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ABSTRACT

Item Splitting has been proposed as a technique for improv-
ing Collaborative Filtering (CF) by means of grouping and
exploiting ratings according to the contexts in which they
were generated. It shows positive effects on recommenda-
tion in the presence of significant differences between the
users’ preferences within distinct contexts. However, the ad-
ditional user effort and specific system requirements needed
to acquire contextual data may hamper the direct applica-
tion of the above technique. In this paper we propose to split
item sets using a number of time context representations de-
rived from easy-to-collect rating timestamps. Initial results
on standard datasets show that the proposed time contexts
for item splitting let improve recommendation performance
of a state-of-the-art CF algorithm in an offline evaluation
setting simulating real-world conditions.
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1. INTRODUCTION

Collaborative Filtering (CF) systems suggest items to users
relying on preferences —usually expressed in the form of nu-
meric ratings— of similar-minded people. Context-Aware
Recommender Systems (CARS) additionally take into con-
sideration contextual information (e.g. time, location, mood,
and weather) associated to collected preferences. In this
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way, CARS can discriminate the interest a user may have in
a particular item within different contexts.

Several techniques have been proposed to properly deal
with contextual information. Adomavicius et al. [1, 2] dis-
tinguish three main types of CARS: those based on pre-
filtering, which prune the available user preference data ac-
cording to the target recommendation context prior to ap-
plying a recommendation algorithm; those based on post-
filtering, which apply a recommendation algorithm on the
original preference data, and afterwards adjust the gener-
ated recommendations according to the target recommenda-
tion context; and those based on contextual modeling, which
incorporate contextual information directly into the model
used for generating recommendations. The former two ap-
proaches have the advantage that any non-CARS algorithm
can be used to provide context-aware item suggestions.

Baltrunas and Ricci [4, 5] proposed a pre-filtering tech-
nique called Item Splitting. This technique divides (i.e. splits)
preference data for items according to the context in which
such data were generated, assuming that there exist signif-
icant differences in the user preferences received by items
among contexts. On semi-synthetical data, they showed
that, when context influences the users’ preferences, the ap-
plication of the context-based item splitting improves the
mean average error values of state-of-the-art CF algorithms
—including Matrix Factorization (MF), a well-known high
performance recommendation algorithm [10]. However, on
real data, they only analyzed user gender and age, which
may be due to the difficulty of obtaining context-enriched
data.

In general, there are two main difficulties for applying
context-aware recommendation: 1) collecting contextual data
in an easy, effective way, and 2) identifying and exploiting
contextual information that really influences the users’ pref-
erences. The latter is addressed by Item Splitting, as this
technique is applied only when significant rating pattern dif-
ferences among contexts are found. The former imposes an
extra effort from the user to explicitly state or describe the
current context, or system/device requirements to automat-
ically infer the current context, e.g. by capturing location
and time signals, and analyzing the user’s interactions with
the system.

In this paper we preliminary test whether a number of sim-
ple time context variables can be useful for performing item
splitting in context-aware recommendation. These variables
are derived from easy-to-collect rating timestamps, which
addresses the above difficulty of an efficient collection of
contextual data in a recommender system. We verify that



meaningful differences in item rating patterns are found in
some splits generated by these contexts, which are auto-
matically detected. We evaluate the approach in the rating
prediction and top-N recommendation tasks [13]. Our re-
sults confirm that top-N recommendations provided by the
high-performing MF algorithm are improved by using our
simple approach for item splitting.

The reminder of the paper is organized as follows. In Sec-
tion 2 we discuss related work. In Section 3 we present our
Item Splitting approach based on time contexts. In Sec-
tion 4 we describe the experiments conducted, and report
the results obtained. Finally, in Section 5 we provide some
conclusions and future research directions of our work.

2. RELATED WORK

Among the existing contextual dimensions, time context
—i.e., the contextual attributes related to time, such as time
of the day, day of the week, and current time/date— can be
considered as the most versatile one. In general, collect-
ing time information does not require additional user effort
nor impose strict system/device requirements. Moreover,
it has been used as a key input for achieving significant
improvements on recommendation accuracy [10]. Hence,
the timestamps of collected user preferences are valuable,
easy-to-collect data for improving recommendations. Due
to these benefits, recent years have been prolific in the re-
search and development of Time-Aware Recommender Sys-
tems (TARS), that is, CARS that exploit the time dimension
for both user modeling and recommendation strategies.

