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ABSTRACT
Low-code development platforms allow users with a low techni-
cal background to build complete software solutions, typically by
means of graphical user interfaces, diagrams or declarative lan-
guages. In these platforms, recommender systems play an impor-
tant role as they can provide users with relevant, personalised
suggestions generated according to previously developed software
solutions. However, developing recommender systems requires a
high investment of time as it implies the selection and implemen-
tation of a suitable recommendation method, its configuration for
the problem and domain at hand, and its evaluation to assess the
accuracy of its recommendations.

To alleviate these problems, in this paper, we present the first
steps towards a generic model-driven framework capable of gen-
erating ad-hoc, task-oriented recommender systems for their inte-
gration on low-code platforms. As a proof of concept, we present
some preliminary results obtained from an offline evaluation of
our framework on three datasets of class diagrams. The results
show that the proposed framework is capable of providing relevant
recommendations in the given context.
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• Software and its engineering→ Development frameworks
and environments.
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1 INTRODUCTION
Model-Driven Engineering (MDE) is a widely used approach for
software development employing high-level formal abstraction [8].
This approach uses models as the key development artefact. In
MDE, models can be used to specify, analyse, test, simulate, execute,
generate code and maintain systems. Models are frequently defined
using Domain-Specific Languages (DSLs) that provide primitives
and concepts representing the abstractions of a domain in an accu-
rate manner [6, 34]. Ameta-model, which is itself a model, describes
the abstract syntax of a DSL. Hence, MDE is considered an efficient
way to improve the quality of software by automating repetitive,
error-prone or time-consuming tasks [8].

On the other hand, Low-Code Development Platforms (LCDPs)
are software development platforms on the Cloud [32]. They fol-
low a Platform-as-a-Service (PaaS) model whereby users can build
fully operational applications via graphical interfaces, diagrams
and declarative languages. LCDPs provide users with a fully man-
aged environment for the entire application life cycle. The users
of LCDPs – called citizen developers – typically lack a background
in programming. Hence, it is important that LCDPs are able to
integrate useful, easy-to-use mechanisms to assist these users in
their development tasks. Recommender systems are one of such
mechanisms.

In Software Engineering (SE), modern Integrated Development
Environments (IDEs) offer plenty of functionalities to help devel-
opers being more efficient, such as intelligent auto-completion or
context-aware quick fixes [7]. Recently, the SE community has been
proposing tools to support SE tasks in a personalised way. Some of
these tools incorporate recommender systems to help developers
finding information and making decisions [23]. In SE, some exam-
ples of this include APIs usage pattern recommendation [19], the
recommendation of source code [4] and debugging-related infor-
mation [5] useful to the software engineer.

In this paper, our goal is to enhance LCDPs with recommender
systems targeted to citizen developers, akin to those found in mod-
ern IDEs. These systems would exploit the knowledge captured
by applications previously defined within the LCDP, in order to
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provide personalised suggestions on how to complete new applica-
tions (e.g., adding missing attributes, or incorporating new concepts
formerly used in similar solutions). The recommendations may be
available using a range of comprehensible means for citizen devel-
opers, such as indicators in the diagrams, or chatbots interacted
by natural language. In this context, the challenge from the LCDP
developer’s point of view is to devise mechanisms that simplify the
creation of such recommender systems. This is a non-trivial task
that encompasses the selection of a recommendation method suit-
able for the target problem, its adaptation to the concepts managed
by the LCDP, and its training and evaluation until suggestions are
proved to be reliable enough.

To address this task, this paper proposes an MDE solution to
automate the generation of recommender systems for LCDPs. It is
based on a DSL to describe the different aspects of recommender
systems, including a description of the recommended items and
their features, the users of the recommendations, the recommenda-
tion method, and the evaluation procedure. As a proof of concept,
we apply our solution to the development of a recommender sys-
tem of missing class diagrams elements (attributes, methods and
superclasses) on three existing class diagram datasets. With this
case study, we aim to answer the following research questions:
RQ1 Can a recommender system help in class modelling tasks?, RQ2
Which recommendation method of relevant attributes, methods and
superclasses has the best performance?, RQ3 Can hybrid approaches
be beneficial for the recommendation of attributes, methods and su-
perclasses?, RQ4 Which method performs better when considering
user and item coverage in the recommendation of relevant attributes,
methods and superclasses?.

This paper is organised as follows. In Section 2, we present some
background on recommender systems. Section 3 introduces a mo-
tivating example and the architecture of our proposed solution.
Section 4 describes the main components of our proposal. Then,
Section 5 shows our proof-of-concept evaluation. Finally, we posi-
tion our work with respect to the state-of-the-art in Section 6 and
present the conclusions and directions for future work in Section 7.

2 RECOMMENDER SYSTEMS
Recommender Systems (RSs) emerged in the mid-90s as an inde-
pendent research field from areas such as cognitive science, approx-
imation theory and information retrieval [1]. RSs are software tools
and techniques that suggest items considered relevant for a partic-
ular user. “Item” is the prevalent word to refer to what the system
recommends, e.g., the products to buy on an online retail store, or
the songs to listen on a music streaming service provider platform.
These systems support individuals to evaluate an overwhelming
amount of item options [22]. For this purpose, RSs may exploit item
characterizations based on a range of item features (e.g., the genre
in a movie recommender) [1].

