
Parallel Perceptrons, Activation Margins and
Imbalanced Training Set Pruning

Iván Cantador and José R. Dorronsoro ?

Dpto. de Ingenieŕıa Informática and Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. A natural way to deal with training samples in imbalanced
class problems is to prune them removing redundant patterns, easy to
classify and probably over represented, and label noisy patterns that
belonging to one class are labelled as members of another. This allows
classifier construction to focus on borderline patterns, likely to be the
most informative ones. To appropriately define the above subsets, in this
work we will use as base classifiers the so–called parallel perceptrons, a
novel approach to committee machine training that allows, among other
things, to naturally define margins for hidden unit activations. We shall
use these margins to define the above pattern types and to iteratively
perform subsample selections in an initial training set that enhance clas-
sification accuracy and allow for a balanced classifier performance even
when class sizes are greatly different.

1 Introduction

Most real world classification problems involve imbalanced samples, that is, sam-
ples where the number of patterns from one class (that we term the positive
samples) is much smaller than that from others. There are many examples of
this situation [5, 4], as well as a large literature on this topic, for which many
techniques have been applied. Basic examples are ROC curves [8, 12] or the alter-
ation of the sample class distribution, either by oversampling the minority class
[2], undersampling the majority class [7] or doing this on both [3]. Moreover,
sampling techniques are also in the core of the more sophisticated methods that
arise from the well known boosting paradigm [6].

In this work we shall propose a new procedure for training set reduction
based on the concept of margin that arises naturally in parallel perceptron (PP)
training introduced by Auer et al. in [1]. Parallel perceptrons have the same
structure of the well known committee machines [10], that is, they are made up
of an odd number of standard perceptrons Pi with ±1 outputs, and the ma-
chine’s one dimensional output is simply the sum of these perceptrons’ outputs
(that is, the overall perceptron vote count). They are thus well suited for 2–class
discrimination problems, but it is shown in [1] that they can also be used in
regression problems, as they have indeed a universal approximation property.
? With partial support of Spain’s CICyT, TIC 01–572, TIN2004–07676.

Another contribution of [1] is to give a general and effective training procedure
for PPs. A key part of this training procedure is a margin based output sta-
bilization technique that tries to augment the distance of the activation of a
perceptron from its decision hyperplane, so that small random changes on an
input pattern do not cause its being assigned to another class. Although these
margins are not defined on the one dimensional output of a PP and they have
to be considered independently for each perceptron, they do provide a way to
measure the relevance of individual patterns with respect the overall training set
and to establish a pattern selection strategy.

We shall briefly describe in section 2 the training of PPs, as well as their
handling of margins, while in section 3 we will describe the overall training set
selection procedure and shall also see how margins can be used to discard both
redundant patterns, that is, those patterns easy to detect and well represented
by other patterns in the training set, and label noisy patterns, that is, those
labelled as belonging to one class while their features clearly establish them as a
member of another, while allowing to retain those patterns most interesting for
training purposes. In section 4 we will illustrate numerically the results provided
by the pattern selection algorithm over 7 example databases obtained fom the
UCI repository. As we shall see, in all of them we arrive at much smaller training
subsets that nevertheless allow the construction of effective PP classifiers. The
paper ends with a brief summary section.

2 Parallel perceptron training

The parallel perceptron architecture is simply that of the well known committee
machines. Let us briefly review it. Assume we are working with D dimensional
patterns X = (x1, . . . , xD)t, where the D–th entry has a fixed 1 value to include
bias effects. If the committee machine (CM) has H perceptrons, each with a
weight vector Wi, for a given input X, the output of perceptron i is then Pi(X) =
s(Wi·X) = s(acti(X)), where s(·) denotes the sign function and acti(X) = Wi·X
is the activation of perceptron i due to X. We then have