Time can be represented both as continuum information
(e.g. current date/time) and as periodic, discrete informa-
tion (e.g. day of the week). This lets classify TARS accord-
ing to the way they model time information as continuous
TARS —which model time context information as a contin-
uous variable— and categorical TARS —which model time as
one or more categorical variables [7]. Interestingly, when
timestamps are available, both continuous and categorical
context information can be extracted and exploited.

Previous work has shown the advantages of incorporating
time context in recommendation as a continuous variable
[9] —reflecting fluctuations in user preferences over time—,
as a categorical variable [3] —identifying repetitive patterns
through time—, and with both representations [10]. Other
ways of exploiting time context information in recommender
systems (RS) include the identification of temporal patterns
in user interactions with a system, e.g. to control the di-
versity of recommendations over time [11], and facilitate the
identification of active users in shared user accounts [6].

Time context information is also gaining increasing atten-
tion in RS evaluation, particularly in offline experimenta-
tion. For instance, the availability of time information lets
use different evaluation methodologies [13], leading to differ-
ences in recommendation performance results [8, 7]. Main
methodological divergences are related with the way test
data (i.e., data used to simulate user behavior after receiving
recommendations) are selected [7]. Among the available op-
tions, the setting that provides an evaluation scenario closest
to real-world conditions is that in which all user preferences
are sorted according to their timestamps, and various of the
latest preferences are used as test [7]. This mimics the real-
world setting where a RS only may use past recorded data
in order to estimate future user preferences.

Table 1: User time context values.

Context | Condition | Range of values
Py morning 07:00 to 11:59
noon 12:00 to 14:59
evening 15:00 to 20:59
night 21:00 to 06:59
Py workday Monday to Friday
weekend Saturday, Sunday

3. TIME CONTEXT ITEM SPLITTING

In this paper we explore whether analyzing and using sim-
ple time context variables can facilitate an efficient identifi-
cation of different trends in the users’ interests. To do so,
we exploit timestamps associated to explicit ratings given
to items, to derive several categorical time context variables
with which Item Splitting is performed. In previous work [6],
we showed that some time context variables better capture
differences in the users’ interaction behavior with a system
when rating items. That finding is consistent with other
studies on pre-filtering based context-aware recommenda-
tion, where e.g. the time of the day have shown improve-
ments on rating prediction error [3]. In [3], however, all user
profiles are split. In contrast, the approach we describe here
only splits the sets of item ratings that show meaningful dif-
ferences across contexts [4, 5], automatically preventing the
splitting when it is useless. Based on the above works, we
now focus on Period of Day (Py) —which includes the contex-
tual conditions {morning, noon, afternoon, evening}— and
Period of Week (P,) —which includes the contextual con-
ditions {workday, weekend}— variables for testing the ap-
plication of our approach to time context item splitting in
CF. Table 1 shows the values used to assign the contextual
conditions of each rating.

To determine the utility of the above time contexts for
item splitting, we first study whether meaningful differences
in rating patterns arise among the corresponding contex-
tual conditions. For this purpose, we use several impurity
criteria in the same way as done by Baltrunas and Ricci
[5]. An impurity criterion ic(z, s) returns a score of the dif-
ferences between the ratings given to an item ¢ in a split
s € S, where S represents the set of possible contextual
splits. The technique only considers binary splits, using
a “one vs. all” approach. For instance, for the time con-
text variable Py, S = {(morningvs.noonUeveningUnight),
(noonvs.morningUeveningUnight), (eveningvs.morningU
noon U night), (night vs. morning Unoon U evening)}.

The impurity criteria used to decide whether to split the
set of ratings given to item 4 are [5]: icra (4, s), which mea-
sures the information gain given by s to the knowledge of
item ¢ rating; icar (4, s), which estimates the statistical sig-
nificance of the difference in the means of ratings associated
to each context in s using the t-test; and icp (i, s), which es-
timates the statistical significance of the difference between
the proportion of high (> 3) and low (< 3) ratings in each
context of s using the two-proportion z-test. A set of item
ratings is split if the corresponding criterion returns a score
above a threshold. In this work, the threshold value is set
to obtain a p-value of 0.05 in the icyp and icp cases, and
the arbitrary value of 0.9 in the icre case. If several splits
obtain a score above the threshold, the split with highest
score is used. Note that by using this heuristic, when more
than one context is used for splitting (e.g. Pq U Py), the



Table 2: Proposed time context representations, and
obtained percentages of items split.