RSs can be classified into the following three broad categories
according to how the recommendations are made: content-based,
where users are recommended items similar to the ones they pre-
ferred before; collaborative filtering, where users are recommended
items that other people with similar preferences like; and hybrid,
which combines the previous two techniques to avoid the limita-
tions of the content-based and collaborative methods. Specifically,

content-based approaches tend to have limited content analysis,
and present limitations in user preference sparsity and user and
item cold-start situations. A user cold-start situation happens when
the user has only rated a reduced number of items, in which case,
the RS cannot profoundly understand the user preferences and pro-
vide accurate recommendations [1]. The item cold-start situation is
similar, but for items.

Another way to classify RSs is based on the recommendation
output. This can be either an estimation of user preference values
(usually expressed in the form of numeric ratings) for items, or
the generation of an ordered (ranked) list of the most relevant
items. To measure the RS performance, there are different metrics
for each type of approach. Some metrics are based on the rating
prediction error (e.g., MAE, RMSE), and others measure the item
ranking quality (e.g., precision, recall, nDCG, MRR) [13].

In general, an RS is built and operates with matrices that cap-
ture the user and item attributes and interactions. As an example,
Figure 1(a) shows a user-item matrix, where 𝐼0–𝐼3 represent items,
𝑈0–𝑈3 represent users, and each cell R(u,i) of the matrix contains
the rating given by the user u to the item i (a dash if the user has
not rated the item) [22, 31]. Similarly, Figure 1(b) shows an example
of an item-feature matrix. In this case, 𝐼0–𝐼3 are items, 𝑓0–𝑓3 are
item features, and each cell is set to 1 if the item has the feature,
and to 0 otherwise.
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Figure 1: Examples of matrices used in RSs.

Software development environments are starting to integrate
RSs to assist developers in various software engineering activities,
from reusing code to effective bug reports [23]. Examples of recom-
mended items in these systems are method calls that can be useful
in a certain context [33], software components that may be reused
in a given situation [17], and required software artefacts [16].

Likewise, RSs for modelling notations have started to appear,
such as an RS capable of semi-automatically creating the draft of
web application specifications by reusing models of previous soft-
ware cases [20], and an RS for model-driven software engineering
which considers the history of past model changes [15].

3 MOTIVATION AND OVERVIEW
In this paper, our goal is to devise mechanisms to simplify the
development of RSs for LCDPs. Hence, in the following, Section 3.1
first presents a motivating running example, and then, Section 3.2
provides an overview of our proposal.
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3.1 Motivating example
Many LCDPs, such as ZappDev1, MetaDev2 and Mendix3, require
identifying the concepts that the application being developed will
manage, together with their attributes and methods. This informa-
tion is typically provided bymeans of forms or using a diagrammatic
notation, such as class diagrams.

Figure 2(a) shows an example where a user has created an Author
class with a couple of attributes, and now wonders whether the
class misses any important attributes. In other scenarios, the user
may proactively ask other more experienced people or search on
the Internet. However, this may be too demanding for the average
LCDP user (i.e., the citizen developer). Therefore, in this case, we
prefer to extend the LCDP with an RS that analyses previously
developed similar classes to provide a ranked list of recommended
attributes for the new class.

Author

-	id:	EInt
-	name:	EString

Chef

-	id:	EInt
-	name:	EString
-	mobile:	EInt

+	mobile:	EInt

+	address:	EString

+	lastname:	EString

Recommended	items

+	email:	EString

+	address:	EString

+	dayOfBirth:	EString

(a) Active model

Client

-	id:	EInt
-	name:	EString
-	lastname:	EString
-	dayOfBirth:	EDate
-	address:	EString
-	mobile:	EInt
-	email:	EString
-	username:	EString
-	password:	EString
+	newClient()

(b) Repository of previ-
ous models

Figure 2: Motivating example.

As an example, Figure 2(b) shows a Client class created some
time before by a different user, which is conveniently stored in a
repository together with many other classes. The RS would detect
that the Client class is similar to the Author class because it defines
the same attributes as this latter class (id, name). Hence, it would
recommend adding Client’s attributes (e.g., mobile and address) to
Author. Moreover, the RS will use some algorithm to identify the
attributes of Client that are themost relevant for Author. For instance,
classes with attributes id and name may have been previously used
more commonly with attributes like mobile than with attributes like
password.

Altogether, in this example, the recommended items are at-
tributes and methods, and the similarity between classes is based
on the similarity of their attributes and methods (using criteria like
name, visibility and type). However, other LCDPs may use alter-
native modelling notations, and the recommendation task may be
different as well. Motivated by this situation, we envision a generic
framework to facilitate the creation of RSs for specific LCDPs. The
next subsection provides a high-level overview of its architecture.

