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Abstract 

While recommendation approaches exploiting different input sources have started to proliferate in the 

literature, an explicit study of the effect of the combination of heterogeneous inputs is still missing. On 

the other hand, in this context, there are sides to recommendation quality requiring further 

characterization and methodological research –a gap that is acknowledged in the field. We present a 

comparative study on the influence that different types of information available in social systems have on 

item recommendation. Aiming to identify which sources of user interest evidence –tags, social contacts, 

and user-item interaction data– are more effective to achieve useful recommendations, and in what aspect, 

we evaluate a number of content-based, collaborative filtering, and social recommenders on three datasets 

obtained from Delicious, Last.fm, and MovieLens. Aiming to determine whether and how combining 

such information sources may enhance over individual recommendation approaches, we extend the 

common accuracy-oriented evaluation practice with various metrics to measure further recommendation 

quality dimensions, namely coverage, diversity, novelty, overlap, and relative diversity between ranked 

item recommendations. We report empiric observations showing that exploiting tagging information by 

content-based recommenders provides high coverage and novelty, and combining social networking and 

collaborative filtering information by hybrid recommenders results in high accuracy and diversity. This, 

along with the fact that recommendation lists from the evaluated approaches had low overlap and relative 

diversity values between them, gives insights that meta-hybrid recommenders combining the above 

strategies may provide valuable, balanced item suggestions in terms of performance and non-performance 

metrics.  
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1. Introduction 

The environments on which recommender system technologies are commonly deployed have undergone a 

remarkable evolution in the last few years in terms of scale, richness, and complexity of the available 

data. Modern recommender applications do not just have a user-item ratings matrix available, but 

complex user interaction data, rich item profiles, and large-scale (owned, public, or third-party) resources 

of many different types. This has been paralleled by a no less remarkable progress in the development of 

effective recommendation algorithms, and an evolution in the understanding of the role of 

recommendation functionalities in different application domains. The availability and convergence of 

technologies and resources in social systems –rich item databases, personal user data, user interaction 

records, user-contributed content, social networks, geospatial information, and so forth– have transformed 

the context in which the recommendation problem is addressed, multiplying the opportunities for 

enhanced solutions.  

It has been made clear in recent years that a single algorithm is generally insufficient to optimize the 

effectiveness of recommendations –the Netflix contest
1
 is a paradigmatic example of the superiority of 

hybrid recommenders over stand-alone approaches [28]. Likewise, recommendation based on a single 

source of input data is generally suboptimal, inasmuch as the multiplicity of available hints for good 

recommendations are missed. At the same time, the purpose and scenarios for recommendation are 

diverse, and consequently, a single view of recommendation quality becomes insufficient to assess the 

value and usefulness of a recommendation approach. Evaluation methodologies and metrics need to be 

extended for this purpose, which is currently an open area of research and development in the field. 

While recommendation approaches exploiting different input sources have started to proliferate in the 

literature, an explicit study of the effect of the combination of heterogeneous sources is still missing. In 

fact, there is little reported evidence yet on the comparative effectiveness enabled by different types of 
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input data, when used individually, and the additional gain that can be leveraged from their combined 

effect. Furthermore, such a study requires an extension of the traditional evaluation dimensions and 

metrics in order to properly capture the effects of such combinations in their different, relevant angles –an 

area where a methodological gap has been identified in the field [42]. The recommender systems 

literature has indeed been strongly focused on recommendation accuracy (to be more precise, on the 

accuracy in rating value prediction) as the main –generally the only– quality criteria. Aspects such as the 

coverage, diversity and novelty of recommended items, which may be critical in practice for the target 

users of recommendation –or the business beneath–, have been barely addressed yet in the literature by a 

sound body of shared methodologies and metrics [1]. While progress in accuracy optimization seems to 

have somewhat peaked in the field [28], and is getting circumscribed to small increments, we see 

considerable room for progress in such, to a large extent, unexplored dimensions. The combination of 

sources and the extension of evaluation methodologies thus present themselves as two interrelated 

research goals, where we see in the former a direction for improvement in terms of the latter, and the 

latter is a necessity to evaluate the former. 

Motivated by the above considerations, in this paper, we address the following research questions: 

• RQ1. Which available sources of information in social systems are more effective for 

recommendation? 

We study this question in terms of several performance metrics borrowed from the Information 

Retrieval field, for recommendation approaches that exploit different sources of information, 

namely ratings, tags and social contacts. 

• RQ2. Do recommendation approaches exploiting different sources of information in social 

systems offer heterogeneous item suggestions, from which hybrid strategies may gain additional 

benefits? 

We address this question by considering several recommendation quality metrics beyond 

accuracy, measuring such dimensions as coverage, diversity, novelty and overlap, on the 

recommendation approaches studied in RQ1. 

In order to support this study, we have implemented a set of generic content-based filtering, 

collaborative filtering, and social recommendation approaches for social systems, and have built three 

datasets with information of different types obtained from Delicious
2
, Last.fm

3
 and MovieLens

4
. By using 

these recommenders and datasets, we conduct a twofold experiment. First, we compare the performance 

of the recommenders with ranking quality metrics from the Information Retrieval field, namely precision, 

recall and nDCG. Second, we compare additional characteristics of the recommenders with a number of 

novel metrics that measure coverage, diversity, novelty and overlap of and between ranked lists of 

recommended items. 

The reminder of the paper is organised as follows. Section 2 describes relevant works related to our 

study. Section 3 presents the evaluated content-based, collaborative filtering, and social recommendation 

approaches. Section 4 explains the experimental setup of the study, describing the utilised datasets, the 

proposed performance and non-performance metrics, and the followed evaluation protocol. Section 5 

discusses the results obtained in the conducted experiment, and finally, Section 6 depicts some 

conclusions and future research lines. 

2. Related Work 

With the advent of the Social Web, a variety of new recommendation approaches have been proposed in 

the literature. Most of these approaches are based on the exploitation of social tagging information and 

explicit friendship relations between users. 

In social tagging systems, such as Delicious, Flickr and Last.fm, users annotate/tag resources (Web 

pages, photos, music tracks, etc.) for the purpose of personal multimedia content management, browsing 

and search. Interestingly, these personalisation functionalities can be extended to collaborative 

recommendation functionalities when the whole set of annotations [user-tag-resource] (known as 

folksonomy) are taken into account. A user’s preferences are described in terms of her tags and tagged 

resources. Based on such a profile model, similarities with other users can be found, and item 

recommendations can be produced. Hotho and colleagues [24] present FolkRank, a PageRank-like 
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algorithm applied to the tripartite graph formed by nodes associated to users, tags and items of a 

folksonomy, and weighted edges related to co-occurrences between users and tags, items and tags, and 

users and items. Other approaches like those proposed by Niwa and colleagues [36], and Shepitsen and 

colleagues [43], attempt to cluster the tag space, aiming to minimise information redundancy and 

contextualise item recommendations. Zanardi and Capra [49] investigate an alternative approach that 

provides item recommendations in a content-based collaborative filtering fashion. In this paper, we 

evaluate a number of tag-based recommendation approaches [13] that are adaptations of TF-IDF [3] and 

BM25 [44] Information Retrieval models, and are inspired on previous works on folksonomy-based 

personalised Web search presented by Noll and Meinel [37], and Xu and colleagues [48]. 

Apart from social tagging, Social Web systems usually provide social networking functionalities. In 

these systems, users explicitly state friendship
5
 relations with other users. The use of this explicit social 

information has recently started to receive attention in the Recommender Systems field [21], and is 

currently an active open research direction. Thus, for instance, Ben-Shimon and colleagues [10] present a 

collaborative filtering strategy that estimates the rating of an item for a user based on the item ratings 

provided by the user’s friends. He and Chu [22], on the other hand, exploit the user’s friends’ ratings in a 

probabilistic recommendation model. 

As suggested by Bonhard and Sasse [11], we believe that recommender systems can be enhanced by 

combining relevant information that can be drawn from social network analysis, such as explicit networks 

of trust, with the matching capabilities of content-based and collaborative filtering recommendation 

strategies. In this line, the final goal of our research is to investigate effective hybrid recommendation 

strategies that adaptively merge and exploit the heterogeneous information available in social systems. 

Hybrid recommendation approaches that combine different sources of social information, especially 

social tags and contacts, have already been proposed. Konstas and colleagues [27] investigate the 

application of a Random Walk based algorithm on graphs where the user, tag and item spaces are intra- 

and inter-linked. Musial [35] studies recommendation methods enhanced with social features of the 

networks and their members. Pilászky and Tikk [39] compare how effective content-based methods are in 

predicting ratings on new movies, using movie-metadata, against collaborative filtering and other simple 

rating-based predictors. Sen and colleagues [40] present an empiric comparison of a large number of 

recommenders that estimate item ratings by exploiting user tags, ratings and click-through data. Gemmell 

and colleagues [19] build a hybrid recommender which linearly combines the predictions given by three 

models, namely, the resource-based popularity, user-based popularity, and an item-based collaborative 

filtering algorithm. Finally, Seth and Zhang [41] propose a Bayesian model-based recommender that 

leverages content and social data. 

Along with this research on hybrid social recommendation approaches, to our knowledge, there are no 

rigorous studies yet about how and to which degree each of the available sources of information in social 

systems is valuable for effective item recommendations. We address this issue here with a broad 

perspective, not restricting our empirical study to an evaluation of recommenders in terms of performance 

metrics such as precision and recall only, but also considering a further variety of metrics that aim to 

capture non-performance measures of recommendation usefulness, such as coverage, diversity, novelty 

and overlap of recommendations. 

3. Evaluated Recommenders 

Adomavicius and Tuzhilin [2] formulate the recommendation problem as follows. Let � be a set of users, 

and let ℐ be a set of items. Let �:�×ℐ→R, where R is a totally ordered set, be a utility function such that �(�, 	) measures the gain of usefulness of item 	 to user �. Then, for each user � ∈ �, we aim at choosing 

items 	�
�,� ∈ ℐ, unknown to the user, which maximise the utility function �: ∀� ∈ �	, 			�
�,� = argmax�∈ℐ �(�, 	) 
Depending on the exploited source of information, and the way in which the utility function � is 

estimated for different users, the following two main types of recommender systems are commonly 

distinguished: 1) content-based recommender systems, in which a user is recommended items similar to 

those he preferred in the past, and, 2) collaborative filtering systems, in which a user is recommended 

items that people with similar tastes and preferences liked in the past. We extend this classification by 

considering social recommender systems, i.e., systems in which a user is recommended items that 

(explicit) friends liked in the past, as a case related but significantly different to collaborative filtering. 

