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ABSTRACT 

Cross-domain recommender systems aim to generate or enhance 

personalized recommendations in a target domain by exploiting 

knowledge (mainly user preferences) from other source domains. 

Due to the heterogeneity of item characteristics across domains, 

content-based recommendation methods are difficult to apply, and 

collaborative filtering has become the most popular approach to 

cross-domain recommendation. Nonetheless, recent work has 

shown that the accuracy of cross-domain collaborative filtering 

based on matrix factorization can be improved by means of content 

information; in particular, social tags shared between domains. In 

this paper, we review state of the art approaches in this direction, 

and present an alternative recommendation model based on a novel 

extension of the SVD++ algorithm. Our approach introduces a new 

set of latent variables, and enriches both user and item profiles with 

independent sets of tag factors, better capturing the effects of tags 

on ratings. Evaluating the proposed model in the movies and books 

domains, we show that it can generate more accurate 

recommendations than existing approaches, even in cold-start 

situations. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search and 

Retrieval – information filtering. G.1.3 [Numerical Analysis]: 

Numerical Linear Algebra – singular value decomposition. 

General Terms 

Algorithms, Performance, Experimentation. 

Keywords 

Recommender systems, collaborative filtering, cross-domain 

recommendation, social tagging. 

1. INTRODUCTION 
Recommender systems [2] have been successfully used in 

numerous domains and applications to identify potentially 

relevant items for users according to their preferences (tastes, 

interests and goals). Examples include suggested movies and TV 

programs in Netflix1, music albums in Last.fm2, and books in 

Barnes&Noble3. 

                                                                 

1 Netflix online movies & TV shows provider, http://www.netflix.com 
2 Last.fm music discovery service, http://www.lastfm.com 
3 Barnes&Noble retail bookseller, http://www.barnesandnoble.com 

Even though the majority of recommender systems focus on a 

single domain or type of item, there are cases in which providing 

the user with cross-domain recommendations could be beneficial. 

For instance, large e-commerce sites like Amazon4 and eBay5 

collect user feedback for items from multiple domains, and in 

social networks users often share their tastes and interests on a 

variety of topics. In these cases, rather than exploiting user 

preference data from each domain independently, recommender 

systems could exploit more exhaustive, multi-domain user models 

that allow generating item recommendations spanning several 

domains. Furthermore, exploiting additional knowledge from 

related, auxiliary domains could help improve the quality of item 

recommendations in a target domain, e.g. addressing the cold-start 

and sparsity problems [7]. 

These benefits rely on the assumption that there are similarities or 

relations between user preferences and/or item attributes from 

different domains. When such correspondences exist, one way to 

exploit them is by aggregating knowledge from the involved 

domain data sources, for example by merging user preferences 

into a unified model [1], and by combining single-domain 

recommendations [3]. An alternative way consists of transferring 

knowledge from a source domain to a target domain, for example 

by sharing implicit latent features that relate source and target 

domains [15][17], and by exploiting implicit rating patterns from 

source domains in the target domain [9][14]. 

In either of the above cases, most of the existing approaches to 

cross-domain recommendation are based on collaborative 

filtering, since it merely needs rating data, and does not require 

information about the users’ and items’ characteristics, which are 

usually highly heterogeneous among domains. 

However, inter-domain links established through content-based 

features and relations may have several advantages, such as a 

better interpretability of the cross-domain user models and 

recommendations, and the establishment of more reliable methods 

to support the knowledge transfer between domains. In particular, 

social tags assigned to different types of items –such as movies, 

music albums, and books–, may act as a common vocabulary 

between domains [6][17]. Hence, as domain independent content-

based features, tags can be used to overcome the information 

heterogeneity across domains, and are suitable for building the 

above mentioned inter-domain links. 

In this paper, we review state of the art cross-domain 

recommendation approaches that utilize social tags to exploit 

knowledge from an auxiliary source domain for enhancing 

collaborative filtering rating predictions in a target domain. 