1http://www.zappdev.com/
2https://metadev.pro/
3https://www.mendix.com/

3.2 Overview of the approach
Figure 3 shows the architecture of our proposed approach, which
applies MDE techniques to the development of RSs. First (label 1),
the recommender system designer provides the meta-model of the
notation that will be the subject of the recommendation. In our run-
ning example, this is the meta-model of class diagrams. We assume
the existence of a repository of models conformant to the meta-
model, which will be used for the recommendation (label 2). Then,
the designer uses a textual DSL (label 3) to define the meta-model
elements that will play the roles of user, item and item features, as
in traditional RSs. The DSL also permits customising other aspects
of the RS, such as the maximum number of recommended items, the
applied recommendation method, and the recommendation format
that is the best fit for the task at hand.

Configure:
-	User
-	Item
-	Item	features
-	Recommender			
			configuration

Metamodel

Model	XMI

Textual	DSL

Models
Repository

Recommender	
System	Designer

Modeller/
Citizen	Developer

Recommendation
Engine

Query Aswer Item
Ranking	of

recommended
items

Chatbot

Plug-in

Low-Code	
Development	
Platform

Input
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system	
framework
settings

1

3

4

5

2

Active	Model
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<<
co
nf
or
m
s	t
o>
> <<conform
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Figure 3: Overview of the proposed approach.

Starting from this information, our framework will generate
a tailored RS available as a plug-in for the LCDP (label 4). This
way, the citizen developers will be offered the recommendations
within the LCDP environment (label 5). We foresee the provision
of alternative ways to render the recommendations, such as tips
over the diagram elements, example fragments, or by means of
query-answer chatbots addressed in natural language.

4 PROPOSED APPROACH
This section details the main components of our proposal. Figure 4
shows the steps involved in the configuration and generation of
an RS with our approach. In a first step, the RS designer needs to
provide some data, specifically, the meta-model of the notation for

http://www.zappdev.com/
https://metadev.pro/
https://www.mendix.com/
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which the RS is to be developed, and the set of instance models to be
used for training the RS. In step 2, the RS designer uses the DSL to
configure the desired features of the RS. From this information, the
RS designer can trigger the generation of the RS. This generation
comprises steps 3 to 7, which are completely automated.

1 3 4 5 6 7 

data 
gathering 

data 
preparation 

data 
splitting 

RS creation 
& training 

RS 
evaluation 

RS 
deployment 

2 

RS config   
via DSL 

matrices  training set, 
test set 

    [configuration]                                              [automatic] 

Figure 4: Overview of the process

In step 3, the data provided in step 1 are prepared to produce
the user-item and item-feature matrices, considering the specific
items and features indicated in the RS configuration. Then, the data
are split into two sets (step 4): one is used for training the RS (step
5), and the other one is used for evaluating the accuracy of the RS
after its training (step 6). Finally, in step 7, the resulting RS can be
deployed and used to obtain lists of recommended items.

In the following subsections, we provide additional details of the
DSL, the data preparation step and the recommendation engine.

4.1 Domain-specific language
This section describes the data gathering and the configuration of
the RS via a DSL (steps 1 and 2 of Figure 4). We have designed a
DSL to configure RSs for arbitrary languages that are defined by
a meta-model. The DSL allows configuring the recommendation
method, the data splitting method, the evaluation method, and the
kind of elements to be recommended. The DSL provides a high-
level syntax for this task, which avoids the RS designer the use of
lower-level general-purpose programming languages like C or Java
(typically more technical and complex) or the need to have deep
expertise in libraries for RSs.

Figure 5 shows a meta-model that captures the main elements
of the DSL. RecommenderConfiguration is the root class that contains
the other classes, and specifies the name of the recommender, the
meta-model of the notation for which the RS is being defined, and a
set of instance models conformant to this meta-model. The instance
models will be used to train the recommender.

The RecommendationMethod class permits selecting the recom-
mendation methods of interest (e.g., item popularity, collaborative
filtering, content-based) and configuring their parameters (e.g., the
neighbourhood size for collaborative filtering methods). The Split-
Method class allows customising how to split the set of provided
instance models for training and testing the RS. In particular, it
defines the split type (e.g., cross-validation, random), the number
of folds (if needed), the splitting method (per-user or per-item),
and the percentage of data used for training the RS (the rest of
the data will be automatically assigned for testing). The Evaluation-
Method class defines all the configuration related to the evaluation
of the RS, namely, the metrics used to evaluate the RS (e.g., pre-
cision, recall, F1), the maximum number of recommended items,
and the relevance threshold. The EvaluationResult class represents
the values of the evaluation metrics after executing each selected

RecommenderConfiguration 

name:                   String 
metaModelURI:  String 
repositoryURI:     String 

DomainClass 

split methods 1..* evaluation 

Metric 

name: metricList 

RecommedationMethod 

method: MethodList 

EvaluationMethod 

maxRecommendation: Int= 5 
relevanceThreshold: Double 

EvaluationResult 

name: String 
value: Float 

SplitMethod 

splitType:  SplitType= CROSSVALIDATION 
nFolds:      Int= 10 
perUser:   Boolean= true 
perItem:   Boolean= false 
percentageTraining: Double 

NeighbourhoodSize 

value: Int[0..*] 

* neighbour 
1..* metric result 

«enumeration» 
MetricList 

PRECISION 
RECALL 
FSCORE 
NDGS 
ISC 
USC 

«enumeration» 
MethodList 

POP 
CFUB 
CFIB 
CB 
CBUB 
CBIB 

«enumeration» 
SplitType 

CROSSVALIDATION 
RANDOM 
VALIDATION 
TEMPORAL 

user 

class 

Domain 
Property 

«from Ecore» 
EClass 

Simple 
Feature 

DerivedProperty 

expression: String 

«from Ecore» 
EStructuralFeature 

* 

classes 
* 

items 

pk 

features 
* 

feature 

Figure 5: Meta-model of the DSL.

recommendation method. DomainClass allows specifying the type
of the model elements that will play the role of user in the context
of the RS. Likewise, DomainProperty is used to specify the type of the
items to be recommended, which can be either features (attributes
or references) of the specified DomainClass or derived features via
expressions.

