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1 EP updates for RMGPC

Before describing the EP updates for the proposed model, we consider the following re- parameterlzatlon
of Q and the approximate terms 9z, with i = 1,...,n and k # y;, and ¥y, withi =1,

pi =0(q), Dik = 0 (Gik) » pi =0 (q) , (1)
where ¢;, ¢;r, and §; are new parameters taking values in R and o(+) is the logistic function
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The logistic function is used to simplify the updates and to improve the numerical stability of the
algorithm, especially when the posterior probability of z; = 1 is very close to the extreme values 0
or 1. For the sake of clarity, we present the update operations that do no consider any damping,
i.e., € = 1. Incorporating the damping effect in the EP updates is straight-forward and is hence
omitted.

1.1 Updates corresponding to the Likelihood

In this section we describe in detail the EP updates for the approximate terms 1/311@, withi=1,...,n
and k # y;, correspondmg to the likelihood. Recall that these factors are updated in parallel
Specifically, for each 1/% we compute Q\’/’”‘ x Q/ 1/%1« as follows:
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The other parameters of Q\J”"k are not required since the exact factor 1;; does not depend on
them. Given each Q\"i* we compute the updated approximate factor 1;; as follows:
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where ®(+) is the cumulative probability function of a standard Gaussian distribution and
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The update of the parameter §;; is addressed later on, since it is only required to compute Z ~
P(y|X). Once each each 1);; has been updated, we recompute Q as the normalized product of all
the approximate terms. This gives

qi = Z@'k + G, 2= (K, '+ Ak)il ; pr = Zpo", (6)

where A* and v* are respectively defined as in (17) and (18), in the main manuscript. The
parameters a and b of @ do not change in these updates. i i

Once EP has converged, we compute §;; to guarantee that @ik O\¥ir and i Q\Yik integrate
up to the same value. This gives
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1.2 Updates corresponding to the Prior for z given p

In this section we describe in detail the EP updates for the approximate terms ¥, withi=1,...,n
corresponding to the prior for z given p. For each v, we compute Q\¥i oc Q/1); as follows:

" =g — G, M =a—a+1, BV =b— b+ 1. (8)

The other parameters of Q\J’i are not required since the exact factor 1; does not depend on them.
Given Q\¥i, we compute the updated approximate factor v; as follows:

G = loga\¥ — log b\Vi | G =a*—a\¥i 11, by = b — b\ 41, (9)
where
* €1 — €2 % ey —eg
a3 1-en?=2. (10)
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As suggested in [1] (see Section 3.3.3), in Eq. (9) we have matched the first and the second
moments of p instead of the sufficient statistics. The motivation is that this provides a closed form
expression for the update of z/;z The update of the parameter §; is addressed later on, since it is
only required to compute Z ~ P(y|X).

Once 1; has been updated, we update Q. In particular, we set

a=a\¥ fa;—1, b=b\" £b—1, Qi:qi\lﬂl+‘ji- (12)

Once EP has converged, we compute §; to guarantee that @-Q\J’i and z/JiQ\J” integrate up to
the same value. This gives
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2 Extra Experiments

In this section we further evaluate RMGPC, SMGPC and HTPC under different noise conditions.
For this purpose we consider a linear synthetic classification problem characterized by the following
labeling rule:

y; = arg ;nax fe(x3), (14)

where k goes from 1 to 5, i.e., the problem has 5 different classes. Each latent function fj is
defined as follows:

fr(x) = wix, (15)

where wy, is a hyper-plane generated from a factorizing Gaussian distribution with zero mean and
unit variance in each component. The data instances x of this problem are also generated from
the same distribution. The dimension d of each x and, hence, of each wy, is set equal to 5.

Using the labeling rule (14) and the specifications described before, we randomly generate 100
training and test sets containing 100 and 1000 instances, respectively. A different set of latent
functions fi,..., f5 is considered in each realization. This process is repeated three times, and
each time we contaminate the 100 training sets with a different type of noise. Specifically, we
consider three different noise scenarios:

1. Noise near the decision boundaries: For each instance, we contaminate each latent
function f; with some additive Gaussian noise €, with zero mean and standard deviation
equal to 0.5. Under this noise scenario SMGPC is expected to be optimal since it assumes
latent Gaussian noise around each latent function f.



2. Arbitrary noise in the labels of the data: The class label of 20% of the training
instances are randomly chosen from the 5 different potential class labels of the problem.
Under this scenario RMGPC is expected to perform significantly better than SMGPC and
HTPC, which cannot consider noise in the labels of the data independently of their distance
to the decision boundaries.

3. Mix of both types of noise: We simultaneously consider the two types of noise described
before. This means that in the data there are noisy instances close to the decision boundaries
and noisy instances that are independent of their distance to the decision boundaries.

In the two first scenarios we have fixed the level of noise so that the best performing model
has similar error rates.

Next, we evaluate the prediction performance of RMGPC, SMGPC and HTPC using each one
of the training and test sets generated. However, since the classification problem we are analyzing
is linear, instead of using the Gaussian covariance function described in Eq. (22) of the main
manuscript, we employ in RMGPC, SMGPC and HTPC a linear covariance function defined as:

c(xi,x5) = X;er . (16)

The remaining parameters of RMGPC, SMGPC and HTPC are fixed as described in Section 4.1
of the main manuscript. Since the class distributions of the problem considered are balanced, we
do not report for each method the average balanced class rate on the test set, but the prediction
error. Specifically, the results for each different noise scenario are displayed for RMGPC, SMGPC
and HTPC in Table 1. When the performance of a method is significantly different from the
performance of RMGPC, as estimated by a Wilcoxon rank test (p-value < 1%), the corresponding
error is marked with the symbol <. The table shows that RMGPC performs best in the second
and third noise scenarios while it performs only worse in the first.

Table 1: Average test error in % of each method on the synthetic problem for each noise scenario.

Scenario | RMGPC SMGPC HTPC
1 15.24+2.8 134424 < 14.5+3.1 <
2 13.64+3.1 22.1+4.1 < 21.54+4.4 <«
3 19.443.7 24.6+4.4 <1 24.245.0 <

The figures reported in Table 1 indicate that RMGPC provides much better results when data
instances whose labels strongly disagree with the assumed labeling rule (outliers) are present in
the data. When such instances are not present in the data RMGPC is found to perform only
slightly worse, although the differences are statistically significant.
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