
A Performance Comparison of Time-Aware

Recommendation Models

Pedro G. Campos1,2, Fernando Dı́ez1 and
Iván Cantador1

1 Universidad Autónoma de Madrid, 28049, Madrid, Spain
2 Universidad del B́ıo-B́ıo, Avda. Collao 1202, Concepción, Chile

{pedro.campos, fernando.diez, ivan.cantador}@uam.es

Abstract. Recommender Systems (RS) suggest items to users without
requesting them a explicit query, but exploiting their personal prefer-
ences expressed in the form of profiles. In these profiles, timestamped
information allows identifying changes of user interests through time.
Time-aware RS (TARS) aim to benefit from this information. However,
most TARS approaches have been evaluated by using different, non-
consistently agreed methodologies, metrics and datasets, making it dif-
ficult to compare them. Moreover, some of the followed evaluation pro-
tocols give TARS unfair advantages, e.g. by allowing temporal overlaps
between training and test data. We propose to use an evaluation protocol
based on real-world assumptions, which allows assessing TARS results
improvements effectively. Being also interested in determining differences
in TARS performance among recommendation tasks, we conducted ex-
periments with several approaches on rating prediction and (ranking-
oriented) top-N recommendation tasks, using for the latter metrics from
the information retrieval field. The obtained results show that most of the
tested approaches fail to take significant advantage under the proposed
protocol, and that some TARS approaches have dissimilar performances
across tasks.

Keywords: Time-Aware Recommender Systems, Time-Aware Evaluation, Col-
laborative Filtering

1 Introduction

Let us suppose we are searching for an “interesting” book in a specialized e-
commerce site. Easily, we may have to revise tens of book descriptions in a
collection with hundreds, if not thousands, of titles until finding a potential
item of interest. Recommender Systems (RS) [1] aim to help us in this type
of information filtering task, by suggesting items according to personal prefer-
ences. Differently from traditional Information Retrieval (IR) systems, RS are
not provided with a explicit user query, but exploit user profiles with personal
preferences, which can be considered as user relevance feedback about items.
Having information about the users’ profiles, and about item descriptions, a RS
may suggest a particular user items similar to those she liked in the past (the

content based recommendation approach), or items that other people with pref-
erences similar to the active user liked in the past (the collaborative filtering
(CF) recommendation approach). In both cases, the current availability of tem-
porarily contextualized profiles allows detecting fluctuations in user preferences
through time, which may help improving recommendations. In fact, the million
dollars Netflix Prize competition winning team claimed that the time-awareness
of their solution was a key success factor for their results [9].

Different time-aware RS (TARS) have been proposed in the literature (e.g. [6,
10, 9]), improving results from base methods that do not use temporal informa-
tion. However, most of these TARS have been evaluated by using different, non-
consistently agreed methodologies, metrics and datasets, making it difficult to
compare them. The absence of standardized protocols has even raised unrealistic
evaluation scenarios for TARS. For instance, it is common to find evaluations in
which there exist overlaps between training and test data with respect to time,
and this gives TARS an advantage that may not exist in a real world scenario.
Additionally, most approaches have focused on attempting to reduce the error
between known and predicted ratings (rating prediction task). However, nowa-
days the ranking of predicted relative user preferences (top-N recommendation
task) is gaining attention. From the above, we identify two research questions to
address: (RQ1) Can TARS effectively improve recommendation results using a
realistic evaluation scenario? And, (RQ2) do TARS behave consistently for the
prediction and ranking recommendation tasks?

In order to address these questions, we conducted evaluation experiments
with different state-of-the-art time-aware extensions of CF RS using a common
evaluation protocol and dataset. We aimed to discard unrealistic characteristics,
as the aforementioned temporal overlap, thus helping to provide an argumented
answer to RQ1. We evaluated the recommendation approaches on both the rat-
ing prediction and the top-N recommendation tasks. For the latter, we used
well-known metrics from the IR field, such as Precision, Recall and nDCG, in
order to appropriately assess differences of relative performance between algo-
rithms, as posed in RQ2. Putting into practice realistic assumptions regarding
time-aware training/test data splitting, we show that most of the prediction-
based approaches fail to take significant advantage under the tested protocol.
Regarding the evaluation on the different recommendation tasks, we identified
performance differences for some approaches that may be caused by the distinct
nature of the tasks.

