
Exploiting Linked Open Data in Cold-start
Recommendations with Positive-only Feedback

Paolo Tomeo1, Ignacio Fernández-Tobías2, Tommaso Di Noia1, Iván Cantador2
1

 Politecnico di Bari
Via Orabona, 4
70125 Bari, Italy

{paolo.tomeo, tommaso.dinoia}@poliba.it

2
 Universidad Autónoma de Madrid

Calle Francisco Tomás y Valiente, 11
28049 Madrid, Spain

{ignacio.fernandezt, ivan.cantador}@uam.es

ABSTRACT

In recommender systems, user preferences can be acquired either

explicitly by means of ratings, or implicitly –e.g., by processing

text reviews, and by mining item browsing and purchasing records.

Most existing collaborative filtering approaches have been

designed to deal with numerical ratings, such as the 5-star ratings

in Amazon and Netflix, for both rating prediction and item ranking

(a.k.a. top-N recommendation) tasks. In many e-commerce and

social network sites, however, user preferences are usually

expressed in the form of binary and unary (positive-only) ratings,

such as the thumbs up/down in YouTube and the likes in Facebook,

respectively. Moreover, in these cases, the well-known problem of

cold-start –i.e., the scarcity of user preferences– is highly

remarkable. To address this situation, we explore a number of

graph-based and matrix factorization recommendation models that

jointly exploit user ratings and item metadata. In this work, such

metadata are automatically obtained from DBpedia –the queriable

and structured version of Wikipedia which is considered as the

core knowledge repository of the Linked Open Data initiative–,

and the models are evaluated with a Facebook dataset covering

three distinct domains, namely books, movies and music. The

results achieved in our experiments show that the proposed hybrid

recommendation models, which exploit rating and semantic data,

outperform content-based and collaborative filtering baselines.

CCS Concepts

• Information systems➝Collaborative filtering • Computing

modelologies➝Semantic networks • Mathematics of

computing➝Graph algorithms • Computing methodologies➝

Non-negative matrix factorization.

Keywords

Recommender systems, hybrid recommendation, cold-start,

positive-only feedback, Facebook, Linked Data, DBpedia.

1. INTRODUCTION
Recommender systems are information filtering systems that aim

to identify and suggest the items –e.g., products, events, and

contacts– a user may like or be interested in without the need of

an explicit query, as commonly done in information retrieval

systems. For such purpose, they capture, model and exploit user

preferences. These latter can be obtained either explicitly by

means of ratings, or implicitly e.g. by processing text reviews, and

by mining item consuming and purchasing records.

Two main types of recommendation approaches exist, namely

content-based and collaborative filtering. While content-based

filtering methods suggest items that are similar to those the target

user liked in the past, collaborative filtering methods suggest

items liked by people with similar preferences to the target user.

The former commonly use content-based features to represent

both user and item profiles; the latter, in contrast, work with

rating-based user/item similarities, and thus do not rely on

machine analyzable content.

The majority of the most effective collaborative filtering

approaches have been designed to deal with numerical ratings,

such as the 5-star ratings in Amazon1 and Netflix2, for both rating

prediction and item ranking (a.k.a. top-N recommendation) tasks,

and have been shown to generally outperform content-based

approaches [21]. In many e-commerce and social network sites,

however, user preferences are expressed in the form of binary and

unary (positive-only) ratings, such as the thumbs up/down in

YouTube3 and the likes in Facebook4, respectively.

Moreover, in these cases, the well-known problem of cold-start in

collaborative filtering [21], which refers to the scarcity of ratings

at user level, is highly remarkable. In this context, the

consideration of content-based features could benefit the

understanding of the users’ preferences, as well as the finding of

similar users and items. For instance, in the movie

recommendation domain, a user may be suggested with movies

based on her and others’ preferences for particular genres,

directors and actors.

Hence, to address the presented situation –i.e., the cold-start in

recommendations with positive-only feedback–, in this paper we

explore a number of graph-based and matrix factorization

recommendation models that jointly exploit user ratings and item

metadata, and evaluate them with Facebook likes as source of

positive-only user feedback.

The above mentioned sites do not provide the content-based

features that comprise the items metadata. Hence, features can be

(i) extracted from text descriptions about the items, e.g., movie

plots, song lyrics, and book synopses; (ii) established by means of

social tags manually assigned by users to items. Through the

Facebook Graph API, items are identified by names which are

1 Amazon online shopping, http://www.amazon.com
2 Netflix movie and TV series streaming, http://www.netflix.com
3 YouTube online video sharing, http://www.youtube.com
4 Facebook online social network, http://www.facebook.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.
CERI '16, June 14-16, 2016, Granada, Spain

© 2016 ACM. ISBN 978-1-4503-4141-7/16/06…$15.00

DOI: http://dx.doi.org/10.1145/2934732.2934745.

plain texts freely set by users. Thus, to obtain metadata for

available items, in this paper we propose to first link them with

their corresponding entities in an external knowledge source. In

particular, we present a method that automatically maps the items

names to URIs of semantic entities in DBpedia [2], the

Wikipedia5 ontology which is considered as the core repository of

the Linked Open Data (LOD) [4] cloud.

In fact, the LOD initiative6 aims at using the Web to connect

related pieces of data, information, and knowledge about a variety

of domains – such as geography, life sciences, government, and

media, to name a few– using URIs (Uniform Resource Identifiers)

via RDF7 statements. The use of LOD does not merely allow

describing items by means of (isolated) content-based features,

but also creating semantic networks that relate items, features and

items with features, e.g., Kubrick’s “The Full Metal Jacket” is a

movie based on Hasford’s “The Short-Timers” novel, and “Anti-

War Films” is a subgenre of “Political Films.” In this paper we

propose to exploit semantic networks connecting users, liked

items, and features for recommendation purposes in two ways:

First, directly using the networks by graph-based models; second,

extending content-based item profiles with related features, and

incorporating the enriched profiles into matrix factorization

models.

We evaluate the two approaches on a Facebook dataset

comprising three distinct domains, namely books, movies and

music. The results achieved in our experiments show that the

proposed hybrid recommendation models, which exploit rating

and semantic data, outperform content-based and collaborative

filtering baselines.