H∑
1

Pi(X) = #{i : Wi ·X > 0} −#{i : Wi ·X < 0} = N+(X)−N−(X) = N (X),

and the output h(X) of the CM is h(X) = s (N (X)) where we take H to be
odd to avoid ties. We will assume that each input X has an associated ±1
label lX and take the output h(X) as correct if lXh(X) > 0. It is then clear
that X has been correctly classified if either N+(X) > N−(X) when lX = 1 or
N+(X) < N−(X) when lX = −1. If this is not the case, and we have, say, lX = 1,
then N−(X) = (H −N (X))/2. Classical CM training ([10], ch. 6) then tries to
change the smallest number of perceptron outputs so that X could then be
correctly classified, and it is easy to see that this number is (1+ |N (X)|)/2; this
last formula can also be applied to wrongly classified X such that lX = −1. Then,

whenever lXh(X) = −1, classical CM training first selects those (1 + |N (X)|)/2
perceptrons Pi such that lXPi(X) = −1 and for which |acti(X)| is smallest, and
changes their weights by the well known Rosenblatt’s rule:

Wi := Wi + ηlXX. (1)

CMs and parallel perceptrons (PPs) differ in their training. PPs can be
trained either on line or, as we shall do here, in batch mode and for them the up-
date (1) is applied to all wrong perceptrons, i.e. those Pi verifying lXPi(X) = −1.
Moreover, their training has a second ingredient, a margin–based output stabi-
lization procedure. Notice that if Wi ·X ' 0, small changes on X may cause a
wrong class assignment for a small perturbation of X. To avoid this instability,
the update (1) is also applied when a pattern X is correctly classified but still
0 < lXActi(X) < γ.

The value of the margin γ is also adjusted dynamically from a starting value.
More precisely, after a pattern X is processed correctly, we have

γ := γ + η (Mmin −min{Mmax,M(X)}) ,

where M(X) is the number of hyperplanes that process X correctly although
with a too small margin. In other words, M(X) = #{i : 0 < lXActi(X) < γ}
for those X such that lXf(X) > 0. Values proposed in [1] for Mmin and Mmax

are Mmin = 0.25 and Mmax = 1. Observe then that γ increases if all correct
perceptron activations are above the current margin (for then M(X) = 0), while
it decreases if at least one perceptron activation is “below” the current margin
(then M(X) ≥ 1). Notice that for the margin to be meaningful, weights have
to be normalized somehow; we will make its euclidean norm to be 1 after each
batch pass. Notice PPs provide a common margin value γ for all H perceptrons;
however, not all patterns have to behave with respect to γ in the same way
overall H perceptrons.

In spite of their very simple structure, PPs do have a universal approxima-
tion property. Moreover, as shown in [1], PPs provide results in classification and
regression problems quite close to those offered by procedures such as MLPs and
C4.5 decision trees. Finally, their training is very fast, because of the very simple
update (1) and because it is only applied to patterns incorrectly classified. De-
noting their number as NW and omitting for simplicity updates due to margins,
the overall training complexity for a PP is O(NW DH); as training advances, we
should have NW � N and, hence, very fast bacth iterations.

3 Training pattern selection

When dealing with imbalanced data sets, it is reasonable to expect patterns to
fall within three cathegories, redundant, label noisy and borderline. Label noisy
are simply those X for which their label assignment is likely to be wrong. It is
thus desirable to exclude them from the training set. Redundant patterns are
those easy to classify. Since they are likely to be overrepresented on the training

set, many of them can be possibly ignored during training without hampering
classifier construction. Finally, borderline patterns are those whose classification
could be different after small perturbations and therefore, classifier construction
should concentrate on them to provide stable and possibly correct classifications
after training ends.