The remainder of the paper is structured as follows. Section 2 presents a brief
review of related work. Section 3 states the time-aware recommendation problem,
and describes the tested time-aware models. Section 4 describes the used dataset
and applied evaluation protocol, and discusses the obtained results. We end with
some conclusions and devised future work in Section 5.

2 Related Work

In the last years, there has been an increasing interest in TARS. There are ap-
proaches built upon the assumption that recent preferences better reflect the
user’s current interests, and thus overweight these preferences in the recom-
mendation process. Hence, time decaying has given raise to many variants of

time-aware recommendation algorithms [6, 11]. Other approaches, on the con-
trary, are based on the idea that older information is useful and should not be
underweighted, posing models that incorporate temporal parameters reflecting
fluctuations in user preferences over time [9]. There are also approaches to ex-
plicitly model the users’ concept drift [12], and to identify repetitive patterns
through time [2]. Finally, another type of approaches proposes dynamical adap-
tations through time of (originally static) model parameters [10]. In this context,
it is important to note that most of the existing works on the topic have been
developed in the movie recommendation domain, and have only addressed the
rating prediction problem.

The topic of evaluation is also gaining increasing attention in the RS research
community [7]. Traditionally, recommendation results in offline experimentation
have been assessed by measuring the error on rating predictions from known
rating values [8, 1], due to the focus on obtaining accurate predictions. However,
nowadays, there is a main interest in generating useful recommendations, thus
requiring the definition of new metrics to take into account, for example, the
relative ordering of user preferences. With this purpose, metrics from the IR
field, such as Precision and Recall, have been proposed to assess the utility of
recommendation lists [7]. Nevertheless, differences between RS and IR systems
had lead to different interpretations of how to apply these metrics [4]. We note
that it is difficult to find equivalent comparison parameters among different
authors’ proposals. Regarding TARS, given that user preferences may change
along time, their evaluation should also take into consideration the dynamic
nature of the time-aware recommendation problem [10]. Nonetheless, many times
this issue has not been tackled carefully, and it has been argued that sloppy
evaluation protocols may give advantages to TARS result measurements –not
possible in a real-world evaluation– e.g. admitting temporal overlaps between
training and test data [5].

It is also important to note that any system helping users to select items in a
personalized fashion can be considered as a RS. In this sense, RS could perform
different tasks. In this work, we address two important recommendation tasks,
known as rating prediction and top-N recommendation. In the rating prediction
task, a RS is required to provide an estimation of the rating value for each item
presented to the user, which indicates the user’s potential interest in such item.
Although the user is not presented with an explicit recommendation (the system
does not explicitly invite the user to select a particular item), highly rated items
should be considered to be recommended [7]. Much of the research in the RS
field had focused on improving results particularly on this task, e.g. [6, 9, 12, 10,
3].

Top-N -or ranked- recommendation task, on the other hand, is probably
the par excellence recommendation task. It requires a RS to provide the user a
ranked list of relevant items (this is also referred as recommending good items [8,
7]). This list can be shortened to a fixed length (assuming the user does not
have enough time or resources as to traverse the full list), and ordered according
to the degree of expected utility. In the past this task was partially neglected
by researchers. However, it has become more important in the last years, partly
due to the realization that, the quality of ranked recommendation lists can be
more valuable for users than obtaining accurate rating predictions, in order to

select items to use [4]. It has been argued that this task is different in its nature
from the rating prediction task. Firstly, it focus on relevance (instead of on
accuracy). Secondly, higher ratings are not necessarily related with relevance, a
basic premise in the case of rating prediction task. Despite this, it is common to
use accuracy-oriented algorithms for producing recommendation lists, by means
of generating rating predictions for all items, and then ordering them according
to the predicted rating values.

3 Time Aware Recommendation

Traditionally, the recommendation problem has been formulated as the estima-
tion of ratings for items that have not been used3 by a user. In this section, we
formalize the recommendation tasks addressed in this work, and their time-aware
extensions, and describe the evaluated models.

3.1 Problem Statement

Consider a utility function measuring the usefulness of an item for a user. Let
U be the set of users, and let I be the set of items in a system. Let F be the
utility function F : U × I → R, where R is a totally ordered set (R is usually
but not necessarily a subset of R).

