
Exploiting Heavy Tails in Training Times of

Multilayer Perceptrons. A Case Study with the

UCI Thyroid Disease Database

Manuel Cebrián and Iván Cantador∗

Abstract

The random initialization of weights of a multilayer perceptron makes

it possible to model its training algorithm as a Las Vegas algorithm, i.e.

a randomized algorithm which stops when some required training error

is obtained and whose execution time is a random variable. This model-

ing is used to perform a case study on a well-known pattern recognition

benchmark: the UCI Thyroid Disease Database. Empirical evidence is

presented of the training time probability distribution exhibiting a heavy

tail behavior, meaning a big probability mass of long executions. This

fact is exploited to reduce the training cost by applying two simple restart

strategies. The first assumes full knowledge of the distribution yielding

a 40% cut down in expected time with respect to the training without

restarts. The second, assumes null knowledge, yielding a reduction rang-

ing from 9% to 23%.

∗The authors are with the Departamento de Ingenieŕıa Informática, Escuela Politécnica
Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain, fax number: (+34) 914
972 235, e-mail: {manuel.cebrian, ivan.cantador}@uam.es.

1

Keywords: Multilayer Perceptron, Training Time Distribution, Heavy Tail

Distribution, Restart Strategy, UCI Thyroid Disease Database.

1 Introduction

The training time of a Multilayer Perceptron (MLP), understood as the time

needed to obtain some required training error, is a random variable which de-

pends on the random initialization of the MLP weights.

These weights are commonly initialized according to a given probability dis-

tribution, having this choice a significant impact on the training time distribu-

tion (see Delashmit & Manry 2002, Duch, et al. 1997, LeCun, et al. 1998). To

address this problem, some weight initialization methods have been proposed

(e.g. Duch et al. 1997, Weymaere & Martens 1994). They try and reduce the

training time by the design of probability distributions based on knowledge

about the training set.

In this correspondence, a simpler and more general approach which does not

make use of the mentioned information is presented. To do this, we model the

learning process of a MLP as a las Vegas algorithm (Luby, et al. 1993), i.e. a

randomized algorithm which mets three conditions: (i) it stops when some pre-

defined training error δ is obtained, (ii.) the only measurable observation is the

training time, and (iii.) it is only possible to have either full or null knowledge

about the training time probability distribution.

Using this modeling, we perform a case study with the UCI Thyroid Dis-

ease database1, revealing that the time distribution for learning this pattern

recognition benchmark belongs to the heavy tail family. This family of distribu-

tions is regarded as non-standard for its big probability mass of arbitrary long
1The UCI Repository of Machine Learning Databases, available online at

http://www.ics.uci.edu/˜mlearn/MLRepository.html

2

executions.

We make use of formal and experimental results which prove that the ex-

pected execution time of a random algorithm with such underlying distribution

can be reduced by using restart strategies (Gomes 2003). This work adapts

these strategies to the MLP context: the MLP is trained during a number of

epochs t1. If the required training error δ is achieved before t1, then the exe-

cution finishes. Otherwise, we initialize again the weights in a randomized way,

and re-train the MLP during t2 epochs. The process is iteratively repeated until

the training error δ is reached.

Two different strategies are applied for the determination of optimal restart-

ing times. The first assumes full knowledge of the distribution yielding a 40%

cut down in expected time with respect to the training without restarts. The

second, assumes null knowledge, yielding a reduction ranging from 9% to 23%.

As far as we know this is the first research towards appliying restart strategies

to MLPs in a principled way.

The rest of the paper is organized as follows. Section 2 presents the Thyroid

Disease database and provides evidence of heavy tail behavior when a MLP is

trained on it. Section 3 tests the condition to be satisfied by the probability

distribution to profit from restart strategies, providing an empirical evaluation

of two strategies on a particular case study. Finally, some conclusions and future

research lines are given in section 4.

2 A case study: the UCI Thyroid Disease Database

To motivate the use of restarts in MLP learning, we firstly present the exis-

tence of a high variability in its training time, indicative of an underlying heavy

tail behavior. The evaluation was performed using the UCI Thyroid Disease

database, as a case study.

