XBRL taxonomies and OWL ontologies for investment funds

Rubén Lara¹, Iván Cantador² and Pablo Castells²

 ¹ Tecnología, Información y Finanzas, Madrid, Spain rlara@afi.es
 ² Universidad Autónoma de Madrid, Spain.

{ivan.cantador,pablo.castells}@uam.es

Abstract. The analysis of investment funds information requires the availability of homogeneous, both up-to-date and historical information of the funds considered, which is usually generated and provisioned by different parties and in heterogeneous formats. In this context, the gathering and integration of information from disparate, heterogeneous sources becomes a key task that can be considerably eased by the availability of explicit and shared information models. Furthermore, the analysis process leads to the generation of analytic, added-value information, whose consumption by other parties can also benefit from the existence of agreed information models. In this paper, we present our work on building explicit information models for investment funds in the Spanish market. In particular, we present an XBRL taxonomy for investment funds and a generic translation process of XBRL taxonomies into OWL ontologies that has been applied to the investment funds taxonomy in order to obtain an OWL ontology of funds. Furthermore, we discuss the relative benefits of using OWL ontologies or XBRL taxonomies for the exchange and analysis of investment funds information.

1 Introduction

Companies devote considerable efforts to the management of their information [2]. This requires, in most cases, the integration of information from disparate and heterogeneous sources, including the integration of information from third-parties. This is especially relevant in the financial field, a conceptually rich domain where information is complex, huge in volume and a highly valuable business product by itself [4], and where the exchange and integration of information for its posterior analysis is a key task for financial analysts. In particular, the analysis of investment funds requires the availability of homogeneous and consistent information, both up-to-date and historical, on the descriptive aspects (Net Asset Value -NAV-, commissions, etc.) of the funds subject of analysis.

Current mechanisms for the exchange of information among the different actors in the investment funds market (investment firms, funds management firms, stock markets, analysts, investors, market supervisors) are not based on explicit and uniform information models, which hampers an agile exchange and requires important efforts to process and integrate such information. Furthermore, a situation where the exchange and processing of information is time-consuming and error-prone leads to a reduction of market transparency.

The use of explicit and shared information models can enable a significant improvement in terms of quality of information and agility in its exchange, considerably easing the work of financial analysts and increasing the confidence level of investors. For this reason, we have developed an explicit information model for investment funds, paying special attention to the Spanish market, and including both descriptive aspects of investment funds such as commissions, investment policy, etc. and analytical information such as their ranking, ratios, etc.

Different choices exist for the definition of explicit information models and the description of investment funds information according to such models. In particular, the eXtensible Business Reporting Language (XBRL) [1] is becoming the preferred language for the definition of financial information models, and the Web Ontology Language (OWL) [3] is the W3C recommendation for the definition of explicit, shared and formal information models (ontologies [9]). In this context, we have described an investment funds information model using XBRL, leading to the creation of an XBRL taxonomy of investment funds. Furthermore, and with the purpose of evaluating the use of OWL for modelling investment funds information compared to XBRL, we have developed an automatic translation mechanism of XBRL taxonomies into OWL ontologies, and we have translated the XBRL taxonomy created into a set of OWL ontologies.

The paper is structured as follows: Section 2 briefly introduces the domain of application for the information models defined. XBRL is introduced in Section 3, as well as the XBRL taxonomy created. Section 4 presents the process designed for translating XBRL taxonomies into OWL ontologies. Finally, Section 5 discusses the advantages and disadvantages of using XBRL or OWL for modelling investment funds information and provides some concluding remarks.

2 Description of the domain

The monitoring and analysis of the investment funds market is an important activity for financial analysis firms, as the availability of information such as the risk-rentability ratios of commercialized funds is demanded by different customer profiles. For example, final investors demand this kind of information for supporting their investment decisions, so funds managers do in order to compare the evolution of their funds with respect to the general market behaviour.