This training pattern cathegorization can be potentially quite useful, for
once achieved, classifier construction can proceed by iteratively constructing a
sequence of classifiers using training sets where redundant and noisy patterns
are progressively removed. Notice that this training can be viewed as a kind of
radical boosting–like procedure, where redundant and noisy patterns probabil-
ities change to 0 after each iteration while the remaining patterns are taken as
equiprobable. The difficulty obviously lies on how to characterize patterns bel-
oging to each class. For this, activation margins are a natural choice. Recall that
PPs adaptatively adjust this margin, making it to converge to a final value γ. If
for a pattern X its i–th perceptron activation verifies |acti(X)| > γ, it is likely to
remain so after a small perturbation. Thus if for all i we have lXacti(X) > γ, X
is likely to be also correctly classified later on. Those patterns are natural choices
to be taken as redundant. Similarly, if for all i we have lXacti(X) < −γ, X is
likely to remain wrongly classified, and we will take such patterns as label noisy.
The remanining X will be the borderline patterns. We shall use the notations
Ri, Ni and Bi for the redundant, noisy and borderline training sets at itera-
tion i. With a slight abuse of the language, we shall call a pattern’s normalized
activation lXacti(X) its “margin”.

After iteration i we shall remove the Ri and Ni subsets. With respect to
Bi the first option is to keep all of its patterns after each iteration. However,
working with imbalanced data sets we should treat positive and negative train-
ing patterns in different ways, specially if classes are mixed. The alternative
option we shall also use is to remove after each iteration the subset nB−i of
“noisy” borderline negative patterns X with a wrong margin lXacti(X) < 0 in
all perceptrons. Although we could also do the same for the noisy borderline
positive set nB+

i , this has the risk of removing a sizeable amount of the positive
patterns, whose number could be much smaller than that of the negative ones.
This second alternative option certainly favors the positive class, so it has to be
balanced somehow. We shall do so with the termination criterium to be used.
Recall that we want a good classification performance on the positive class, but
maintaining also a good performance on the negative class. We thus need to
balance the positive and negative accuracies, defined as a+ = TP/(TP + FN)
and a− = TN/(TN + FP), where TP , TN denote the number of true posi-
tives and negatives, that is, positive and negative patterns correctly classified,
and FP, FN denote the number of false positives and negatives, that is, nega-
tive and positive patterns incorrectly classified. For imbalanced problems, simple
accuracy, that is the percentage of correctly classified patterns, may not be a
relevant criterium, as it would be fulfilled by the simple (and very uninteresting)
procedure of assigning all patterns to the (possibly much larger) negative classes.
Other criteria are thus needed, and several options such as precision (the ratio

Problem set % positives final g with nB− final g without nB− MLP–BP

cancer 34.5 96.5 96.6 96.1

diabetes 34.9 68.7 71.2 71.7

ionosphere 35.9 77.6 82.3 80.8

vehicle 25.7 69.6 72.5 75.7

glass 13.6 91.2 91.6 91.8

vowel 9.1 92.9 93.3 97.1

thyroid 7.4 73.9 97.2 95.8

Table 1. The table gives final g values when nB− is kept (third column) and removed
(fourth); the second option gives better results. For comparison purposes g values
obtained after direct MLP are also given.

TP/(TP +FP)) or recall (the ratio TP/(TP +FN), i.e., our positive class accu-
racy a+), ROC curves, or other, have been proposed. Here we shall use a simple
measure first used in [11], the geometric ratio g =

√
a+a− between positive and

negative accuracies, that measures the balance of the positive and negative class
accuracies.

After the iterations end, the final PP is then used over the test set to de-
termine the reported values of the overall test accuracy ats and the test set gts

value, that will measure how well balanced are the generalization abilities of the
just constructed classifier. The pseudocode of the general procedure including
noisy borderline patterns is thus:

trSetReduction(trainingSet tr, testSet ts)

gTr = 0;

acc+_Tr = 0;

trainPP(ts, g, acc+, W, gamma); // first update of weigths, margin

while g >= g_Tr and acc+ >= acc+_Tr: // reduce Tr while g, acc+ improve

gTr = g; acc+_Tr = acc+; wPP = W; // W_PP: weights of best PP so far

find(Tr, R, N, B, nB-, gamma); // find redundant, l. noisy, borderline

remove(tr, R, N); // remove redundant, label noisy

remove(tr, nB-); // and negative noisy boderline

trainPP(tr, g, acc+, W, gamma);

calcAccG(ts, wPP, accTs, acc+_Ts, acc-_Ts, gTs);

In the next section we will illustrate numerically these procedures.