With the above formulation, in the next subsections, we present the content-based, collaborative 

filtering, and social recommenders for Social Web systems used in the empirical study presented herein. 
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3.1 Content-based Recommenders 

Many Social Web systems enable users to create or upload content (items), annotate it with freely chosen 

words (tags), and share it with other users. The whole set of tags constitutes an unstructured collaborative 

classification scheme that is commonly known as folksonomy. More formally, a folksonomy ℱ can be 

defined as a tuple ℱ = ��, �, ℐ,��, where � is the set of tags that comprise the vocabulary expressed by 

the folksonomy, � and ℐ are respectively the set of users and the set of items that annotate and are 

annotated with the tags of �, and � = �(�, �, 	)� ∈ � × � × ℐ is the set of assignments (annotations) of 

each tag � to an item 	 by a user �. 

A folksonomy represents an implicit classification that serves various purposes, such as for resource 

organisation, promotions, sharing with friends, with the public, etc. Studies have shown, however, that 

tags are generally chosen by users to reflect their interests. Golder and Huberman [20] analysed tags on 

Delicious, and found that (1) the overwhelming majority of tags identify the topics of the tagged 

resources, and (2) almost all tags are added for personal use, rather than for the benefit of the community. 

These findings lend support to the idea of using tags to derive precise user profiles and resource 

descriptions. In Last.fm, the set of most popular tags
6
 is clearly associated to music genres, showing that 

social tags really describe user music interests and track music styles. 

In this section, we present a number of content-based filtering (CBF) recommendation approaches that 

exploit tagging information available in Social Web systems. These approaches, preliminary evaluated in 

[13], are based on user and item profiles defined in terms of lists (vectors) of weighted tags, and compute 

similarities between such vectors to provide personal recommendations. 

We define the profile of user � as a vector ! = (�", … , �$), where �% is a weight (real number) that 

measures the “informativeness” of tag � to characterise contents annotated by �. Similarly, we define the 

profile of item 	 as a vector & = (	", … , 	$), where 	% is a weight that measures the relevance of tag � to 

describe 	. There exist different schemes to weight the components of tag-based user and items profiles. 

Some of them are based on the information available in individual profiles, while others draw information 

from the whole folksonomy. The simplest approach for assigning a weight to a particular tag in a user or 

item profile is by counting the number of times such tag has been used by the user or the number of times 

the tag has been used by the community to annotate the item. Thus, our first profile model for user � 

consists of a vector ! = (�", … , �$), where 

�% = �'�(�), 
�'�(�) being the tag frequency, i.e., the number of times user � has annotated items with tag �. Similarly, 

the profile of item 	 is defined as a vector & = (	", … , 	$), where 

	% = �'�(�), 
�'�(�) being the number of times item 	 has been annotated with tag �. 

In an information retrieval environment, common keywords that appear in many documents of a 

collection are not informative, and are generally not helpful to distinguish relevant documents for a given 

query. To take this into account, the TF-IDF weighting scheme is usually applied to the document profiles 

[3]. We adopt that principle, and adapt it to social tagging systems, proposing a second profile model, 

defined as: 

�% = �'	�'�(�) = �'�(�) ⋅ 	�'(�), 
	% = �'		'�(�) = �'�(�) ⋅ 		'(�) 

where 	�'(�) and 		'(�) are inverse frequency factors that penalise tags that frequently appear (and thus 

are not informative) in tag-based user and item profiles respectively. More specifically, 	�'(�) =log(+ ,�(�)⁄ ) , ,�(�) = |�� ∈ �|�% > 0�|, and 		'(�) = log(1 ,�(�)⁄ ) , ,�(�) = |�	 ∈ ℐ|	% > 0�|,	M and 

N being the number of users and items respectively. Note that we incorporate both user and item tag 

distribution global importance factors, 	�' and 		', following the vector space model principle that as 

more rare a tag is, the more important it is for describing either a user’s interests or an item’s content. 

As an alternative to TF-IDF, the Okapi BM25 weighting scheme follows a probabilistic approach to 

assign a document with a ranking score given a query [44]. We propose an adaptation of such model by 

assigning each tag with a score (weight) given a certain user or item. Our third profile model has the 

following expressions:  
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�% = 2325�(�) = 	 %67(%)∙(9:;")
%67(%);	9:<"=>;>∙|�| ?@A(|�|)B C ∙ 	�'(�), 

	% = 2325�(�) = 	 %6D(%)∙(9:;")
%6D(%);	9:<"=>;>∙|�| ?@A(|�|)B C ∙ 		'(�), 

where	2 and E" are set to the standard values 0.75 and 2, respectively. 

3.1.1 TF-based Recommender 

To compute the preference of a user for an item, Noll and Meinel [37] propose a personalised similarity 

measure based on the user’s tag frequencies. The model utilises the user’s usage of tags appearing in the 

item profile, but does not take into account their weights in such profile. We have introduced a slight 

variation in the above formula with respect to its original definition, namely a normalisation factor that 

scales the utility function to values in the range [0, 1], without altering the user’s item ranking: 

�(�, 	) = �'(�) = ∑ �'�(�)%:�GHImax@∈�,%∈� 	J�'@(�)K 

3.1.2 BM25-based Recommender 

Analogously to the similarity based on tag frequencies described in Section 3.1.1, but using a BM25 

weighting scheme, we propose a similarity function that only takes into account the weights of the user 

profile. This recommendation model is defined as follows: 

 �(�, 	) = 2325(�) = ∑ 2325�(�)(%|�GHI)  

3.1.3 TF-IDF Cosine-based Recommender 

Xu and colleagues [48] use the cosine similarity measure to compute the similarity between user and item 

profiles. As profile component weighting scheme, they use TF-IDF
7
. We adapt their approach with the 

proposed tag-based profile models as follows: 

�(�, 	) = LMN%6-�O6(!, &) = ∑ �'�(�) ⋅ 	�'(�) ⋅ �'�(�) ⋅ 		'(�)%
P∑ J�'�(�) ⋅ 	�'(�)KQ% ⋅ P∑ J�'�(�) ⋅ 		'(�)KQ%

 

where the numerator is the dot product of the tf-iuf and tf-idf vectors associated to the user and item, 

respectively. The denominator is the user and item profile length normalisation factors, calculated as the 

magnitude value of those vectors. 

3.1.4 BM25 Cosine-based Recommender 

Xu and colleagues [48] also investigate the cosine similarity measure with a BM25 weighting scheme. 

They use that model on personalised Web Search. We adapt and define it for social tagging as follows: 

�(�, 	) = LMN>WQX(!, &) = ∑ J2325�(�) ∙ 2325�(�)K%
P∑ J2325�(�)KQ% ∙ P∑ J2325�(�)KQ%

 

3.2 Collaborative Filtering Recommenders 

Collaborative filtering (CF) techniques match people with similar preferences, or items with similar 

choice patterns by users, in order to make recommendations. Unlike CBF methods, CF systems aim to 

predict the utility of items for a particular user according to the items previously evaluated by other users. 

In general, CF is based on explicit numeric ratings, that is, the real utility of an item for a particular 

user is represented by the rating given by that user to the item. There are systems, however, where no 

explicit ratings are available, but where user interests can be inferred from implicit feedback information. 

In order to provide item recommendations in such systems, two plausible options exist: use 

recommenders that directly exploit implicit data [18][25][38][47], or transform implicit data into explicit 

ratings to apply standard CF algorithms [3][10][15][30]. 
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As mentioned before and explained in Section 4, we have conducted experiments with three datasets, 

obtained from Delicious, Last.fm and MovieLens systems. In Last.fm, there are no explicit ratings, but 

user activity data logs in the form (user, item, freq), where item is a music track listened by user, and freq 

represents the number of times item was listened by user. Aiming to transform these tuples into numeric 

ratings, we follow the approach presented by Baltrunas and Amatriain [5], which is based on Celma’s 

studies [15]. This approach consists of taking into account the number of times each user has listened to 

an artist (or track), in such a way that the artists (tracks) located in the 80-100% interquintile range of the 

user’s listening distribution receive a rating of 5 (in a five point scale), the next interquintile range is 

mapped to a rating of 4, and so on. 

This technique was originally developed for taking into account the distributions of the artists in a user 

profile. We have adapted it to use it with music tracks, whose distributions are less skewed due to the 

larger sparsity at track level than at artist level. Therefore, in our adaptation, we have modified the model 

to deal with sparse profiles. In the future, we want to investigate alternative techniques in order to 

improve the performance of the generated predictions. We also plan to analyse artist-level 

transformations followed by different strategies for inferring track ratings, in contrast to what is done in 

[15], whose aim is at recommending artists. Besides, we also want to explore other systems with explicit 

ratings (such as Flixster
8
), which would not require the use of this type of approaches. 

In Delicious, there are no explicit ratings, nor frequency of item consumption, since each URL can 

only be bookmarked once by a particular user. Therefore, in this case, we consider a binary 

transformation of the data, which is a typical technique with implicit data [3], by assigning the same 

rating for all the items present in the user profile. Finally, in MovieLens, users explicitly assign 1-5 scale 

ratings to items, so we do not perform any transformation on the user profiles. 

In the following subsections, we briefly describe the CF algorithms evaluated in our experiments. 

3.2.1 User-based CF Recommender 

User-based CF techniques compare the target user’s choices with those of other users to identify a group 

of “similar-minded” people (usually called neighbours). Once this group has been identified, those items 

chosen or highly rated by the group are recommended to the target user. More specifically, the utility gain 

function �(�, 	) is estimated as follows: 

�(�, 	) = C Z N	3(�, [) × \]�([, 	)
@∈^[�,9]

 

where C is a normalisation factor, \]�([, 	) is the rating given by user [ to item 	, and 1[�, E] denotes the 

set (with size E) of neighbours of �. Similarity between users can be calculated by using different metrics: 

Pearson and Spearman’s correlations, cosine-based distance, among others [2]. In this paper, we use 

Pearson’s correlation, which is defined as: 

N	3(�, [) = 	 ∑ J\]�(�, 	) − \]�bbbb(�)KJ\]�([, 	) − \]�bbbb([)K�
P∑ J\]�(�, 	) − \]�bbbb(�)KQ� P∑ J\]�([, 	) − \]�bbbb([)KQ�

 

where \]�bbbb(�)	is the average of the ratings provided by user �. 

3.2.2 Item-based CF Recommender 

Like user-based approaches, item-based CF techniques recognise patterns. However, instead of 

identifying patterns of similarity between user choices, they recognise patterns of similarity between the 

items themselves. In general terms, item-based CF looks at each item on the target user’s list of 

chosen/rated items, and finds other items that seem to be “similar” to that item. The item similarity is 

usually defined in terms of correlations of ratings between users [2]. More formally, the utility gain 

function �(�, 	) is estimated as follows: 

�(�, 	) = CZ N	3(	, c) × \]�(�, c)
d∈ℐ7

 

where ℐ� is the set of items rated by user �. In this paper, we use Pearson’s correlation to calculate item 

similarities. 
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3.3 Social Recommenders 

The third and last information source exploited in this paper is the social information, such as contacts 

and interactions between users. In the literature, there are recommenders that explicitly deal with social 

information; we implemented and included some of them in our study. Complementarily, we also 

consider some algorithms which are based on explicit trust relations, since social contacts (i.e., 

friendship) can be seen as a type of trust relation between users. 