2. RELATED WORK
As mentioned before, the proposed recommendation models jointly

exploit user ratings, and item metadata automatically obtained

from DBpedia semantic networks. The exploitation of these

networks is done i) directly by means of graph-based models, and

ii) indirectly by enriching item profiles that are incorporated into

matrix factorization models. Hence, in the subsequent two sections

we revise related work on graph-based (Section 2.1) and matrix

factorization (Section 2.2) recommender systems.

2.1 Graph-based Recommender Systems
The importance of graph-based approaches to recommendation

has emerged concurrently with the increasing availability of

additional user and item information useful for the

recommendation process itself. These approaches allow

combining the user-item rating matrix with side information into a

graph, and then applying a graph mining technique. More

specifically, as shown in Figure 1, the rating matrix is transformed

into a bipartite graph component –which consists of user and item

nodes linked with rating/like edges– extended to form a

multipartite graph, including nodes representing additional

entities, which are related to items. The graph also allows

including other edges, representing e.g. contextual information for

the ratings, social connections between users, and semantic

relations between entities [19]. The result thus can be defined as a

heterogeneous information network consisting of a multi-typed

and multi-relational directed graph, with nodes and edges of

different types [23].

5 Wikipedia online encyclopedia, http://www.wikipedia.org
6 Linked Open Data project, http://linkeddata.org
7 Resource Description Framework, http://www.w3.org/RDF

Structuring all the available data in form of a graph leads to

different advantages: (i) well-known graph-based algorithms can

be used to develop hybrid recommender systems able to exploit

the different types of information surfing the graph [24]; (ii) both

content and collaborative aspects are represented in a uniform

setting thus leveraging the multi-relational nature of the graph;

(iii) the graph can be directly extended with information already

available in the form of graphs, such as Linked Open Data [7];

(iv) exploring the graph jumping different hops could produce

relevant but not obvious recommendations and also help on

addressing the cold-start scenario, since exploring longer paths in

the network could overcome the lack of connection information

between users and items.

PathRank [15] is an extension of the Personalized PageRank

algorithm able to exploit different paths on a heterogeneous graph

during the random walk process. At each iteration the random

walker has three options: transition, move to one of adjacent

nodes; restart, restart the random walk from one of the query

nodes; path following, considering one of meta-paths that the

authors call path-guides. A meta-path is a path consisting of a

sequence of typed relations.

HeteRec [24] is a hybrid method based on matrix factorization

that uses meta-path based latent features to represent the

connectivity between users and items along different types of

paths in a heterogeneous information network. HeteRec defines a

user preference diffusion score extending the meta-path based

similarity PathSim [23], including the user implicit feedback. This

process propagates user preferences along the different meta-paths

in the graph, producing a user-item matrix for each meta-path

where each cell indicates the probability of certain user reaches a

certain item under the relative meta-path. Then, it factorizes each

matrix, and builds a recommendation model that estimates the

rating for a user-item pair computing a weighted sum of the

relative latent features in the matrices.

SPrank (Semantic Path-based ranking) [7] is a hybrid

recommendation algorithm able to combine ontological knowledge

belonging to the Web of Data with collaborative user preferences

in a unified graph-based data model in a learning to rank setting.

Figure 1. Example of heterogeneous information network

2.2 Matrix Factorization Collaborative

Filtering Systems
Matrix factorization (MF) models are considered the state-of-the-

art for collaborative filtering, and have been extensively studied in

recent years [14]. These approaches gained most popularity in the

context of the Netflix prize, and since then have been successfully

used in many applications. Focusing on the rating prediction task,

Funk [10] presented one of the first approaches that approximates

the user-item rating matrix as the product of two low-rank

matrices of user and item latent factors, respectively. The

decomposition is obtained by minimizing the regularized squared

loss of the actual observed ratings and the approximations

computed with the latent feature matrices, e.g. using stochastic

gradient descent. This method is efficient and scalable, as the

rating matrix is usually very sparse and only the available ratings

are taken into account.

Building on MF, Koren et al. [13] proposed the well-known

SVD++ model. In this approach the user latent features are

extended with additional parameters for each rated item. The

motivation is that the information of whether a user chose or not

to rate an item is also an indicator of her preferences, and should

be taken into account in the rating prediction. This approach was

shown to significantly outperform the standard matrix

factorization model, and was part of the winning solution of the

Netflix prize.

Despite their success, the previous models were designed to deal

with numeric, explicit ratings. However, the typical feedback

implicitly acquired by most real-world systems is positive-only

and requires different treatment. For such purpose, Hu et al. [11]

presented a MF method that also models unobserved user-item

interactions, as the lack of this information could indicate that the

user dislikes the item or that she simply is unaware of it. Hence,

this approach works by factorizing the full rating matrix, which is

computationally very expensive. The authors propose an

Alternating Least Squares procedure to learn the model

parameters in an efficient way, and show the superiority of this

approach in the top-N recommendation task.

In parallel with these developments, some approaches have

explored hybrid models that exploit user or item metadata within

the MF framework. Enrich et al. [8] proposed an extension of

SVD++ that exploits social tags assigned to the items in order to

improve the accuracy of the recommendations in a cold-start

setting. Also focusing on the cold-start, Fernández-Tobías and

Cantador [5] presented a method that extends Hu et al.’s approach

to exploit information about the user’s personality in the model’s

predictions. Alternatively, Factorization Machines [22] are

becoming increasingly popular, as they provide a principled and

generic approach to integrate metadata into MF, showing

promising results in the task of context-aware recommendation.

Finally, a different set of approaches jointly factorize the user-

item preference and item-metadata matrices, sharing the item

latent factors between both decompositions. Collective Matrix

Factorization (CMF) [18] is a representative method of this

approach that showed significant improvements when item genres

are taken into account for computing movie recommendations.

In this paper, we evaluate MF methods for positive-only feedback

that make use of semantic information extracted from Linked

Open Data to improve the quality of the recommendations in the

user cold-start. Moreover, we present an adaptation of CMF that

exploits semantic-based item-item similarities in the task of top-N

recommendation of books, movies, and music.

3. OBTAINING ITEM METADATA
The recommendation models evaluated in this paper jointly

exploit user ratings and item metadata. Before presenting them,

we first describe the Facebook likes (positive-only feedback)

dataset utilized in the experiments, and how it was enriched with

item metadata automatically acquired from DBpedia.