4 Numerical results

We shall use 7 problem sets from the well known UCI database (listed in table 1)
referring to the UCI database documentation [9] for more details on these prob-
lems. Some of them (glass, vowel, vehicle, thyroid) are multi–class problems; to
reduce them to 2–class problems, we are taking as the minority classes the class
1 in the vehicle dataset, the class 0 in the vowel data set, and the class 7 in the
glass domains (as done in [7]), and merged in a single class both sick thyroid

Problem set initial g final g initial Tr set final Tr set ave. # iters

cancer 96.8 96.6 629 174 1.99

diabetes 69.9 71.2 691 631 0.88

ionosphere 76.9 82.3 315 241 2.13

vehicle 67.0 72.5 762 284 2.89

glass 90.4 91.6 193 163 0.59

vowel 89.3 93.3 891 418 1.62

thyroid 68.1 97.2 6480 64 4.81
Table 2. Comparison of initial and final g values. The table also shows the training
set reduction achieved.

classes. In general they can be considered relatively hard problems. Moreover,
some of these problems provide well known examples of highly imbalanced posi-
tive and negative patterns, that difficult classifier construction, as discriminants
may tend to favor the (much) larger negative patterns over the less frequently
positive ones. This is the case of the glass, vowel, thyroid and, to a lower extent,
vehicle problems. In all of them we will take the minority class as the positive
one.

PP training has been carried out as a batch procedure. In all examples we
have used 3 perceptrons and parameters γ = 0.05 and η = 10−2; for the thyroid
dataset, we have taken η = 10−3. As proposed in [1], the η rate does not change
if the training error diminishes, but is decreased to 0.9η if it augments. Training
epochs have been 250 in all cases; thus the training error evolution has not been
taken into account to stop the training procedure. Anyway, it has an overall
decreasing behavior. In all cases we have used 10–times 10–fold cross validation.
That is, on each training stage, the overall data set has been randomly split in
10 subsets, 9 of which have been combined to obtain the initial training set, the
size of which has been decreased on each training iteration as described above.
To ensure an appropriate representation of positive pattern, stratified sampling
has been used. The final PPs’ behavior has been computed on the remaining,
unchanged subset, that we keep for testing purposes.

Recall that we have discussed two handling options for training patterns in
the set nB−i , either to keep or remove them. Table 1 gives the average of the
final g values obtained over each test set. It also gives the proportion of positive
patterns and the final g values given by a standard multilayer perceptron for
comparison purposes. It can be seen that final g values arrived at removing
patterns in nB− are consistently better. Moreover, they favourably compare
with MLP g values: although much simpler (and much faster to train), final
PP g values are slightly better than MLP values in two cases, slightly worse in
another two and essentially the same in the remaining three.

All other results will be given for training set selection when the nB−i sets
are removed. They are contained in tables 2 and 3. The first table compares
initial and final g values. In all cases but the cancer data set, final test g values
are bigger than initial ones. The gain is small in some problems, that require

Problem set initial acc initial a+ initial a− final acc final a+ final a−

cancer 96.870 96.630 97.009 96.420 97.155 96.062

diabetes 75.039 57.926 84.369 75.158 61.373 82.665

ionosphere 82.143 64.051 92.367 86.171 71.803 94.255

vehicle 78.119 51.414 87.437 79.512 61.139 85.879

glass 95.048 84.500 96.795 95.842 86.000 97.459

vowel 97.273 80.667 98.933 97.838 88.111 98.811

thyroid 95.499 46.708 99.405 98.493 95.625 98.722
Table 3. Initial and final accuracy results for training set selection when patterns in
nB− are removed.

few training set selection iterations, but much larger in other cases; the average
number of iterations is nevertheless quite modest. For a quick comparison, we
just mention that the g values for the vehicle and vowel problems are better
than those in [7], where a different training set reduction method is used with
the 1–nearest neighbor (NN) and C4.5 algorithms; the glass g value reported
here is slightly smaller than that reported there for the 1–NN method but better
than that of C4.5 (notice that training sets used here may slightly differ from
those used in [7]). On the other hand, except in the glass and diabetes problems
training set reduction (shown in the same table) is quite marked, specially for
the thyroid data set.