Definition 1. The rating prediction problem consists of estimating F for each
u in U and each i in I, whose utility is unknown a-priori, i.e.:

∀u ∈ U , i ∈ I, r̂u,i = F(u, i)

where r̂u,i is the predicted utility (predicted rating).

Conceptually, if the function F can be computed for all the pairs in U × I
domain, a RS may select for recommendation the item with highest utility for
each user [1]:

∀u ∈ U , i∗(u) = argmax
i∈I

F(u, i)

This definition can be extended to the task of generating a ranked top-N
recommendation list, i.e., selecting for recommendation an ordered set consisting
of the N items with highest utility.

Definition 2. The top-N recommendation task consists of determining for each
user u the set of items I∗

N (u) such that (considering I∗
0 (u) = ∅):

∀u ∈ U , I∗
N (u) =

N
⋃

j=1

i∗j (u) : i
∗
j (u) = argmax

i∈I−I∗

j−1
(u)

F(u, i)

3 Here used involves different senses or activities like, for example, seen, browsed,
tasted and purchased, depending on the type of recommended items.

In CF, the main source of information for selecting items in I∗
N (·) is the

set of known utility values or ratings, i.e. the so called rating matrix R. This
matrix can be enriched with additional information. As noted in [1], contextual
information about where and when the ratings were provided can be also used.
In this work, we use temporal context information associated with the rating
creation time. This information could be exploited to detect changes in the users’
tastes through time, in order to differentiate which items would be best rated
by users depending on the request time. This way we can redefine the utility
function to make it time-dependent : F : U × I × T → R, where T denotes the
set of timestamps associated to ratings. Using this particular utility function, we
also redefine the recommendation problem tasks stated before:

Definition 3. The time-dependent rating prediction problem consists of esti-
mating the utility of items for users at particular times:

∀u ∈ U , i ∈ I, t ∈ T , r̂u,i,t = F(u, i, t)

Similarly, the time-dependent top-N recommendation problem consists of rec-
ommending the highest utility items for users at a particular time (I∗

0 (u, t) = ∅):

∀u ∈ U , t ∈ T , I∗
N (u, t) =

N
⋃

j=1

i∗j (u, t) : i
∗
j (u, t) = argmax

i∈I−I∗

j−1
(u,t)

F(u, i, t)

From the above, a TARS is a RS which is able to exploit time context infor-
mation in order to perform a recommendation task.

3.2 Time-Aware Recommendation Models

In our study, we selected three families of CF algorithms, based on their good
reported results, popularity in the field, and availability of time-aware extensions.
In the following, we describe these three families, and the time-aware extensions
proposed for each of them.

k-Nearest Neighbors. The k-Nearest Neighbors (kNN) model has been a
base algorithm for many TARS approaches. Its user-based variant estimates F
from the set of users (nearest neighbors) most similar to the target user. It
extrapolates the rating the target user would give to a particular item, by using
a user similarity measure as a weighting factor. The ratings given by the target
user’s neighbors to the item are then weighted in the following way (the item-
based variant can be computed analogously, using the set of items similar to the
target item):

r̂u,i = b
∑

u′∈Nk(u)

sim(u, u′) · ru′,i (1)

In (1), b is a normalization factor, computed as b = 1/
∑

u′∈Nk(u)
sim(u, u′),

where sim(u, u′) is the similarity value between users u and u′, commonly com-
puted as the correlation among co-ratings, or Pearson Correlation:

sim(u, u′) =

∑

i∈Iu,u′
(ru,i − ru)(ru′,i − ru′)

√

∑

i∈Iu,u′
(ru,i − ru)2

∑

i∈Iu,u′
(ru′,i − ru′)2

where Iu,u′ = {i ∈ I : ru,i 6= ∅ ∧ ru′,i 6= ∅}, i.e., items rated by both users. The
set Nk(u) represents the k nearest neighbors of u computed as (with N0 = ∅):

Nk(u) =
k
⋃

j=1

u′
j : u

′
j = argmax

u′∈U−Nj−1(u),u6=u′

sim(u, u′)

Improvements to this method have been proposed e.g. by penalizing similar-
ities computed on few common ratings, i.e., replacing sim(·, ·) by sim′(·, ·) =
b′sim(·, ·) being b′ = |Iu,u′ |/τcommon ratings if |Iu,u′ | ≤ τcommon ratings.