3

Table 1 shows the expectations, deviations (and its ratio) of the numbers of

epochs T spent in building a MLP of a hidden layer with n = 1, . . . , 8 units.

The training used a gradient descent algorithm with a required training error

δ = 0.02. The results were calculated by training the algorithm 1, 000 times for

each n, using 10-fold 10-cross validation.

n 1 2 3 4 5 6 7 8
E[T] 8551.7 5516.8 888.5 2339.7 1680.2 587.6 482.4 490.5
σ[T] 2547.5 3885.6 1565.5 2848.8 1355.6 55.1 296.9 464.1

σ[T]/E[T] 30% 70% 156% 106% 79% 10% 60% 95%

Table 1: Expectation, deviation (and its ratio) of the number of epochs T spent
in the building of a MLP with n hidden units and training error δ = 0.02.

The obtained deviations are very large in relation to the expectations for

the majority of the architectures. For the rest of the experiments, we shall use

a MLP with n = 3 hidden units, which has the highest relative variability. This

will serve as a proof of concept, altough the same behavior is observed in MLPs

with other number of hidden units.

Following, we give visual evidence that T is heavy tailed, i.e. that the

probability of the training time T being greather than some number of epochs

t has polynomial decay, viz. P [T > t] ∼ C.t−α, where α ∈ (0, 2), C is some

constant, and t > 0.

Figure 1 presents a log-log plot of P [T > t] for the 10% largest values

(t > 3, 000). The plot confirms the polynomial decay by displaying a straight

line with slope −α. This is because, for sufficiently large t, log P [T > t] =

−α log C.t ⇒ log P [T > t]/ log C.t ≈ −α.

Finally, we verify that α belong to the (0, 2) interval. For this, we compute

the Hill’s (1975) estimator:

α̂r =

r−1

r∑

j=1

ln Tm,m−j+1 − ln Tm,m−r

 ,

4

8 8.2 8.4 8.6 8.8 9 9.2
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

P
[T

>
t]

Figure 1: A log-log plot of P [T > t] as a function of t (in epochs).

where Tm,1 ≤ Tm,2 ≤ . . . ≤ Tm,m are the m ordered training completion times,

and r < m is a cutoff that allows to observe only the highest values (the tail).

We use the typical cutoff r = 0.1m and obtain α̂r = 1.942, consistent with our

hypothesis.

This polynomial decay, whichyields a big probability mass for long execu-

tions, is due to the fact that certain initial weights entail a convergence to

local minima of the target function, requiring very long (even infinite) training

periods, while others yield a convergence to global minima in a few epochs.

3 Restart strategies

A las Vegas algorithm may profit from restarting if, at some moment of the

execution τ , the expected completion time conditioned to the already employed

execution time (E[T − τ |T > τ]) is larger than the (unconditioned) expected

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

τ

ep
oc

hs

E[T− τ | T>τ]
E[T]

Figure 2: E[T − τ |T > τ] as a function of τ , E[T] serves as the baseline.

completion time (E[T]), i.e. if ∃τ, E[T] < E[T − τ |T > τ] (see van Moorsel &

Wolter 2004).

Figure 2 displays that the majority of τ values which met the condition for

the PMC to profit of restart strategies.

3.1 Restart strategies when the distribution is known

Luby et al. (1993) proves the existence of an optimal restart strategy for a las

Vegas algorithm which minimizes the expected running time when the execution

time distribution q(t) = Pr(T < t) is assumed known.

This optimal strategy is of the form ti = t∗ ∀i, where

t∗ = arg min
t

E[St] = arg min
t

1
q(t)

(
t−

∑

t′<t

q(t′)

)
(1)

and St is the restart strategy where ti = t ∀i for some t.

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

600

800

1000

1200

1400

1600

1800

2000

t

ep
oc

hs

E[S
t
]

E[T]

Figure 3: Expected training time using the strategy St with t ∈ [100, 10, 000],
E[T] servers as the baseline.