                                                                 

4 Amazon e-commerce website, http://www.amazon.com 
5 eBay consumer-to-consumer website, http://www.ebay.com  
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Specifically, we focus on several extensions of the matrix 

factorization technique proposed in [6], which incorporates latent 

factors related to the users’ social tags. By jointly learning tag 

factors in both the source and target domains, hidden correlations 

between ratings and tags in the source domain can be used in the 

target domain. Hence, for instance, a movie recommender system 

may estimate a higher rating for a particular movie tagged as 

interesting or amazing if these tags are usually assigned to books 

positively rated. Also, books tagged as romantic or suspenseful 

may be recommended to a user if it is found that such tags 

correlate with high movie ratings. 

Enrich et al. [6] presented several recommendation models that 

exploit different sets of social tags when computing rating 

predictions, namely tags assigned by the active user to the item for 

which the rating is estimated, and all the tags assigned by the 

community to the target item. Despite their good performance, 

these models do have difficulties in cold-start situations where no 

tagging information is available for the target user/item.  

In this paper, we propose a method that expands the users’ and 

items’ profiles to overcome these limitations. More specifically, 

we propose to incorporate additional parameters to the above 

models, separating user and item latent tag factors in order to 

capture the contributions of each to the ratings more accurately. 

Furthermore, by modeling user and item tags independently we 

are able to compute rating predictions even when a user has not 

assigned any tag to an item, or for items that have not been tagged 

yet. For such purpose, we adapt the gSVD++ algorithm [10] –

designed to integrate content metadata into the matrix 

factorization process– for modeling social tags in the cross-

domain recommendation scenario. 

Through a series of experiments in the movies and books 

domains, we show that the proposed approach outperforms the 

state of the art methods, and validate the main contribution of this 

work: A model that separately captures user and item tagging 

information, and effectively transfers auxiliary knowledge to the 

target domain in order to provide cross-domain recommendations. 

The reminder of the paper is structured as follows. In section 2 we 

review state of the art approaches to the cross-domain 

recommendation problem, focusing on algorithms based on matrix 

factorization, and on algorithms that make use of social tags to 

relate the domains of interest. In section 3 we provide a brief 

overview of matrix factorization methods for single-domain 

recommendation, and in section 4 we describe their extensions for 

the cross-domain recommendation case. In section 5 we present 

and discuss the conducted experimental work and obtained 

results. Finally, in section 6 we summarize some conclusions and 

future research lines. 

2. RELATED WORK 
Cross-domain recommender systems aim to generate or enhance 

personalized recommendations in a target domain by exploiting 

knowledge (mainly user preferences) from other source domains 

[7][19]. This problem has been addressed from various perspectives 

in several research areas. It has been faced by means of user 

preference aggregation and mediation strategies for the cross-

system personalization problem in user modeling [1][3][16], as a 

potential solution to mitigate the cold-start and sparsity problems in 

recommender systems [5][17][18], and as a practical application of 

knowledge transfer techniques in machine learning [9][14][15]. 

We can distinguish between two main types of cross-domain 

approaches: Those that aggregate knowledge from various source 

domains to perform recommendations in a target domain, and 

those that link or transfer knowledge between domains to support 

recommendations in the target domain. 

The knowledge aggregation methods merge user preferences (e.g. 

ratings, social tags, and semantic concepts) [1], mediate user 

modeling data exploited by various recommender systems (e.g. user 

similarities and user neighborhoods) [3][16], and combine single-

domain recommendations (e.g. rating estimations and rating 

probability distributions) [3]. The knowledge linkage and transfer 

methods relate domains by common information (e.g. item 

attributes, association rules, semantic networks, and inter-domain 

correlations) [5][18], share implicit latent features that relate source 

and target domains [15][17], and exploit explicit or implicit rating 

patterns from source domains in the target domain [9][14]. 