Dataset Time Context icrg iCp icp
MovieLens100K | Py 2.56% | 0.36% | 10.40%
Py 0.89% | 0.06% 6.18%
Py U Py 3.45% | 0.42% | 15.70%
MovieLens1M Py 2.80% | 0.14% | 15.52%
Py 0.81% | 0.03% 7.96%
Py U Py 3.43% | 0.17% | 21.99%

impurity score lets select dynamically the best time con-
text variable for performing the split of a given item —the
one that maximizes the differences in item rating patterns
among contextual conditions.

We tested our approach on two commonly used datasets
from the movie recommendation domain, namely Movie-
Lens100K and MovieLens1M*. MovieLens100K contains
100,000 ratings given by 943 users to 1,682 movies from
September 1997 to April 1998. MovieLens1M contains
1,000,209 ratings given by 6,040 users to 3,706 movies from
April 2000 to February 2003 (note that ratings in both data-
sets do not overlap). Table 2 shows the percentage of items
split with each tested criterion. The icp criterion is the
most sensitive, while icps is the less sensitive to differences.
These results show that there are meaningful differences in
item rating patterns between the analyzed contextual con-
ditions.

4. EXPERIMENTS AND RESULTS

To preliminary evaluate the proposed time context Item
Splitting approach, we computed the performance of a CF
algorithm with the datasets, time context splits, and impu-
rity criteria described in Section 2. In this section we detail
the followed experimental setting, and discuss the obtained
results.

4.1 Experimental Setting

We used MF trained with stochastic gradient descent [14]
as the baseline CF algorithm to compute rating predictions.
The algorithm’s parameters used were: 60 factors, 80 iter-
ations, learning rate = 0.005, and regularization weight =
0.02. In case the algorithm was unable to generate a rat-
ing prediction for a particular user and item pair, the user’s
mean rating was considered as default prediction. We evalu-
ated the rating prediction task by computing the Mean Av-
erage Error (MAE) and Root Mean Squared Error (RMSE)
metrics, and the top-N recommendation task by computing
Precision at level 5 (P@5) and Recall at level 5 (RQ5).

To generate the training and test sets, we ordered each
dataset’s ratings according to their timestamps, and selected
the first 80% of them as training data, and the latter 20%
as test data. As noted by [7], this setting provides a close
scenario to a real-world recommendation evaluation. The
rating predictions were computed for each rating in the test
set, and the recommendation lists were generated for each
user, including the 5 items with highest predicted ratings.
The items in the test set with ratings higher than the user’s
mean rating were considered as relevant for the P@5 and
R@5 computation.

Lavailable at http://www.grouplens.org

Table 3: Performance results on the MovieLens100K
dataset. Bold values indicate the best results in each
column. Statistical significant differences (Wilcoxon
p < 0.05) of TARS algorithms are indicated with
respect to Baseline (*).

Method MAE | RMSE P@s R@5
Baseline 0.7721 0.9951 0.6000 0.5887
1c1G, Pa 0.7704 0.9932 0.6000 0.5935
icra, Puw 0.7755 0.9984 0.5937 0.5786
icrg, PaU Py 0.7690 0.9912 0.6168 0.6088
icm, Py 0.7728 0.9944 0.6168 0.6095
iy, P 0.7733 0.9958 0.6084 0.5981
tenr, Pa U Py 0.7698 0.9929 0.6105 0.6067
icp, P 0.7681* | 0.9921 | 0.6337* | 0.6218*
icp, Py 0.7712 0.9916 0.6021 0.5827
icp, PiU Py 0.7721 0.9952 0.6063 0.5913

Table 4: Performance results on the MovieLens1M
dataset. Bold values indicate the best results in each
column. Statistical significant differences (Wilcoxon
p < 0.05) of TARS algorithms are indicated with
respect to Baseline (*).