Listing 1 illustrates the textual concrete syntax that we have
devised for the DSL, and which is currently being developed. The
listing configures the RS for our running example. For clarity, we
assume our RS is to be developed for simple class diagrams, confor-
mant to the simple meta-model shown in Figure 6. This meta-model
allows the specification of ClassDeclarations, AttributeDeclarations and
MethodDeclarations.

Program 

pName : EString 

ClassDeclaration 

name: EString 
isAbstract: EBoolean 

MethodDeclaration 

name: EString 
returnType: EString 

Parameter 

name: EString 
type: EString 

AttributeDeclaration 

attrName: EString 
attrType:  EString 
isPublic: EBoolean 

classes 1..* 

methods 
* 

parameterList 

* 

attributes 

* 

superclasses 
* 

Figure 6: Simple meta-model for class diagrams.

In Listing 1, lines 1–2 identify the meta-model of the language
the RS is built for (cf. Figure 6), and the URL of a repository of
instances of this meta-model (step 1 in Figure 4). The following
lines configure the RS (step 2 in Figure 4). Lines 5–6 specify the
meta-model elements that will play the roles of users and items in
the RS. These elements must belong to the meta-model provided
in line 1. The listing sets the class ClassDeclaration as the User of
the RS, while its attributes, methods and superclasses are set as the
Items of ClassDeclaration. This means that the RS will be able to
recommend these three kinds of items for a given class.

Then, lines 9–18 define the primary key used to identify each
user and item in the RS, as well as the features used for comparing
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Listing 1: Example of recommender system configuration
1 Metamodel: "/ SimpleOOPL.ecore"
2 Repository: "/ Instances /"
3
4 // Definition of user and items
5 Users: ClassDeclaration {
6 Items: attributes , methods , superclasses; }
7
8 // Definition of primary keys (pks) and features
9 ClassDeclaration {
10 pk: name; }
11
12 AttributeDeclaration {
13 pk: attrName;
14 features: attrName , attrType; }
15
16 MethodDeclaration {
17 pk: name;
18 features: name , returnType; }
19
20 // Recommender preferences
21 Recommendations {
22 //split configuration
23 Split {
24 splitType: CrossValidation;
25 nFolds: 10;
26 perUser: true;
27 percentageTraining: 0.8; }
28
29 // methods configuration
30 Methods {
31 collaborativeFiltering: pop , cfub(2,3,5,10), cfib;
32 contentBased: cb;
33 hybrid: cbub(2,3,5,10), cbib (2,3,5,10); }
34
35 // evaluation configuration
36 Evaluation {
37 metrics: precision , recall , f1, ndgs , isc , usc;
38 maxRecommendations: 5;
39 relevanceThreholds: 0.5; }}

users or items of the same type. For instance, lines 12–14 specify
this information for the item AttributeDeclaration. In particular, its
attribute attrName will be used as its primary key, and the features
attrName and attrType will be used for the comparison of attribute
declarations.

The remainder of the listing declares recommender preferences.
The Split fragment (lines 23–27) configures the application of the
cross-validation split method type with 10 folds, following a per
user technique, and using 80% of the input data as training data.
TheMethods fragment (lines 30–33) selects the recommendation
methods to apply and evaluate. Among others, the DSL designer
has selected some collaborative filtering methods such as pop (item
popularity) and cfub (collaborative filtering user base with 2, 3, 5
and 10 neighbours). Section 5.2.2 will describe these methods. Fi-
nally, the Evaluation fragment (lines 36–39) selects the evaluation
protocol. In particular, line 37 chooses the metrics to be used for
the evaluation, line 38 specifies the number of items to recommend,
and line 39 defines a relevance threshold.

4.2 Data preparation
This section describes the data preparation for the RS (step 3 in
Figure 4). Once the RS has been configured using the DSL, the first
step that our framework performs is preparing the data for building
and evaluating the RS. Figure 7 shows the methodology for this.
First, the framework retrieves the collection of models specified
with the DSL (1). Then, it extracts the model objects corresponding
to the configured types of users, items and item features (2). Finally,

it generates a user-item matrix and an item-feature matrix for them
(3). As we explained in Section 2, the user-item (resp. item-feature)
matrix contains the users (resp. items) as rows and the items (resp.
features) as columns. Then, each cell is set to 1 if the user (resp.
item) has the item (resp. feature), and to 0 otherwise.

Meta-model.ecore

model.xmi

Data
preprocessing

Input 1

2

user-item	matrix

item-feature	matrix

Output 3

model.xmimodel.xmi

Figure 7: Data preparation steps.