Time Weight. Ding and Li [6] modified the common rating prediction compu-
tation used in kNN (eq. 1) incorporating a time weighting factor w(m):

F(u, i, t) = b
∑

u′∈N(u)

sim(u, u′) · w(D(ru′ ,i, t)) · ru′,i

where D(r, t) returns the amount of days between r and t, and w(m) = e−δ·m is
the time weighting function, δ is the decay rate, set to δ = 1/M0. M0 is known as
the half-life of w(m), a value such that w(M0) = (1/2)w(0). That is, the weight
reduces by 1/2 in M0 days. This way, older ratings are underweighted. Note that
the normalization factor b must be recomputed accordingly.

Adaptive kNN. In [10], the authors propose a method to automatically update
per-user neighborhood sizes, attempting to outperform a global, static size k
under the TA RMSE metric, a variation of RMSE measured at different times

such that TA RMSE(t) = (
∑

ru,i∈TestSett
(r̂u,i)/|TestSett|)

1
2 where TestSett is

the set of test ratings made up to time t. The k values are computed by:

∀u ∈ U : ku,t+1 = max
k∈V

(erroru,t − TA RMSEu,t,k) (2)

where ku,t+1 is the k value selected for predicting ratings of u in the time in-
terval [t, t + 1], V is a set of potential k values to be tested, erroru,t is the
TA RMSE achieved until time t between the ratings in the user’s profile and
predictions made with the k values selected before t, and TA RMSEu,t,k being
the TA RMSE on the user’s profile that would be achieved with parameter
value k. Thus, (2) selects the parameter value k that maximizes the improve-
ment on the current user’s error. We used V = {0, 25, 50, ..., 250, 275, 300}, and
results from a Bias Model [9] when k = 0 was selected, similarly as in [10].

AutoSimilarity in Time. Min and Han [12] proposed to treat timestamped rating
data as time series (TS), by using a (user, item category) pair basis rating
pattern. Each item is assigned into a category, and a temporal rating pattern
for each user on each item category4 is obtained, by dividing rating data into

4 A simple categorization scheme in the movies domain is to relate each movie with
its genre (used here), though other schemes may be used.

different time intervals, and then computing a categorical rating of u on the

item category c in each time interval ti by ru,c,ti =
∑

i∈c
ru,i,ti

|ru,i,ti
| . Once the TS is

obtained, different methods of TS analysis can be used. In this work, we follow
the one proposed in [12], where the moment when a concept drift occurs is
identified based on the user’s auto similarity, that is, by analyzing how similar
are the categorical ratings between different time intervals. For such purpose, we
use the Pearson correlation coefficient on category ratings of the same user, but
on different time intervals:

AS(u, ti, tj) =

∑

c(ru,c,ti − r̂u,ti)(ru,c,tj − r̂u,tj)
∑

c(ru,c,ti − r̂u,ti)
2
∑

c(ru,c,tj − r̂u,tj)
2

where AS(u, ti, tj) is the auto similarity of u between time intervals ti and tj ,
and r̂u,t is the mean category rating of u on all categories during time interval t.
Given a similarity threshold τsim, if AS(u, ti, tj) < τsim then it is concluded that
u changed her tastes on time interval tj . If no change is detected, ratings may
be predicted using e.g. (1). If a change is detected, the similarity computation
is modified using differentiated weights according to rating time. Let I−tj and
I+tj be the set of items rated by u before and after u’s concept drift, respectively
(which is considered to occur at time tj), and w−tj and w+tj be the weights as-
signed accordingly (assigned with values 1 and 1+0.5|AS(u, tj−1, tj)| as in [12]).
Then:

sim′(u, v) = b

∑

i∈I−tj

(ru,i − r̂u)(rv,i − r̂v)w−tj (u) +
∑

i∈I+tj

(ru,i − r̂u)(rv,i − r̂v)w+tj (u)

with b =
∑

i∈I(ru,i − r̂u)
2
∑

i∈I(rv,i − r̂v)
2. Predictions are computed using

(1), changing sim(·, ·) by sim′(·, ·). Note that for similarity computation, the
individual item ratings are used instead of category ratings.

Bias Model. It is known that some users have systematic tendencies to give
higher (or lower) ratings than others [9]. A bias model incorporates such infor-
mation with the purpose of discounting such user (and item) effects; used in
conjunction with other modeling techniques, can lead to more accurate predic-
tions. A basic bias-aware estimator is [9]:

r̂u,i = µ+ bu + bi

where µ stands for the global average rating, bu is the average rating bias of user
u, and bi is the average rating bias of item i.

