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1 Expectation Propagation

In this section we give all the necessary details to implement the EP algorithm for the proposed
method in the main manuscript, i.e. DMTFS. We describe how to compute the EP posterior
approximation from the product of all approximate factors and how to implement the EP updates
to refine each approximate factor. Finally, although not used in the experiments, we also give an
intuitive idea about how to compute the EP approximation to the marginal likelihood. Recall from
the main manuscript that the approximate factors replace the corresponding factors in the joint
distribution p(Y,W,Ω,ρ,σ2|X ). The resulting approximate joint distribution is then normalized
to get the EP posterior approximation, and the normalization constant is the approximation to
the marginal likelihood.

1.1 Natural Parameter Representation

To make easier the description of the EP algorithm, we will work with the natural parameters of
each approximate factor. We have in consequence that the n-th likelihood factor of task k, i.e.,

p(y
(k)
n |w(k),x

(k)
n , σ2

(k)) = N (y
(k)
n |(w(k))Tx

(k)
n , σ2

(k)), is in practice approximated as:

p(y(k)
n |w(k),x(k)

n , σ2
(k)) ≈ f̃

(k)
n

(
w(k), σ2

(k)

)
= c̃(k)

n exp

{
m̃(k)
n (w(k))Tx(k)

n −

− ṽ
(k)
n

2
(w(k))Tx(k)

n (x(k)
n )Tw(k)

}
× exp

{
−ã(k)

n log(σ2
(k))−

b̃
(k)
n

σ2
(k)

}
, (1)

where the natural parameters c̃
(k)
n , m̃

(k)
n , ṽ

(k)
n , ã

(k)
n and b̃

(k)
n are to be fixed by EP. Note that the

first exponential function corresponds to an un-normalized Gaussian distribution and that the
second exponential function corresponds to an un-normalized Inverse Gamma distribution. Thus,
the approximation is the same as the one described in the main manuscript, but with a different
parameter representation.

The approximation for each factor p(w
(k)
i |Ω) corresponding to the robust prior distribution for
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the i-th coefficient of the k-th tasks, w
(k)
i , is:

p(w
(k)
i |Ω) ≈ g̃(k)

i

(
w

(k)
i , zi, ωk, γi, τ

(k)
i , η

(k)
i

)
= s̃

(k)
i exp

{
m̃

(k)
i w

(k)
i −

ṽ
(k)
i

2

(
w

(k)
i

)2
}
×

exp
{
zip̃

(i,k)
z

}
exp

{
ωkp̃

(i,k)
ω

}
exp

{
γip̃

(i,k)
γ

}
exp

{
τ

(k)
i p̃(i,k)

τ

}
exp

{
η

(k)
i p̃(i,k)

η

}
. (2)

Again, the parameters c̃
(k)
i , m̃

(k)
i , ṽ

(k)
i , p̃

(i,k)
z , p̃

(i,k)
ω , p̃

(i,k)
γ , p̃

(i,k)
τ and p̃

(i,k)
η are natural parameters

to be fixed by EP. Additionally, the first exponential function is again an un-normalized Gaussian

distribution and exp{zip̃(i,k)
z } is an un-normalized Bernoulli distribution for the binary random

variable zi (the same applies for the other random binary variables g
(k)
i depends on). Thus, the

approximation is again the same as the one described in the main manuscript, but with a different
parameter representation.

The approximation of each factor corresponding to the prior for the binary latent variables is:

p(zi|ρz) ≈ h̃(i)
z (zi, ρz) = k̃(i)

z exp
{
zip̃

(i)
z

}
exp

{
ã(i)
z log(ρz) + b̃(i)z log(1− ρz)

}
∀i , (3)

p(ωk|ρω) ≈ h̃(k)
ω (ωk, ρω) = k̃(k)

ω exp
{
ωkp̃

(k)
ω

}
exp

{
ã(k)
ω log(ρω) + b̃(k)

ω log(1− ρω)
}
∀k , (4)

p(γi|ργ) ≈ h̃(i)
γ (γi, ργ) = k̃(i)

γ exp
{
γip̃

(i)
γ

}
exp

{
ã(i)
γ log(ργ) + b̃(i)γ log(1− ργ)

}
∀i , (5)

p(τ
(k)
i |ρτ ) ≈ h̃(i,k)

τ (τ
(k)
i , ρτ ) = k̃(i,k)

τ exp
{
τ

(k)
i

˜̃p(i,k)
τ

}
exp

{
ã(i,k)
τ log(ρτ ) + b̃(i,k)

τ log(1− ρτ )
}
∀i, k , (6)

p(η
(k)
i |ρη) ≈ h̃(i,k)

η (η
(k)
i , ρη) = k̃(i,k)

η exp
{
η

(k)
i

˜̃p(i,k)
η

}
exp

{
ã(i,k)
η log(ρη) + b̃(i,k)

η log(1− ρη)
}
∀i, k , (7)

where all parameters with the superscript˜are natural parameters to be fixed by EP. In this case,
each factor is the product of an un-normalized Bernoulli distribution and an un-normalized Beta
distribution, expressed in terms of their natural parameters.