Cross-domain recommendation models based on latent factors are a 

popular choice among knowledge linkage and transfer methods, 

since they allow automatically discovering and exploiting implicit 

domain relations within the data from different domains. For 

instance, Zhang et al. [20] proposed an adaptation of the matrix 

factorization model to include a probability distribution that 

captures inter-domain correlations, and Cao et al. [4] presented a 

method that learns similarities between item latent factors in 

different domains as parameters in a Bayesian framework. Aiming 

to exploit heterogeneous forms of user feedback, Pan et al. [15] 

proposed an adaptive model in which the latent features learned in 

the source domain are transferred to the target domain in order to 

regularize the matrix factorization there. Instead of the more 

common two-way decomposition of the rating matrix, Li et al. [14] 

used a nonnegative matrix tri-factorization to extract rating patterns 

–the so-called codebook– in the source domain. Then, rather than 

transferring user and item latent factors, the rating patterns are 

shared in the target domain and used to predict the missing ratings. 

Despite the ability of matrix factorization models to discover 

latent implicit relations, there are some methods that use tags as 

explicit information to bridge the domains. Shi et al. [17] argued 

that explicit relations established through common social tags are 

more effective for such purpose, and used them to compute user-

user and item-item cross-domain similarities. In this case, rating 

matrices from the source and target domains are jointly factorized, 

but user and item latent factors are restricted so that they are 

consistent with the tag-based similarities.  

Instead of focusing on sharing user or item latent factors, Enrich et 

al. [6] studied the influence of social tags on rating prediction. 

More specifically, the authors presented a number of models based 

on the well-known SVD++ algorithm [11], to incorporate the effect 

of tag assignments into rating estimations. The underlying 

hypothesis is that information about how users annotate items in 

the source domain can be exploited to improve rating prediction in 

a different target domain, as long as a set of common tags between 

the domains exists. In all the proposed models, tag factors are 

added into the latent item vectors, and are then combined with user 

latent features to compute rating estimations. The difference 

between these models is the set of tags considered for rating 

prediction. Two of the proposed models use the tags assigned by 

the user to a target item, and the other model takes the tags of the 

whole community into account. We note that the first two models 

require the active user to tag, but not rate the item in the target 

domain. In all the models, the transfer of knowledge is performed 

through the shared tag factors in a collective way, since these 

factors are learned jointly for the source and the target domains. 

The results reported in the movies and books domains confirmed 

that shared knowledge can be effectively exploited to outperform 

single-domain rating predictions. 



The model we propose in this paper follows the same line as 

Enrich et al. [6], in the sense that tags are directly integrated as 

latent factors into the rating prediction process, as opposed to 

Shi’s and colleagues’ approach [17], which estimates the ratings 

using only user and item factors. The main difference of our 

model with the approaches presented in [6] is the way in which 

the rating matrix is factorized. Rather than using a single set of tag 

factors to extend the item’s factorization component, we introduce 

additional latent variables in the user component to separately 

capture the effect of tags utilized by the user and the tags assigned 

to the item. For this purpose, we adapt the gSVD++ algorithm 

[10], which extends SVD++ by introducing a set of latent factors 

to take item metadata into account for rating prediction. In this 

model, both user and item factors are respectively enhanced with 

implicit feedback and content information, which allows 

improving the accuracy of rating predictions. 

3. OVERVIEW OF MATRIX 

FACTORIZATION METHODS 
Since the proposed cross-domain recommendation model is built 

upon a matrix factorization collaborative filtering method, in this 

section we provide a brief overview of the well-known standard 

rating matrix factorization technique, and the SVD++ and 

gSVD++ algorithms, which extend the former by incorporating 

implicit user feedback and item metadata, respectively. 