Figure 8 shows an example of data preparation for the running
example. To ease understanding, we assume that there is a single
class diagram with three classes (1). The table with label 2 shows
the extracted users, i.e., the three classes. The table with label 3
shows the extracted items, i.e., each different attribute and method
declaration. The item comparison is based on the features selected
in Listing 1 (e.g., attrName and attrType for attributes). The table
with label 4 shows the value of those item features. From this
information, the framework builds the user-item matrix shown to
the right (5), where each row represents a class, and each column
represents an attribute, method or superclass. The figure also shows
the generated item-feature matrix (6).

User-item	matrix

u0
u1
u2

i0 i1 i2 i3
0 0 1
1
1 0 1

1 0
0
0
1

user0 user1 user2

Item-feature	matrix

i0
i1
i2

f0 f1 f2 f3
1 0 0
0
0 0 1

1 0
0
0
0

i3 0 0 0 1

1

2 5

6

ClientAccountBankname	(pk)

item0 item1 item23
namecreditidattrName	(pk)

item3
email

feature0 feature1 feature24
namecreditidattrName

feature3
email

EStringEDoubleEIntattrType EString

Bank

-	name:	EString

Client

-	id:	EInt
-	name:	EString
-	email:	EStringAccount

-	id:	EInt
-	credit:	EDouble

Figure 8: Example of data preparation.

4.3 Recommendation engine
This section describes the data splitting, the RS creation and train-
ing, the RS evaluation, and the RS deployment (steps 4–7 in Fig-
ure 4).

The matrices generated by the data preparation step are used to
build the RS, as presented in Figure 9. Specifically, our framework
splits the provided data into two sets: one for training the RS, and
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the other to evaluate the quality of the resulting system (2) (step
4 in Figure 4). The splitting is made according to the specified
protocol (see lines 23–27 in Listing 1). Next, the framework uses
the configured recommendation methods (3) to train the RS with
the training set (4) (step 5 in Figure 4). The RS designer may have
configured several methods, as in lines 30–33 in Listing 1, and
hence, several candidate RSs may be generated. Then, the test set
is applied to each candidate system, and a score is computed based
on the obtained results in each case (5). Finally, each candidate RS
is evaluated (step 6 in Figure 4) according to the specified metrics
(6, see lines 36–39 in Listing 1), and the results are made available
for the designer inspection.

Evaluate	RS

Learning
Algorithms

Score	RS

Train	RS
user-item	matrix

item-feature	matrix

Dataset 1

Data	splitting2

3

4

6

5

Recommendation
method

Training	set

Test	set

Trained	RS

RS	scores	

RS	Evaluation

Figure 9: Steps to build the recommendation engine.

In the long term, we envision an intelligent framework that is
able to suggest the best configuration for the target recommenda-
tion task and the available data (step 7 in Figure 4). This would
free the RS designer from having to possess deep expertise in RS
techniques.

5 PROOF OF CONCEPT
In this section, we present some initial results of our envisioned
framework, which is being developed using Java and the Eclipse
Modeling Framework (EMF) [29]. Effectively, the latter means that
our RSs are applicable to languages defined by an Ecore meta-model.
We currently have automated support for data preparation, data
splitting, RS training and RS evaluation. The configuration data
must be provided programmatically though, as the configuration
DSL, while designed, is still under development. The deployment
of the generated RS in an LCDP is also future work.

To have an initial assessment of our framework, we have applied
it to the construction of the RS used throughout the paper as a run-
ning example. The RS would be integrated into an LCDP and would
suggest attributes, methods and superclasses that may be added
to new classes, based on the definition of other similar classes. By
means of this experiment, we aim to answer the research questions
stated in the introduction.

Next, Section 5.1 details the datasets used in the evaluation,
Section 5.2 reports on the experiment, Section 5.3 presents the
results and the answer to the research questions, and Section 5.4
concludes by identifying some threats to validity.

5.1 Experiment setup
We run the experiment on three datasets. Table 1 shows some size
metrics of them (number of models, users, items and item features).

Table 1: Description of the datasets.

Synthetic SyntheticExtended AtlanEcore
Num. models 29 58 300
Num. users 150 181 6555
Num. items 412 520 4338
Num. features 438 557 4867

The Synthetic dataset contains 29 models conformant to the run-
ning example meta-model (cf. Figure 6). The models were created
manually using EMF4. These models are based on class diagram
examples from the internet. We have made sure that the models cre-
ated have all the characteristics normally present on class diagrams,
such as attributes, methods and inheritance hierarchies.

The SyntheticExtended dataset extends the first one with fur-
ther models which are similar to those in the Synthetic dataset but
substituting the name of some model elements by synonyms.

Finally, since meta-models are similar to class diagrams, our third
dataset (AtlanEcore) is composed of 300 Ecore meta-models from
the AtlanEcore Zoo5. This is an open-source repository of Ecore
meta-models, which are conformant to the Ecore.ecore meta-meta-
model. With this last dataset, we want to validate the versatility of
our proposal.