We also show how to express in this notation the factors that need not be approximated. These
include the factors corresponding to the priors for each σ2

(k) and the factors corresponding to the
priors for each activation probability pz, pω, pγ , pτ and pη. In particular,

p(σ2
(k)) = InvGam(σ2

(k)|5, 5) =
55

Γ(5)
exp

{
−(5 + 1) log(σ2

(k))−
5

σ2
(k)

}
∀k , (8)

p(ρz) = Beta(ρz|1, 1) =
1

β(1, 1)
exp {0 · log(ρz) + 0 · log(1− ρz)} (9)

p(ρω) = Beta(ρω|1, 1) =
1

β(1, 1)
exp {0 · log(ρω) + 0 · log(1− ρω)} , (10)

p(ργ) = Beta(ργ |1, 1) =
1

β(1, 1)
exp {0 · log(ργ) + 0 · log(1− ργ)} , (11)

p(ρτ ) = Beta(ρτ |1, 1) =
1

β(1, 1)
exp {0 · log(ρτ ) + 0 · log(1− ρτ )} , (12)

p(ρη) = Beta(ρη|1, 1) =
1

β(1, 1)
exp {0 · log(ρη) + 0 · log(1− ρη)} , (13)

where Γ(·) is the gamma function and β(·, ·) is the beta function.

1.2 Computation of the EP Posterior Approximation

In this section we show how to compute the posterior approximation given the approximate factors.
For this, we use the joint approximation q̃ which is defined as the product of all approximate factors
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and the factors that need not be approximated. Assume K learning tasks with Nk examples and
d features each. Then,

q̃(W,Ω,ρ,σ2) =

[
K∏
k=1

Nk∏
n=1

f̃ (k)
n (w(k), σ2

(k))

][
d∏
i=1

K∏
k=1

g̃
(k)
i (w

(k)
i , zi, ωk, γi, τ

(k)
i , η

(k)
i )

]
×

×

[
d∏
i=1

h̃(i)
z (zi, ρz)

][
K∏
k=1

h̃(k)
ω (ωk, ρω)

][
d∏
i=1

h̃(i)
γ (γi, ργ)

][
d∏
i=1

K∏
k=1

h̃(i,k)
τ (τ

(k)
i , ρτ )

]

×

[
d∏
i=1

K∏
k=1

h̃(i,k)
η (η

(k)
i , ρη)

][
K∏
k=1

p(σ2
(k))

]
p(ρz)p(ρω)p(ργ)p(ρτ )p(ρη) , (14)

which is an un-normalized distribution inside the exponential family F defined in the main
manuscript. After q̃ is normalized to integrate to one, the EP posterior approximation is ob-
tained. In particular,

q(W,Ω,ρ,σ2) =
q̃(W,Ω,ρ,σ2)

Zq
,

=

[
K∏
k=1

N (w(k)|m(k),V(k))

][
d∏
i=1

Bern(zi|p(i)
z )

][
K∏
k=1

Bern(ωk|p(k)
ω )

]
×

×

[
d∏
i=1

Bern(γi|p(i)
γ )

][
d∏
i=1

K∏
k=1

Bern(τ
(k)
i |p

(i,k)
τ )

][
d∏
i=1

K∏
k=1

Bern(η
(k)
i |p

(i,k)
η )

]
×

×

[
K∏
k=1

InvGam(σ2
(k)|ak, bk)

]
Beta(ρz|az, bz)Beta(ρω|aω, bω)×

× Beta(ργ |aγ , bγ)Beta(ρτ |aτ , bτ )Beta(ρη|aη, bη) (15)

where Zq is the normalization constant of q̃, which can be used to approximate the marginal
likelihood of the model. The parameters of the posterior approximation q such as m(k), V(k), etc.
can be computed by summing the natural parameters of the factors in q̃. This will give the natural
parameters of q. Given these natural parameters, the corresponding standard parameters can be
easily obtained. Let the superscript ˆ denote the corresponding natural parameters. For example,
in the case of the multi-variate Gaussian distribution, the natural parameters m̂(k) and V̂(k) are
defined as m̂(k) = (V(k))−1m(k) and V̂(k) = (V(k))−1. By multiplying all the approximate factors
that depend on w(k), we have that