In order to avoid any possible lack of information from the social side because of sparsity, we are 

interested in combining this type of recommenders with collaborative ones, and because of that we 

present some examples of such hybrid recommenders in subsections 3.3.2 and 3.3.5. In particular, these 

algorithms combine information from ratings (similarity functions or neighbours) and social contacts. We 

are aware of other algorithms, which also fall into the hybrid recommender category, exploiting social 

information along with tags or ratings, such as FolkRank [24] and Random Walks [27]. We plan to 

consider this type of recommenders in the future. 

3.3.1 Friend-based Social Recommender 

Inspired on the approach presented by Liu and Lee [31], we propose a recommender that incorporates 

social information into the user-based CF model. In this case, it utilises the same formula as the user-

based CF technique (Section 3.2.1), but replacing the set of nearest neighbours by the active user’s 

(explicit) friends. That is: 1[�, E] = 1[�] = 	 �[ ∈ �: [	is friend of	�� 
With this recommender, we easily incorporate social information into the well-known CF prediction 

equation, building a straightforward technique that enables a direct interpretation of the suggestions, 

namely those items recommended by friends. 

3.3.2 Friend and Neighbour-based Social Recommender 

Our second social recommender also utilises the user-based CF formula, but is based on all the active 

user’s friends, as well as her most similar nearest neighbours, combining them into a new neighbour set: 

1[�, E] = �[ ∈ �: [	is friend of	�� ∪ �[ ∈ �: N	3(�, [) ≥ g�� 
where g� > 0 is the minimum similarity to be satisfied between the active user and her most similar 

neighbours. From the formula, it can be seen that this recommender is actually a hybrid one, where 

collaborative filtering and social information are used. 

3.3.3 Personal Social Recommender 

The approach of [10] explicitly introduces distances between users in the social graph in the scoring 

formula: 

N(�, 	) = 	 Z h=O(�,@)\]�([, 	)
@∈i(�,$)

 

In this equation, j(�, k) denotes the social tree of user � up to level k, and h is an attenuation 

coefficient of the social network which determines the extent of the effect of l(�, [), that is, the impact 

of the distance between two users in the social graph (for instance, using Dijkstra’s algorithm). For 

example, when h = 1 the impact is constant and the resulting ranking is sorted by the popularity of the 

items. 

We use this recommender to obtain raw scores in order to generate item rankings, since these scores 

are not in the range of ratings, but lie in the interval [0, 1]. 

3.3.4 Popularity based Recommender 

Recently, in [6], the authors propose a recommender in which the items suggested to a user are the most 

popular among her set of similar users. The authors use a binary matrix model as input data, and pick 

those items having the maximum number of 1’s amongst the top active user’s neighbours, according to 

some similarity measure (e.g. Pearson’s correlation), breaking ties randomly. In this paper, we extend the 

above algorithm by considering the friends of each user instead of her more similar neighbours. Thus, we 

propose a friends’ popularity recommender that suggests the active user those items more popular among 

her set of friends. We generate a score by transforming the item position with the following equation, 

once a ranking has been generated as described above: 



N(�, 	; 1) = 	1 − oMN(�, 	)1  

where oMN(�, 	) represents the position of item 	 in the top-1 recommended list for user �. We may trim 

the returned list at some level 1, or assume 1 to be exactly the length of the generated recommendation 

list. Note that, like in the previous recommender, the computed scores cannot be interpreted as ratings. 

3.3.5 Trust-based Social Recommender 

An alternative way of introducing social information into a recommender system is by the so called trust-

based recommendation approach. Trust-aware recommenders make use of trust networks, in which users 

express a level of trust in other users [33]. In our approach, since we do not have a real trust network, we 

have to infer a plausible network from the information we already know about users, i.e., social 

information. First of all, social contacts among users can only provide positive relations or trust levels. 

Moreover, they generate constant trust levels, since no distinction is made among a user’s contacts. This 

is why we propose to spread trust in our social network uniformly across each user’s contacts. For 

example, a user with 4 friends would have a level of trust with respect to each one of 0.25, whereas a user 

with 2 friends would have 0.5. 

Once the trust network is defined, a trust metric is required so that trustworthiness of every user can 

be predicted. We have used two metrics described in [33]: PageRank and MoleTrust. The former is 

considered as a global metric, since it computes a global reputation value for each user; the latter is 

considered as a local metric by computing a trust score of a source user on a target user, and is based on a 

depth-first graph walking algorithm with an adjustable trust propagation horizon. 

Finally, we have experimented with two additional mechanisms to incorporate trust metrics into the 

recommendation models, as proposed in [33]. The first one makes use of the trust metric instead of the 

similarity metric in the standard user-based CF formula. The second technique, on the other hand, 

computes the average between Pearson’s similarity and trust metric when both values are available; 

otherwise it uses the only available value, overcoming thus the natural data sparsity. 

4. Experimental Setup 

4.1 Datasets 

In order to evaluate the presented content-based filtering, collaborative filtering, and social 

recommendation models, we need datasets rich in collaborative tagging, item rating/consumption, and 

social networking information. It is difficult to find systems allowing access to all these types of 

information together. Moreover, depending on the nature of a system, it may be difficult to find users 

with enough information of each type. Analysing representative social systems, we identified that Last.fm 

can satisfy our needs, and built a heterogeneous dataset from it. Furthermore, Delicious, despite its lack of 

explicit rating information, and MovieLens, which has no social network, were also considered as 

candidates. Consequently we built three datasets
9
 from the above systems [14]. In the next subsections, 

we describe the datasets and the process followed to obtain them. Table 1 shows the main characteristics 

of each dataset. The numbers in bold correspond to characteristics that are representative of the user and 

item profiles in the studied systems, in terms of tag assignments, ratings and social contacts. In the next 

subsections, we shall focus on the type and size of such profiles to provide a comprehensive description 

of the nature of the systems. In Section 5, we shall analyse how the characteristics influence the values of 

computed performance and non-performance metrics for the different types of recommendation strategies 

–content-based, collaborative filtering, and social.  

                                                           
9  We made the datasets publicly available at the 2nd International Workshop on Information Heterogeneity and Fusion in 

Recommender Systems (HetRec 2011, http://ir.ii.uam.es/hetrec2011). The datasets are hosted by the GroupLens research group 

at University of Minnesota (http://www.grouplens.org). 



 Last.fm Delicious MovieLens 

Users 1,892 1,867 2,113 

Items 17,632 69,226 10,133 

Tags 11,946 53,388 13,222 

Tags per user (avg.) 21.92 123.74 10.09 

Tags per item (avg.) 33.57 5.93 6.35 

Tag assignments 186,479 437,593 47,957 

Tag assignments per user (avg.) 98.56 234.38 22.70 

Tag assignments per item (avg.) 14.89 6.32 8.12 

Tagged items 16,961 69,226 5,909 

Tagged items per user (avg.) 37.56 56.13 13.12 

Ratings* 92,834 104,833 855,598 

Rated items 17,632 69,226 10,109 

Ratings per user (avg.) 50.00 56.13 404.92 

Ratings per item (avg.) 5.26 1.51 84.64 

Friend relations 25,434 15,328 N/A 

Friend relations per user (avg.) 13.44 8.24 N/A 

Table 1. Description of the built datasets. * In Last.fm, we consider artist listening records (i.e., play counts) as 

implicit ratings. Similarly, in Delicious, we consider bookmarks as implicit binary ratings. In MovieLens, on the 

other hand, ratings are explicitly provided by users.  

4.1.1 Last.fm dataset 

Last.fm is a social music website. As of March of 2009, the site had more than 40 million active users in 

more than 190 countries
10

. Several authors have analysed or used this system for research purposes; 

special mention deserves those who have made their datasets public, such as [27] and [15]. To the best of 

our knowledge, at the time of writing, none of the publicly available Last.fm datasets have all the three 

sources of user preference information we need. 

We built our dataset aiming to obtain a representative set of users, covering all music genres, and 

forming a dense social network. Thus, we first identified the most popular tags related to the music genres 

in Last.fm. Then, we used the Last.fm API to get the top music artists tagged with the previous tags. For 

each artist, we gathered her fans along with their direct friends. Finally, we retrieved all tags and tagged 

artists of the user profiles. Filtered out those users without listened/tagged artists and friend relations 

within the obtained social network, the final dataset contains 1.9K users, 17.6K artists (17.0K of them 

tagged), 186.5K tag assignments (98.6 per user), and 25.4K friend relations (13.4 per user). According to 

these statistics, we can observe that Last.fm users mostly use the system to listen to music. Comparing 

Last.fm and Delicious, we show that in the former, users tag less but have more contacts than in the latter. 

These issues, among others, will help to understand the differences between performance and non-

performance values of the studied recommendation approaches in the systems. 

4.1.2 Delicious dataset 

Delicious is a social bookmarking site for Web pages. As of November of 2008, delicious had 5.3 million 

users
11

. With over 180 million unique URLs, Delicious can be considered a fairly accurate “people’s 

view” of the Web. This vast amount of user information has been previously successfully exploited to 

improve Web search, and provide personal recommendations and search results, among others 

[13][24][37][43][45]. 

We built our dataset with the same goal in mind as stated for Last.fm dataset: to cover a broad range 

of document’s topics, and obtain a dense social network. We first obtained the most popular tags in 

Delicious. Then, we downloaded the bookmarks tagged with those tags, and for each bookmark, we 

obtained the users who tagged it. For this set of users, we downloaded their contacts (friends and fans as 

considered by Delicious), and their contacts’ contacts. After filtering out relations with users that did not 

belong to the final user set, we downloaded the top bookmarks and tags of each user, along with the 

community tags of each bookmark. Finally, we removed those users with less than 20 user contacts in the 

                                                           
10  http://blog.last.fm/2009/03/24/lastfm-radio-announcement 
11  http://en.wikipedia.org/wiki/Delicious_(website) 



user set, updating the social network by removing relations with contacts that no longer belonged to the 

final user set, and users who had no relations. The previous threshold (20) was established analysing the 

user contact histogram, so as to avoid the long tail users. As shown in Table 1, the final dataset contains 

1.9K users, 69.2K bookmarked Web pages, 437.6K tag assignments, and 15.3K friend relations. On 

average, each user profile has 56.1 bookmarks, 234.4 tag assignments, and 8.2 friends. From these 

statistics, as the reader may expect, we can observe that the nature of Delicious is bookmarking/tagging 

objects, and little interest is given by users to making contacts. In our experiments, we shall analyse how 

the sparsity of Delicious social network affect the performance of social recommendation approaches, and 

compare it against that obtained from tag-based recommenders. 

4.1.3 MovieLens dataset 

The MovieLens dataset, published by the GroupLens research group at University of Minnesota, is one 

the most referenced and evaluated repositories in the Recommender Systems community. Its larger public 

version, called MovieLens10M, consists of approximately 10 Million ratings on a 1-5 rating scale and 

95.6K tags applied to 10.7K movies by 71.6K users. 