3.1 MF: Standard rating matrix factorization 
Matrix factorization (MF) methods [8][12] are a popular approach 

to latent factor models in collaborative filtering. In these methods, 

the rating matrix is decomposed as the product of low-rank 

matrices of user and item latent features. In its most basic form, a 

factor vector	�� ∈ ℝ� is assigned to each user �, and a factor 

vector	�	 ∈ ℝ�	to each item	
, so that ratings are estimated as: �̂�	 = �	��� + ��	 (1)

where the term	��		is a baseline estimate that captures the 

deviation of user and item ratings from the average, and is defined 

as: ��	 = � + �� + �	 (2)

The parameter � corresponds to the global average rating in the 

training set, and �� and �	 are respectively the deviations in the 

ratings of user � and item 
 from the average. The baseline 

estimates can be explicitly defined or learned from the data. In the 

latter case, the parameters of the model are found by solving the 

following regularized least squares problem: min�∗,�∗,�∗ � ���	 − � − �� − �	 − �	�������,	 ∈ℛ+ "���� + �	� + ‖��‖� + ‖�	‖�� 

(3)

In this formula, the parameter " controls the amount of 

regularization to prevent high model variance and overfitting. The 

minimization can be performed by using gradient descent over the 

set ℛ of observed ratings [8]. This method is popularly called 

SVD, but it is worth noticing that it is not completely equivalent 

to the singular value decomposition technique, since the rating 

matrix is usually very sparse and most of its entries are actually 

not observed. 

For simplicity purposes, in the following we omit the baseline 

estimates. They, nonetheless, can be easily considered by adding 

the ��	 term into the rating estimation formulas. 

3.2 SVD++: Adding implicit user feedback to 

the rating matrix factorization method 
The main motivation behind the SVD++ algorithm, proposed by 

Koren [11][13], is to exploit implicit additional user feedback for 

rating prediction, since it is arguably to use a more available and 

abundant source of user preferences. 

In this model, user preferences are represented as a combination 

of explicit and implicit feedback, searching for a better 

understanding of the user by looking at what items she rated, 

purchased or watched. For this purpose, additional latent factors 

are combined with the user’s factors as follows: 

�̂�	 = �	� $�� + |&�� |'(� � )**∈+�� , (4)

In the previous formula,	�� ∈ ℝ� , �	 ∈ ℝ� , )* ∈ ℝ� represent 

user, item, and implicit feedback factors, respectively.	&�� 	is the 

set of items for which the user	�	provided implicit preference, 

and	-	is the number of latent features. 

Similarly to the SVD algorithm, the parameters of the model can 

be estimated by minimizing the regularized squared error loss 

over the observed training data: 

min�∗,�∗,.∗ � /��	 − �	� $�� + |&�� |'(� � )**∈+�� ,0���,	 ∈ℛ
+ "$‖��‖� + ‖�	‖� + � 1)*1�

*∈+�� , 

(5)

Again, the minimization problem can be efficiently solved using 

stochastic gradient descent. 

3.3 gSVD++: Adding item metadata to the 

rating matrix factorization method 
The gSVD++ algorithm [10] further extends SVD++ considering 

information about the items’ attributes in addition to the users’ 

implicit feedback. 

The model introduces a new set of latent variables 23 ∈ ℝ�	for 

metadata that complement the item factors. This idea combined 

with the SVD++ algorithm leads to the following formula for 

computing rating predictions: 

�̂�	 = $�	 + |4�
 |'5 � 233∈6�	 ,� $�� + |&�� |'(� � )**∈+�� , (6)

The set 4�
  contains the attributes related to item	
, e.g. comedy 

and romance in the case of movie genres. The parameter 7 is set 

to 1 when the set 4�
 ≠ ∅, and 0 otherwise. We note that in the 

previous formula, both user and item factors are enriched with 

new uncoupled latent variables that separately capture information 

about the users and items, leading to a symmetric model with four 

types of parameters. Again, parameter learning can be performed 

by minimizing the associated squared error function with gradient 

descent: 

min�∗,�∗,:∗,.∗ � ;��	 − $�	 + |4�
 |'5 � 233∈6�	 ,� $�� + |&�� |'(� � )**∈+�� ,<
�

��,	 ∈ℛ
+ "$‖��‖� + ‖�	‖� + � 1231�

3∈6�	 + � 1)*1�
*∈+�� , 

(7)



The use of additional latent factors for item metadata is reported 

to improve prediction accuracy over SVD++ in [10]. In this paper, 

we adapt this model to separately learn user and item tag factors, 

aiming to support the transfer of knowledge between domains. 