Hence, in Section 3.1 we depict the Facebook user preference raw

data that constituted our original dataset. Then, in Section 3.2 we

explain the method we implemented to automatically link the

items of the original dataset with entities existing in DBpedia.

Finally, in Sections 3.3 and 3.4 we describe the metadata

extracted from DBpedia for the linked entities, and the item

profiles enriched with such metadata.

Table 1. Considered item types and their DBpedia and YAGO classes for the three domains of the dataset. These classes were linked

with the dataset items by the dbo:type and rdf:type properties in DBpedia, e.g., dbr:The_Godfather (movie) – rdf:type – dbo:Film

Books Movies Music

Item type DBpedia class Item type DBpedia class Item type DBpedia class

Book

dbo:Book
Movie

dbo:Film

Composition

dbo:Song

yago:Book102870092 yago:Movie106613686 dbo:MusicalWork

yago:Book102870526
Genre

dbo:MovieGenre dbo:Single

Genre yago:LiteraryGenres yago:FilmGenres dbo:ClassicalMusicComposition

Writer
dbo:Writer

Director
yago:FilmDirector110088200 dbo:Opera

yago:Writer110794014 yago:Director110014939

Genre

dbo:MusicGenre

Fictional
character

dbo:FictionalCharacter
Actor

dbo:Actor yago:MusicGenres

yago:FictionalCharacter109587565 yago:Actor109765278 yago:MusicGenre107071942

 Fictional

character

dbo:FictionalCharacter
Album

dbo:Album

 yago:FictionalCharacter109587565 yago:Album106591815

Namespaces

Musician

dbo:MusicalArtist

dbo: http://dbpedia.org/ontology/ yago:Musician110339966

yago: http://dbpedia.org/class/yago/ yago:Musician110340312

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# yago:Composer109947232

dbr: http://dbpedia.org/resource/
Band

dbo:Band

 yago:MusicalOrganization108246613

3.1 Original Positive-only Feedback Data
Our dataset initially consisted of a large set of likes assigned by

users to items in Facebook. Using the Facebook Graph API, a user’s

like is retrieved in the form of a 4-tuple with the following

information: the identifier, name and category of the liked item, and

the timestamp of the like creation, e.g., {id: "35481394342",
name: "The Godfather", category: "Movie",

created_time: "2015-05-14T12:35:08+0000"}. The name

of an item is given by the user who created the Facebook page of

such item. In this context, distinct names may exist for a particular

item, e.g., "The Godfather", "The Godfather: The Movie",

"The Godfather - Film series", and "The Godfather

(saga)" for “The Godfather” movie. Users thus may express likes

for different Facebook pages, which actually refer to the same item.

Aiming at unifying and consolidating the items of the extracted

Facebook likes, we developed a method, explained in Section 3.2,

which automatically maps the items names with the unique

URIs of the corresponding DBpedia entities, e.g.,

http://dbpedia.org/resource/The_Godfather for the

identified names of “The Godfather” movie.

3.2 Linking Items to DBpedia Entities
Within the Semantic Web initiative, the Linked Data (LOD)

project leads the extension of the Web with a global data space

connecting diverse semantic entities, such as famous people,

organizations, books, movies, music compositions, and reviews,

to name a few. Moreover, the consolidation of specialized data

storage and information retrieval technologies –e.g., the

SPARQL8 RDF query language and the Apache Fuseki9 server–

allows accessing LOD similarly to how a relational database is

queried today.

Among the datasets existing in the Linked Data cloud, DBpedia

plays the role of a knowledge hub thus connecting many other

data repositories. It is the LOD version of Wikipedia10 and, as of

March 2016, its knowledge base describes 4.58M things,

including 1,4M people, 735K places, 411K creative works, and

241K organizations. For each of these things, DBpedia gathers

metadata obtained from structured data of the corresponding

Wikipedia webpage. Such metadata are represented as 3-tuples

(commonly referred as triples) of the form [subject  property 

object], e.g., the [dbr:The_Matrix, dbo:director,

8 http://www.w3.org/TR/rdf-sparql-query
9 http://jena.apache.org/documentation/fuseki2
10 http://www.wikipedia.org

dbr:The_Wachowskis] triple represents that “The Matrix”

movie was directed by the Wachowskis brothers, where dbr: and

dbo: are respectively the abbreviations of

http://dbpedia.org/resource/ and http://dbpedia.org/

ontology namespaces.

As mentioned before, in this work we linked liked items in

Facebook with their corresponding DBpedia entities, in order to

obtain item metadata with which we can investigate semantic-

based collaborative filtering approaches on positively-only

feedback. This was done as follows.

Given a particular item, we first identified the DBpedia entities

that are labelled with the name of the item. For such purpose, we

launched a SPARQL query targeted on the subjects of triples that

have rdfs:label as property (where rdfs: stands for the

http://www.w3.org/2000/01/rdf-schema# namespace) and

the item title as object. The next query is an example for “The

Matrix 2” title.

SELECT DISTINCT ?item WHERE {

 {

 ?item rdf:type dbo:Film .

 ?item rdfs:label ?name .

 FILTER regex(?name, "the.*matrix.*2", "i") .

 }

 UNION

 {

 ?item rdf:type dbo:Film .

 ?tmp dbo:wikiPageRedirects ?item .

 ?tmp rdfs:label ?name .

 FILTER regex(?name, "the.*matrix.*2", "i") .

 }

}

To resolve ambiguities in those names that correspond to multiple

items belonging to different domains, we specify the type of item

we wanted to retrieve in each case. Specifically, the query includes

a triple clause with rdf:type (or dbo:type) as property, being

rdf: the http://www.w3.org/1999/02/22-rdf-syntax-ns#

namespace. Hence, in the given example, the subject “The Matrix

2” refers to the “Movie” type, which is associated to the dbo:Film

class in DBpedia. The item types were set from the item categories

provided in Facebook (see Section 3.1), and their associated

DBpedia and YAGO11 classes were identified by manual

inspection of the rdf:type values of several entities. Table 1

shows the list of item types and DBpedia/YAGO classes we

considered for the three domains of our dataset.