From that repository we created a smallest dataset maintaining only those users with both rating and 

tagging information. In order to enrich the dataset, we linked its movies with their corresponding Web 

pages in IMDb
12

 and RottenTomatoes
13

 systems, and extracted additional information, such as movie 

directors, cast members, genres, shooting locations, countries, languages, photos, and experts’ ratings and 

scores, among others. We believe this information can be used by researchers and practitioners to 

investigate further more complex recommendation approaches. Our dataset finally contains 2.1K users, 

10.1K movies, 48.0K tag assignments (22.7 per user), and 855.6K ratings (404.9 per user). Based on the 

large amount of rating information in the dataset, we expect collaborative filtering approaches will get the 

best performance values. On the contrary, since the number of tag assignments (per user) in MovieLens 

dataset is much lower than in Last.fm and Delicious datasets, one could expect content-based approaches 

will perform worse. However, we have to check the above hypothesis empirically because there are other 

aspects, such as the number of items in the dataset, which may influence the final results drastically. 

4.2 Evaluation Protocol 

In this section, we describe the methodology followed to evaluate the recommendation approaches. For 

each of the three presented datasets, we randomly split the set of items tagged and consumed (listened, 

bookmarked, rated) by the users into two subsets. The first subset contained 80% of the items for each 

user, and was used to build (train) the recommenders. The second subset contained the remaining 20% of 

the items for each user, and was considered as ground truth data to evaluate (test) the recommenders, 

which had to predict the relevance of such items for the different users. From the relevance predictions, as 

we shall detail in Subsections 4.3 and 4.4, we computed various performance and non-performance 

metrics. In all cases, we performed a 5-fold cross validation procedure to generalize the evaluation results 

to independent datasets. 

More specifically, CBF approaches were built with the whole tag-based profiles of the training items, 

and with those parts of the users’ tag-based profiles formed by tags annotating the training items. These 

approaches were evaluated with the tag-based profiles of the test items. If an item had no tags, it was not 

included in the training and test sets. Figure 1 shows the instantiation of the methodology for CBF 

recommenders and tagged data. CF approaches, on the other hand, were built with those ratings 

associated to pairs (user, item) in the training set. Correspondingly, training and test models for these 

approaches only contained consumed items, which were not necessarily tagged. Finally, social 

approaches were built with all friend relations available in the user profiles, in addition to all the 

consumed items in the training sets. 

                                                           
12  Internet Movie Database (IMDb), http://www.imdb.com 
13  Rotten Tomatoes movie reviews, http://www.rottentomatoes.com 



 
Figure 1. Experimental methodology for CBF recommenders and tagging data. 

4.3 Performance Metrics 

In the research literature, prediction accuracy is the most discussed property a recommender system 

should have. The vast majority of recommenders attempt to predict user tastes or opinions over items (e.g. 

expressed by numeric ratings), or the probability of usage (e.g. based on purchasing records). In this 

context, the main assumption is that a system that provides more accurate predictions will be preferred by 

the user. Thus, many researchers have set out to find algorithms that provide better predictions, and a 

number of metrics have been proposed to measure the accuracy prediction of such algorithms. Most of 

these metrics are based on measuring differences between predicted and actual ratings, such as MAE 

(Mean Absolute Error) and RMSE (Root Mean Squared Error). 

Since in social systems like Last.fm and Delicious, users do not explicitly rate items (music artists and 

Web pages), prediction accuracy metrics, commonly used in the Recommender Systems field, are not 

suitable to evaluate the algorithms proposed in this paper. For this reason, we shall measure the 

performance of the recommenders in terms of ranking-based metrics widely used in the Information 

Retrieval field [8]. Thus, we consider a content retrieval scenario where a system provides the user with a 

list of N recommended items. To evaluate the performance of the system, the selected metrics account for 

the ratio and position of relevant items in the ranked lists of recommended items. The final performance 

value is calculated by averaging the performance value over the set of all available users. In our 

evaluation framework, the set of available items for recommendation is composed by all the items 

belonging to the test sets (see Section 4.2). We consider as relevant items for the active user those items 

belonging to her test set; all other items are considered as non-relevant. We describe the utilised 

performance metrics in the next subsections. 

4.3.1 Precision 

Precision can be defined as the fraction of recommended items that are relevant [4]: 

precision =	 |relevant items retrieved||retrieved items|  

If only the top N retrieved items are taken into consideration, the previous ratio is called Precision at N 

or P@N. This value can be considered as user-oriented, in the sense that it measures how many relevant 

documents the user will find in the first results. This characteristic may make P@N less stable than other 

metrics because the total number of available relevant items has a strong influence on the selected value N 

[32]. Because of that, we shall compute and compare P@N for different N values. 

We shall also consider average precision values. The average of P@N values at seen relevant items is 

called Mean Average Precision (MAP) [4]. MAP is a precision metric that emphasises ranking relevant 

documents higher. Besides, it has shown to have especially good discrimination and stability. 



Note that since in our experimental setting, only the items in the user’s profile are considered relevant, 

we cannot count potentially relevant items that the user has not seen, and we therefore get an 

underestimation of real precision, which is a known limitation of applying Information Retrieval metrics 

to Recommender Systems [23]. However, as the difference affects all the methods being evaluated, we 

believe the metric is still consistent for comparative purposes. 

4.3.2 Recall 

Recall can be defined as the fraction of relevant items that are really recommended [4]: 

recall =	 |relevant items retrieved|
|relevant items|  

If only the top N recommended items are taken into consideration, the previous ratio is called Recall at 

N or R@N [4]. 

Again, it has to be noted that the considered set of relevant items is restricted to the items in the users’ 

test sets, which is thus not complete: relevant items unknown to the users are not taken into account. We 

thus get an overestimation of recall, as we cannot evaluate whether the recommendation approaches are 

not able to retrieve all relevant items but a representative sample of them. 

4.3.3 Discounted Cumulative Gain 

Precision and recall do not take into account the usefulness of an item based on its position in a result list. 

For instance, in the computation of P@10 and R@10, a relevant item at position 1 in the result list is 

considered as useful as a relevant item at position 10. To address this issue, we shall also compute the 

Normalised Discounted Cumulative Gain (nDCG) metric [26]. 

nDCG penalises relevant items appearing lower in a result list. The penalisation is based on a 

relevance reduction logarithmically proportional to the position of the relevant items. It can also deal with 

non-binary notions of relevance, which cannot be captured by the previously presented metrics. It is 

usually calculated only for documents retrieved in the first N positions (nDCG@N): 

nDCG^ = ŝ Z 2tuv(�w) − 1
logQ(1 + ,)

^

yz"
 

The value ŝ  is a normalisation factor for setting nDCG value to 1 when a perfect (ideal) ranking is 

returned; \{|(	y) represents the relevance score for document 	y (i.e., the item at position , in the result 

list), which has common values of 10 for highly relevant, 1 for relevant, and 0 for non-relevant items. 

4.4 Non-performance Metrics 

Most recommender systems have been usually evaluated and ranked based on their prediction power, i.e., 

their ability to accurately predict the user’s item choices. However, as pointed out by Shani and 

Gunawardana [42], it is now widely agreed that accurate predictions are crucial but insufficient to deploy 

a good recommendation engine. In many applications, people use a recommender system for more than 

an exact anticipation of their interests. The users may also be interested in obtaining recommendations 

covering a wide range of their tastes, in rapidly exploring diverse items, or in discovering new items, to 

name a few of desired properties and functionalities. In this section, we propose a number of metrics to 

measure different non-performance characteristics of the recommenders: coverage, diversity and novelty. 

We also present overlap metrics to measure similarities (differences) between lists of item 

recommendations given by distinct recommenders. To better understand these metrics, in the following, 

we define several factors that will appear in the metric formulations. 

Let }� be the set of items relevant for user �, and let ℳ be the set of recommendation models to be 

evaluated. We define kW,�, the ranked list of recommendations provided to user � by recommendation 

model 3 ∈ ℳ, as: 

kW,� =	 �(�, 	, �): 	 ∈ ℐ, � > 0	�, 
where � is the ranking position of item 	 in the recommendation list based on the predicted item utility �W(�, 	), having �W,�(	) < �W,�(c) ⇒ �W(�, 	) ≥ �W(�, c), ∀	, c ∈ ℐ. 

We denote by �W,� the set of items that belong to kW,�: 

�W,� = �	: (�, 	,∙) ∈ kW,�� 



Finally, we define �W,��  as the set of those items belonging to �W,� that are relevant for user �. That is: 

�W,�� = �W,� ∩ }� = �	: (�, 	,∙) ∈ kW,� , 	 ∈ }�� 
The previous definitions �W,� and �W,��  for a given recommendation model 3 are extended to consider 

all users with the following expressions: 

�W =��W,�,
�∈�

	�W� =��W,��
�∈�

 

Since some of the non-performance metrics explained below only depend on the top 1 

recommendations provided by each model 3, we define �W,�, �W,��
, �W and �W�  as, respectively, �W,�, �W,�� , �W and �W�  on the set kW,�^  of top 1 recommendations for user �, where: 

kW,�^ =	 �(∙,∙, �) ∈ kW,�, � ≤ 1� 
4.4.1 Coverage 

Coverage can be defined as the fraction of items for which a recommender 3 ∈ M can provide 

predictions [23]. Following the proposed notation, it is formulated as follows: 

	L[�(3) = |�W||ℐ|  

In this way, the coverage has a value of 1 (maximum) when a recommender is able to return all the 

different items in the collection. On the other hand, if 3 is a recommender that always recommends the 

10% of the most popular items, its coverage will be 0.1. 

Apart from this global coverage, we are also interested in measuring the fraction of relevant items a 

recommender is able to retrieve. For such purpose, we define coverage of relevant items as follows: 

L[��(3) = |�W� ||⋃ }��∈� | 
In this case, the coverage depends on the evaluated items considered for each user. Therefore, a 

popularity-based recommender will not always obtain an a priori known coverage, as in the previous 

case. 

4.4.2 Diversity 

A direct way to measure diversity is by computing the average self-information of recommended items. 

In our context, the diversity for a recommender 3 ∈ M can thus be formulated as follows: 

l	[(3) = 1
|�|Z l	[�(3)

�∈�
 

l	[�(3) = ��(3) = −Z o�,� · log o�,��∈��,7�  

The open issue here is how to define the probability o�,� in terms of the diversity offered by item 	 for 

user �. Different approximations could be proposed. In this paper, we define o�,�  in terms of item 

popularity among the evaluated recommenders. We assume that a recommender ] provides diverse 

recommendations if these are not recommended also by a majority of the other recommenders for the 

same users. Formally, we set o�,�  as follows: 

o�,� = ∑ �(3, �, 	)W∈ℳ|ℳ| , 
where �(3, �, 	) = 1 iff 	 ∈ �W,��

, and 0 otherwise. Note that this probability depends on how many 

recommenders are available for evaluation. Hence, for a particular user, the items with higher probability 

are those recommended by most of the algorithms. Since the function −� log � is concave when � ∈[0, 1], with the above definition we obtain greater diversity values for recommenders providing items 

neither very popular nor very unpopular. In fact, this function is not symmetric, in a way that penalises 

more heavily the popular items than it rewards the less well-known ones, which suits well our definition 

of diversity. 