Tecnología, Información y Finanzas (TIF), in cooperation with AFINet Global¹, is the leading provider of analytical information on investment funds in the Spanish market. For providing this service, TIF continuously receives and aggregates information from the national stock markets, from firms managing investment funds, and from the national market supervisor (the CNMV)², covering

¹ http://www.grupoanalistas.com

² http://www.cnmv.es

all the investment funds currently commercialized in Spain with a 10-years historical base (over 6000 investment funds at the time of writing). The information received includes descriptive aspects of a fund when it starts to be commercialized (entity commercializing the fund, investment policy, etc.), changes on any of these data, and the NAV of the fund at different points in time.

The different parties from which TIF receives and aggregates information currently use heterogeneous information models and formats. This makes the reception, validation, and aggregation of the information a difficult task, and requires ad-hoc validation procedures and a costly maintenance, as providers introduce changes on their information models and formats. In this setting, when information about a certain fund or group of funds is received, it has to be validated first and then transformed so that it follows a uniform information model. After that, the analytical indicators associated to these funds are (re)calculated and published via different channels, including XML syndication and direct access via a number of information portals.

The part of the investment funds information life-cycle relevant for TIF is depicted in Figure 1. Descriptive information about investment funds commercialized in the Spanish market is provided by the CNMV, and periodic information such as the NAV of a fund is provided by the national stock markets (Madrid, Bilbao, Valencia and Barcelona) and by the firms managing the funds. This information is validated, converted and aggregated, leading to the creation of an aggregated and consistent information base that is ready for analysis. The analysis process leads to added-value information that is consumed by agents such as management firms, sellers, or directly by investors.

Fig. 1. Information life cycle

A gain in efficiency in the life cycle of Figure 1 can be achieved if the validation and conversion process, instead of dealing with heterogeneous information, would receive information according to a shared model so that ad-hoc processing can be avoided and maintenance needs are reduced. Furthermore, if the analytical, added-value information produced also follows an agreed model, the consumption of such information by different agents can be considerably eased.

The CNMV is considering the definition of XBRL taxonomies modelling the descriptive and regulatory aspects of investment funds. However, these taxonomies would not include analytical information. Furthermore, OWL has not been considered so far as an alternative for defining shared information models for investment funds. In this setting, we have worked on: a) an XBRL taxonomy that includes descriptive *and* analytical information of funds, and that can serve as a basis for possible future developments led by the CNMV or for their extension, and b) on the evaluation of OWL as an alternative to XBRL.

3 An XBRL taxonomy of investment funds

In this section, we introduce XBRL and present the XBRL taxonomy developed for the modelling of descriptive and analytic aspects of investment funds.

3.1 XBRL in a nutshell

XBRL builds on top of XML, XML Schema and XLink to provide with a standard format in which information can be exchanged, enabling the automatic extraction of information by software applications [1]. XBRL is used to define **taxonomies**, which provide the elements that will be used to describe information, and **instances**, which provide the real content of the elements defined.

XBRL taxonomies. An XBRL taxonomy is constituted by an XML Schema and the XLink linkbases contained in or directly referenced by that schema. In XBRL terminology, the XML Schema is known as the taxonomy schema.

Concepts describing reporting facts are exposed as XML Schema element definitions. A concept is given a name and a type. The type establishes the kind of data allowed for those facts described according to the concept definition. For example, the NAV concept of an investment fund would typically have a *monetary* type, declaring that when a NAV is reported, its value will be monetary. Besides these two attributes, additional constraints on how concepts can be used (e.g. instant/duration period, debit/credit balance) are documented by other XBRL attributes on the XML Schema element definitions.

Linkbases are collections of XLink extended links, and they provide further information about the meaning of the concepts by expressing relationships between concepts (inter-concept relationships) and by associating concepts to their documentation. Taxonomies make use of five types of XLink linkbases, namely: definition, calculation, presentation, label, and reference linkbases.

