[20]
[21)
[22]
(23]

(24)

[25]

[26]

[27]

[28]

[29]

(30]

(31]

H.C. Hsieh, et. al., “Third generation architecture boosts speed
and density of FPGAs,” in IEEE 1990 Custom Integrated
Circuits Conference, 1990.

J. Rose, S. Brown, “Flexibility of Interconnection structures for
field-programmable gate arrays,” IEEE J. Solid-State Circuits,
vol. 26, no. 3, Mar. 1991, pp. 277-282

J. Rose, R.J. Francis, D. Lewis, P. Chow, *“Architecture of field
programmable gate arrays: the effect of logic block functionality
on area efficiency,” IEEE J. Solid-State Circuits, vol. 25, no. 5,
Oct. 1990.

J.-M. Vuillamy, Z.G. Vranesic, R. Rose, “Performance evalua-
tion and enhancement of FPGA’s,” in Proc. Int. Workshop on
Field Programmable Gate Arrays, Oxford, 1991.

S. Trimberger, “Beyond logic—FPGA’s for digital systems,”
in Proc. Int. Workshop on Field Programmable Gate Arrays,
Oxford, 1991.

W.R. Heller, W.F. Mikhail, W.E. Donath, “Prediction of Wiring
Space Requirements for LSI,” J. Design Automation and Fault
Tolerant Computing, vol. 2, no. 2, pp. 117-144, May 1978.

R. Murgai, Y. Nishizaki, N. Shenoy, R.K. Brayton, A
Sangiovanni-Vincentelli, “Logic synthesis for programmable
gate arrays,” in Proc. 27th Design Automation Conference,
1990.

R.J. Francis, J. Rose, K. Chung, “Chortle: A technology map-
ping program for lookup table-based field-programmable gate
arrays,” in Proc. 27th Design Automation Conference, 1990,
R.J. Francis, J. Rose, Z. Vranesic, “Chortle-crf: Fast technol-
ogy mapping for lookup table-based field-programmable gate
arrays,” in Proc. 28th Design Automation Conference, 1991.
[K. Karplus, “Xmap: A technology mapper for table-lookup
field-programmable gate arrays,” in Proc. 28th Design Automa-
tion Conference, 1991,

N.-S. Woo, “A heuristic method for FPGA technology mapping
based on edge visibility,” in Proc. 28th Design Automation
Conference, 1991.

S. Trimberger, “Placement-driven partitioning for lookup-table-
based field-programmable gate arrays,” in Proc. 1992 ACM
Workshop on Field Programmable Gate Arrays, 1992.

S. Trimberger, Field Programmable Gate Arrays. Kluwer Aca-
demic Press, 1992.

M.A. Breuer, “Min-cut placement,” J. Design Automation and
Fault Tolerant Computing, Oct., 1977.

S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, “Optimization
by simulated annealing,” Sci., 13 May 1983.

S. Goto, “An efficient algorithm for the two-dimension place-
ment problem in electrical circuit layout,” IEEE Trans. Circuits
Syst., Jan., 1981.

N.J. Nilsson, Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, 1971.

J. Soukup, “Circuit Layout,” Proc. IEEE, Oct. 1981.

M. Palczewski, “Plane Parallel A* Maze Router and its Ap-
plication to FPGA’s,” in 29th Design Automation Conference,
1992, submitted for publication.

s. brown, j. rose, z. vranesic, “A detailed router for field-
programmable gate arrays,” in IEEE International Conference
on Computer-Aided Design Digest of Technical Papers, IEEE
1990, pp. 382-385.

G. Rosendahl, T. Paille, D. Freiling, R. McLeod, “In sys-
tem reprogrammable Ica’s provide a versatile interface for a
dsp based parallel machine,” in Proc. Int. Workshop on Field
Programmable Gate Arrays, Oxford, 1991.

J. Tan-Nguyen, T. Oyama, N. Moss, “Pivoting monitor in-
creases versatility of workstations,” Computer Techn. Review,
Fall 1990.

“Using field programmable gate arrays in a second course on
logic design,” in Proc. 3rd Microelectronics Systems Education
Conference and Exposition”, San Jose, CA, pp. 3742, July
1990.

S. Walters, “Reprogrammable hardware emulation automates
system-level ASIC validation,” Wescon/90 Conf. Record, 1990.
M. Shand, P. Bertin, and J. Vuillemin, “Resource tradeoffs in
fast long integer multiplication,” in Proc. 2nd Annual ACM
Symp. Parallel Algorithms and Architectures, 1990.

M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D.
Sweely, and D. Lopresti, “Building and Using a Highly Parallel
Programmable Logic Array,” Computer, Jan. 1991,

D. Lopresti, “Rapid implementation of a genetic sequence com-
parator using field-programmable logic arrays,” in Advanced

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

(32]

(33]

[34]

[35]

Research in VLSI: Proc. 1991 University of California Santa
Cruz Conference, The MIT Press, 1991.

D. Thomae, T. Petersen and D. Van den Bout, “The anyboard
rapid prototyping environment,” in Advanced Research in VLSI:
Proc. 1991 University of California Santa Cruz Conference, The
MIT Press, 1991.

C.E. Cox and W.E. Blanz, “Ganglion, A Fast Hardware Imple-
mentation of a Connectionist Classifier,” in Proceedings of the
Custom Integrated Circuits Conference, 1991.

A. Wolfe and J.P. Shen, “Flexible Processors: A promising
application-specific processor design approach,” Technical Re-
port, Carnegie-Mellon University, 1988.

J.P. Gray and T.A. Kean, “Configurable Hardware: A New
Paradigm for Computation,” in Advanced Research in VLSI:
Proc. 1989 Decennial Conference on VLSI, The MIT Press,
1989.

TRIMBERGER: REPROGRAMMABLE GATE ARRAY AND APPLICATIONS

Stephen Trimberger received the M.S. degree
from UCI, where he worked in the dataflow
group, and a Ph.D. in computer science from
the California Institute of Technology, where he
worked in the areas of nondeterministic compu-
tation and design automation.

He was a member of the original design team
for the VLSI Technology ASIC design software
and has worked on software for nearly every
aspect of ASIC design. He has written two books
on computer-aided design for integrated circuits

and teaches computer-aided design at Santa Clara University.

From 1988 to 1990, Dr. Trimberger was a member of the architecture

definition group for the Xilinx XC4000 FPGA and the technical leader
for the XC4000 design automation software. He is currently Manager of
Advanced Development at Xilinx where he is responsible for innovative
and long-term FPGA architectures and sofiware. His interests include
design automation at all levels, software development methodology and
innovative uses of reprogrammable FPGA’s.

1041