It is important to note that alternative definitions of diversity exist in the literature [2][46][50], and 

have to be investigated in the future. 



4.4.3 Relative diversity 

We can also measure diversity differences between two recommendation models 3", 3Q ∈ ℳ by 

computing the relative entropy between their probability distributions: 

l	[(31, 32) = 1
|�|Z l	[�(31, 32)

�∈�
 

l	[�(31, 32) = ��(31||32) =Z o31,�,� · log o31,�,�o32,�,��∈�31,7� ∩�32,7�  

The interpretation of the relative entropy �(j||�) is the number of extra bits required when using 

distribution � instead of j. This metric makes the hypothesis that a user has already been recommended 

with some items using algorithm 3", and attempts to capture how diverse is the list given by 3Q, once the 

user has already seen the previous one. In this way, the relative diversity would measure the distance 

between both probability distributions, and assuming that the first one is already observed. 

Additional measures from information theory could be used, such as the joint entropy or the mutual 

information. However, since we are interested on asymmetric measures, relative entropy (or Kullback-

Leibler divergence) seems an appropriate candidate. Note that, in contrast with the standard definition of 

relative entropy, the summation here is computed on the intersection space, thus, each probability 

distribution does not need to sum up to 1 there, and, consequently, the quantity calculated in this way 

could be negative, as we will obtain in the experiments shown in Section 5.4. This result is proved using 

the Jense’s inequality [17]. 

Again, different approaches can be considered to define the probabilities oW,�,�. In this case, given 

recommender 3 and user �, we assume a uniform distribution of items. That is: 

oW,�,� = 1
��W,�� � 

Using this simplified estimation for the probabilities, we are actually comparing how many relevant 

items have been presented to the user by each recommender, and summing it as many times as the 

number of common items in the two lists. Therefore, a possible alternative for computing these 

probabilities would be to take into account not only the item relevance, but also the item ranking position 

in the previous and current recommended lists, for example. 

4.4.4 Novelty 

Novelty can be defined in a twofold manner. On the one hand, it can be defined as the capability of a 

recommender system to suggest a user with relevant items that have (usually content-based) 

characteristics not shared by items previously declared as relevant by the user. On the other hand, it can 

be defined in a more global way in terms of popularity among users [49], that is, as the capability of a 

recommender system to suggest a user with relevant but non popular items, i.e., items not liked or known 

by a wide number of users. We follow here the second perspective and define novelty as follows: 

,M[(3) = 1
|�|Z ,M[�(3),

�∈�
 

,M[�(3) = ��(3) = −Z o�,� · log o�,� ,�∈��,7�  

where 

o�,� = |�[ ∈ �	\	�: 	 ∈ }@�||�	\	�|  

This formula takes into account the proportion of users who are interested in each of the items 

retrieved by the recommender 3 that are relevant for user �. As we said previously (see Section 4.4.2), 

the proposed diversity function is concave and asymmetric, and reaches its maximum when the items in 

set �W,��
 have probabilities near to a uniform distribution. If we assume that other users’ relevant items are 

more useful than any random item when presenting them to the user, it makes sense to estimate the 

probability in this way. It is pretty clear that, in such an extreme situation, every item presented to the 

user will be novel for her. 



As a first approximation to the probability estimation, we make the following simplification: 

o�,�~o� = |�[ ∈ �: 	 ∈ }@�||�|  

That is, we remove the dependency on the user, and the items only relevant for user � are no longer 

assigned a zero probability, consequently, they are considered novel when recommended by the model 3. 

The resulting formulation of novelty has connections to related work. It is equivalent to the average 

item self-information used in [50], but in our case we compute the expected self-information rather than 

the average, i.e., we weight the average by a non-necessarily uniform probability of items. On the other 

hand, with the probability estimation of o�,� proposed above, self-information is equivalent to the so 

called inverse user frequency (IUF), and thus ,M[�(3) is the expected IUF of the items recommended to � by 3. Further alternative formulations and definitions, as those proposed in the literature [16][34][46], 

have to be investigated in the future. 

4.4.5 Overlap 

Aiming to measure the proportion of recommended items that are provided by two algorithms, we 

propose two overlap metrics. Both metrics are defined for the recommended items that are relevant for the 

users, and are limited to the top 1 results in each list. 

Jaccard based overlap 

The simplest approach to measure the overlap between two lists of items is by computing their 

intersection. Taking into account the cardinality of the sets of relevant items retrieved by the 

recommendation algorithms 3", 3Q ∈ ℳ, the intersection based overlap can be normalised by using the 

well-known Jaccard similarity coefficient: 

M[{_c]LL(31, 32) = 1
|�|Z M[{_c]LL�(31, 32)

�∈�
 

M[{_c]LL�(31, 32) = ��31,�
� ∩ �32,�� �

��31,�� ∪ �32,�� � 
The overlap computed in this way can also be interpreted as a similarity measure between the lists 

retrieved by the recommender, and, ultimately, as a measure of how similar the algorithms behave. 

Ranking based overlap 

The previous overlap metric does not take into account the ranking position of relevant documents. Thus, 

for example, the lists of relevant items kW:,�� = �	", 	Q, 	�� and kW�,�� = �	", 	Q, 	�� would have the same 

overlap value than the lists kW:,�� = �	", 	Q, 	�� and kW�,�� = �	�, 	", 	Q�, while the similarity between the 

given list is higher in the first case. As a rank-sensitive measure of overlap, we propose the following 

metric
14

: 

M[{_\],E(31, 32) = 1
|�|Z M[{_\],E�(31, 32)

�∈�
 

M[{_\],E�(31, 32) = 1
1Z �1 − ��31,�(	) − �32,�(	)�1 − 1 ��∈�31,7� ∩�32,7�  

In the example presented above, M[{_c]LL�(3", 3Q) = 1 in both cases, but M[{_\],E�(3", 3Q) = 1 

in the first one (when 3" and 3Q return the same list) and M[{_\],E�(3", 3Q) = 1/3 in the second one. 

Note that other more sophisticated ranking overlap metrics can be tested, e.g. those proposed recently 

by Kumar and Vassilvitskii [29].  

                                                           
14  This formula is similar to that of Spearman’s ρ, which is used to calculate correlations between two ranked variables. In this 

situation, we do not think it is appropriate to talk about correlations between variables, and this is why we do not make use of 

the well-known coefficient. 



5. Results and Discussion 

In this section, we present and analyse the performance and non-performance values obtained with the 

proposed CBF, CF and social recommenders on the different datasets. For CF and social formulas, we set 

the user neighbourhood sizes to 15. We conducted experiments with other sizes, obtaining irregular 

results with smaller neighbourhoods, and similar results with larger ones. In the following, we denote as 

cb-tf the TF-based recommender described in Section 3.1.1, as cb-bm25 the BM25-based described in 

3.1.2; cb-cosine-tfidf denotes the one described in 3.1.3, and cb-cosine-bm25 the recommender described 

in 3.1.4. With respect to the CF algorithms, cf-user and cf-item correspond to the user- and item-based 

approaches described in Sections 3.2.1 and 3.2.2, respectively. Finally, social recommenders are denoted 

as follows: social-friends corresponds to the Friend-based Social recommender described in Section 3.3.1, 

personal-social is the model described in Section 3.3.3 (in the experiments, we set k = 6 and h = 2), and 

friends-popularity denotes the Popularity based Recommender explained in Section 3.3.4. Trust-based 

recommenders, described in Section 3.3.5, have been evaluated using two different metrics, obtaining the 

recommenders noted as trust-local (when the MoleTrust metric is used), and trust-global (when the 

PageRank metric is used). As already explained, we have also experimented with combinations of social 

and collaborative filtering algorithms. These recommenders are denoted as social-friends-cf, trust-local-

cf, and trust-global-cf. 

5.1 Recommendation Performance 

Table 2 shows the performance values obtained by the recommenders. For the Last.fm and Delicious 

datasets, in which users do belong to a social network with explicit relations between them, the best 

performing approach was the personal-social strategy, which adapts the well-known CF formula by 

weighting the similarity between the user’s and her neighbours’ rating-based profiles with the users’ 

distances in the social graph. These results thus provide empiric evidence that combining collaborative 

filtering and social networking information obtains highly performing (ranking-based) 

recommendations. Very interestingly, the social-friends strategy, which recommends items liked by 

explicit friends, obtains acceptable precision and recall values. As concluded by Konstas and colleagues 

[27], in Last.fm, recommendations generated from the users’ social networks represent a good alternative 

to rating-based methods. Merging this strategy with CF, nonetheless, did not improve the results obtained 

with the approaches separately. 

On the MovieLens dataset, which does not have a social network, we only evaluated CBF and CF 

approaches. The obtained results confirm previous findings with smallest datasets [7], in which CBF 

outperforms CF in terms of ranking-based performance metrics. Note that most of CF strategies are 

designed to provide accurate rating predictions by minimizing accuracy errors such as MAE and RMSE. 

For Last.fm and Delicious datasets, we also show that in general CBF outperforms CF approaches taking 

into account both precision/recall and nDCG metrics, especially when using cosine-based similarities, as 

previously observed in [13]. These results give an experimental indication that in social systems, tag-

based approaches provide more precise (top ranked) item lists than collaborative filtering 

approaches. Analysing the characteristics of the Last.fm and Delicious datasets, we see that their rating 

densities are 2.7·10
-3

 and 6.4·10
-4

 respectively, while in MovieLens, the rating density is around 4.6·10
-3

. 

These differences can be considered as the reason of obtaining worse performance results with CF 

approaches on the former datasets. As mentioned in Section 4.1, our datasets were built in such a way that 

all music genres in Last.fm, and most popular topics (tags) in Delicious, were covered by the evaluated 

items, which makes it harder to get rating correlations between the user profiles that we gathered. Besides 

that, we note that the output of CF algorithms suffers from frequent ties in the top positions, which 

introduces a degree of randomness for some users at different cut-off positions.  