V̂(k) =
(

(X(k))T∆kX
(k) + Πk

)
, Vk = (V̂(k))−1 ,

m̂(k) = (X(k))Tυ̃(k) + m̃(k) , m(k) = V(k)m̂(k) , (16)

where ∆k is a diagonal matrix of size Nk × Nk whose diagonal elements are given by ṽ
(k)
n , the

parameter of f̃k; Πk is a d × d diagonal matrix whose elements are given by ṽ
(k)
i , the parameter

of g̃
(k)
i ; ṽ(k) is a Nk dimensional vector with components equal to ṽ

(k)
n , the parameter of f̃k; υ̃(k)

is a Nk dimensional vector with components equal to m̃
(k)
n , the parameter of f̃k; and m̃(k) is a d

dimensional vector with components equal to m̃
(k)
i , the parameter of g̃

(k)
i . This is valid for each

k. Furthermore, the inversion of V̂(k) can be carried out with cost O(N2
kd) using the Woodbury
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formula. The parameters of the other distributions in q are computed similarly. In particular,

p̂(i)
z =

K∑
k=1

p̃(i,k)
z + p̃(i)

z , p(i)
z =

1

1 + exp(−p̂(i)
z )

,

p̂(k)
ω =

d∑
i=1

p̃(i,k)
ω + p̃(k)

ω , p(k)
ω =

1

1 + exp(−p̂(k)
ω )

,

p̂(i)
γ =

K∑
k=1

p̃(i,k)
γ + p̃(i)

γ , p(i)
γ =

1

1 + exp(−p̂(i)
γ )

,

p̂(i,k)
τ = p̃(i,k)

τ + ˜̃p(i,k)
τ , p(i,k)

τ =
1

1 + exp(−p̂(i,k)
τ )

,

p̂(i,k)
η = p̃(i,k)

η + ˜̃p(i,k)
η , p(i,k)

η =
1

1 + exp(−p̂(i,k)
η )

, (17)

where p̃
(i,k)
z , p̃

(i,k)
ω , p̃

(i,k)
γ , p̃

(i,k)
τ and p̃

(i,k)
η are the parameters of g̃

(k)
i , and p̃

(i)
z , p̃

(k)
ω , p̃

(i)
γ , ˜̃p

(i,k)
τ and

˜̃p
(i,k)
η are the parameters of h

(i)
z , h

(k)
ω , h

(i)
γ , h

(i,k)
τ and h

(i,k)
η , respectively. The parameters of the

Inverse Gammas are:

âk =

Nk∑
n=1

ã(k)
n + 5 + 1 , ak = âk − 1 , ∀k ,

b̂k =

Nk∑
n=1

b̃(k)
n + 5 + 1 , bk = b̂k − 1 , ∀k . (18)

If the same noise level is assumed for each task these computations are:

âk =

K∑
k=1

Nk∑
n=1

ã(k)
n + 5 + 1 , ak = âk − 1 , ∀k ,

b̂k =

K∑
k=1

Nk∑
n=1

b̃(k)
n + 5 + 1 , bk = b̂k − 1 , ∀k . (19)

Finally, the parameters of the beta distributions are:

âz =

d∑
i=1

ã(i)
z , az = âz + 1 , b̂z =

d∑
i=1

b̃(i)z , bz = b̂z + 1 ,

âω =

K∑
k=1

ã(k)
ω , aω = âω + 1 , b̂ω =

K∑
k=1

b̃(k)
ω , bω = b̂ω + 1 ,

âγ =

d∑
i=1

ã(i)
γ , aγ = âγ + 1 , b̂γ =

d∑
i=1

b̃(i)γ , bγ = b̂γ + 1 ,

âτ =

K∑
k=1

d∑
i=1

ã(i,k)
τ , aτ = âτ + 1 , b̂τ =

K∑
k=1

d∑
i=1

b̃(i,k)
τ , bτ = b̂τ + 1 ,

âη =

K∑
k=1

d∑
i=1

ã(i,k)
η , aη = âη + 1 , b̂η =

K∑
k=1

d∑
i=1

b̃(i,k)
η , bη = b̂η + 1 , (20)

where the parameters ã
(i)
z , ã

(k)
ω , ã

(i)
γ , ã

(i,k)
τ , ã

(i,k)
η and b̃

(i)
z , b̃

(k)
ω , b̃

(i)
γ , b̃

(i,k)
τ , b̃

(i,k)
η are the parameters

of the approximate factors h̃
(i)
z (zi, ρz), h̃

(k)
ω (ωk, ρω), h̃

(i)
γ (γi, ργ), h̃

(i,k)
τ (τ

(k)
i , ρτ ) and h̃

(i,k)
η (η

(k)
i , ρη).
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1.3 Update of the Approximate Factors

In this section we give specific details of how to update the parameters of each of the approximate
factors. For that, we will assume that there is an old distribution qold that has been computed by
removing the corresponding approximate factor f̃ from the posterior q. Namely, qold = q/f̃ . The
parameters of qold are exactly the same parameters as those of q, but where we have subtracted
from the natural parameters of q the natural parameters of the approximate factor f̃ . The updated
factor is simply given, up to a multiplicative constant, by the ratio qnew/qold, where qnew is the
posterior approximation that minimizes KL(fqold||qnew) and f is the corresponding exact factor.
Let Zf be the normalization constant of fqold. As described in the main manuscript qnew is
obtained by setting its moments to those of fqold. Furthermore, these moments can be obtained
from the derivatives of logZf with respect to the natural parameters of qold [6]. Thus, the only
quantity that is needed to perform the EP updates is Zf . We explain how to compute its value
for each approximate factor.