11 http://www.mpi-inf.mpg.de/yago-naga/yago

Table 2. DBpedia properties considered as item metadata; “item” can be book, movie and composition, musician and band

Relation DBpedia property Relation DBpedia property Relation DBpedia property

item – genre
dct:subject

item – author
dbo:author music item – album dbo:album

dbo:genre dbo:creator

band – musician

dbo:bandMember

book – genre dbo:literaryGenre book – writer dbo:writer dbo:formerBandMember

music genre –
music genre

dbo:musicSubgenre movie –

actor, character,

director

dbo:starring dbo:musicalBand

dbo:musicFusionGenre dbo:cinematography dbo:associatedBand

dbo:movement dbo:director item – item, character dbo:series

dbo:derivative

composition –

musician

dbo:artist item – character dbo:portrayer

dbo:stylisticOrigin dbo:composer

item – item

dbo:basedOn

 dbo:musicComposer dbo:previousWork

 dbo:musicalArtist dbo:subsequentWork

 dbo:associatedMusicalArtist dbo:notableWork

Moreover, running the previous query template we observed that a

number of items were not linked to DBpedia entities because the

labels corresponded to Wikipedia redirection webpages. In these

cases, to reach the appropriate entities the query makes use of the

dbo:wikiPageRedirects property.

The result of the above query for “The Matrix 2” name is:

http://dbpedia.org/resource/The_Matrix_Reloaded

which actually is the DBpedia entity of the second movie in “The

Matrix” saga. Here, it is important to note that thanks to the

Wikipedia page redirect component we are able to link items

whose names do not have a direct syntactic match with the label

of its DBpedia entity, but with the label of a redirected entity, e.g.,

the “Matrix 2” title matches with “The Matrix Reloaded” entity.

3.3 Final Semantically Annotated Dataset
For every linked entity, we finally accessed DBpedia to retrieve

the entity metadata that afterwards would be used as input for the

recommendation models. In this case, we launched a SPARQL

query asking for all the properties and objects of the triples that

have the target entity as subject. Following the example given

before, such a query would be:

SELECT ?p ?o WHERE {

 dbr:The_Matrix_Reloaded ?p ?o .

}

This query returns all the DBpedia property-value pairs of the

dbr:The_Matrix_Reloaded entity. However, since our

ultimate goal is item recommendation, we should only exploit

metadata that may be relevant to relate common preferences of

different users. Thus, we filtered the query results by considering

certain properties in each domain. Specifically, Table 2 shows the

list of DBpedia properties selected for each of the three domains

of our dataset. Hence, for example, for the movie items, we would

have as metadata the movies genres, directors, and actors, among

others. The items and relations shown in the table thus represent a

semantic network that is automatically obtained from DBpedia for

each particular domain.Table 3 shows statistics of the dataset for

the three domains of interest, namely books, movies, and music.

The statistics are focused on the number of users, items and

ratings from the positive-only feedback side, and the number of

properties and triples from the item metadata side.

3.4 Semantically Enriched Item Profiles
Fixing books, movies, and music artists and bands as the target

items to be recommended, we can distinguish between three types

of item metadata. First, the reminder items appearing in the

extracted DBpedia semantic networks, and shown in Table 2, can

be considered as item attributes, e.g., the genre(s), director(s)

and actors of a particular movie. Second, the item-item properties

shown in Table 2 derive related items, e.g., the novel that a

movie is based on (dbo:basedOn property), the prequel/sequel

of a movie (dbo:previousWork/dbo:subsequentWork

properties), and the musicians of a band (dbo:bandMember

property). Finally, attribute-attribute properties generate

extended item attributes that originally do not appear as

metadata of the items, e.g., the subgenres of a particular music

genre (dbo:musicSubgenre property).

The above three types of item metadata constitute the

semantically enriched item profiles that we propose to use in the

recommendation models. We note that they differ from the

commonly used content-based item profiles composed of (plain)

attributes. We also note that in the conducted experiments, the

results achieved by exploiting the enriched profiles were better

that those achieved by only using item attributes.

4. RECOMMENDATION MODELS
In the following, we present the proposed graph-based (Section

4.1) and matrix factorization (Section 4.2) recommendation

models that jointly exploit user rating and semantically enriched

item profiles. We also present a number of baseline

recommendation models (Section 4.3) that were evaluated for

comparison purposes.

4.1 Graph-based Models
Given a graph G, our aim is to produce personalized

recommendations leveraging the knowledge encoded in the graph.

As described in Section 2.1, we describe our data by means of

heterogeneous information network, which consists in a graph

with different types of nodes and relations. Therefore, it is

possible to find different paths among users and items composed

by different types of relations. For example, an user may be

connected to an item i by the relation (like, director, director−1)12,

which basically means that the user likes one or more items with

same director of item i. More formally, these paths are called

meta-paths and an actual sequence of nodes and relations, which

generates the particular path, is called path instance [23].

HeteRec. We develop a graph-based recommender system based

on an adaptation of HeteRec (Section 2.1). Briefly, HeteRec

computes for each meta-path the relative diffused user preferences

matrix extending the similarity measure PathSim [23] in order to

include the user feedbacks. More formally, the user preference

diffusion score between user u and item j, along a generic meta-

path P, is defined as:

𝑠𝑖𝑚(𝑢 , 𝑗) = ∑
2 × 𝑟𝑢,𝑖 × |{𝑝𝑖→𝑗: 𝑝𝑖→𝑗 ∈ 𝑃}|

|{𝑝𝑖→𝑖: 𝑝𝑖→𝑖 ∈ 𝑃}| + |{𝑝𝑗→𝑗: 𝑝𝑗→𝑗 ∈ 𝑃}|
{𝑖∈𝑅(𝑈)}

where 𝑝𝑥→𝑦 is a path instance between the items x and y.

Basically, this formula is a weighted sum of PathSim among the

items in the user profiles and the target item j, where the

numerator measures the connectivity defined by the number of

path instances between them following P and the denominator

represents the balance of their popularity in the graph, namely the

number of path instances between themselves.

12 Given a relation 𝑟 going from 𝑥 to 𝑦 we denote with 𝑟−1the

relation going from 𝑦 to 𝑥.