 Last.fm Delicious 

 MAP P@10 P@20 R@10 R@20 nDCG MAP P@10 P@20 R@10 R@20 nDCG 

cb-tf 0.015 0.018 0.016 0.014 0.023 0.170 0.003 0.003 0.003 0.004 0.007 0.054 

cb-bm25 0.006 0.007 0.006 0.005 0.009 0.097 0.006 0.008 0.006 0.008 0.012 0.048 

cb-cosine-tfidf 0.034 0.050 0.041 0.035 0.057 0.224 0.017 0.023 0.017 0.023 0.033 0.101 

cb-cosine-bm25 0.020 0.032 0.026 0.022 0.035 0.144 0.011 0.015 0.011 0.015 0.021 0.062 

cf-user 0.008 0.009 0.009 0.006 0.013 0.095 0.010 0.008 0.007 0.014 0.022 0.062 

cf-item 0.005 0.004 0.004 0.003 0.005 0.112 0.005 0.004 0.004 0.007 0.012 0.074 

social-friends 0.028 0.043 0.041 0.034 0.065 0.150 0.014 0.023 0.019 0.028 0.042 0.047 

personal-social 0.070 0.085 0.064 0.074 0.110 0.279 0.038 0.054 0.038 0.061 0.086 0.147 

friends-popularity 0.015 0.021 0.020 0.016 0.031 0.137 0.009 0.011 0.010 0.015 0.027 0.055 

trust-global 0.006 0.007 0.007 0.005 0.010 0.074 0.003 0.003 0.003 0.003 0.005 0.035 

trust-local 0.012 0.016 0.015 0.012 0.024 0.070 0.005 0.006 0.006 0.008 0.015 0.024 

social-friends-cf 0.014 0.014 0.015 0.010 0.023 0.122 0.008 0.008 0.008 0.012 0.021 0.045 

trust-global-cf 0.007 0.009 0.009 0.006 0.013 0.093 0.005 0.005 0.004 0.005 0.009 0.051 

trust-local-cf 0.003 0.009 0.006 0.006 0.008 0.014 0.005 0.003 0.003 0.010 0.018 0.015 

 

 MovieLens 

 MAP P@10 P@20 R@10 R@20 nDCG 

cb-tf 0.027 0.095 0.074 0.017 0.025 0.382 

cb-bm25 0.013 0.040 0.033 0.007 0.011 0.224 

cb-cosine-tfidf 0.020 0.052 0.045 0.009 0.014 0.336 

cb-cosine-bm25 0.013 0.032 0.028 0.006 0.009 0.205 

cf-user 0.011 0.037 0.039 0.005 0.010 0.104 

cf-item 0.001 0.001 0.001 0.000 0.000 0.014 

Table 2. Obtained performance values. 

Based on the conclusions drawn so far, we can provide an answer to RQ1, in the context of the 

evaluated datasets –Last.fm, Delicious and MovieLens. Social tagging is a source of information that can 

easily be exploited to provide precise item recommendation ranking lists. Additionally, when explicit 

social networks are available, incorporating characteristics of the social graphs into the computation of 

user neighbourhoods in collaborative filtering significantly improves the ranking-based recommendation 

performance. 

5.2 Recommendation Coverage, Diversity and Novelty 

Table 3 shows coverage values of the recommenders when the lists to be compared include only relevant 

items (cvg
R
) or every item (cvg). In accordance with the obtained precision and recall results, CBF 

approaches have coverage values higher than CF and social approaches. 

There is an increase of coverage when social recommenders are combined with CF approaches on 

both the Last.fm and the Delicious datasets; in particular for social-friends-cf and trust-global-cf with 

respect to their social counterparts. Despite this common property, there is an interesting difference 

between Last.fm and Delicious results. In Delicious, item-based CF can hardly return any item, not 

necessarily relevant, in their recommendation list, perhaps because of its multi-domain nature. 

Other interesting, more expectable, result is the fact of having very high coverage values from CF 

approaches on MovieLens with respect to their values on Last.fm and Delicious. Similarly to the ranking-

based performance metrics analysed in Section 5.1, the coverage of CF recommendations depends on the 

sparsity of the used rating data. Since the MovieLens dataset has a denser rating matrix than Last.fm and 

Delicious, it is reasonable that CF performs better in terms of coverage. Furthermore, note that in 

MovieLens, the coverage values on all (not only the relevant) items of CBF and CF are very close to each 

other.  



Coverage 
Last.fm Delicious MovieLens 

cvg cvgR cvg cvgR cvg cvgR 

cb-tf 0.483 0.706 0.272 0.188 0.846 0.995 

cb-bm25 0.483 0.668 0.272 0.256 0.846 0.996 

cb-cosine-tfidf 0.483 0.701 0.272 0.285 0.671 0.786 

cb-cosine-bm25 0.483 0.682 0.272 0.282 0.671 0.786 

cf-user 0.345 0.180 0.192 0.110 0.722 0.255 

cf-item 0.206 0.310 0.072 0.140 0.803 0.323 

social-friends 0.330 0.211 0.148 0.042   

personal-social 0.183 0.191 0.185 0.147   

friends-popularity 0.351 0.249 0.196 0.077   

trust-global 0.083 0.080 0.035 0.034   

trust-local 0.285 0.185 0.196 0.074   

social-friends-cf 0.346 0.233 0.191 0.095   

trust-global-cf 0.343 0.170 0.192 0.101   

trust-local-cf 0.158 0.011 0.139 0.013   

Table 3. Coverage values taking into account relevant and non-relevant items. 

Tables 4 and 5 show the obtained diversity and novelty values at different result list lengths. Since 

these metrics are derived from the self-information magnitude, their values are higher when more items 

are considered in their computation. This effect could be avoided by introducing a normalisation factor in 

the metric definition. However, we maintain the non-normalized values since they are suitable for our 

comparative analysis purposes. 

Table 4 shows that in Last.fm and Delicious, the user-based CF strategy obtained the highest diversity 

values, followed by social recommenders, such as the social-friends strategy. Tag-based approaches 

retrieved less diverse item lists, in concordance with the well-known content over-specialisation 

limitation of CBF techniques [2]. In MovieLens, on the contrary, the CBF approaches retrieved the most 

diverse result lists. However, they were followed very closely by the user-based CF strategy. The high 

diversity values of tag-based recommenders on the MovieLens dataset could be related to the fact that 

these recommenders have a very high coverage on such repository, retrieving a large percentage of 

available items, thus tending to capture the diversity of the whole data. Despite this particular case, and 

according to the obtained results, we may conclude that, in general, user-based CF offers highly diverse 

item recommendations. Social recommenders such as social-friends and trust-local strategies and their 

hybridisation with CF (social-friends-cf, trust-local-cf) provide high diversity on their results as well. 

Diversity 
Last.fm Delicious MovieLens 

10 20 50 10 20 50 10 20 50 

cb-tf 1.563 3.267 8.866 1.178 2.442 6.493 3.042 6.381 16.708 

cb-bm25 1.501 3.121 8.360 1.349 2.795 7.370 3.017 6.309 16.556 

cb-cosine-tfidf 1.650 3.477 9.523 1.515 3.145 8.326 3.272 6.693 17.095 

cb-cosine-bm25 1.620 3.398 9.227 1.521 3.160 8.346 3.236 6.631 17.006 

cf-user 2.732 5.532 14.054 3.041 6.068 14.735 3.037 6.087 15.450 

cf-item 1.238 2.512 6.608 1.287 2.689 7.129 2.075 4.149 10.386 

social-friends 2.615 5.391 13.287 2.598 4.944 9.467    

personal-social 1.798 4.015 11.650 2.221 4.859 12.825    

friends-popularity 1.860 4.040 11.428 2.056 4.391 11.468    

trust-global 1.635 3.306 8.154 1.925 3.757 8.761    

trust-local 2.677 5.448 14.306 2.731 5.490 13.438    

social-friends-cf 2.669 5.448 14.297 2.761 5.525 13.531    

trust-global-cf 2.176 4.432 11.524 2.421 4.836 11.850    

trust-local-cf 2.206 4.466 9.724 2.573 5.111 10.723    

Table 4. Diversity values for different result list sizes (length �W,�) and non-relevant items. 

Table 5 shows the novelty values obtained on the different datasets. Compared to the conclusions 

derived from the diversity analysis, the recommenders seem to behave in the opposite direction when 

analysing the novelty of retrieved items. Whereas in Last.fm and Delicious, CBF approaches provide 



more novel item suggestions (confirming previously reported observations [16]), in MovieLens, CF 

strategies are the ones that offer the highest novelty in the generated item lists. In Last.fm and Delicious, 

apart from CBF approaches, the cf-item strategy and hybrid social-friends-cf and trust-global-cf 

strategies, obtained very high novelty values. 

Furthermore, due to their content over-specialisation, tag-based approaches retrieved less diverse items. 

Because of that, we may expect that these approaches should also offer less novelty, but this does not seem 

to be the case in our experiments. There is an aspect that may help clarify this apparent contradiction. The 

utilised notion of novelty, which is given in Section 4.4.4 and is based on the popularity of the 

recommended items, aims at measuring the capability of a recommender to suggest a user with relevant but 

non popular items (i.e., not liked or known by a wide number of users). The items returned by CBF 

approaches for the active user are quite overspecialised to her tag-based profile, and thus they are not 

necessarily relevant for many of the users in our limited datasets, especially Last.fm and Delicious. 

Additionally, these results show that the proposed novelty and diversity metrics are, in fact, capturing 

two different, although related, concepts. In general, it is assumed that systems promoting novel results 

would tend to generate diverse rankings for the users [46]. In our experiments, we have observed that 

CBF approaches obtain higher novelty values (and lower diversity scores, as discussed above); however, 

this may be a consequence of their higher coverage, which would allow them to retrieve more long-tail 

(novel) items, although very similar between them (overspecialisation effect). Thus, if we also take into 

account the coverage of each method, social approaches (such as trust-local) obtain high novelty scores 

while maintaining a decent coverage. At the same time, these recommenders also return diverse 

recommendations, which is in agreement with the expected relation between novel and diverse 

approaches reported in the literature. 

Nonetheless, to draw well founded conclusions about the novelty of item recommendations from 

different recommenders, we believe experiments on larger datasets –probably less biased by their building 

processes– have to be conducted. We also believe that other definitions of novelty, based on the capability 

of suggesting a user with relevant items having characteristics not shared by previously declared relevant 

items, could be used. Hence, novelty would be more closely related to the notion of diversity within each 

user’s preferences (sometimes referred to as unexpectedness [1]). In addition to that, novelty metrics may 

be defined in terms of the life time of users’ preferences and items. For such purpose, time-aware 

evaluation methodologies, which would split the training and test sets according to different time periods, 

may be taken into consideration [12]. 

Novelty 
Last.fm Delicious MovieLens 

10 20 50 10 20 50 10 20 50 

cb-tf 3.617 7.241 18.120 2.073 4.202 10.889 1.436 2.621 5.731 

cb-bm25 3.642 7.285 18.219 3.479 6.990 17.559 1.209 2.289 5.218 

cb-cosine-tfidf 3.486 6.983 17.505 3.459 6.959 17.494 1.469 2.981 7.572 

cb-cosine-bm25 3.464 6.942 17.405 3.434 6.912 17.403 1.432 2.926 7.507 

cf-user 3.003 6.083 13.767 2.853 5.580 11.894 3.082 6.010 14.371 

cf-item 3.287 6.587 16.396 2.999 5.935 14.547 2.908 5.641 13.757 

social-friends 2.238 4.113 9.074 0.933 1.568 2.636    

personal-social 1.797 3.158 6.227 2.168 4.062 9.251    

friends-popularity 2.933 5.777 12.948 2.477 4.470 8.405    

trust-global 2.402 4.940 12.430 2.176 4.359 11.347    

trust-local 2.756 5.171 12.035 2.206 3.616 7.329    

social-friends-cf 3.119 5.946 13.006 2.574 4.583 9.153    

trust-global-cf 2.949 6.037 13.720 2.801 5.744 12.619    

trust-local-cf 0.867 1.571 2.764 1.181 1.965 3.659    

Table 5. Novelty values for different result list sizes (length of �W,�) and non-relevant items. 

