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Abstract. In this paper we revise the state of the art on personality-aware 

recommender systems, identifying main research trends and achievements up to 

date, and discussing open issues that may be addressed in the future. 
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1 Introduction 

Human personality, as defined in psychology, is a combination of characteristics or 

qualities that form an individual’s style of thinking, feeling and behaving in different 

situations [24]. Among the existing models proposed to characterize and represent 

human personality, the Five Factor model [4] states that there are five main factors 

that allow describing an individual’s personality: openness, conscientiousness, 

extraversion, agreeableness, and neuroticism. 

Personality influences how people make their decisions [18]. Recent research has 

shown that correlations between user personality traits and preferences exist in different 

domains, such as music [2, 20, 21, 22], movies and TV shows [2, 3, 19, 21], books and 

magazines [2, 21], and websites [15]. These correlations can be used to enhance 

personalized information access and retrieval [10, 17]. Specifically, in recommender 

systems, the exploitation of user personality information has enabled address cold-start 

situations [25], facilitate the user preference elicitation process [8], mitigate the sparsity 

problem [11], and improve the accuracy of collaborative filtering [5, 23]. 

Despite these achievements, the exploitation of user personality in recommender 

systems is a challenging and still largely under explored topic. 

2 Open Issues in Personality-aware Recommender Systems 

Similarly to user preferences, personality factors can be inferred explicitly, e.g. by 

means of psychometric questionnaires [1, 4, 8], or implicitly, e.g. by analyzing digital 

footprints [14], linguistic features of user texts [23], and by correlating personality 

traits with patterns of social network use, such as posting, rating, establishing 

friendship relations, and participating in user groups [1, 12]. Whereas explicit 

questionnaires are more accurate than techniques inferring personality from user 
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generated contents, they require the users’ effort to fill them. Note that the well 

known IPIP [7] proxy for Costa and McCrae’s NEO-PI-R test [4] may have between 

60 and 240 items. Hence, innovative techniques to efficiently acquire user 

personality in recommenders have to be developed, and may be incorporated into the 

user preference elicitation process [8]. 

Once extracted, it is needed to model user personality. Most of existing 

personality-aware recommenders deals with a vector representation composed of the 

numeric values of personality factors [5, 8, 11]. This, nonetheless, may not be the best 

choice. There are works that have considered using discrete value intervals of the 

personality factors [5], sets of predefined personality categories – e.g. reflective and 

energetic people [22], and aesthetic, cerebral, communal, dark, and thrilling contents 

[21] –, and personality-based stereotypes [2, 16]. In this context, a balance between 

recommendation accuracy and comprehension (explicability) could be important. 

Moreover, instead of broad user personality representations, using more fine-grained 

information provided by the IPIP tests, such as the facets of each personality factor 

[9] may help achieve better recommendations; Note e.g. that a particular individual 

with a high overall openness score, may have high imagination and artistic interests, 

but may not have a high level of adventurousness. Finally, the modeling task is even 

more challenging if we account for variables that could influence particularities of an 

individual’s personality. In this case, special attention should be given to the users’ 

age, gender, and educational attainment, as pointed out in [2, 3, 5]. 

Assuming that user personality can be inferred and modeled by a recommender 

system, another set of open issues is related with the particular exploitation of user 

personality for making recommendations. In general, simple approaches have been 

investigated so far, from content-based [23] to collaborative filtering [5, 8, 11, 17] 

heuristics. There is plenty of room for alternative, more sophisticated methods. In 

particular, we envision matrix factorization as a powerful model in which user 

personality information can be easily integrated with content-based and collaborative 

filtering user profiles. Moreover, in addition to user preferences, contextual signals 

may have an important role in personality-aware recommendations. In a particular 

context, people with distinct personalities react differently. The identification and 

exploitation of relations between context and personality is thus of special interest in 

recommender systems. In fact, the user’s current mood is one of the contextual signals 

that has been shown as directly related with personality [18, 19]. It is known that an 

individual’s personality influences her mood changes due to external emotional 

stimuli [13], and these stimuli may be generated by received recommendations. In all 

the above cases, we may go beyond the accuracy of personality-aware 

recommendations, and deal with other metrics, such as novelty and diversity [20]; 

Note, for example, that open-minded people may appreciate diverse and serendipitous 

recommendations, while introverted people may prefer recommendations much more 

related with their past preferences. Finally, we would like to highlight the fact that 

exploiting personality could also help address new recommendation scenarios, such as 

those of cross-domain recommender systems [2], in which information from a source 

domain is used to enhance or generate recommendations in a different target domain, 

where the user’s preferences may not be available [6, 26]. 
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