Table 3. Dataset statistics. Underlined items are the ones considered as the target items to be recommended in each domain

books movies music Statistics books movies music

item type #items #ratings item type #items #ratings item type #items #ratings #users 1876 26943 49369

books 4001 315870 movies 3907 1446017 artists 2903 1311974 #items 3557 3901 5748

genres 71 21285 actors 1293 309957 bands 2848 1288673 #likes 42869 876501 2084462

writers 395 14397 characters 120 40855 genres 202 143829 sparsity 0.994 0.992 0.993

characters 76 3560 genres 19 32746 albums 216 51061 avg #items per users 22.851 32.532 42.222

 directors 56 7577 compositions 205 39792 avg #users per items 12.052 224.686 362.641

Once the matrices are computed, HeteRec factorizes them with a

low-rank matrix factorization technique. We found it infeasible in

this case since the diffused user preferences matrices are usually

dense. The truncation strategy can be used to keep the matrices

sparse, reducing the amount of space and time consume [19], but

could remove valuable information in the cold start scenario.

Therefore, our model is directly based on the not factorized

diffused user preferences matrices. Finally, the estimated user-

item preference matrix is computed as the weighted sum of the

different meta-path matrices: �̂� = 𝑤𝑃1
�̂�𝑃1

+ ⋯ + 𝑤𝑃𝑚
�̂�𝑃𝑚

, where

m is the number of meta-paths, 𝑤𝑃𝑖
 and �̂�𝑃𝑖

, respectively, the

weight and the diffused user preferences matrix of i-th meta-path.

HeteRec splits the users into clusters, and then computes the

importance of each meta-paths with a learning-to-rank approach.

As we face the user cold-start situation, clustering the users is

impracticable with a few ratings and without additional

information. Therefore, we compute the meta-paths weights

globally for all the cold-start users.

PathRank. We also implemented a graph-based algorithm

presented in [15], which extends the Personalized PageRank

considering the connectivity between users and items along

different meta-paths. At each iteration, the random walker has

three options: transition, move to one of adjacent nodes with

probability 𝑤𝑡𝑟𝑎𝑛𝑠; restart, restart the random walk from one of

the query nodes with probability 𝑤𝑟𝑒𝑠𝑡𝑎𝑟𝑡; path following,

considering one of the meta-paths with probability 𝑤𝑝𝑎𝑡ℎ.

Therefore the PathRank vector 𝑟 is computed as:

𝑟 = 𝑤𝑡𝑟𝑎𝑛𝑠𝑀𝐺
𝑇𝑟 + 𝑤𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑡 + 𝑤𝑝𝑎𝑡ℎ(𝑤𝑃1

𝑀𝑃1

𝑇 + ⋯ + 𝑤𝑃𝑚
𝑀𝑃𝑚

𝑇)𝑟

where 𝑀𝐺 is the item-item transition matrix of the full graph G,

𝑀𝑃𝑖
 is the transition matrix of the i-th meta-path, 𝑡 is the teleport

vector representing the recommendation query (user profile)

initialized with 1/|𝑅(𝑢)| for each item in 𝑅(𝑢), 0 otherwise.

4.2 Matrix Factorization Models
Methods based on matrix factorization approximate the user-item

preference matrix as the product of two user and item latent factor

matrices. Specifically, for each user 𝑢, there is a corresponding

latent feature vector p𝑢 ∈ ℝK, where 𝐾 is the number of features

to consider in the factorization. Likewise, each item 𝑖 is associated

to its corresponding feature vector 𝐪𝑖 ∈ ℝ𝐾. These feature vectors

are assumed to capture the latent interests and properties of both

users and items. All the three MF methods that we consider in this

paper follow the above principle, but differ on the preferences that

are estimated, and on the training procedure user to learn the

model parameters.

Matrix Factorization for positive-only feedback (IMF). In Hu

et al.’s method [11], the preference of user 𝑢 to item 𝑖 is computed

as the dot product of their latent feature vectors:

 �̂�𝑢,𝑖 = 〈𝐩𝑢, 𝐪𝑖〉 (1)

The model parameters are automatically learned by minimizing

the associated regularized squared loss over the full user-item

matrix, i.e. both observed and unobserved feedback are taken into

account in the training process. The motivation is that the model

should not only be able to predict high scores for relevant items,

but also whether an item was rated or not. However, non-observed

user-item interactions can be due to the user not liking the item or

not knowing about the item. Hence, the model includes a

confidence hyperparameter in the loss function to penalize

mistakes on observed and non-observed preference predictions

differently:

𝐿 = ∑ ∑ 𝑐𝑢,𝑖(𝑟𝑢,𝑖 − �̂�𝑢,𝑖)
2

𝑖𝑢

+ 𝜆 (∑‖𝐩𝑢‖2

𝑢

+ ∑‖𝐪𝑖‖2

𝑖

)

The confidence parameter is set 𝑐𝑢,𝑖 = 1 + 𝛼 · 𝑟𝑢,𝑖 with 𝛼 > 0, so

that mistakes predicting observed feedback are more penalized.

The hyperparameter 𝜆 controls the amount of regularization used

to prevent overfitting. For efficiently minimizing 𝐿 the authors

propose an algorithm based on Alternating Least Squares (ALS).

The key observation is that when all the 𝐪𝑖 parameters are fixed

(respectively 𝐩𝑢), the minimization problem becomes a standard

least-squares problem that can be solved analytically. We refer the

reader to [11] for details on the specific learning algorithm.

Collective Matrix Factorization (CMF). We instantiated the

CMF method to inject item-item content similarities into the IMF

method. The idea behind CMF [18] is to simultaneously factorize

the user-item matrix and the item-item similarity matrix.

Predictions are still computed using Equation (1), but we include

an additional set of item latent feature vectors 𝐫𝑗 ∈ ℝ𝐾 to model

the pairwise item interactions through the similarities. The loss

function becomes:

𝐿 = 𝛾 ∑ ∑ 𝑐𝑢,𝑖(𝑟𝑢,𝑖 − �̂�𝑢,𝑖)
2

𝑖𝑢

+ (1 − 𝛾) ∑ ∑(𝑠𝑖,𝑗 − 〈𝐪𝑖 , 𝐫𝑗〉)
2

𝑗𝑖

+ 𝜆 (∑‖𝐩𝑢‖2

𝑢

+ ∑‖𝐪𝑖‖2

𝑖

+ ∑‖𝐫𝑗‖
2

𝑗

)

Here 𝑠𝑖,𝑗 is the content-based similarity between items 𝑖 and 𝑗.