In our EP implementation we update all factors in parallel as in [8]. We also employ damped
updates. When the EP updates are damped the parameters of the approximate factors cannot
change too much. The practical implementation of damping is trivial and is described in detail in
[2]. In the rest of the section we annotate with the superscript a to the corresponding parameters

of qold. For example, the parameter m
(k)
i that describes the posterior mean of w

(k)
i under q will

be denoted by m
(k)
i in the case that it is actually the posterior mean of that variable under qold.

Typically, each approximate factor will only depend on a few of the latent variables in q. This
means that we can safely marginalize all other variables in q before computing qold.

To simplify the EP updates, we will in general work with the natural parameters of qold. These
are obtained simply by subtracting from the natural parameters of q the natural parameters of
the corresponding approximate factor. From now on, we add the supper script ˆ to the standard
parameters of qold to denote natural parameters. Continuing with the previous example, the first

natural parameter of the Gaussian posterior distribution of w
(k)
i under qold is m̂

(k)

i = m
(k)
i /v

(k)
i ,

where v
(k)
i is the variance of w

(k)
i under qold and m

(k)
i is its mean. The second natural parameter

is v̂
(k)

i = 1/v
(k)
i . However, as described before, it is better in practice to compute the natural

parameters of qold by subtracting the natural parameters of the corresponding approximate factor
to the natural parameters of q.

1.3.1 Approximate Factors Corresponding to the Likelihood

Consider the exact factor f
(k)
n ((w(k))Tx

(k)
n , σ2

(k)) = N (y
(k)
n |(w(k))Tx

(k)
n , σ2

(k)). To update the cor-

responding approximate factor f̃
(k)
n , we define the variable b

(k)
n = (w(k))Tx

(k)
n . The mean and

variance of b
(k)
n under q can be obtained from the standard parameters of this distribution. They

are µ
(k)
n = (m(k))Tx

(n)
n and Σ

(k)
n = (x

(k)
n )TV(k)x

(k)
n , respectively. They can be efficiently computed

if the Woodbury formula is used to evaluate V(k). The qold distribution is then given as:

qold(b(k)
n , σ2

(k)) = exp

b(k)
n µ̂

(k)

n −
Σ̂

(k)

n

2
(b(k)
n )2

 exp

{
−âk log(σ2

(k))−
b̂k
σ2

(k)

}
, (21)

where µ̂
(k)

n = µ
(k)
n /Σ

(k)
n − m̃(k)

n , Σ̂
(k)

n = 1/Σ
(k)
n − ṽ(k)

n , âk = âk − ã(k)
n and b̂k = b̂k − b̃(k)

n . In these

last expressions m̃
(k)
n , ṽ

(k)
n , ã

(k)
n and b̃

(k)
n are the natural parameters of the approximate factor f̃

(n)
n .

The other variables are the parameters of q. We are now interested in computing the normalization
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constant of f
(k)
n qold, Z

f
(k)
n

. In particular,

Z
f
(k)
n

=

∫
f

(k)
k (b(k)

n , σ2
(k))q

old(b(k), σ2
(k))db

(k)
n dσ2

(k)

=

∫
N (y(k)

n |b(k)
n , σ2

(k))q
old(b(k), σ2

(k))db
(k)
n dσ2

(k)

=
Γ(âk − 1)

(b̂k)âk−1

∫
T (y(k)

n |b(k)
n , s(k)

n , ν(k)
n ) exp

b(k)
n µ̂

(k)

n −
Σ̂

(k)

n

2
(b(k)
n )2

 db(k)
n

≈ Γ(âk − 1)

(b̂k)ak−1

∫
N (y(k)

n |b(k)
n ,Var(k)

n ) exp

b(k)
n µ̂

(k)

n −
Σ̂

(k)

n

2
(b(k)
n )2

 db(k)
n

=
Γ(âk − 1)

(b̂k)âk−1
N
(
y(k)
n |µ̂

(k)

n /v̂
(k)

n ,Var(k)
n + (v̂

(k)

n )−1
)√ 2π

v̂
(k)

n

exp

{
1

2

(ν̂
(k)

n )2

v̂
(k)

n

}
, (22)

where T (·|m, s, ν) denotes a Student’s T distribution with location parameter m, scale parameter

s and number of degrees of freedom ν; Γ(·) is the gamma function;ν
(k)
n = 2(ân − 1), Var(k)

n =

b̂k/(âk− 2), and s
(k)
n = b̂k/(âk− 1). Note that we have approximated the Student’s T distribution

with a Gaussian with the same mean and the same variance. This approximation is accurate

for high values of the degrees of freedom ν
(k)
n and has also been employed in [4, 3] to carry out

approximate inference.