Definition links describe relations among concepts in a taxonomy, such as general-special relations, that provide information on what an element actually is e.g. the specialization of some other concept. Calculation linkbases provide information on how some elements are calculated in terms of some other elements, which can be exploited for data validation. Presentation linkbases contain relations such as parent-child that are exclusively used for presentation purposes e.g. a given element will be shown as the child of some other.

The last two types of links do not define relations among elements but document elements in a taxonomy. Label links provide labels in natural language with the purpose of facilitating the understanding of data by a human user. XBRL is equipped with multilinguality support and enables the user to associate labels in different languages to the same element. Reference links point to legal or other type of documentation that explains the meaning of a given taxonomy element.

Usually, it is necessary to consider multiple related taxonomies together when interpreting an XBRL instance. The set of related taxonomy schemas and linkbases is called a Discoverable Taxonomy Set (DTS). The bounds of a DTS are determined by starting from some set of documents (instance, taxonomy schema, or linkbase) and following DTS discovery rules [1].

XBRL instances. A taxonomy defines reporting concepts but does not contain the actual values of facts based on the defined concepts. These values are included in XBRL instances. The way XBRL organizes the reporting information within a certain instance is based on two main elements: XBRL items and XBRL tuples.

Items are defined as extensions of primitive data types (String, Integer, Boolean, etc.), and they represent atomic information elements of an XBRL instance. Items reference XML Complex Types in the XBRL Instance Schema³, or extensions of these types defined in existing taxonomies. In XBRL taxonomies, complex types are used to provide the set of possible values a data type can hold.

While most business facts can be independently understood, some facts are dependent on each other and they must be grouped for a proper and complete understanding. For instance, in reporting information of a fund, each deposit entity name has to be properly associated to a correct deposit entity identifier. Such sets of facts (entity name, entity identifier) are called *tuples*. Tuples have complex content and may contain both items and other tuples.

In addition to the actual values of a fact, such as "NAV is 50", XBRL instances provide contextual information necessary for interpreting such values e.g "NAV is 50 today" through the use of XBRL context elements. Furthermore, for numeric facts, XBRL instances can also document measurement units e.g. "NAV is \$50" through the use of XBRL unit elements.

Context elements include information about the entity being described, the reporting period and the reporting scenario, all of which are necessary for completely understanding a business fact described by an XBRL item. The *period* element and the *instant* and *duration* sub-elements are used in XBRL to capture temporal details of the data being reported. In particular, items have an attribute *periodType* with two possible values: *instant*, meaning that instances of the item will have associated a particular date, and *duration*, meaning that

³ http://www.xbrl.org/2003/xbrl-instance-2003-12-31.xsd

instances of the item will have associated either a permanent validity (special value *forever*) or a start and end dates.

Unit elements specify the units in which a numeric item has been measured. Simple units of measures, expressed with a single *measure* element, and ratio or products of units of measure, can be used. Examples of simple units of measure are EUR (Euros), meters and kilograms, and examples of complex units of measures are Earnings per Share or Square Feet.

3.2 An XBRL taxonomy of investment funds

The lack of explicit and shared models for exchanging information in the investment funds market and the promotion and increasing adoption of XBRL by Spanish regulators and supervisors e.g. Bank of Spain and CNMV led us to consider XBRL as a candidate language for creating an explicit information model for the Spanish funds market and to create a taxonomy of investment funds.

For building this taxonomy, we started by evaluating and reviewing the information model used by TIF and AFINet Global in order to define a revised model that could meet the needs of different agents in the market. For that purpose, we counted with the cooperation of Analistas Financieros Internacionales⁴, a leading company in the analysis of the Spanish financial market, and Gestifonsa⁵, a funds management firm which operates in the Spanish investment funds market.