Table 3 compares initial and final accuracy values. In all cases final accuracy
is bigger, except again for the cancer problem, where it remains essentially the
same. As it should be expected, the algorithm enforced gain on the accuracy
a+ of the positive training class extends to the test sets, that show a noticeable
increase, quite markedly in fact in all cases except the cancer dataset. On the
other hand, the accuracy a− of the negative class slightly increases in two cases,
slightly decreases in another three and essentially stays the same in the remaining
two cases.

As a summary of these results, we have illustrated that the proposed itera-
tive training set selection procedure can achieve both noticeable improvements
on the classification of a smaller positive class, while offering a good balance be-
tween positive and negative classification performances. Moreover, considerable
reduction of training set sizes (and consequently a much faster training in the
final iterations) are to be added to these advantages.

5 Conclusions and further work

In this paper we have proposed a new procedure for training set reduction based
on the activation margins that arise naturally in parallel perceptron training. Its
effectiveness has been verified on the seven 2–class problems studied here, several
of them being representative of imbalanced class problems, where the discrimi-
nation of a small positive class may be damaged by the much larger number of
negative samples. The proposed procedure balances in a natural way the number

of positive and negative samples while ensuring a good generalization, not only
in terms of a good overall test set accuracy, but also of its adequate balance
among positive and negative classes.

This property, together with the very fast training of PP, may make them
quite useful on large dimension imbalanced problems, an area of considerable
interest as many interesting problems (text mining, microarray discrimination)
belong to it. This and other questions, such as PP use in active training, and
improvements in their performance, either by combining PPs through boosting
or enlarging their parameter space, are under study.

References

1. P. Auer, H. Burgsteiner, W. Maass, Reducing Communication for Distributed
Learning in Neural Networks, Proceedings of ICANN’2002, Lecture Notes in Com-
puter Science 2415 (2002), 123–128.

2. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Re-
gression Trees, Wadsworth, 1983.

3. N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, SMOTE: Synthetic Minority Over-
sampling Technique, Journal of Artificial Intelligence Research 16 (2002), 321–357.

4. J. Dorronsoro, F. Ginel, C. Sánchez, C. Santa Cruz, Neural Fraud Detection in
Credit Card Operations, IEEE Transactions on Neural Networks, 8 (1997), 827-
834.

5. T. Fawcett, F. Provost, Adaptive Fraud Detection, Journal of Data Mining and
Knowledge Discovery 1 (1997), 291–316.

6. Y. Freund Boosting a weak learning algorithm by majority, Information and Com-
putation 121 (1995), 256–285.

7. M. Kubat, S. Matwin, Addressing the Curse of Imbalanced Training Sets: One-
Sided Selection, Proceedings of the 14th International Conference on Machine
Learning, ICML’97 (pp. 179-186), Nashville, TN, U.S.A.

8. M.A. Maloof, Learning when data sets are imbalanced and when costs are unequal
and unknown, ICML-2003 Workshop on Learning from Imbalanced Data Sets II,
2003.

9. P. Murphy, D. Aha, UCI Repository of Machine Learning Databases, Tech. Report,
University of Califonia, Irvine, 1994.

10. N. Nilsson, The Mathematical Foundations of Learning Machines, Morgan
Kaufmann, 1990.

11. J.A. Swets, Measuring the accuracy of diagnostic systems, Science 240 (1998),
1285–1293.

12. G.M. Weiss, F. Provost, The effect of class distribution on classifier learning, Tech-
nical Report ML-TR 43, Department of Computer Science, Rutgers University,
2001.