4. TAG-BASED MODELS FOR CROSS-

DOMAIN COLLABORATIVE FILTERING 
In this section, we first describe the tag-based cross-domain 

collaborative filtering models presented in [6], which are an 

adaptation of the SVD++ algorithm, and next introduce our 

proposed model, which is built upon the gSVD++ algorithm. 

4.1 Adaptation of SVD++ for Tag-based 

Cross-domain Collaborative Filtering  
The main hypothesis behind the models proposed in [6] is that the 

effect of social tags on ratings can be shared between domains to 

improve the rating predictions in the target domain. In that work, 

three different adaptations of the SVD++ algorithm were explored 

that utilize tags as implicit user feedback to enhance the item 

factors, as opposed to user factors like in the original model. 

The first of the algorithms proposed by Enrich et al. is the 

UserItemTags model, which only exploits the tags =��
  that the 

active user � assigned to the target item 
: 
�̂�	 = ��� $�	 + 1|=��
 | � )??∈�@�	 , (8)

We note here that if the user has not tagged the item, i.e., =��
 =∅, then the model corresponds to the standard matrix factorization 

technique. Also, even though the tag factors )? are only combined 

with the item factors	�	, the user and item factorization 

components are not completely uncoupled, since the set =��
  still 

depends on the user	�. 

An improvement over the model was also presented in [6], based 

on the observation that not all the tags are equally relevant (i.e. 

discriminative) to predict the ratings. The proposed alternative is 

to filter the tags in the set =��
  that are not relevant according to 

certain criterion. In that work, the Wilcoxon rank-sum test is 

performed for each tag to decide if the mean rating significantly 

changes in the presence/absence of the tag in the dataset. In this 

model, rating predictions are computed in an analogous manner: 

�̂�	 = ��� $�	 + 1|=A��
 | � )??∈�B@�	 , (9)

Here, the set =A��
 ⊆ =��
  only contains those tags for which 

the p-value of the abovementioned test is	� < 0.05. This method 

was called as UserItemRelTags. 

As noted by the authors, the previous methods are useful when the 

user has tagged but not rated an item. However, these methods do 

not greatly improve over the standard matrix factorization 

technique in the cold-start situations where new users or items are 

considered. Aiming to address this limitation, a last approach was 

proposed, the ItemRelTags model: 

�̂�	 = ��� $�	 + 1|=A�
 | � H?)??∈�B�	 , (10)

Now, the set =A�
  contains all the relevant tags assigned by the 

whole community to the item	
, with possible repetitions. Tags 

that appear more often contribute with more factors to the 

prediction, and H? is the number of times tag I was applied to 

item	
. In this case, the normalization factor is |=A�
 | =∑ H??∈�B�	 .  

We note that the set =A�
  does not depend on the user, and that 

the user and item components of the factorization are fully 

uncoupled. This has the advantage that tag factors can also be 

exploited in the rating predictions for new users for whom tagging 

information is not available yet, improving over the standard 

matrix factorization method. The ItemRelTags model, however, 

does not take into account the possibility that the user has tagged 

different items other than the one for which the rating is being 

estimated. In such cases, it may be beneficial to enrich the user’s 

profile by considering other tags the user has chosen in the past as 

evidence of her preferences. In the next subsection, we propose a 

model that aims to exploit this information to generate more 

accurate recommendations. 

Similarly to the SVD++ algorithm, all of the above models can be 

trained by minimizing the associated loss function with stochastic 

gradient descent. 