The resulting model, agreed and approved by all parties, has been described using XBRL. The possible reuse of existing XBRL taxonomies (IPP taxonomy⁶, DGI⁷ taxonomy, and ES-BE-FS⁸ taxonomy) was evaluated, and the conclusion has been that parts of the DGI taxonomy can be reused for the description of certain elements of the funds information model, especially those elements describing the entities that commercialize or manage a given fund. Figure 2 shows the DTS of the taxonomy built, where dgi-lc-es-2005-03-10.xsd contains the information elements of the imported DGI taxonomy in Spanish and its respective linkbases, and dgi-lc-int-2005-03-10.xsd contains the international elements of the DGI taxonomy.

The information elements of the taxonomy created have been divided into the following groups:

- Descriptive information: models all the descriptive aspects of a fund, such as the name of the fund, the entity managing the fund, etc.
- Relevant facts information: models relevant facts about a given fund, such as changes in its investment policy.
- Periodic descriptive values: models descriptive information periodically updated, such as the NAV of the fund or the number of unit holders.

⁷ http://www.xbrl.org.es/informacion/dgi.html

⁴ http://www.afi.es

⁵ http://www.cajacaminos.es/

⁶ http://www.xbrl.org.es/informacion/ipp.html

⁸ http://www.xbrl.org.es/informacion/es_be_fs.html

A XBRI Document 🚲 Discoverable Taxonomy Sel AFIFunds.xsd AFIFunds-presentation.xml D AFIFunds-definition.xml C AFIFunds-calculation.xml AFIFunds-label.xml R AFIFunds-reference.xml xbrl-instance-2003-12-31.xsd gi-lc-es-2005-03-10.xsd dgi-lc-int-2005-03-10.xsd

Fig. 2. DTS of investment funds

 Analytic information: models the analytic values associated to a fund, such as performance measures, the rating of the fund in its category, etc.

The reason for identifying these four distinct groups of information (being the root of each group an XBRL tuple) is that the information they contain has a different nature, the sources providing the information are different, and the periodicity with which each group of information is produced is diverse. Besides the information elements created, the following linkbases have been defined:

- Presentation linkbase (AFIFunds-presentation.xml in Figure 2): defines how the information elements are presented. An extended link has been created for each of the information groups, and a parent-child hierarchy has been defined for the presentation of the elements of each of the groups.
- Label linkbase (AFIFunds-label.xml in Figure 2): defines labels for each information element. Only labels in Spanish have been defined so far.
- Calculation linkbase (AFIFunds-calculation.xml in Figure 2): only links to validate that the percentage of the different types of assets sums up a 100% have been created. Other links could not been defined as the current version of XBRL does not provide enough expressivity.
- Reference linkbase (*AFIFunds-reference.xml* in Figure 2): associates references to information elements, providing an explanation of their meaning.

Definition links have not been used as: a) the use of links of type *requires-child* is not recommended in [10], b) there are no equivalent elements in the taxonomy, so links of type *essence-alias* have not been used, c) no use was found for links of type *general-special*, and d) there are no similar tuples for which a link of type *similar-tuples* makes sense.

The latest version of the taxonomy can be found at *http://www.tifbrewery.com/tifBrewery/resources/XBRLTaxonomies.zip*.

3.3 Limitations of calculation links

XBRL provides calculation links that allow for the description of the mathematical relation between different (numerical) information items. However, the current version of the XBRL specification has some important limitations.

First, the investment funds taxonomy should include validations that involve the evaluation of information items in different contexts. For example, we want to validate that a given NAV is not more than a 15% higher or lower than the previous NAV known for that fund. That requires expressing some mathematical relation between the same information element e.g. NAV at different points in time given by XBRL contexts. However, the current XBRL specification does not allow for this kind of validation, and calculation links are defined between information items independently of their context.

Second, XBRL calculation links only allow for the summation of items. However, there are analytical values whose calculation from descriptive values is more complex, involving the use of other mathematical operators. This is the case of, for example, the calculation of most of the performance measures used.

Future versions of XBRL are expected to overcome these limitations, and the requirements for future formula linkbases that extend the current calculation linkbases are already an XBRL candidate recommendation [11].