The configuration of the RS for the first two datasets was the one
shown in Listing 1. The configuration for the AtlanEcore dataset
was similar but using types from Ecore.ecore (i.e., setting EClass
as the user of the RS; eAttributes, eOperations and eSuperTypes as the
items; and so on).

5.2 Experiment
Next, we describe the splitting protocol applied to the data of our
experiment (Section 5.2.1), the evaluated recommendation methods
(Section 5.2.2), and the used evaluation metrics (Section 5.2.3).

5.2.1 Data splitting. We used 10-fold cross-validation with 80% of
the data as a training set, and the remainder 20% as a test set (cf.
lines 23–27 in Listing 1). We followed a per-user method, whereby
the training and test sets are built per available user (i.e., for each
class, it takes 80% of its items for training and the rest for testing).
Using 10-fold cross-validation avoids over-specialization. This is so
as the training set is split into 10 subsets, the training is performed
10 times taking one of the subsets for testing and the others for
training, and finally, the average performance of the 10 learned RSs
is reported.

5.2.2 Recommendation methods. We trained the RS using a vari-
ety of collaborative, content-based, and hybrid recommendation
methods (cf. lines 30–33 in Listing 1). For reproducibility, we used
the RankSys framework6 to implement the methods. The recom-
mendation consisted of the top 5 highest-rated items.
4https://www.eclipse.org/modeling/emf/
5https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore
6http://ranksys.org/

https://www.eclipse.org/modeling/emf/
https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore
http://ranksys.org/
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In particular, the collaborative methods will recommend to users
(i.e., to classes) items (i.e., attributes, methods, superclasses) that
were rated (i.e., used) by like-minded users. The similarity between
users and items is based on rating patterns [9]. In the experiment, we
evaluated both user-based and item-based k-nearest neighbour (k-
NN) heuristics. The item-based approach (cfib) creates neighbour-
hoods by exploiting the rating-based similarities between items,
and the user-based approach (cfub) computes similarities between
users [9]. We have used the cosine as a similarity metric. We tested
neighbourhoods of size k = 2, 3, 5, 10. To refer to a specific instance
of a method, we concatenate the value of k to its name. For in-
stance, cfub3 refers to collaborative user-based k-NN size k = 3. As
a baseline, we also evaluated the item popularity method (pop).

The content-based method (cb) will recommend to users (i.e.,
to classes) items (i.e., attributes, methods, superclasses) similar to
the ones liked (i.e., used) by the user. In this case, the similarity
is computed based on profiles built from textual information [9].
The item features correspond to text features extracted from the
items, and the recommendations are based on similarities in the
text feature space. In the experiment, we used the name and data
type as features of attribute declarations; the name and return type
as features of method declarations; and the name of superclasses.

Finally, the hybrid methods exploit both rating and text fea-
tures by combining content-based and collaborative methods [9].
We considered the methods cbub and cbib, which combine either
user-based (cfub) or item-based (cfib) collaborative filtering with
content-based similarity (cb). We tested neighbourhoods of size k
= 2, 3, 5, 10. As before, we concatenate the name of the method
and the value of k. For instance, cbub5 refers to content-based
user-based k-NN size k = 5.

5.2.3 Evaluation metrics. We analysed the performance of the re-
sulting RSs using some ranking-based, coverage and diversity met-
rics typically used in RSs [22] (cf. lines 36–39 of Listing 1). The
metrics were implemented in the RiVaL framework7.

As mentioned in Section 2, the selection of metrics depends on
the faced recommendation problem. In particular, since our RS
should provide an ordered list of recommended items, we used the
classical ranking metrics precision, recall and F1. Precision is the
percentage of the recommended items that are relevant; recall is
the percentage of relevant items included in the recommendation
list; F1 is a harmonic mean of precision and recall.

To measure coverage, we used the metrics USC (user space cov-
erage) and ISC (item space coverage). USC measures the percentage
of users that the RS can recommend, and ISC the diversity in terms
of the popularity of what is recommended.

Finally, to measure the quality of the recommended list, which
should contain just the most relevant items, we used the metric
nDCG (normalized discounted cumulative gain). This metric pe-
nalises when the most relevant items are not at the top of the list.

5.3 Experiment results and research questions
Table 2 shows the results of the experiment. The rows contain the
recommendation methods used to train the RS, and the columns
show their performance metrics. We can see that the metric values

7http://rival.recommenders.net/

are drastically different depending on the dataset. The AtlanEcore
dataset has the best overall performance. A possible reason is that
this is the largest dataset among the three. Next, we answer our
initial research questions.

5.3.1 RQ1Can a recommender system help in class modelling tasks?
In order to answer this question, we analyse the performance of the
recommendation methods. Specifically, we look at their precision,
recall and F1 values in Table 2, as they give a measure of the ranking
quality.With regards to our evaluationmethodology, where the task
is recommending themost relevant items in the test set, the obtained
performance is relevant according to the literature [14, 19, 22, 28].
In the AtlanEcore dataset, the highest F1 value was 0.289 for the
cfub2 method. This shows that we can build an RS that helps in
class modelling by recommending valuable attributes, methods and
superclasses for a given class.