The moments of f
(k)
n qold required to find qnew are all obtained from Z

f
(k)
n

[6]. In particular,

these moments are:

E
f
(k)
n qold

[
b
(n)
k

]
≈
∂ logZ

f
(k)
n

∂µ̂
(k)

n

∣∣∣∣∣
µ̂
(k)
n

, E
f
(k)
n qold

[
(b

(n)
k )2

]
≈ −2

∂ logZ
f
(k)
n

∂v̂
(k)

n

∣∣∣∣∣
v̂
(k)
n

,

E
f
(k)
n qold

[
1/σ2

(k)

]
≈
Z
f
(k)
n

(
µ̂

(k)

n , Σ̂
(k)

n , âk + 1, b̂k

)
Z
f
(k)
n

(
µ̂

(k)

n , Σ̂
(k)

n , âk, b̂k

) ,

E
f
(k)
n qold

[
1/(σ2

(k))
2
]
≈
Z
f
(k)
n

(
µ̂

(k)

n , Σ̂
(k)

n , âk + 2, b̂k

)
Z
f
(k)
n

(
µ̂

(k)

n , Σ̂
(k)

n , âk, b̂k

) , (23)

where Z
f
(k)
n

(·, ·, ·, ·) denotes the evaluation of Z
f
(k)
n

with those particular parameters for qold. Note

that we are not computing the expected sufficient statistics in the case of the Inverse Gamma
distribution over σ2

(k), but first and second moments of the inverse variance. These means that we
will not minimize the KL-divergence when computing qnew. In any case, matching these moments

will enforce that the approximate factor f̃
(k)
n is similar to the exact factor in regions of high

posterior probability, as indicated by qold. The advantage is that we can compute closed form
updates in EP.

Using the moments described above, we can identify the parameters of qnew that lead to the
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same moments. In particular,

µ(k)
n = E

f
(k)
n qold

[
b
(n)
k

]
,

Σ(k)
n = E

f
(k)
n qold

[
(b

(n)
k )2

]
− E

f
(k)
n qold

[
b
(n)
k

]2
,

âk =
E
f
(k)
n qold

[
1/(σ2

(k))
2
]

E
f
(k)
n qold

[
1/(σ2

(k))
2
]
− E

f
(k)
n qold

[
1/σ2

(k)

]2 ,
b̂k =

âk − 1

E
f
(k)
n qold

[
1/σ2

(k)

] . (24)

Given the parameters of qnew we can now compute the natural parameters of f̃
(n)
n using the

fact that it is proportional to the ratio between qnew and qold. Thus, we only have to subtract
natural parameters. Namely,

ṽ(k)
n =

1

Σ
(k)
n

− Σ̂
(k)

n , m̃(k)
n =

µ
(k)
n

Σ
(k)
n

− µ̂(k)

n , ã(k)
n = âk − âk , b̃(k)

n = b̂k − b̂k . (25)

The parameter c̃
(k)
n of f̃

(k)
n is set to guarantee that f

(k)
n qold and f̃

(k)
n qold integrate the same. Thus,

c̃
(k)
n is simply the ratio between the integrals of both terms:

c̃(k)
n =

Z
f
(k)
n
b̂âk−1
k√

2πΣ
(k)
n exp

{
− 1

2
(µ

(k)
n )2

Σ
(k)
n

}
Γ(âk − 1)

. (26)

1.3.2 Approximate factors Corresponding to the Robust Prior

Consider the exact factor g
(k)
i (w

(k)
i , zi, ωk, γi, τ

(k)
i , η

(k)
i ) = p(w

(k)
i |Ω) = {π(w

(k)
i )η

(k)
i δ

1−η(k)i
0 }zi

{[π(w
(k)
i )τ

(k)
i δ

1−τ(k)
i

0 ]ωk [π(w
(k)
i )γiδ1−γi

0 ]1−ωk}1−zi . To update the corresponding approximate factor

g̃
(k)
i , consider the the old distribution qold. This distribution is in this case:

qold(w
(k)
i , zi, ωk, γi, τ

(k)
i , η

(k)
i ) = exp

m̂(k)

i w
(k)
i −

V̂
(k)

i,i

2
(w

(k)
i )2

 exp{zip̂
(i)

z }×

exp{ωkp̂
(k)

ω } exp{γip̂
(i)

γ } exp{τ (k)
i p̂

(i,k)

τ } exp{η(k)
i p̂

(i,k)

η } (27)

where m̂
(k)

i = m
(k)
i /V

(k)
i,i − m̃

(k)
i , with m̂

(k)
i the i-th component of m̂(k) and V

(k)
i,i the i-th diagonal

element of V(k); V̂
(k)

i,i = 1/V
(k)
i,i − ṽ

(k)
i ; p̂

(i)

z = p̂
(i)
z − p̃(i,k)

z , p̂
(k)

ω = p̂
(k)
ω − p̃(i,k)

z , p̂
(i)

γ = p̂
(i)
γ − p̃(i,k)

γ ,

p̂
(i,k)

τ = p̂
(i,k)
τ − p̃(i,k)