4 Translating XBRL taxonomies into OWL ontologies

We have identified OWL as a potential alternative to the use of XBRL which might present some features that are of practical interest in the investment funds market. In order to evaluate the use of OWL ontologies we have developed a generic translation process of XBRL taxonomies into OWL ontologies so that existing and future taxonomies can be easily converted into OWL ontologies. In this section, we introduce the translation process designed.

4.1 Description of the translation process

XBRL taxonomies provide explicit and shared information models and, thus, they are very similar to ontologies except that they do not have a formal semantics for all the aspects of the model. Similarly, XBRL instances can be seen as ontology instances and expressed as such. Therefore, we have designed a translation process of XBRL taxonomies into OWL ontologies, and of XBRL instances into OWL instances. In the following, we will restrict ourselves to the translation of taxonomies into ontologies.

An automatic translator has been implemented based on the process that will be presented. It has been tested by translating not only our funds taxonomy but also other XBRL taxonomies, including the DGI, IFRS-GP⁹, ES-BE-FS and IPP taxonomies. The latest version of the obtained ontologies can be found at *http://www.tifbrewery.com/resources/OWLOntologiesv2.zip*.

In Figure 3 we show the architecture of the translator. As XBRL is an XML based technology, the first step in the translation process is to parse the XML elements. Using JDOM¹⁰, the XML parsing module obtains the XML elements in the XBRL taxonomies, instances, and links to be translated. The translation steps described below are then applied to the obtained elements, resulting in

⁹ http://xbrl.iasb.org/int/fr/ifrs/gp/2005-05-15

¹⁰ http://www.jdom.org

a Jena¹¹ model that corresponds to the OWL ontologies and instances derived from the XBRL taxonomy and instances given, and it is saved to text files.

Fig. 3. Syntactic translator architecture

The correspondence between the upper level XBRL elements and the OWL classes generated in summarized in Table 4.1. In the following, we describe the steps for the automatic translation of XBRL elements, following this correspondence. For the sake of simplicity, we will refer to the DGI taxonomy in the explanations. The translation process for other taxonomies is analogous.

Parsed taxonomy element	Root OWL class	Direct OWL subclasses
XML complex types	DGL_ComplexType	A subclass for each complex type
XBRL Tuples	DGI_Element	DGI_Tuple
XBRL items		DGI_Item
XLink links	DGI_Link	DGI_LabelLink
		DGL_PresentationLink
		DGI_CalculationLink
XBRL Contexts	Context	Subclasses of ContextElement:
	(range of properties	ContextEntity
	is subclass of	ContextEntityElement (Identifier)
	ContextElement)	ContextPeriod
		ContextScenario
XBRL units	Unit	Subclass of UnitElement:
	(range of properties	UnitMeasure
	is subclass of	
	UnitElement)	

 Table 1. Summary of parsed taxonomy element translations

1. Declaration of a root OWL class Element from which complex (tuples) and simple (items) information parts of the taxonomy will inherit, named

¹¹ http://jena.sourceforge.net

DGL Element for the DGI taxonomy. This class has associated a property *xbrl_id*, corresponding to the XBRL attribute *id* common to all XBRL elements.

2. Declaration of DGI_Tuple and DGI_Item subclasses of DGI_Element. XBRL tuples and items will correspond to OWL subclasses of DGI_Tuple and DGI_Item, respectively. The attributes of XBRL Item are translated into the OWL properties: *xbrl_balance*, with possible values "credit" and "debit"; *xbrl_periodType*, with possible values "instant" and "duration"; *xbrl_contextRef*, whose range will be the OWL class Context (see step 11); and *xbrl_unitRef*, whose range will be the OWL class Unit (see step 12).