5.3.2 RQ2Which recommendation method of relevant attributes,
methods and superclasses has the best performance? In the Syn-
theticExtended and AtlanEcore datasets, the collaborative filtering
methods obtained the best performance. In particular, cfub2 has
the best results, as the F1 measure is 0.135 and 0.289 for the Syn-
theticExtended and AtlanEcore datasets, respectively. Conversely,
among the collaborative methods, the baseline pop has the worst
performance (e.g., 0.018 precision and 0.083 recall on the AtlanEcore
dataset). When it comes to coverage, pop has a very high USC
value (1.000), as it recommends the most popular items to all users.
However, it posses a low ISC (0.002), which suggests a very low
diversity.

As for the Synthetic dataset, the best result was obtained for the
hybrid method cbib2, followed by all other collaborative methods.

5.3.3 RQ3 Can hybrid approaches be beneficial for the recommen-
dation of attributes, methods and superclasses? When analysing the
hybrid methods applied in this experiment, we observe that some
performed very well. For instance, in the Synthetic dataset, cbib2
performed even better than the collaborative methods, obtaining
0.095 precision, 0.199 recall, and an F1 value of 0.129.

5.3.4 RQ4 Which method performs better when considering user
and item coverage in the recommendation of relevant attributes, meth-
ods and superclasses? We observe a compromise between the cov-
erage metrics USC and ISC, and the ranking-based metrics. The
methods with low precision and recall, like most of the hybrid ones,
report high user coverage and low item coverage. A good user cov-
erage comes at the cost of losing item diversity when compared to
collaborative methods.

5.4 Threats to validity
In the following, we discuss internal and external threats that may
affect the validity of the findings of our experiment. Internal validity
is the extent to which there is a causal relationship between our
study and the extracted conclusions [21]. In this respect, some of
our datasets have a low number of models, which may lead to
cases where there are no similar classes to a particular one. In
addition, the in-house datasets were created by hand, and hence,
there is the risk that we have inadvertedly introduced some bias. To
address this threat, the experiment included the AtlanEcore dataset,

http://rival.recommenders.net/
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Table 2: Results of the experiment. The best values are shown in bold.

Synthetic SyntheticExtended AtlanEcore
Method prec. recall F1 nDCG ISC USC prec. recall F1 nDCG ISC USC prec. recall F1 nDCG ISC USC
pop 0.048 0.221 0.079 0.177 0.015 1.000 0.046 0.207 0.076 0.170 0.015 1.000 0.018 0.083 0.029 0.055 0.002 1.000
cfub2 0.060 0.185 0.091 0.144 0.035 0.719 0.093 0.242 0.135 0.179 0.043 0.698 0.241 0.362 0.289 0.323 0.048 0.332
cfub3 0.054 0.190 0.084 0.145 0.036 0.802 0.088 0.256 0.132 0.188 0.046 0.802 0.211 0.367 0.268 0.322 0.055 0.372
cfub5 0.054 0.206 0.085 0.165 0.036 0.898 0.083 0.276 0.128 0.202 0.048 0.837 0.179 0.368 0.241 0.321 0.061 0.415
cfub10 0.066 0.193 0.099 0.146 0.032 0.600 0.074 0.289 0.118 0.219 0.049 0.919 0.140 0.347 0.200 0.297 0.067 0.482
cfib 0.053 0.207 0.085 0.147 0.038 0.901 0.064 0.239 0.101 0.172 0.049 0.921 0.092 0.273 0.138 0.225 0.063 0.627
cb 0.018 0.086 0.030 0.086 0.008 1.000 0.018 0.086 0.030 0.085 0.006 1.000 0.005 0.022 0.008 0.010 0.001 1.000
cbub2 0.016 0.015 0.016 0.016 0.002 0.968 0.096 0.176 0.125 0.124 0.033 0.633 0.200 0.246 0.221 0.220 0.035 0.311
cbub3 0.016 0.032 0.022 0.026 0.005 0.968 0.065 0.196 0.098 0.142 0.040 0.745 0.155 0.259 0.194 0.230 0.048 0.410
cbub5 0.016 0.057 0.025 0.039 0.010 0.968 0.057 0.203 0.089 0.147 0.043 0.896 0.113 0.276 0.160 0.238 0.058 0.483
cbub10 0.016 0.070 0.026 0.044 0.012 0.968 0.052 0.211 0.083 0.158 0.043 0.993 0.079 0.269 0.122 0.228 0.065 0.558
cbib2 0.095 0.199 0.129 0.131 0.026 0.539 0.014 0.010 0.012 0.011 0.002 0.973 0.001 0.001 0.001 0.001 0.000 0.697
cbib3 0.049 0.166 0.075 0.120 0.030 0.634 0.013 0.020 0.016 0.018 0.004 0.973 0.001 0.002 0.002 0.002 0.000 0.697
cbib5 0.036 0.131 0.056 0.098 0.033 0.864 0.013 0.039 0.019 0.027 0.008 0.973 0.001 0.005 0.002 0.003 0.001 0.697
cbib10 0.032 0.138 0.051 0.112 0.034 1.000 0.013 0.049 0.020 0.031 0.010 0.973 0.001 0.006 0.002 0.004 0.001 0.697

developed by a third-party. External validity refers to the extent to
which conclusions of an experiment can be generalized [21]. Our
experiment considers a very specific task and language, which is the
recommendation of attributes, methods and superclasses for class
diagrams and meta-models. In the future, we plan to implement
and evaluate our proposal with other recommendation tasks and
languages. Additionally, we will analyse the performance of other
datasets.