Time-Aware Bias Model. A natural next step when considering time effects is
to incorporate time-changing bias effects:

r̂u,i = µ+ bu(t) + bi(t)

Following Koren’s analysis [9], the item temporal bias is expected to change
slowly over time, meanwhile the user temporal bias also includes sudden, day-
specific drifts. Slow bias changes can be modeled either as a temporal binning of
the bias (i.e., a different bias is computed on different time intervals or bins), or
as a decaying function of time. In this work, we adhere to Koren’s formulation,
which also maintains a bias term whose value holds during all timespans, thus
getting:

bu(t) = bu + αu · sign(t− tu)|t− tu|
β + bu,t

bi(t) = bi + bi,Bin(t)

where t is the prediction date, tu is the mean rating date of u, and αu and β are
parameters learned from data.

Matrix Factorization. Matrix Factorization (MF) is an extension of Singular
Value Decomposition in which R is iteratively approximated by user and item
factor matrices P and Q of lower dimension (f in our notation) such that:

r̂u,i =

f
∑

j=0

Pu,j ·Qj,i = pTu qi

One advantage of this approach is that P and Q values may be computed for
all users and items using only the known values in R, by minimizing an estimation
of the difference, e.g. the Frobenius Norm: min ‖R − PQ‖2. Overfitting can be
alleviated using regularization, i.e., penalizing the magnitude of P and Q [9].

Time-Aware Matrix Factorization. When considering the incorporation of time
effects in a Time-Aware MF (TA MF) model, Koren includes static and dynamic
biases. Additionally, he highlights that users are due to changes in their tastes, so
factors describing their rating behavior are more likely to be prone to temporal
effects [9]. Thus, a modeling similar to those used on the user bias effects can be
applied on the users’ factors, leading to:

r̂u,i = µ+ bu(t) + bi(t) + pTu (t)qi

with

pu,j(t) = pu,j + α′
u,j · sign(t− tu)|t− tu|

β′

+ pu,j,t

The associated minimization problem must consider regularization terms,
and can be solved using the stochastic gradient descent method [9]. Note that
the results are sensitive to optimization parameter values (essentially learning
rates and regularization values); we used the Simplex optimization method in
order to seek for good parameter values.

4 Experiments

4.1 Dataset Description

In our experiments, we used the MovieLens1M dataset5, comprising 1,000,209
timestamped ratings on a 1-5 scale from 6,040 users on 3,706 movies. This dataset
corresponds to users of theMovieLensRS who joined the system in 2000. Rating
timestamps span from April 26th, 2000 to February 28th, 2003. An interesting
characteristic of the dataset is that many users made most of their ratings just
after joining the system, as may be expected from the fact that initially users
rate items in order to feed the system with their interests.

4.2 Evaluation Protocol

We selected the 500 users with longest rating timespan (in order to detect
changes through time), who were grouped randomly into 5 subsets of 100 users
each. We formed splits with 4 out of 5 of these subsets, thus obtaining 5 differ-
ent overlapping samples of 400 users. We performed a time-aware training/test
data split on each sample, using as test starting date (ttest) June 15th, 2001.
This condition discards any temporal overlapping among training an test data,
assigning roughly 20% of ratings for test. We obtained rating predictions and
recommendation lists (ranked according to the rating prediction value) for each
sample and recommendation model.

We assessed the rating prediction error computing MAE and RMSE val-
ues [8]. For evaluating the quality of recommendation lists, we used Precision
and Recall at cutoffs 5 and 10, and nDCG. The application of these metrics for
RS evaluation has been uneven in the literature [4], particularly on what items
are to be considered as eligible for the recommendation list (e.g. all items or
items known by the user). In our case, as a trade-off between completeness and
efficiency, we computed predictions for all items in the test set of any user (ex-
cept those in the target user’s training set). Those items rated equal or higher
than 3.0 in the test set of the target user were consider as relevant items for met-
ric computations. As noted in [4], independently from their absolute values, the
usage of a common criterium for metric computation allows a fairly comparison
of the different RS models.