τ and p̂
(i,k)

η = p̂
(i,k)
η − p̃(i,k)

η . In the previous expression m̃
(k)
i , ṽ

(k)
i , p̃

(i,k)
z , p̃

(i,k)
z ,

p̃
(i,k)
γ , p̃

(i,k)
τ and p̃

(i,k)
η are the parameters of the approximate factor g̃

(k)
i . The other variables are

the parameters of q. We are now interested in computing the normalization constant of g
(k)
i qold,

Z
g
(k)
i

. In particular,

Z
g
(k)
i

=

∫ ∑
zi,ωk,γi,τ

(k)
i ,η

(k)
i

g
(k)
i (w

(k)
i , zi, ωk, γi, τ

(k)
i , η

(k)
i )qold(w

(k)
i , zi, ωk, γi, τ

(k)
i , η

(k)
i )dw

(k)
i

= exp{p̂(i)

z }
{

exp{p̂(i,k)

η }Zπ + Zδ0

}
+

+
{

exp{p̂(k)

ω }
[
exp{p̂(i,k)

η }Zπ + Zδ0

]
+
[
exp{p̂(i)

γ }Zπ + Zδ0

]}
, (28)
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where Zπ is given by the convolution of an unnormalized Gaussian distribution and the Strawderman-
Bergen prior. This gives

Zπ =

∫
π(w

(k)
i ) exp

m̂(k)

i w
(k)
i −

V̂
(k)

i,i

2
(w

(k)
i )2

 dw
(k)
i

=
1

V̂
(k)

i,i − 1

√V̂ (k)

i,i exp

1

2

(
m̂

(k)

i

)2

V̂
(k)

i,i

− 1−

−
√

2πm̂
(k)

i

2

√
V̂

(k)

i,i − 1

exp

1

2

(
m̂

(k)

i

)2

V̂
(k)

i,i − 1


{

erf

(
−C/

√
V̂

(k)

i,i

)
+ erf (−C)

} , (29)

where C = m̂
(k)

i /

√
2(V̂

(k)

i,i − 1) and erf(·) is the error function. This last result extends the one

provided in [5], which gives the convolution when V̂
(k)

i,i = 1. When V̂
(k)

i,i < 1, Zπ is real but its

evaluation involves complex numbers. When V̂
(k)

i,i → 1, Zπ tends to the solution given in [5].
Similarly, Zδ0 is the convolution of an unnormalized Gaussian and a delta function centered at

zero. That is,

Zδ0 =

∫
δ(w

(k)
i ) exp

m̂(k)

i w
(k)
i −

V̂
(k)

i,i

2
(w

(k)
i )2

 dw
(k)
i = 1 . (30)

Given Zπ and Zδ0 , Z
g
(k)
i

can be readily computed.

The moments of g
(k)
i qold required to find qnew are all obtained from Z

g
(k)
i

[6]. In particular,

these moments are:

E
g
(k)
i qold

[
w

(k)
i

]
=
∂ logZ

g
(k)
i

∂m̂
(k)

i

∣∣∣∣∣
m̂

(k)
i

, E
g
(k)
i qold

[
(w

(k)
i )2

]
= −2

∂ logZ
g
(k)
i

∂v̂
(k)

i

∣∣∣∣∣
v̂
(k)
i

,

E
g
(k)
i qold

[zi] =
∂ logZ

g
(k)
i

∂p̂
(i)

z

∣∣∣∣∣
p̂
(i)
z

, E
g
(k)
i qold

[ωk] =
∂ logZ

g
(k)
i

∂p̂
(k)

ω

∣∣∣∣∣
p̂
(k)
ω

,

E
g
(k)
i qold

[γi] =
∂ logZ

g
(k)
i

∂p̂
(i)

γ

∣∣∣∣∣∣
p̂
(i)
γ

, E
g
(k)
i qold

[
τ

(k)
i

]
=
∂ logZ

g
(k)
i

∂p̂
(i,k)

τ

∣∣∣∣∣
p̂
(i,k)
τ

,

E
g
(k)
i qold

[
η

(k)
i

]
=
∂ logZ

g
(k)
i

∂p̂
(i,k)

η

∣∣∣∣∣∣
p̂
(i,k)
η

. (31)

Using the moments described above, we can identify the parameters of qnew that lead to the same
moments. In particular,

m
(k)
i = E

g
(k)
i qold

[
w

(k)
i

]
, V

(k)
i,i = E

g
(k)
i qold

[
(w

(k)
i )2

]
− E

g
(k)
i qold

[
w

(k)
i

]2
,

p(i)
z = E

g
(k)
i qold

[zi] , p(k)
ω = E

g
(k)
i qold

[ωk] ,

p(i)
γ = E

g
(k)
i qold

[γi] , p(i,k)
τ = E

g
(k)
i qold

[
τ

(k)
i

]
,

p(i,k)
η = E

g
(k)
i qold

[
η

(k)
i

]
. (32)
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Given the parameters of qnew we can now compute the natural parameters of g̃
(k)
i using the fact

that it is proportional to the ratio between qnew and qold. Thus, we only have to subtract natural
parameters. Namely,

m̃
(k)
i =

m
(k)
i

V
(k)
i,i

− m̂(k)

i , ṽ
(k)
i =

1

V
(k)
i,i

− V̂
(k)

i,i ,

p̃(i,k)
z = log

(
p

(i)
z

1− p(i)
z

)
− p̂(i,k)

z , p̃(i,k)
ω = log

(
p

(k)
ω

1− p(k)
ω

)
− p̂(i,k)