3. Declaration of a root OWL class DGI_ComplexType. XML complex types in the taxonomy are translated into classes that inherit from DGI_ComplexType, having three OWL properties: *xml_name* to store the name of the complex type, *xbrl_periodType*, with possible values "instant" and "duration", and *xbrl_contextRef*, whose range will be the Context class.

4. Syntactic translation of XML complex types into OWL subclasses of DGL_ComplexType. The names of the obtained subclasses are those stored in the XML attribute *name* of the complex type elements. Each subclass of DGL_ComplexType has a property whose name is the concatenation of the complex type name and the word "value", and whose type is the primitive data type associated to the complex type (xsd:string, xsd:integer, xsd:boolean, etc.). Additionally, they contain those properties defined in the primitive XBRL data types (xbri:stringItemType, xbrli:integerItemType, xbrli:booleanItemType, etc.). For example, in the DGI taxonomy, the class AddressFormatCodeItemType has the property *length* with a fixed value of 2, indicating that the possible values of the data type can only have 2 characters.

5. Syntactic translation of XBRL Items into OWL subclasses of DGI_Item. The names of the obtained subclasses are those stored in the XML attribute "name" of the item elements. Each subclass of DGI_Item has a property for storing the value of the item, and whose range is the type of the XBRL item.

6. Record XBRL Tuples as OWL subclasses of DGI_Tuple. Initially, they are created empty, and their properties are added in step 7. The reason is that tuple properties will reference other tuples, which might be not yet created and which will have to exist in the OWL model that is being built.

7. Syntactic translation of the XBRL tuple attributes into OWL object properties. The attributes of the tuples are added to the subclasses of DGL-Tuple as OWL object properties. These properties will have as range a class associated to a complex type of step 4, a class created in step 5 or a class recorded in step 6.

8. Declaration of a root OWL class DGI_Link. Its instances, which will correspond to the XLink links of the XBRL taxonomies, must contain the following properties: *xlink_from*, created for the translation of the XLink attribute *from*, storing the origin element of the link; *xlink_to*, created for the translation of the XLink attribute *to*, indicating the destination element of the link; *xlink_role*, created for the translation of the XLink attribute *role*, indicating the role assigned to the link: "label", "calculation", "presentation", etc.

9. Declaration of OWL subclasses of DGI_Link. Subclasses of DGI_Link are built for each type of link: DGI_LabelLink, DGI_PresentationLink, DGI_CalculationLink, DGI_ReferenceLink, and DGI_DefinitionLinks.

10. Syntactic translation of XBRL linkbases into instances of the corresponding subclasses of DGLLink. Links in XBRL linkbases are translated into OWL instances of the different subclasses of DGLLink:

- Label links are translated into OWL instances of DGL_LabelLink. In addition to the common link properties (*from*, to, role), label links have properties: xbrl_label, obtained from the translation of the XBRL attribute label and used to store the text of the label, and xml_lang, obtained from the translation of the XML attribute lang and used to indicate the language of the label.
- Presentation links are translated into instances of DGI_PresentationLink. Besides common link properties, presentation links have properties: *xbrl_order*, from the translation of the attribute *order* and used to store the relative position of the destination element within the presentation of the origin element, and *xbrl_preferedLabel*, obtained from the translation of *preferedLabel*.
- Calculation links are translated into OWL instances of DGI_CalculationLink. Additionally to common link properties, calculation links have properties: *xbrl_order*, obtained from the translation of the XBRL attribute *order* and used to store the relative position of the destination element value within the calculation of the origin element value, and *xbrl_weight*, obtained from the translation of the XBRL attribute *weight* and used to store the weight of the destination value within the calculation of the origin element value.

The translation of definition and reference linkbases is similar, and it is not explained here for reasons of space.