The results were averaged among the 5 splits. Table 1 shows the parame-
ter values used in the implementation of the models. In the experiments, we
also evaluated two non-personalized recommenders: 1) a popularity-based rec-
ommender, which normalizes the popularity of an item on the rating scale as
rating prediction, and puts in the top places of the recommendation list the
most popular items (intended for the top-N prediction task); and 2) a random
recommender.

4.3 Results

Table 2 presents the average results obtained for each model in both tasks.
Regarding the rating prediction task, the best performing algorithm on MAE

5 http://www.grouplens.org/node/73

Table 1. Parameter values

Model Param. Value
kNN k 200 items

τcommon ratings 50
Time Weight M0 250 days
Adaptive kNN time interval size 7 days
Auto Similarity τsim -0.1
TA Bias number of temporal bins 4
MF f 10 factors
TA MF f 10 factors

number of temporal bins 4

and RMSE is (non-TA) MF , followed by the Time Weight model. This reflects
that, being MF a reliable rating prediction model [9], the modeling of temporal
dynamics does not improve prediction error under the considered evaluation
protocol. It should be noted that some terms in the TA MF model need training
ratings dated with the date at which the prediction is required (i.e., they depend
on the temporal overlapping of training and test data) [5]. This could in part
explain the observed behavior (note that this model was developed in the context
of the Netflix Prize competition, where this was valid). On the contrary, the TA
Bias model, which does not require temporal overlapping, shows improvements
from its base model on both metrics.

In the case of kNN variants, we can observe that the only TA extension that
shows improvements from basic kNN is the Time Weight model. In any case, the
TARS results obtained are not statistically different from non-TA models, except
in the case of non-personalized models. Different factors may affect the potential
of TARS models to improve results over non-TA models in this case, e.g. user and
item characteristics, size of training data (note that the evaluated models were
initially developed and used on different datasets and circumstances). However,
we believe that an important and generic factor is the usage of a strict evalua-
tion protocol, which avoids temporal overlapping of training and test data. This
disable TA models to take advantage of knowledge about ratings made in the
same (or later) time interval of the required prediction, and better reflects the
real-world setting in which a deployed RS must perform.

With respect to top-N recommendation task, poor results were obtained in
general. In fact, the non-personalized popularity-based recommender performs
the best on all metrics considered for the task. Anyhow, when analyzing only the
personalized CF models, the MF model is the best performing, nearly followed
by the TA Bias and TA MF models respectively. Again, we observe that the
TA MF model is outperformed by their non-TA counterpart (except on P@10).
Likewise, the TA Bias model is again able to outperform its non-TA counterpart.
In the case of kNN variants, Adaptive kNN and Autosimilarity models present
better Precision values than kNN model, but lower Recall and nDCG values. It
is notorious that the worst performing model in this task is the Time Weight
model (even worst than Random), moreover at the light of the results on the
rating prediction task.

Table 2. Results on Rating Prediction and Top-N recommendation tasks (mean values
on 5 splits). Statistical significant differences (Wilcoxon p < 0.01) of TARS models
are indicated with respect to Random(†), Popularity(‡), kNN(§), Bias(△) and MF(♦)
models respectively. Bold indicates best column values.

Rating Prediction Top-N Recommendation
Model MAE RMSE P@5 P@10 R@5 R@10 nDCG
Random 2.4665 2.6918 0.0171 0.0186 0.0018 0.0037 0.3375
Popularity 2.4649 2.6906 0.2209 0.1993 0.0280 0.0525 0.4733

kNN 0.6963 0.8943 0.0360 0.0386 0.0058 0.0115 0.3822
Bias 0.7054 0.9019 0.0658 0.0737 0.0093 0.0202 0.3914
MF 0.6925 0.8842 0.0931 0.0858 0.0129 0.0242 0.4057

Time Weight 0.6951†‡ 0.8929†‡ 0.0028†‡§△♦ 0.0031†‡§△♦ 0.0002†‡§△♦ 0.0005†‡§△♦ 0.3495†‡§△♦

Adaptive kNN 0.7010†‡♦ 0.9009†‡§ 0.0369‡△♦ 0.0399†‡△♦ 0.0061‡♦ 0.0116‡△♦ 0.3813†‡△♦

Auto Similarity 0.6965†‡ 0.8946†‡ 0.0364‡△♦ 0.0394†‡△♦ 0.0055‡♦ 0.0117†‡△♦ 0.3815†‡△♦