ω ,

p̃(i,k)
γ = log

(
p

(i)
γ

1− p(k)
γ

)
− p̂(i,k)

γ , p̃(i,k)
τ = log

(
p

(i,k)
τ

1− p(i,k)
τ

)
− p̂(i,k)

τ ,

p̃(i,k)
η = log

(
p

(i,k)
η

1− p(i,k)
η

)
− p̂(i,k)

η . (33)

The parameter s̃
(k)
i of g̃

(k)
i is set to guarantee that g

(k)
i qold and g̃

(k)
i qold integrate the same. Thus,

s̃
(k)
i is simply the ratio between the integrals of both terms:

s̃
(k)
i =

Z
g̃
(k)
i√

2πV
(k)
i,i exp

{
− 1

2

(m
(k)
i )2

V
(k)
i,i

} · 1

(1 + exp(p̃
(i,k)
z ))

· 1

(1 + exp(p̃
(i,k)
ω ))

1

(1 + exp(p̃
(i,k)
γ ))

· 1

(1 + exp(p̃
(i,k)
τ ))

· 1

(1 + exp(p̃
(i,k)
η ))

. (34)

where we have used the natural and standard parameters of qnew that result from computing the

product g̃
(k)
i .

1.3.3 Approximate Factors Corresponding to the Beta Priors

In this section we describe how to process the factor p(zi|ρz) = h
(i)
z (zi, ρz) = Bernoulli(zi|ρz).

Processing the factors corresponding to the priors of the other binary latent variables is very

similar and hence omitted. To update the corresponding approximate factor h̃
(i)
z , consider the

corresponding old distribution qold. This distribution is:

qold(zi, ρz) = exp(zip̂
(i)

z ) exp(â
(i)

z log(ρz) + b̂
(i)

z log(1− ρz)) , (35)

where p̂
(i)

z = p̂
(i)
z − p̃(i)

z , â
(i)

z = â
(i)
z − ã(i)

z , and b̂
(i)

z = b̂
(i)
z − b̃(i)z . In the previous expressions p̃

(i)
z ,

ã
(i)
z and b̃

(i)
z are the parameters of h̃

(i)
z . The other variables are the natural parameters of q. We

compute now the normalization constant of h
(i)
z qold, Z

h
(i)
z

. In particular,

Z
h
(i)
z

=

∫ ∑
zi

qold(zi, ρz)Bernoulli(zi|ρz)dρz

=

∫ ∑
zi

qold(zi, ρz)ρ
zi
z (1− ρz)1−zidρz

= exp(zip̂
(i)

z )

∫
exp((̂a

(i)

z + 1) log(ρz) + b̂
(i)

z log(1− ρz))dρz+

+

∫
exp(â

(i)

z log(ρz) + (b̂
(i)

z + 1) log(1− ρz))dρz

= exp(zip̂
(i)

z )β(â
(i)

z + 2, b̂
(i)

z + 1) + β(â
(i)

z + 1, b̂
(i)

z + 2) , (36)
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where β(·, ·) is the beta function.

The moments of h
(i)
z qold required to find qnew are all obtained from Z

h
(i)
z

[6]. In particular,

these moments are:

E
h
(i)
z qold

[ρz] =
Z
h
(i)
z

(p̂
(i)

z , â
(i)

z + 1, b̂
(i)

z )

Z
h
(i)
z

, E
h
(i)
z qold

[
ρ2
z

]
=
Z
h
(i)
z

(p̂
(i)

z , â
(i)

z + 2, b̂
(i)

z )

Z
h
(i)
z

,

E
h
(i)
z qold

[zi] =
∂ logZ

h
(i)
z

∂p̂
(i)

z

∣∣∣∣∣
p̂
(i)
z

. (37)

where Z
h
(i)
z

(·, ·, ·) indicates the evaluation of Z
h
(i)
z

with the natural parameters for qold specified

in its arguments. Note again that we are not computing the expected sufficient statistics in the
case of the Beta distribution over ρz, but first and second moments. These means that we will
not minimize the KL-divergence when computing qnew. In any case, matching these moments will

enforce that the approximate factor h̃
(i)
z is similar to the exact factor in regions of high posterior

probability, as indicated by qold. This has also been done, for example, in [1]. The advantage is
that we can compute closed form updates in EP.