6 RELATEDWORK
In this section, we place our work regarding the state-of-the-art.
First, in Section 6.1, we describe related works on RSs and model
assistant approaches for MDE. Afterwards, in Section 6.2, we ex-
plore MDE frameworks to customise RSs for a particular context,
in order to reduce time and effort in a constantly changing world
of recommendation techniques and approaches.

6.1 Recommender systems for MDE
Some approaches aim at providing semantically related terms and
context-sensitive information for a modelling task. Rickauer et
al. [2, 3] developed DOMORE, an RS for domain modelling based
on an extensive knowledge base of domain-specific terms and their
relationships. The recommendations are built based on a term ocur-
rence technique. Similarly, Mora et al. [18, 26, 27] implemented
EXTREMO, a tool supporting the uniform query of heterogeneous
sources. This tool facilitates the reuse of information in the form of
semantic-related terms. While these approaches suggest valuable
terms for the modelling task, suggestions are only based on the se-
mantic relations between the terms used in the given context. Other
techniques that could enrich these solutions, such as exploiting the
similarity between models, are not employed. Additionally, these
tools target a specific modelling task, while our envisioned frame-
work aims to be generic and configurable for arbitrary modelling
recommendation tasks, to be embedded in LCDPs.

Other works focus on recommendations for UML diagrams. For
example, Cerqueira et al. [10] proposed a content-based approach

for recommending behavioural features for UML sequence dia-
grams. They compared their approach with a bag of words model
and found no statistical difference between them. Also, Paydar et
al. [20] developed a prototype capable of semi-automatically create
a draft web application from a list of functional requirements. For
this purpose, their approach is based on a repository containing
semantic representations of models of previously developed web
applications. Then, a semantic similarity algorithm was employed
on a hybrid approach. While these works tackled important mod-
elling tasks and were proved to be useful, they serve a specific
modelling language. Instead, the targeted language is customisable
in our framework.

Some researchers have proposed language-independent recom-
mendation solutions for modelling tasks. Stephan [30] proposed
SimVMA, which helps modellers find models or operations consid-
ered relevant to them. The approach is based on detecting clones
between the in-progress model and similar models, using the Si-
mone clone detector for detecting type 3 near-miss clones.While the
approach was exemplified for Simulink, the envisioned approach
is not Simulink-specific. Also, Kögel [15] proposes an approach
to analyse the history of past model changes to suggest recom-
mendations. It is based on analysing how other users changed the
models over their lifetime. The recommendations are implemented
as Henshin rules. The authors leave as future work the possibility of
applying machine learning, heuristic search algorithms, association
rules and decision trees. Even though these works are planning on
frameworks for different modelling languages, the recommendation
technique is fixed, and the recommendations cannot be customised
according to the needs of the RS designer, as we aim to do with our
DSL.

6.2 MDE for recommender system generation
In [25], Rojas et al. proposed a model-driven framework to develop
mobile RSs of geographic points of interest. The framework helps
developers to specify the structural, behavioural and navigational
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aspects of the RS. It permits customising the user preferences, simi-
larity metrics and similarity formula. It incorporates a collaborative
filtering algorithm and their combination with content-based and
location-based algorithms. The generated RS suggests the 10 most
relevant points of interest.

In [24], the authors applied a similar solution to recommend
trips and tours. In this case, the framework applied an item-to-item
similarity method and allowed setting the user preferences, the
similarity metrics, and the selection and order of the recommenda-
tions. Additionally, someMDE approaches have emerged to support
non-expert users on applying data mining. For example, Espinosa
at al. [11, 12] reuse the past experiences of data mining experts
with the application of classification techniques and data. An RS
computes the accuracy for a given new dataset and recommends
the one with the best performance. The customisable parameters in
this framework are the data mining task to perform, the metric used
to evaluate the recommender performance, the validation testing
method, and the mining algorithm to execute. Even though these
solutions offer the flexibility and benefits of MDE, they generate
recommenders either for e-commerce or data mining applications.

7 CONCLUSION AND FUTURE WORK
In this paper, we have introduced a generic framework to automate
the construction of RSs that assist “citizen developers” in creating
software applications via LCDPs. The framework provides a DSL
to customise the different aspects of the RS. These include the lan-
guage the RS is built for, the recommendation algorithm and its
parameters, and the evaluation method. We have illustrated the
approach by creating a recommender of attributes, methods and
superclasses, which we have evaluated on three datasets using dif-
ferent recommendationmethods. Some of these methods performed
quite well, with results similar to those reported in the literature.
Overall, the main advantage of our proposal is the flexibility to
define RSs according to the RS designer needs.

We are currently developing the concrete syntax of our DSL
to configure the RSs. In the future, we plan to apply our frame-
work to more languages and modelling tasks. Moreover, we plan
to provide support for deploying the synthesised recommenders
in the LCDPs. Specifically, we foresee the provision of a chatbot
that integrated within the LCDP that citizen developers address to
access the recommendations.
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