The tradeoff parameter 𝛾 ∈ (0,1] controls the relative influence of

the item similarities in the factorization. When 𝛾 = 1 we recover

IMF, whereas 𝛾 = 0 would completely ignore preference

predictions and thus we avoid this configuration. As previously,

we learn the model parameters using ALS, which now involves an

extra step fixing both all the 𝐩𝐮’s and the 𝐪𝐢’s to optimize the 𝐫𝑗’s.

Due to lack of space, we omit here the derivation of the parameter

update rules and the specific derivation of the learning algorithm.

Factorization Machines (FMs). Factorization machines [22]

provide a generic way to extend the standard MF model with

different kinds of side information. The idea is to (one-hot)

encode the user-item-metadata information in a single feature

vector 𝐱 ∈ ℝ𝑛=|𝑈|+|𝐼|+|𝐹|, where |𝑈|, |𝐼|, |𝐹| are the number of

users, items, and features, respectively. The prediction formula

depends on interactions of the components up to a certain

degree 𝑑, which in the case of 𝑑 = 2 becomes

�̂�𝑢,𝑖 = 𝑤0 + ∑ 𝑤𝑎𝑥𝑎

𝑛

𝑎=1

+ ∑ ∑ 〈𝐯𝑎, 𝐯𝑏〉𝑥𝑎𝑥𝑏

𝑛

𝑏=𝑎+1

𝑛

𝑎=1

The 𝑤𝑎 parameters model the contribution of each component in

the feature vector, whereas the weights for the pairwise

interactions are factorized as the product of two latent feature

vectors 𝐯𝑎 and 𝐯𝑏. Factorization machines generalize IMF by also

taking into account user-feature and item-feature interactions,

which are also factorized. In this work we use the implementation

available in GraphLab (http://graphlab.com), and refer the

reader to [22] for more details on the training algorithms.

4.3 Baseline Models
We also evaluated a number of well-known content-based and

collaborative filtering methods, and one hybrid method that

integrates content similarity into user-based CF.

Popularity-based (POP). Non-personalized method that always

recommends the most popular items not yet liked by the user.

Content-based (CB). Recommends the most similar items to

those in the user profile. We compute the similarity between items

as the cosine between their TF-IDF feature vectors, obtained from

the semantically-enriched item profiles described in section 3.4.

User-based Nearest Neighbors (UNN). Estimates the score of

candidate item 𝑖 for target user 𝑢 by aggregating the preferences

of other similar users: �̂�𝑢,𝑖 = ∑ sim(𝑢, 𝑣)𝑣∈𝑁(𝑢)∩𝑈(𝑖) . Here 𝑁(𝑢) is

the set of 𝑢’s 𝑘 most similar users, and 𝑈(𝑖) the set of users that

liked item 𝑖. We note that in this work we deal with binary

feedback for item ranking and thus drop normalization constants

and centering ratings to the mean. For the user-user similarity we

considered Jaccard’s coefficient between the sets 𝐼(𝑢) and 𝐼(𝑣) of

items liked by users 𝑢 and 𝑣, respectively.

Item-based Nearest Neighbors (INN). The INN method works

similarly to CB, with the difference that the item similarity is

computed in a collaborative filtering fashion by exploiting the

users’ interactions rather than the item content. Specifically, we

compute the score of item 𝑖 for user 𝑢 as �̂�𝑢,𝑖 = ∑ sim(𝑖, 𝑗)𝑗∈𝐼(𝑢) ,

where the item similarity is computed as the Jaccard coefficient

between sets 𝑈(𝑖) and 𝑈(𝑗).

Content-based Collaborative Filtering (HYB). This method

integrates content information into the UNN algorithm by

replacing the user similarity component. In particular, we generate

the TF-IDF profile vector for each user aggregating the content-

based profile vectors of her liked items, computed as in the CB

method. We compute the user-user similarities as the cosine

between their corresponding profile vectors, and use the same

formula as in UNN to compute the recommendation scores.

Although the method relies on content-based similarities, it still

follows the CF paradigm by exploiting the information from other

users in the neighborhood.

Sparse Linear Methods (SLIM). Implementation of the SLIM

method [16] available in MyMediaLite13. SSLIM refers to SLIM

with side information [17].

5. EXPERIMENTS
In this section, we detail the setting and results of the experiments

performed to evaluate the recommendation quality in the cold-

start situation of graph-based and matrix factorization models (see

Section 4) on the Facebook dataset (see Section 3), for three

13 http://www.mymedialite.net

distinct domains (books, movies, and music). The goal is to

evaluate the effectiveness of considering jointly user likes and

item metadata to produce accurate recommendations for cold-start

users, and to compare the different approaches in this setting.

5.1 Evaluation Methodology
The evaluation of the proposed techniques was based on the

TestItems evaluation methodology proposed in [3], using a modified

user-based 5-fold cross-validation strategy proposed in [12] for the

cold-start user scenario. First, we selected the users with at least 20

likes, shuffled and split them into five (roughly) equally sized

subsets. In each cross-validation stage, we kept all the likes from

four of the groups in the training set, whereas the likes from the

users in the fifth group were randomly split into three subsets:

training set (10 likes), validation set (5 likes), and testing (remaining

likes, hence at least 5). In order to simulate different user profile

sizes from one to ten likes, we repeat the training and the evaluation

ten times, starting with the first like in the training set and

incrementally increasing it one by one. This evaluation setting

allows us to evaluate each profile size with the same test set,

avoiding potential biases in the evaluation, since some accuracy

metrics have been proven to be sensitive to the test set size [12]. To

evaluate the ranking accuracy of the recommendations, we used

Precision, Recall, and Mean Reciprocal Rank (MRR). The latter

computes the average reciprocal rank of the first relevant

recommended item, and hence results particularly meaningful when

users are provided with few but valuable recommendations (i.e.,

Top-1 or Top-3) [20]. However, we only show MRR results in this

paper, since Precision and Recall ones have similar trends. We also

used the Catalog Coverage to better understand the differences

among the compared algorithms; it represents the number of items

in the catalog that have been recommended at least once [1].