Using the moments described above, we can identify the parameters of qnew that lead to the
same moments. In particular,

p(i)
z = E

h
(i)
z qold

[zi] ,

az =
E
h
(i)
z qold

[ρz]
(
E
h
(i)
z qold

[ρz]− Eh(i)
z qold

[
ρ2
z

])
E
h
(i)
z qold

[ρ2
z]− Eh(i)

z qold
[ρz]

2 ,

bz =

(
1− E

h
(i)
z qold

[ρz]
)(
E
h
(i)
z qold

[ρz]− Eh(i)
z qold

[
ρ2
z

])
E
h
(i)
z qold

[ρ2
z]− Eh(i)

z qold
[ρz]

2 . (38)

Given the parameters of qnew we can now compute the natural parameters of h̃
(i)
z using the

fact that it is proportional to the ratio between qnew and qold. Thus, we only have to subtract
natural parameters. Namely,

p̃(i)
z = log

(
p

(i)
z

1− p(i)
z

)
− p̂(i)

z , ã(i)
z = az − 1− â(i)

z , b̃(i)z = bz − 1− b̂
(i)

z . (39)

The parameter k̃
(i)
z of h̃

(i)
z is set to guarantee that h

(i)
z qold and h̃

(i)
z qold integrate the same. Thus,

k̃
(i)
z is simply the ratio between the integrals of both terms:

k̃(i)
z =

Z
h
(i)
z

β(az, bz)
(

1 + exp
{
p̂

(i)
z

}) (40)

where we have used the natural and standard parameters of qnew that result from computing the

product h̃
(i)
z qold.
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1.4 Approximation of the Marginal Likelihood

The marginal likelihood can be approximated by the normalization constant of the approximate
joint distribution q̃. That is,

ML ≈
∫ ∑

Ω

q̃(W,Ω,ρ,σ2)dWdσ2dρ

=

[
Nk∏
n=1

K∏
k=1

c̃(k)
n

][
d∏
i=1

K∏
k=1

s̃
(k)
i

][
d∏
i=1

k̃(i)
z

][
K∏
k=1

k̃(k)
ω

][
d∏
i=1

k̃(i)
γ

]
×

×

[
K∏
k=1

d∏
i=1

k̃(i,k)
τ

][
K∏
k=1

d∏
i=1

k̃(i,k)
η

][
K∏
k=1

(2π)
d
2

√
|V(k)| exp

{
1

2
(m(k))T(V(k))−1m(k)

}]
×

×

[
d∏
i=1

(
1 + exp

{
p̂(i)
z

})][ d∏
i=1

(
1 + exp

{
p̂(i)
γ

})][ K∏
k=1

(
1 + exp

{
p̂(i)
ω

})]
×

×

[
K∏
k=1

d∏
i=1

(
1 + exp

{
p̂(i,k)
τ

})][ K∏
k=1

d∏
i=1

(
1 + exp

{
p̂(i,k)
η

})]
×

× β(az, bz)β(aω, bω)β(aγ , bγ)β(aτ , bτ )β(aη, bη)

β(1, 1)5

K∏
k=1

Γ(ak)55

Γ(5)bk
ak , (41)

where we have used the fact that q̃ is the posterior approximation q without normalization. Thus,
the approximation to the marginal likelihood is expressed in terms of the parameters (natural and
standard) of q. Furthermore, all operations involving V(k) can be carried out with cost O(N2

kd),
using the special structure of this matrix. For example, |V(k)| can be efficiently computed using
Sylvester’s determinant theorem. The total cost of computing the approximation to the marginal
likelihood is O(

∑K
k=1N

2
kd).

2 Denoising of Natural Images

In this section we show a representative example of the 64 different groups of non-overlapping
blocks considered in the experiments involving the denoising of the house image. Recall that there
is one group of 32×32 blocks, 7 groups of 32×31 blocks, 7 groups of 31×32 blocks and 49 groups
of 31× 31 blocks. Figure 1 shows a representative example of each these groups. The group that
contains 32×32 blocks, a group that contains 32×31 blocks, a group that contains 31×32 blocks
and, finally, a group that contains 31× 31 blocks.

Recall that each group of non-overlapping blocks is regarded as a multi-task learning problem
with as many tasks as blocks. In particular, y(k) = X(k)w(k)+ε(k), where y(k) denotes a particular
block, X(k) is a wavelet basis corresponding to the Haar wavelet and ε(k) is additive Gaussian
noise. The main advantage of using these groups in the learning process is that each multi-task
learning problem corresponding to each of the 64 groups of non-overlapping blocks can be solved in
parallel using each multi-task method. This is specially convenient because some of the methods
we compare with are particularly slow, e.g., MTFSDep.

Given an estimate of w(k), ŵ(k), these coefficients can be projected onto X(k), i.e., by comput-
ing X(k)ŵ(k), to get an estimate of the original noise-less block. After doing this for each block,
the original image can be reconstructed simply by carefully averaging the different blocks as in
[7].
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