4.2 Adaptation of gSVD++ for Tag-based 

Cross-domain Collaborative Filtering 
Although the previous recommendation models can successfully 

transfer tagging information between domains, they suffer from 

some limitations. The UserItemTags and UserItemRelTags models 

cannot do better than the standard matrix factorization if the user 

has not tagged the item for which the rating is being estimated, 

while the ItemRelTags model does not fully exploits the user’s 

preferences expressed in the tags assigned to other items. 

In this paper, we propose to adapt the gSVD++ algorithm by 

introducing an additional set of latent variables 2K ∈ ℝ� that 

enrich the user’s factors and better capture the effect of her tags in 

the rating estimation. Specifically, we distinguish between two 

different sets of tags for users and items, and factorize the rating 

matrix into fully uncoupled user and item components as follows: 

�̂�	 = $�� + 1|=�| � H�K2KK∈�@ ,� $�	 + 1|=	| � H	?)??∈�L
, (11)

The set =� contains all the tags assigned by user	� to any item. 

Respectively, =	 is the set of tags assigned by any user to item	
, 
and plays the role of item metadata 4�
  in the gSVD++ 

algorithm. As in the ItemRelTags model, there may be repeated 

tags in each of the above tag sets, which we account for by 

considering the number of times a tag appears in =� or =	, 
respectively. In (11), H�K is the number of items on which the user � applied tag	M, and H	? is the number of users that applied tag I to 

item	
. As previously, tag factors are normalized by |=�| =∑ H�KK∈�@  and	|=	| = ∑ H	??∈�L , so that factors 2K and	)? do not 

dominate over the rating factors �� and	�	 for users and items with 

a large number of tags. 

In the proposed model, which we call as TagGSVD++, a user’s 

profile is enhanced with the tags she used, since we hypothesize 

that her interests are better captured, and that transferring this 

information between domains can be beneficial for estimating 

ratings in the target domain. Likewise, item profiles are extended 

with the tags that were applied to them, as in the ItemRelTags 

model. 

The parameters of TagGSVD++ can be learned from the observed 

training data by solving the following unconstrained minimization 

problem: 



min�∗,�∗,:∗,.∗ � N���, �	 , O2KPK∈�@ , O)?P?∈�L���,	 ∈ℛ
= min�∗,�∗,:∗,.∗ � 12;��	 − $�� + 1|=�| � HK2KK∈�@ ,� $�	 + 1|=	| � H?)??∈�L

,<
�

��,	 ∈ℛ
+ "2$‖��‖� + ‖�	‖� + �‖2K‖�

K∈�@ + �‖)?‖�
?∈�L

, 

(12)

The factor 1 2⁄  simplifies the following derivations with no effect 

on the solution. As in the previous models, a minimum can be 

found by stochastic gradient descent. For completeness, in the 

following we list the update rules of TagGSVD++ taking the 

derivatives of the error function in (12) with respect to the 

parameters: SNS�� = −T�	 U�	 + 1|=	|� H	?)??∈�L V + "�� SNS�	 = −T�	 U�� + 1|=�|� H�K2KK∈�@ V + "�	 SNS2W = −T�	 H�W|=�| U�	 + 1|=	|� H	?)??∈�L V + "2W								∀Y ∈ =� SNS)Z = −T�	 H	Z|=	| U�� + 1|=�|� H�K2KK∈�@ V + ")Z 							∀� ∈ =	 
where the error term	T�	 is ��	 − �̂�	. In the training phase, we 

loop over the observed ratings simultaneously updating the 

parameters according to the following rules: �� ← �� − \ ]"�� − T�	 ^�	 + (|�L|∑ H	?)??∈�L _`  
�	 	← �	 	− \ ]"�	 − T�	 ^�� + (|�@|∑ H�K2KK∈�@ _`  
2W ← 2W − \ ]"2W − T�	 a@b|�@| ^�	 + (|�L|∑ H	?)??∈�L _`, ∀Y ∈ =� 

)Z ← )Z − \ ]")Z − T�	 aLc|�L| ^�� + (|�@|∑ H�K2KK∈�@ _`, ∀� ∈ =	 
The learning rate \ determines to what extent the parameters are 

updated in each iteration. A small learning rate can make the 

learning slow, whereas with a large learning rate the algorithm 

may fail to converge. The choice of both the learning rate and the 

regularization parameter " is discussed later in section 5.3. 