5.2 Results
Table 4 shows the performance of the evaluated algorithms in the

three domains in terms of MRR.

Books. PathRank obtains the best accuracy in the case of users with

1 and 2 likes; PathRank, UNN and HYB are the best methods with

3 likes; while HeteRec is best method from 4 to 10 likes. It is worth

to note that POP baseline beats most of the methods except

PathRank with 1 like, and also UNN and HYB with 2 likes.

Moreover, PathRank reaches the best catalog coverage (>20%) after

HeteRec (>27%) and INN (>40%) with 1 and 2 likes; while

HeteRec keeps the second position in almost all the cases. SLIM

and SSLIM seem not able to face the cold-start problem, especially

with less than 5 likes. Summing up, graph-based methods obtain the

books movies

Profile length 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

CB .086 .120 .144 .160 .168 .178 .199 .198 .205 .214 .082 .107 .119 .135 .144 .154 .162 .169 .175 .182

IMF .171 .194 .235 .255 .271 .290 .285 .299 .307 .324 .256 .291 .314 .334 .348 .364 .376 .389 .400 .413

INN .145 .177 .216 .241 .262 .277 .303 .318 .331 .350 .233 .300 .336 .359 .377 .390 .405 .415 .423 .433

POP .244 .246 .248 .251 .252 .255 .255 .261 .263 .266 .287 .289 .292 .294 .297 .299 .302 .305 .308 .311

UNN .222 .265 .286 .289 .290 .306 .314 .323 .329 .337 .332 .320 .318 .330 .348 .378 .397 .405 .416 .426

HYB .247 .253 .283 .286 .292 .308 .322 .333 .339 .349 .300 .322 .343 .366 .382 .398 .413 .426 .434 .446

SLIM .130 .111 .194 .215 .242 .286 .323 .323 .335 .377 .157 .173 .236 .280 .306 .333 .349 .372 .390 .413

SSLIM .115 .119 .199 .212 .247 .271 .289 .303 .315 .326 .159 .192 .249 .290 .311 .338 .361 .382 .394 .417

FMs .213 .224 .223 .233 .236 .240 .245 .257 .253 .276 .290 .321 .334 .350 .358 .368 .375 .386 .391 .400

CMF .175 .186 .249 .258 .251 .285 .302 .317 .327 .358 .257 .297 .315 .337 .352 .371 .382 .391 .402 .420

HeteRec .218 .244 .279 .297 .316 .331 .345 .353 .358 .366 .315 .346 .357 .366 .374 .382 .388 .395 .401 .408

PathRank .251 .271 .285 .292 .295 .302 .305 .309 .313 .317 .333 .336 .337 .340 .344 .345 .350 .354 .357 .361

music

1 2 3 4 5 6 7 8 9 10

.113 .135 .151 .167 .178 .187 .198 .207 .215 .223

.347 .396 .427 .451 .471 .488 .503 .516 .532 .544

.320 .391 .426 .455 .474 .489 .504 .518 .532 .542

.337 .340 .342 .345 .347 .349 .352 .354 .357 .359

.422 .389 .389 .419 .448 .485 .503 .519 .533 .546

.356 .383 .413 .443 .469 .491 .505 .522 .536 .548

.193 .184 .293 .346 .388 .418 .440 .468 .491 .505

.207 .249 .334 .377 .413 .435 .458 .477 .502 .524

.394 .427 .450 .467 .480 .493 .504 .514 .524 .533

.357 .397 .432 .456 .476 .493 .509 .525 .536 .550

.358 .395 .421 .442 .463 .481 .496 .513 .524 .535

.410 .416 .420 .424 .428 .432 .436 .440 .443 .447

Table 4. Mean Reciprocal Rank of the evaluated methods for different cold-start profile lengths in books, movies, and music.

best results in books domain with best accuracy and good coverage,

but in different situations: PathRank is better with less likes (strong

cold-start) but HeteRec overcomes it where more likes are available

(weak cold-start). We also notice that using metadata information

leads to better recommendations. In particular, we can see that HYB

beats UNN in seven out of ten cases. Moreover, CMF gives the

same importance to user preferences and item metadata, obtaining

the better accuracy with the trade-off parameter 𝛾 = 0.5.

Movies. PathRank is again the strongest method for 1 like, closely

followed by UNN and HeteRec. We note nonetheless that the

coverage of the latter is much higher (>45% compared to about

10%). Until 4 likes are available, HeteRec yields the best

performance, still maintaining good coverage. As more likes are

observed, the HYB method consistently outperforms the rest, with

coverage in the range of 11.7% to 14.6%. We see that the

performance of INN in the same setting is close to HYB, however

providing much better catalog coverage (20.7% to 33.2%). On a

side note, as FMs beat IMF with few likes, item metadata results

also valuable in MF-based models. Regarding CMF and SLIM, we

observe a similar behavior to the books domain. In summary, once

again we conclude that content information is especially beneficial

in the most extreme cold-start. As more likes are available,

content-based collaborative filtering (HYB) also provides the best

accuracy. We also observe that graph-based methods are better

than MF-based approaches when very few likes are observed, even

though the latter also benefit from content information.

Music. With only a like in the user profile, UNN is the best method;

PathRank results quite close but with worse coverage (9.1% against

22.3%). From 2 to 6 likes, FMs emerges the best option; again

PathRank obtains a high MRR with 2 likes but with lowest

coverage (4% against 7.7%). From 7 t o10, CMF obtains the best

accuracy values. Again, SLIM seems a weak method for cold start

users, also using side information. In terms of coverage, HeteRec

and INN have the best values (from ~18% to ~84%), whereas CMF

has a coverage value around 15%. We can conclude that matrix

factorization models perform better in this domain and are also able

to exploit item metadata, since CMF and FMs beats IMF in each

configuration. In particular, CMF is able to adequately combine

likes and item metadata. As the optimal trade-off parameter for

CMF is 0.1 in this domain, this method gives more importance to

the content information as opposed to user preferences,

demonstrating that metadata is valuable in the cold-start scenario.