TA Bias 0.6986†‡ 0.8928†‡ 0.0873†‡§ 0.0891†‡§ 0.0119†‡§ 0.0222†‡§♦ 0.4021†‡§△

TA MF 0.6993†‡ 0.8934†‡ 0.0824†‡§ 0.0875†‡§ 0.0115†‡ 0.0234†‡§ 0.3998†‡§△

5 Conclusions and Future Work

In this paper, we have presented an empirical comparison of several TA exten-
sions of CF models evaluated in two recommendation tasks –rating prediction
and top-N recommendation– using a common evaluation protocol that discards
temporal overlapping between training and test data. The obtained results reveal
that some of the TA extensions considered are not able to perform better than
their non-TA counterparts under the followed protocol. This is an important
conclusion indicating that more realistic evaluation scenarios lower the perfor-
mance improvement ability of TARS. This provides a preliminary answer to our
first research question RQ1. Nonetheless, a deeper analysis is required on the
generalization of these results to other models, and on the suitability of the evalu-
ation scheme. For example, results appear to indicate that, in general, the idea of
generating recommendation lists based on predicting item ratings may not be a
good choice, given that a popularity-based model is able to beat with statistical
significance all CF models. Despite this result, we note that popularity-based
recommendations are non-personalized, and thus may be of low value for RS
users. Further research on better evaluation procedures and metrics for top-
N recommendation task is thus required. All in all, the absence of statistical
significant differences among TARS and basic CF models with this evaluation
protocol should encourage the development of TARS models with more strict
consideration of real-world conditions.

The obtained results also show that some TARS are not consistent across the
above recommendation tasks (RQ2). The most clear example is the TimeWeight
model. However, we showed that a simple model like Bias enhanced with tem-
poral information is able to outperform its non-TA counterpart on both tasks.
A general remark may be that simpler models can be more easily enhanced with
temporal information, whilst other more robust methods as MF require more
careful extensions to achieve improvements when real-world scenarios are consid-
ered. We believe that further research is required to better explain these results.

Furthermore, an standardized (and TA) evaluation protocol should be adopted
to allow fairly comparisons among models. Possible lines of future work aim at
the performance of a deeper study on how different evaluation parameters affect
metric results (e.g. ratings/users/items distribution, training/test splitting), and
the development of specific TA models for top-N recommendation.

6 Acknowledgments

This research was supported by the Spanish Government (TIN2011-28538-C02-
01) and by the Comunidad de Madrid and the Universidad Autónoma de Madrid
(CCG10-UAM/TIC-5877). The authors thank Centro de Computación Cient́ıfica
at UAM for its technical support.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6), 734–749 (2005).

2. Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on
implicit feedback. In: Proc. RecSys 2009 Workshop on Context-aware Recom-
mender Systems (2009).

3. Bell, R.M., Bennett, J., Koren, Y., Volinsky, C.: The million dollar programming
prize. IEEE Spectrum 46(5), 28–33 (2009).

4. Belloǵın, A., Castells, P., Cantador, I.: Precision-based evaluation of recommender
systems: An algorithmic comparison. In: Proc. RecSys 2011, pp. 333–336 (2011).

5. Campos, P.G., Dı́ez, F., Sánchez-Montañés, M.: Towards a more realistic eval-
uation: Testing the ability to predict future tastes of matrix factorization-based
recommenders. In: Proc. RecSys 2011, pp. 309–312 (2011).

6. Ding, Y., Li, X.: Time weight collaborative filtering. In: Proc. CIKM 2005, pp.
485–492 (2005).

7. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recom-
mendation tasks. The Journal of Machine Learning Research 10, 2935–2962 (2009).

8. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems 22(1),
5–53 (2004).

9. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proc. KDD 2009,
pp. 447–456 (2009).

10. Lathia, N., Hailes, S., Capra, L.: Temporal collaborative filtering with adaptive
neighbourhoods. In: Proc. SIGIR 2009, pp. 796–797 (2009).

11. Lee, T.Q., Park, Y., Park, Y.T.: An empirical study on effectiveness of temporal
information as implicit ratings. Expert Systems with Applications 36(2), 1315–1321
(2009).

12. Min, S.H., Han, I.: Detection of the customer time-variant pattern for improving
recommender systems. Expert Systems with Applications 28(2), 189–199 (2005).