5.3 Recommendation Overlap 

Tables 6 and 7 show, respectively, the Jaccard and ranking-based overlap values between each pair of 

recommenders. In general, the recommendation lists of CBF approaches overlap significantly between 

them, and do not overlap with other types of recommenders. In Last.fm and Delicious, there is also 

significant overlapping between item lists from some social recommenders, and, of course, between some 

hybrid approaches and their CF and social counterparts. The recommended item lists of user- and item-

based CF approaches do not overlap in all the cases. 
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cb-tf  0.419 0.335 0.242 0.011 0.011 0.016 0.011 0.014 0.008 0.013 0.014 0.010 0.001 

cb-bm25   0.200 0.206 0.013 0.012 0.012 0.014 0.013 0.011 0.011 0.013 0.012 0.001 

cb-cosine-tfidf    0.532 0.016 0.015 0.028 0.014 0.024 0.011 0.023 0.024 0.015 0.001 

cb-cosine-bm25     0.016 0.014 0.024 0.013 0.022 0.012 0.021 0.022 0.015 0.001 

cf-user      0.022 0.047 0.134 0.059 0.060 0.049 0.405 0.344 0.003 

cf-item       0.012 0.011 0.018 0.019 0.013 0.018 0.020 0.002 

social-friends        0.114 0.442 0.041 0.399 0.284 0.050 0.008 

personal-social         0.129 0.134 0.127 0.129 0.133 0.005 

friends-popularity          0.051 0.395 0.103 0.056 0.027 

trust-global           0.062 0.056 0.089 0.002 

trust-local            0.144 0.064 0.072 

social-friends-cf             0.158 0.003 

trust-global-cf              0.038 

trust-local-cf               

Table 6a. Jaccard based overlap for N=100 on Last.fm dataset. 

Jaccard overlap 

Delicious 
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cb-tf  0.088 0.122 0.103 0.005 0.002 0.001 0.019 0.010 0.007 0.011 0.004 0.008 0.010 

cb-bm25   0.219 0.248 0.006 0.001 0.001 0.009 0.007 0.005 0.008 0.005 0.007 0.008 

cb-cosine-tfidf    0.417 0.009 0.002 0.002 0.014 0.010 0.006 0.011 0.008 0.009 0.011 

cb-cosine-bm25     0.009 0.002 0.002 0.014 0.010 0.006 0.012 0.008 0.009 0.011 

cf-user      0.046 0.033 0.129 0.049 0.068 0.058 0.451 0.353 0.008 

cf-item       0.009 0.055 0.032 0.036 0.031 0.033 0.040 0.009 

social-friends        0.130 0.332 0.021 0.306 0.292 0.033 0.028 

personal-social         0.295 0.126 0.329 0.101 0.124 0.094 

friends-popularity          0.041 0.708 0.065 0.042 0.176 

trust-global           0.049 0.048 0.215 0.006 

trust-local            0.074 0.051 0.189 

social-friends-cf             0.164 0.009 

trust-global-cf              0.028 

trust-local-cf               

Table 6b. Jaccard based overlap for N=100 on Delicious dataset. 

Jaccard overlap 

MovieLens 
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cb-tf  0.853 0.607 0.596 0.021 0.001 

cb-bm25   0.589 0.587 0.019 0.001 

cb-cosine-tfidf    0.956 0.015 0.001 

cb-cosine-bm25     0.015 0.001 

cf-user      0.001 

cf-item       

Table 6c. Jaccard based overlap for N=100 on MovieLens dataset.  



Ranking overlap 
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cb-tf  0.429 0.340 0.252 0.014 0.014 0.018 0.013 0.016 0.011 0.016 0.018 0.013 0.001 

cb-bm25   0.204 0.210 0.016 0.014 0.013 0.016 0.015 0.014 0.014 0.016 0.015 0.001 

cb-cosine-tfidf    0.546 0.021 0.018 0.031 0.018 0.027 0.014 0.028 0.030 0.019 0.001 

cb-cosine-bm25     0.021 0.017 0.028 0.016 0.025 0.015 0.026 0.028 0.019 0.001 

cf-user      0.028 0.051 0.147 0.067 0.076 0.058 0.454 0.409 0.002 

cf-item       0.013 0.013 0.023 0.023 0.015 0.023 0.026 0.002 

social-friends        0.111 0.300 0.047 0.353 0.293 0.057 0.004 

personal-social         0.134 0.154 0.126 0.146 0.149 0.003 

friends-popularity          0.059 0.274 0.116 0.066 0.013 

trust-global           0.076 0.071 0.114 0.002 

trust-local            0.170 0.078 0.067 

social-friends-cf             0.198 0.002 

trust-global-cf              0.042 

trust-local-cf               

Table 7a. Ranking-based overlap for N=100 on Last.fm dataset. 

Ranking overlap 

Delicious 
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cb-tf  0.093 0.134 0.111 0.004 0.002 0.001 0.024 0.010 0.009 0.011 0.004 0.010 0.010 

cb-bm25   0.237 0.262 0.006 0.001 0.001 0.011 0.007 0.007 0.008 0.005 0.009 0.008 

cb-cosine-tfidf    0.440 0.009 0.001 0.001 0.017 0.010 0.008 0.012 0.008 0.012 0.011 

cb-cosine-bm25     0.009 0.001 0.001 0.018 0.010 0.008 0.012 0.008 0.012 0.011 

cf-user      0.052 0.021 0.141 0.054 0.091 0.066 0.450 0.413 0.006 

cf-item       0.007 0.061 0.036 0.045 0.033 0.038 0.048 0.008 

social-friends        0.089 0.191 0.020 0.198 0.179 0.029 0.011 

personal-social         0.231 0.147 0.263 0.112 0.140 0.057 

friends-popularity          0.050 0.427 0.067 0.050 0.086 

trust-global           0.061 0.063 0.257 0.007 

trust-local            0.083 0.062 0.118 

social-friends-cf             0.199 0.005 

trust-global-cf              0.030 

trust-local-cf               

Table 7b. Ranking-based overlap for N=100 on Delicious dataset. 

Ranking overlap 

MovieLens 
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cb-tf  0.819 0.617 0.946 0.026 0.002 

cb-bm25   0.595 0.594 0.024 0.002 

cb-cosine-tfidf    0.946 0.019 0.001 

cb-cosine-bm25     0.019 0.001 

cf-user      0.001 

cf-item       

Table 7c. Ranking-based overlap for N=100 on MovieLens dataset. 

Very interestingly, and differently to preliminary conclusions we derived in [7], we observe that the 

above results apply to all datasets for both Jaccard and ranking-based overlap metrics. The Jaccard metric 

measures the number of items two recommenders have in common in their recommendation lists. The 

ranking-based metric, on the other hand, is similar to the Spearman correlation, and measures how 

differently two recommenders rank the items they have in common in their recommendation lists. Thus, 

the fact that both Jaccard and ranking-based overlap values are high means that two recommenders not 



only share many items, but also provide quite similar item rankings. As shown in the tables, in our 

experiments, this is especially notorious in the cb-cosine-tfidf and cb-cosine-bm25 strategies. 

From the obtained results on recommendation overlapping, and taking into account that whereas CBF 

approaches offer high coverage and novelty, social-CF hybrids offer high performance and diversity, we 

may expect that meta-hybrid recommenders combining the above strategies could provide valuable, 

balanced item suggestions in terms of the above metrics, for different contexts depending on the needed 

level of personalisation. 

5.4 Relative Recommendation Diversity 

The proposed relative diversity metric aims at capturing the information gain obtained with a 

recommender in comparison to another. It represents whether or not a recommendation list provides 

additional information to a previously presented recommendation. As described in Section 4.4.3, the 

relative diversity l	[(3", 3Q) measures how diverse a recommendation list is given by a 

recommendation model 3Q, once the user has already seen the list provided by a model 3". This is 

performed by computing �(3"||3Q) = �(j||�) for each user, which can be interpreted as the number of 

extra bits required to code samples from X based on distribution � instead of using the distribution j. 

Consequently, the larger this measure is, the more different the two distributions are, and thus, the more 

information is conveyed by the second recommender with respect to the first one. 

Table 8 shows the relative diversity values computed for each pair of recommenders on the three 

datasets. Note that there are negative values in the table. As explained in Section 4.4.3, this is due to the 

fact that we are not using a probability space, but an intersection of two spaces, and thus, the Jensen’s 

inequality does not hold. Nevertheless, since we are interested in capturing how different the two 

recommendation lists are, we can ignore the sign of the measure and focus on its absolute value. For 

completeness, however, the sign is preserved in the table. 
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cb-tf   15.67 -10.20 -2.25 1.65 1.61 1.49 -0.75 1.63 0.70 0.81 2.02 1.38 0.45 

cb-bm25 -4.12   -5.15 -3.87 0.77 0.63 -0.01 -1.00 0.58 0.60 -0.16 0.48 0.78 0.18 

cb-cosine-tfidf 32.85 20.72   20.93 7.09 6.25 8.10 5.69 8.22 3.58 6.14 9.34 6.58 0.97 

cb-cosine-bm25 15.17 16.34 -3.94   6.20 5.14 5.75 -0.12 6.55 3.22 4.47 7.25 5.59 0.90 

cf-user 0.03 0.31 -1.15 -0.91   1.13 -2.80 -14.21 0.74 4.55 -3.93 -3.10 8.84 0.20 

cf-item -0.30 -0.02 -1.33 -1.09 0.42   -0.19 0.70 0.10 0.67 -0.09 0.21 0.54 0.12 

social-friends 2.99 3.01 1.94 2.81 16.12 2.20   0.41 42.25 15.05 1.71 21.35 16.60 0.53 

personal-social 3.68 4.45 6.02 5.62 56.16 0.06 21.10   32.81 59.01 20.42 37.08 56.05 0.06 

friends-popularity 1.07 1.13 -0.57 0.09 1.84 7.27 -7.44 -3.86   7.54 -7.99 5.61 7.33 0.73 

trust-global 0.12 0.17 -0.44 -0.37 1.01 0.35 -3.15 -16.88 -0.52   -4.57 -2.88 1.53 -0.01 

trust-local 2.98 2.79 3.18 4.59 25.48 2.05 10.90 9.12 32.00 22.51   31.21 19.70 1.03 

social-friends-cf 1.53 1.74 0.63 1.25 28.05 1.70 9.88 -8.47 15.11 13.26 -1.08   20.44 0.18 

trust-global-cf 0.04 0.20 -1.07 -0.81 3.97 0.77 -2.88 -14.28 0.40 4.66 -3.95 -2.45   0.07 

trust-local-cf -1.13 -0.33 -2.38 -2.21 -0.08 0.30 -0.61 0.07 -1.45 0.48 -3.13 0.04 0.53   