5. EXPERIMENTS 
We have evaluated the proposed TagGSVD++ algorithm (section 

4.2) in a cross-domain collaborative filtering setting, by 

empirically comparing it with the single-domain matrix 

factorization methods (section 3) and the state-of-the-art cross-

domain recommendation approaches described in section 4.1.   

5.1 Dataset 
We have attempted to reproduce the cross-domain dataset used in 

[6], aiming to compare our approach with those presented in that 

paper. For the sake of completeness, we also describe the data 

collection process here. 

In order to simulate the cross-domain collaborative filtering 

setting, we have downloaded two publicly available datasets for 

the movies and books domains. The MovieLens 10M dataset6 

(ML) contains over 10 million ratings and 100,000 tag 

assignments by 71,567 users to 10,681 movies. The LibraryThing 

dataset7 (LT) contains over 700,000 ratings and 2 million tag 

                                                                 

6 MovieLens datasets, http://grouplens.org/datasets/movielens 
7 LibraryThing dataset, http://www.macle.nl/tud/LT 

assignments by 7,279 users on 37,232 books. Ratings in both of 

the datasets are expressed on a 1-5 scale, with interval steps of 

0.5.  

Since we were interested in analyzing the effect of tags on rating 

prediction, we only kept ratings in MovieLens on movies for 

which at least one tag was applied, leaving a total of 24,564 

ratings. Also following the setup done by Enrich et al., we 

considered the same amount of ratings in LibraryThing, and took 

the first 24,564 ratings. We note, however, that the original 

dataset contained duplicate rows and inconsistencies, i.e., some 

user-item pairs had more than one rating. Hence, we preprocessed 

the dataset removing such repetitions and keeping only the 

repeated ratings that appeared first in the dataset’s file. We also 

converted the tags to lower case in both datasets. Table 1 shows 

the characteristics of the final datasets. 

Table 1. Details of the datasets used in the experiments after 

preprocessing. 

 MovieLens LibraryThing 

Users 2,026 244 

Items 5,088 12,801 

Ratings 24,564 24,564 

Avg. ratings per user 12.12 100.67 

Rating sparsity 99.76% 99.21% 

Tags 9,529 4,598 

Tag assignments 44,805 72,943 

Avg. tag assignments per user 22.16 298.95 

Ratio of overlapping (shared) tags 13.81% 28.62% 

5.2 Evaluation methodology 
As mentioned above, we have compared the performance of the 

proposed model against the single-domain matrix factorization 

baselines from section 3, and the state-of-the-art tag-based 

algorithms described in section 4.1. All these methods are 

summarized next:  

MF The standard matrix factorization method trained by 

stochastic gradient descent over the observed ratings of both 

movies and books domains. 

SVD++ An adaptation of MF to take implicit data into account. In 

our experiments, the set &��  contains all the items rated by user �. 

gSVD++ An extension of SVD++ to include item metadata into 

the factorization process. In our experiments, we have considered 

as set of item attributes	4�
  the tags =	 assigned to item 
 by any 

user. Note that, as tags are content features for both movies and 

books, this method is suitable for cross-domain recommendation, 

since knowledge can be transferred through the metadata (tag) 

factors. This differs from the proposed TagGSVD++ in that users 

are modeled as in SVD++ by considering rated items as implicit 

feedback instead of their tags. Also, normalization of the implicit 

data factors on the user component involves a square root; see 

equations (6) and (11). 

UserItemTags A method that expands an item 
’s profile with 

latent factors of tags that the target user assigned to 
. Its 

parameters are learned by simultaneously factorizing the rating 

matrices of both source and target domains. 

UserItemRelTags A variation of the previous method that only 
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