Simple calculations yield t∗ = 418, with an optimal expected time E[S∗t] =

546.876. This provides a 40% cut down in expected time with respect to the

training without restarts. Figure 3 displays the expected time for strategies of

the form St with t ∈ [100, 10, 000]. As it can be seen, many non-optimal t

choices provide a time reduction as well.

3.2 Restart strategy when the time distribution is un-

known

In some scenarios it is not possible to assume full knowledge of the distribution,

e.g. if the MLP is to be trained a single time. In this subsection we assume null

knowledge.

Again Luby et al. (1993) prove the existence of an optimal strategy for this

assumption, and Walsh (1999) derives a simpler variant of the former which is

7

2 3 4 5 6 7 8 9 10
500

550

600

650

700

750

800

850

900

γ

ep
oc

as
E[SW]
E[T]
E[S

t*
]

Figure 4: Expected training time using the Walsh strategy E[SW] for γ =
1, 2, . . . , 10, E[S∗t] and E[T] serve as baselines.

commonly used in practical applications. The Walsh strategy SW is defined as

ti = γi−1, γ > 1. This strategy benefits of a high probability of success when

ti = γi−1 is near to t∗. Increasing ti geometrically makes it sure to reach t∗ in

a few generations, expecting to reach error δ within few restarts after the value

of ti surpasses the optimal.

Figure 4 displays the expected values of SW using several standard γ values

γ = 2, 3, . . . , 10. Training is speeded with all choices, with improvements ranging

from 9% (γ = 2) to 23% (γ = 8). The expected times were computed running

1, 000 times the training algorithm for each γ.

8

4 Conclusions and future work

In this work, MLP training algorithm is modeled as a las Vegas algorithm, per-

forming a case study on the UCI Thyroid Disease Database. We give statistical

evicence of that the probability distribution of the training time belongs to the

heavy tail family, meaning an polynomial probability decay for long executions.

This property is exploited to reduce the training cost by two simple strategies.

The first assumes full knowledge of the distribution yielding a 40% cut down

in expected time with respect to the training without restarts. The second,

assumes null knowledge, yielding a reduction ranging from 9% to 23%.

As a future research, we plan to determine whether further improvements

can be obtained by relaxing the two las Vegas algorithms assumptions (see

sect. 1). This could make it possible to incorporate dynamic restart strategies

(see Kautz, et al. 2002) capable of exploiting epoch-by-epoch information about

the training time distribution, using various algorithm behavior measurements

besides the execution time.

References

W. Delashmit & M. Manry (2002). ‘Enhanced robustness of multilayer per-

ceptron training’. In Proceedings of the Thirty-Sixth Asilomar Conference on

Signals, Systems and Computers, pp. 1029–1033.

W. Duch, et al. (1997). ‘Initialization and Optimization of Multilayered Per-

ceptrons’. In 3rd Conference on Neural Networks and Their Applications, pp.

99–104, Kule, Poland.

C. Gomes (2003). Constraint and Integer Programming: Toward a Unified

Methodology, chap. Complete randomized backtrack search, pp. 233–283.

Kluwer Academics.

9

B. Hill (1975). ‘A Simple General Approach to Inference About the Tail of a

Distribution’. The Annals of Statistics 3(5):1163–1174.

H. Kautz, et al. (2002). ‘Dynamic restart policies’. Proceedings AAAI-2002 pp.

674–681.

Y. LeCun, et al. (1998). ‘Efficient BackProp’. Lecture Notes in Computer

Science 1524:5–50.

M. Luby, et al. (1993). ‘Optimal speedup of Las Vegas algorithms’. Proceedings

of the 2nd Israel Symposium on the Theory and Computing Systems pp. 128–

133.

A. van Moorsel & K. Wolter (2004). ‘Analysis and Algorithms for Restart’.

Proceedings of the 1st International Conference on Quantitative Evaluation

of Systems pp. 195–204.

T. Walsh (1999). ‘Search in a Small World’. In Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence, pp. 1172–1177.

N. Weymaere & J. P. Martens (1994). ‘On the Initialization and Optimization of

Multilayer Perceptrons’. IEEE Transactions on Neural Networks 5:738–751.

10