Table 8a. Obtained relative diversity values for N=100 on Last.fm dataset (values |l	[(3", 3Q)| ≥ 20 in bold). 
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cb-tf   0.03 -0.28 -0.24 -0.30 0.00 -0.01 -0.01 0.00 0.01 -0.02 -0.25 -0.21 -0.01 

cb-bm25 0.42   -0.95 -1.38 -1.43 0.03 0.03 0.10 0.08 0.03 0.11 -1.25 -0.61 0.07 

cb-cosine-tfidf 1.90 4.20   1.31 -2.16 0.09 0.09 0.46 0.20 0.08 0.31 -1.82 -0.77 0.23 

cb-cosine-bm25 1.50 5.05 4.80   -2.25 0.11 0.12 0.60 0.29 0.10 0.39 -1.92 -0.75 0.31 

cf-user 0.69 0.51 0.84 0.90   2.15 0.79 -2.34 1.31 2.37 1.16 6.02 6.50 0.34 

cf-item 0.17 0.09 0.14 0.17 0.01   0.14 0.00 0.43 0.52 0.25 0.36 0.48 0.03 

social-friends 0.24 0.28 0.46 0.47 0.31 0.18   -1.87 0.63 0.53 -1.59 1.77 0.93 0.14 

personal-social 2.16 0.58 2.32 4.30 13.03 1.96 4.52   12.76 13.77 12.64 10.11 13.51 0.55 

friends-popularity 0.33 0.20 0.42 0.41 0.76 0.24 2.49 -3.75   1.00 -0.69 1.51 0.97 0.33 

trust-global 0.19 0.04 0.08 -0.03 0.14 0.04 0.04 -4.60 0.18   -0.26 0.24 0.27 0.00 

trust-local 0.62 0.40 0.84 1.01 1.79 0.64 4.27 -3.07 6.47 2.16   3.21 2.32 0.85 

social-friends-cf 0.48 0.40 0.62 0.56 1.33 1.35 0.75 -1.96 0.85 1.33 0.13   4.21 0.12 

trust-global-cf 0.41 0.22 0.38 0.34 -0.42 0.68 0.16 -3.52 0.60 3.25 0.17 1.42   -0.01 

trust-local-cf 0.16 0.17 0.17 0.22 -0.23 0.33 0.24 -0.09 0.41 0.09 -0.75 0.12 0.78   

Table 8b. Obtained relative diversity values for N=100 on Delicious dataset (values |l	[(3",3Q)| ≥ 10 in bold). 
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cb-tf   34.90 58.90 57.13 9.32 0.88 

cb-bm25 -13.38   20.33 22.98 3.44 0.72 

cb-cosine-tfidf -11.93 10.98   5.65 0.67 0.93 

cb-cosine-bm25 -10.39 9.16 -1.10   0.18 0.96 

cf-user 6.40 9.00 8.76 8.78   0.52 

cf-item -0.09 -0.07 -0.09 -0.09 -0.05   

Table 8c. Obtained relative diversity values for N=100 on MovieLens dataset (values |l	[(3", 3Q)| ≥ 9 in bold). 

The results show that CBF recommenders give enough diverse recommendations by themselves 

so that subsequent recommenders would be redundant from a user-perspective. This can be 

observed in the table by looking at the rows corresponding to CBF approaches, and checking the low 

(absolute) values of these cells. This result is reversed in the MovieLens dataset, where CBF approaches 

do not provide sufficiently diverse recommendations, and other recommenders could further improve the 

diversity of the rankings. This result can be attributed to the denser rating matrix available in this dataset, 

which may imply richer, more diverse relations between users and movies. 

Another interesting finding is that the personal-social approach does not present enough diverse 

recommendations when compared with other approaches –mainly CF, popularity-based and global social 

strategies, and hybrid recommenders–, whose top recommendation lists are very diverse (see Table 4). 

This is especially noticeable in the Delicious dataset, for which the above recommenders achieved the 

highest diversity values. Hence, although personal-social strategy provides diverse recommendations by 

itself, its suggestions could be further diversified by combining them with other types of 

recommendations. 

5.5 Summary of Results 

The presented results lead to the following answer to RQ2. The combination of different recommendation 

input sources and algorithms allows optimizing for different quality dimensions, in a non-exclusive way, 

by selecting the appropriate combination of alternatives that leverage the desired strengths, in terms of 

coverage, diversity, novelty and/or overlap. In particular, our observations motivate the combination of 

CBF and CF recommenders, CBF and social recommenders, or even some CBF, CF, and social 

recommenders, as meaningful options. For instance, the combination of tag-based approaches (with high 

coverage and novelty) and social-CF hybrids (with high performance and diversity) may provide 



balanced (high overlap) and precise item recommendations. Analogously, a combination of user-based 

CF and the personal-social approach enables diverse and non-redundant recommendations, besides the 

benefits on accuracy and novelty of CF. 

The analysis of the results shows that social networks are a key source of information to provide 

accurate recommendations, in both Last.fm and Delicious systems. In MovieLens, where there is no 

social networking information, CBF was the most accurate strategy. Figure 2 shows a summary of the 

performance results, where only the best performing algorithm of each group (among content-based 

filtering, collaborative filtering, social, and hybrid recommenders) is considered. In the figure, we observe 

that apart from the social recommender, the CBF approach obtained very good performance in Last.fm 

and Delicious. 

 
Figure 2. Summary of the performance results; only the best results for each recommender type are shown. Note that 

no social and hybrid recommenders were run on MovieLens dataset, which does not have social networking 

information. 

Figure 3 shows a summary of the best values of non-performance metrics –coverage, diversity and 

novelty –for the different types of recommenders. On the three datasets, CBF had higher coverage than 

CF and social strategies. On the MovieLens dataset, coverage values were much higher than on Last.fm 

and Delicious datasets, which may be due to the way in which the latter were built, i.e., by starting the 

information crawling from the systems’ top tags (see Sections 4.1.1 and 4.1.2). 

On the Last.fm and Delicious datasets, CBF offered less diverse recommendations, while the other 

types of recommenders obtained very similar results. Nevertheless, for both datasets, when the length of 

the lists increases (see Table 4), social-based approaches and hybrids boost diversity, showing the 

importance of exploiting social networking information to provide diverse recommendations. In 

MovieLens, CBF and CF obtained similar diversity values. 

Novelty was more stable with respect to the length of the recommendation lists. In Last.fm and 

Delicious, CBF offered higher novelty than other recommenders, whilst in MovieLens, CF was the 

strategy with the most novel recommendations. These opposite results may be due to the differences in 

the nature of the available data. Last.fm and Delicious are tag-oriented, and thus have abundant tags, 

which help retrieving novel information. MovieLens, on the other hand, is mainly rating-oriented, with 

fewer tags to procure novelty in tag-based recommendations. As we may see in Table 1, the average 

number of tag assignments per user in Last.fm and Delicious is indeed much larger than in MovieLens: 

98.6 and 234.4 vs. 22.7, respectively. 

 
Figure 3. Summary of the non-performance results for N=10; only the best results for each recommender type are 

shown. Note that no social and hybrid recommenders were run on the MovieLens dataset, since it does not include 

social networking data. 
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Regarding overlap and relative diversity, which are non-performance metrics used to compare pairs of 

recommendations lists, we may conclude the following. The evaluated CBF approaches overlap 

significantly between them; and CF and social approaches have a high degree of intersection with their 

corresponding hybrids. CBF approaches, however, barely overlap with CF and social recommenders, and 

thus leave room for combining them through more complex hybridisation strategies. In fact, the obtained 

relative diversity values show that recommendation lists from CBF provide new information to other 

types of recommenders. 

6. Conclusions and Future Work 

We have presented a comparative study on the influence of existing sources of information in Social Web 

systems on recommendation. We have empirically evaluated and compared a representative sample of 

content-based, collaborative filtering, and social recommenders, by using a variety of performance and 

non-performance metrics on three datasets. The datasets were obtained from the Last.fm, Delicious, and 

MovieLens systems, containing user data of different sorts, such as manual tags, social networking 

information, and item consumption records (music play counts, Web pages bookmarks, and movie 

ratings).  

Our study provides empiric evidence on the comparative qualities of different families of 

recommendation methods on different input data sources. Specifically, we addressed two research 

questions, aiming to 1) identify which sources of information available in social systems are more 

valuable for recommendation; 2) prove whether recommendation approaches exploiting different sources 

of information in social systems really offer heterogeneous item suggestions, from which hybrid 

strategies could benefit.  

To address the first question, we computed ranking-based metrics –precision, recall and nDCG– of 

the different recommenders on the above datasets. From the obtained results, we conclude that when 

explicit social networks are available, incorporating characteristics of the social graphs into the 

computation of user neighbourhoods in memory-based collaborative filtering significantly improves 

recommendation in terms of ranking quality. On all the datasets, social tagging is found to be a source of 

information that can easily be exploited to provide precise item recommendation ranking lists. 

To address the second question, we propose a number of non-performance metrics capturing different 

item recommendation properties, namely coverage, diversity and novelty, defined as the capability of a 

recommender to suggest a user with relevant but non popular items), and metrics comparing pairs of 

ranked recommendation lists, namely overlap and relative diversity. Analysing the obtained results, we 

conclude that exploiting social tagging information by content-based recommenders offers high coverage 

and novelty, and combining social networking and collaborative filtering information by hybrid 

recommenders provides high diversity. This, along with the fact that recommendations from the different 

approaches –content-based, collaborative filtering, and social– have low overlap and relative diversity 

values between them, leads to the conclusion that meta-hybrid recommenders combining the above 

strategies may provide valuable, balanced item suggestions in terms of performance and non-performance 

metrics, for different contexts depending on the needed level of personalisation. 

Our study provides empiric evidence on the comparative qualities of different families of 

recommendation methods on different input data sources. A precise knowledge of the nuanced strengths 

of alternative recommendation inputs and methods provides for tailoring the configuration of hybrid 

recommendation approaches to different domain-, business-, and/or task-dependent requirements. Beyond 

the study reported here, there is room for investigation with further recommenders, input data, and 

hybridisation strategies. In particular, handling implicit evidence of user preferences (as opposed to 

explicit preference values) is an open research issue in the field. Seeking high performing recommenders 

for each source of user preferences (in our case, manual tags, social contacts, and item consumptions), 

and dynamically combining them to balance the non-performance characteristics of final item 

recommendations, is a research direction we aim to continue as well [9]. In this context, we envision the 

exploration of other definitions of the metrics proposed in this paper, such as those studied in [46]. For 

such purpose, we also plan to take into consideration the time dimension on recommendation and its 

evaluation [12]. Furthermore, user studies would be a valuable complement of offline experiments to 

obtain further insights and conclusions. 
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