11. Syntactic translation of XBRL contextRef elements. In order to translate XBRL contexts, a new ontology has been created, which will be imported by the ontologies resulting from the translation of XBRL taxonomies. This ontology contains a main class Context. The Context class has the following properties: a) *xbrl_id*, of type xsd:ID, for the translation of the XBRL attribute *id* to identify each context, b) *xbrl_entity*, of type ContextEntity, defined for the translation of *entity*, c) *xbrl_period*, of type OWL Thing, and defined for the translation of *scenario*. Other classes such as ContextStartEnd-Period), ContextEntityElement and ContextScenario are defined corresponding to the types of values that define an XBRL context.

12. Syntactic translation of XBRL unitRef elements. For the translation of units defined in an XBRL taxonomy, an independent OWL ontology has been created. This ontology will be imported by ontologies resulting from the translation process. Its main class is Unit, which has a property *xbrl_unitMeasure* of type UnitMeasure and whose content is the definition of the associated unit. The UnitMeasure class, used to define the units added in a given context, does not have properties. Its subclasses distinguish the different types of units:

- **Divide**, for units defined by means of a ratio (with properties *xbrl_unitNumerator* and *xbrl_unitDenominator*).
- **Measure**, for simple units (with property *xbrl_measure*).

Besides the order of steps presented above, the hierarchy and relationships between elements within a taxonomy, and the relationships among different taxonomies, will define their translation order.

5 Discussion

The translation process presented in the previous sections helps to identify similarities and differences between XBRL and OWL, described below.

XBRL items and tuples There is a correspondence between XBRL items and tuples and OWL classes. Items correspond to classes that only have one value (besides information such as the period, context, etc.), and tuples correspond to classes with object properties that store the constituent parts of the tuple. In this sense, items and tuples can be naturally represented by OWL classes.

XBRL contexts and units An important feature of XBRL is the possibility of associating contexts and units to XBRL elements. This can also be done in OWL by creating ontologies for contexts and units, as presented in the previous subsection, and by including appropriate object properties in OWL classes representing XBRL items and tuples.

Reference and label links They can be represented in OWL by creating appropriate classes and instances, as done in our translation. As these links are intended for documentation, no formal semantics is associated to them. Furthermore, no application of a possible formal semantics for this type of links is envisioned.

Definition links Definition links can be represented by creating instances of the classes introduced in the previous subsection. Special attention deserves the representation of *general-special* definition links which, even though they are currently translated into instances of definition link classes, naturally correspond to subclass relations in ontologies. However, existing taxonomies e.g. IPP, DGI, or IFRS-GP hardly make use of general-special definition links. A reason for this is that this type of links is not exploited by current XBRL tools to infer additional information, as this kind of relation does not currently have a formal semantics. We believe that the formalization of subclass relations can be of interest in practical applications, and that general-special definition links could be given formal semantics by using OWL.

Calculation links Calculation links can be represented in the way outlined in the previous section. However, these links have a formal, mathematical semantics in XBRL, while in OWL this semantics is not supported. Therefore, we believe that for OWL ontologies to be adopted in the financial domain, where mathematical relations are highly relevant for data validation, building of mathematical support on top of OWL would be required.

Presentation links Presentation links can be represented as described by our translation process. However, unless OWL visualization tools are adapted to take into account presentation information, they will be meaningless.

Open-World Assumption (OWA) vs Closed-World Assumption (CWA) The semantics of OWL is based on classical First-Order Logic (FOL) [8], and the OWA is made i.e. information is not assumed to be false if it cannot be proven to be true. However, in an industrial setting the CWA is widely made e.g. in relational databases. In fact, XBRL users are expected to intuitively make the CWA when, for example, querying for particular information of an investment fund. Due to his background, an average user would most likely see natural a "no" answer to que question "Is the investment fund myFund classified in category myCategory?" if, from available information, the investment fund is not classified under this category. Locally closing the world using an epistemic operator for OWL could be a solution to this problem [12, 7]. In adition, OWL does not define constraints but restrictions, as explained in [6]. However, for validation purposes we believe that the use of constraints is required.