6. CONCLUSIONS AND FUTURE WORK
Providing relevant suggestions of items for cold-start users is a

well-known problem in recommender systems. In this paper, we

carried out a comparison of different hybrid recommendation

methods that jointly exploit user ratings and item metadata

extracted from Linked Data. We evaluated graph-based and matrix

factorization algorithms in the top-N recommendation task with

positive-only feedback, using a Facebook likes dataset covering

three distinct domains. The results demonstrated that by exploiting

item metadata, the proposed methods are able to provide relevant

recommendations even for users with very few likes, hence

addressing the cold-start problem. Moreover, graph-based methods

were more effective than matrix factorization approaches in books

and movie recommendations, whereas the latter provided better

performance in the music domain. We conjecture that this is due to

the importance of collaborative information in this domain, and to

the ability of matrix factorization models to better balance the

impact of item metadata. In contrast, we argue that graph-based

methods more effectively exploit content information. More

extensive experiments are needed in order to confirm our

hypothesis. In the future we will extend the analysis to the cross-

domain recommendation task [5], leveraging item metadata to

support the transfer of knowledge between the domains.

Additionally, we plan to analyze other important quality factors,

such as recommendation diversity [6].

Acknowledgements. This work was supported by the Spanish

Ministry of Science and Innovation (TIN2013-47090-C3-2).

7. REFERENCES
[1] Adomavicius, G., Kwon, Y. 2012. Improving aggregate recommendation

diversity using ranking-based techniques. IEEE Transactions on

Knowledge and Data Engineering, 24(5), 896–911.

[2] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.

2007. DBpedia: A Nucleus for a Web of Open Data. 6
th

 International

Semantic Web Conference, 722-735.
[3] Bellogin, A., Castells, P., and Cantador, I. 2011, Precision-oriented

evaluation of recommender systems: An algorithmic comparison. 5th ACM

Conference on Recommender Systems, 333–336.

[4] Bizer, C., Heath, T., Berners-Lee, T. 2009. Linked Data - The Story So Far.

Journal on Semantic Web and Information Systems 5(3), 1-22.

[5] Cantador, I., Fernández-Tobías, I., Berkovsky, S., Cremonesi, P. 2015.

Cross-Domain Recommender Systems. Recommender Systems Handbook

(2nd edition), 919-959.
[6] Di Noia, T., Ostuni, V.C., Rosati, J., Tomeo, P., Di Sciascio, E. 2014. An

Analysis of Users’ Propensity toward Diversity in Recommendations. 8th

ACM Conference on Recommender Systems. 285-288.

[7] Di Noia, T., Ostuni, V.C., Tomeo, P., Di Sciascio, E. 2016. SPRank:

Semantic Path-based Ranking for Top-N Recommendations using Linked

Open Data. ACM TIST (to appear), 30 pages.

[8] Enrich, M., Braunhofer, M., Ricci, F. 2013. Cold-Start Management with

Cross-Domain Collaborative Filtering and Tags. 14th Intl. Conference on
E-Commerce and Web Technologies, 101-112.

[9] Fernández-Tobías, I., Braunhofer, M., Elahi, M., Ricci, F., Cantador, I.

2016. Alleviating the New User Problem in Collaborative Filtering by

Exploiting Personality Information. In UMUAI (to appear), 35 pages.

[10] Funk, S. 2006. Netflix Update: Try This At Home.
http://sifter.org/~simon/journal/20061211.html

[11] Hu, Y., Koren, Y., Volinsky, C. 2008. Collaborative Filtering for Implicit
Feed-back Datasets. 8th IEEE Conference on Data Mining, 263–272.

[12] Kluver, D., Konstan, J.A. 2014. Evaluating Recommender Behavior for

New Users. 8th ACM Conference on Recommender Systems, 121–128.

[13] Koren, Y. 2008. Factorization Meets the Neighborhood: A Multifaceted

Collaborative Filtering Model. 14th ACM Conference on Knowledge

Discovery and Data Mining, 426-434.

[14] Koren, Y., Bell, R. 2011. Advances in Collaborative Filtering.
Recommender Systems Handbook, 145-186.

[15] Lee, S., Park, S., Kahng, M., Goo Lee, S. 2012. PathRank: A Novel Node

Ranking Measure on a Heterogeneous Graph for Recommender Systems.

21
st
 ACM Conf. on Information and Knowledge Management, 1637-1641.

[16] Ning, X., Karypis, G., 2011. Slim: Sparse Linear methods for top-n

recommender systems. ICDM, 497-506.

[17] Ning, X., Karypis, G., 2012. Sparse Linear methods with Side Information

for Top-N recommender systems. ACM RecSys 2012, 155-162.
[18] Singh, A. P., Gordon, G. J. 2008. Relational Learning Via Collective

Matrix Factorization. 14
th

 ACM Conference on Knowledge Discovery and

Data Mining, 650-658.

[19] Shi, C., Kong, X., Huang, Y., Philip, S.Y., Wu, B. 2013. HeteSim: A

General Framework for Relevance Measure in Heterogeneous Networks.

IEEE Trans. on Knowledge and Data Engineering 26(10), 2479-2492.

[20] Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic,

A. 2012. CLiMF: Learning to Maximize Reciprocal Rank with
Collaborative Less-is-more Filtering. ACM RecSys 2012, 139-146.

[21] Shi, Y., Larson, M., Hanjalic, A. 2014. Collaborative Filtering beyond the

User-Item Matrix: A Survey of the State of the Art and Future Challenges.

Journal ACM Computing Surveys 47(1), No. 3.

[22] Rendle, S. 2010. Factorization Machines. 10
th

 IEEE International

Conference on Data Mining, 995-1000.

[23] Sun, Y., Han, J., Yan, X., Yu, P. S., Wu, T. 2011. PathSim: Meta Path-
Based Top-K Similarity Search in Heterogeneous Information Networks.

2011 Conference on Very Large Database Endowment, 992-1003.

[24] Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandewal, U., Norick, B.,

Han, J. 2014. Personalized Entity Recommendation: A Heterogeneous

Information Network Approach. 7
th

 ACM Conference on Web Search and

Data Mining, 283–292.