Method MAE | RMSE P@5 R@5
Baseline 0.7095 | 0.9105 0.7147 0.3160
icrig, Pa 0.7105 | 0.9100 | 0.7185 0.3163
icra, Pw 0.7114* 0.9121 0.7141 0.3162
icra, Pa U P, | 0.7113% | 0.9114* | 0.7207 0.3170
icm, Py 0.7104 0.9109 0.7190 0.3176
icar, Puw 0.7103 0.9110 0.7178 0.3179
icar, PaU Py, 0.7110 0.9116 0.7114 0.3162
icp, Py 0.7112 0.9116 0.7205 | 0.3207*
icp, Py 0.7108* | 0.9109* 0.7185 0.3183
icp, Py U Py, 0.7116 0.9117 0.7141 0.3178

4.2 Results

Tables 3 and 4 show the results of the experiments con-
ducted on the MovieLens100K and the MovieLens1M data-
sets, respectively. The baseline approach corresponds to the
MF algorithm on the original dataset, and the remaining
methods correspond to the MF algorithm on the datasets
generated by time context Item Splitting with the corre-
sponding time context variables and impurity criteria.

In the case of MovieLens100K, the best values were ob-
tained with the Py time context, using the icp impurity cri-
terion. These values show statistical significant differences
with respect to the baseline (improving 5.6% over the base-
line’s PQ@5 and R@5, and 0.5% over the baseline’s MAE),
and the Py U P, time contexts, using the ic;¢ impurity cri-
terion (improving 0.4% over the baseline’s RMSE). In the
case of MovieLens1M, the best performances for top-N rec-
ommendation were obtained again with the P; time con-
text using the icp impurity criterion, improving 0.9% over
baseline P@5 and 1.5% over baseline R@5 (with statistical
significant difference), and the Py U P, time contexts using
the icre impurity criterion (improving 0.9% over baseline
P@5). No improvement was obtained neither on MAE nor
RMSE (in terms of RMSE, there was only a negligible im-
provement).

4.3 Discussion

Comparing the performance results obtained on the Movie-
Lens datasets, we observe that in the top-N recommendation



task, consistent performance improvements are achieved by
using the Py time context and the icp impurity criterion,
particularly with respect to the recall metric; while in the
the rating prediction task (evaluated in terms of MAE and
RMSE metrics), there is no clear performance improvement
trend. From this, it seems that Py is a good time context
variable for item splitting, while P,, is not. It is important
to note that only the above two time context variables were
tested; other time contexts could lead to better improve-
ments in overall recommendation quality.

Regarding the use of two or more time context variables
together, that is, using the impurity criteria to dynamically
select the the best time context variable for performing a
split, we observe that improvements over the use of a sin-
gle variable are obtained only with the icr¢ impurity crite-
rion, with the exception of MAE and RMSE values on the
MovieLens1M dataset. As previously noted, just one of the
evaluated variables shows a good performance when it is ex-
ploited alone. It may be the case that exploiting together
time context variables with good performance by their own
could lead to better improvements when used together.

We also note that these results were obtained using a
fixed threshold value for each impurity criterion. Adjusting
threshold values may let obtain higher performance improve-
ments. Furthermore, we used a single evaluation setting, as
described in Section 4.1; thus, the reported results should be
contrasted with those obtained in other commonly used set-
tings, e.g. using a standard 5-fold cross validation, in order
to compare them with other CARS.

Finally, we must remark that the rating timestamps in the
datasets used correspond to the times when the users rated
the corresponding items, rather than the item consumption
times. While the proposed technique is able to find sig-
nificant differences in the items’ ratings across the tested
contextual conditions, it is likely that such differences can
also be found on item consumption data. As noted by Said
et al. [12], users tend to rate items shortly after consuming
them (enabling to relate actual preferences with contextual
conditions), but this is not always the case.

S. CONCLUSIONS AND FUTURE WORK

In this paper we presented a simple approach to Item
Splitting by exploiting time context variables derived from
rating timestamps. Preliminary empirical results on stan-
dard datasets show that Item Splitting using simple time
context representations can improve the performance of a
state-of-the-art CF algorithm in the top-N recommendation
task. The simplicity of the proposed approach enable to
easily address the difficulty of efficiently collecting contex-
tual data in a recommender system. This, together with
the goodness of Item Splitting for identifying meaningful
contextual information, give form to a simple method for
improving recommendation quality.

Further research is required to find better performing time
context variables. Additionally, several questions remain
open. For instance, testing whether the approach is also
able to improve in the rating prediction task, evaluating it
in other application domains, and using other baseline CF al-
gorithms. Moreover, the application of the technique on im-
plicit (consumption) data is advised. Given that such data
correspond to the actual consumption times of the items, it
is more likely that clear temporal user preference trends can
be observed with them.
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