Summarizing, the major advantage we see from the use of OWL is its formal semantics, which can be exploited for the automatic classification of funds if general-special relations are used and represented as OWL subclass (or subsumption) relations. As implicit subsumption relations can be automatically inferred using Description Logics reasoners [13], customers or analysts can e.g. formally define the characteristics of funds they are interested in and appropriate funds will automatically and precisely be found. In particular, we are investigating the application of formal semantics to personalization in the reception of information in the investment funds market and to the automated classification of funds. For this purpose, we plan to analyze subsumption relations present in current taxonomies but not explicitly declared. However, the Open-World semantics of OWL and the use of restrictions instead of constraints can hamper the use of OWL for querying investment funds information and for validating information reported. This problem will be further investigated in the future. Additionally, we believe extensions of OWL to incorporate and validate mathematical relations in the style of XBRL are necessary for the use of OWL ontologies in the financial domain.

Our conclusion is, thus, that extensions to OWL are required in order to fulfill all the requirements of financial information reporting, and that while its semantics can be appropriate e.g. for investment funds classification, it might be problematic for e.g. validation purposes. We believe that the XBRL community has accomplish a remarkable success in the definition of agreed, shared models; the existence of these models is actually good news for the semantic Web community, which seeks similar goals. However, XBRL can be improved in the direction of adding formal semantics to it and, thus, benefit from the work done by the semantic Web community. Similarly, the semantic Web community can identify paths for improvement and development of OWL by studying the increasing adoption of XBRL in the financial domain, proposing extensions and modifications targeting at this domain. Future work will concentrate on evaluating alternative languages for the formal description of investment funds, especially the use of the WSML family of languages [5], which provides a basic interoperability layer and extensions in the direction of Descriptions Logics and in the direction of Logic Programming.

Acknowledgements. This work has been partially funded by the PROFIT programme of the Spanish Ministry of Industry, Tourism and Commerce, under grant FIT-340000-2005-256.

References

- eXtensible Business Reporting Language. Technical report, XBRL International. http://www.xbrl.org/Specification/XBRL-RECOMMENDATION-2003-12-31+Corrected-Errata-2005-11-07.htm.
- Vladimir Alexiev, Michael Breu, Jos de Bruijn, Dieter Fensel, Ruben Lara, and Holger Lausen. Information Integration with Ontologies : Experiences from an Industrial Showcase. Wiley, 2005.
- S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Reference. Technical report, W3C Recommendation, Feb 2004.
- Pablo Castells, Borja Foncillas, and Rubén Lara. Semantic web technologies for economic and financial information management. In ESWS 2004, Heraklion, Greece, May 2004.
- J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer, and D. Fensel. The Web Service Modeling Language WSML. Technical report, WSML, 2005.
- J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL Flight: Conceptual Modeling and Reasoning for the semantic Web. In *Proc. of the World Wide Web Conference 2005.* Springer-Verlag, May 2005.
- F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An epistemic operator for Description Logics. *Artificial Intelligence*, 100(1-2):225–274, 1998.
- 8. M. Fitting. *First order logic and automated theorem proving*. Springer Verlag, 2nd edition, 1996.
- 9. T. Gruber. A translation approach to portable ontology specifications. *Knowledge* Acquisition, 5(2):199–220, 1993.
- Walter Hamscher, Mark Goodhand, Charles Hoffman, Brad Homer, Josef MacDonald, Geoff Shuetrim, and Hugh Wallis. Financial reporting taxonomies architecture 1.0. Technical report, XBRL International, 2006.
- 11. Walter Hamscher, Geoff Shuetrim, and David vun Kannon. XBRL formula requirements. Technical report, XBRL International, 2005.
- 12. J. Heflin and H. Munoz-Avila. LCW-based agent planning for the semantic web. In AAAI Workshop on Ontologies and the Semantic Web, 2002.
- D. Nardi, F. Baader, D. Calvanese, D. L. McGuinness, and P. F. Patel-Schneider (edts.), editors. *The Description Logic Handbook*. Cambridge, January 2003.