
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Recommender Systems in Model-Driven Engineering
A Systematic Mapping Review

Lissette Almonte · Esther Guerra · Iván Cantador · Juan de Lara

Received: date / Accepted: date

Abstract Recommender systems are information fil-

tering systems used in many online applications like

music and video broadcasting and e-commerce plat-

forms, and they are also increasingly being applied to

facilitate software engineering activities. Following this

trend, we are witnessing a growing research interest on

recommendation approaches that assist with modelling

tasks and model-based development processes.

In this paper, we report on a systematic mapping

review (based on the analysis of 66 papers) that classi-

fies the existing research work on recommender systems

for model-driven engineering (MDE). This study aims

to serve as a guide for tool builders and researchers

in understanding the MDE tasks that might be sub-

ject to recommendations, the applicable recommenda-

tion techniques and evaluation methods, and the open

challenges and opportunities in this field of research.

Keywords Model-Driven Engineering · Recommender

Systems · Systematic Mapping Review

Lissette Almonte
Modelling & Software Engineering Research Group
Universidad Autónoma de Madrid (Spain)
E-mail: Lissette.Almonte@uam.es

Esther Guerra
Modelling & Software Engineering Research Group
Universidad Autónoma de Madrid (Spain)
E-mail: Esther.Guerra@uam.es

Iván Cantador
Information Retrieval Group
Universidad Autónoma de Madrid (Spain)
E-mail: Ivan.Cantador@uam.es

Juan de Lara
Modelling & Software Engineering Research Group
Universidad Autónoma de Madrid (Spain)
E-mail: Juan.deLara@uam.es

1 Introduction

Recommender systems (RSs) [3] are information fil-

tering systems that aim to predict the preferences of

users for a given set of items, with the purpose of of-

fering a typically prioritised list of potentially interest-

ing items. RSs are widely used by commercial applica-

tions such as music and video broadcasting platforms,

e-commerce sites and social networks, and they are in-

creasingly being used to help developers with software

engineering activities [113]. For example, we can find

RSs that help in choosing appropriate third-party pro-

gramming libraries [95, 135], recommend API method

invocations [94], suggest code refactorings [30], propose

features for mobile apps [58], and assist on the evalua-

tion of change impact analysis [18], to name a few.

Modelling is fundamental in software engineering

and central to some software development approaches

like model-driven engineering (MDE) [19,122]. In MDE,

models are the primary assets of the development pro-

cess, since they are used for analysis, validation, simula-

tion and code generation of the applications to be built,

among other activities. The rationale of MDE is to im-

prove software quality and to reduce accidental com-

plexity and development times [62]. Following the trend

in software engineering, in recent years, there have been

proposals of RSs to assist in modelling tasks [5,26,100]

and other activities in the MDE process [111,119].

In the state-of-the-art, we find surveys of RSs and

their associated techniques [65, 78], which review fun-

damental techniques for constructing RSs. We also find

literature reviews on the use of RSs for software engi-

neering [41,112], centered on RSs for code-based activi-

ties. However, perhaps because the use of RSs for MDE

is an emerging research topic, to the best of our knowl-

edge, there are no systematic studies yet analysing how

2 Lissette Almonte et al.

RSs can be designed and employed to assist in MDE

tasks. To fill this gap, this paper presents a systematic

mapping review that covers publications ranging from

2004 to 2020 from the main digital libraries. Our study

aims to answer the following research questions (RQs):

RQ1: In which ways can recommender systems as-

sist in the different tasks within MDE processes?

RQ2: Which recommendation techniques are most

commonly used to support MDE tasks, and how are

recommenders for MDE evaluated?

RQ3: What are the main opportunities in recom-

mender systems for MDE solutions?

We have selected 66 relevant papers from an initial

set of 1,456 papers, and classified them under four di-

mensions: domain, tooling, recommendation and eval-

uation. For RQ1, we have found that most approaches

are directed to complete and repair artefacts, and

work over models. Many RSs are language-independent,

while the language-dependent ones frequently target

UML or process modelling notations. For RQ2, we have

found that most RSs are knowledge-based followed by

content-based, and offline experiments are the most

common evaluation kind. Finally, for RQ3, we have

found that there are hardly any RSs for model trans-

formations or code generators; and few RSs target cre-

ating, reusing or finding artefacts. Moreover, we have

identified several research opportunities including the

need for effective repositories of MDE artefacts that

mitigate the current lack of data; techniques for adapt-

ing RSs to the user’s needs; mechanisms to exploit the

crowd knowledge via collaborative filtering; the user-

based evaluation of RSs within MDE; and the inves-

tigation of mechanisms for the effective integration of

RSs with MDE tools and low-code platforms.

Given the increasing importance that RSs are gain-

ing in software engineering [113], we expect a similar

trend in recommenders for modelling and MDE tasks,

as the increase in the number of papers on this topic

during the last years shows (cf. Figure 2). Hence, our

study may be useful for tool builders and researchers

to understand the tasks that can be subject to recom-

mendations, the applicable recommendation techniques

and their evaluation methods, and the open challenges

in this field of research.

The remainder of this paper is organised as follows.

First, Section 2 provides background on RSs, and Sec-

tion 3 overviews the main concepts and tasks within

MDE. Then, Section 4 describes the scope and method-

ology of our systematic mapping review. Next, Section 5

reports on existing works that describe RSs to assist in

modelling tasks. Section 6 discusses the results of our

review, answers the research questions, analyses threats

to the validity of the study, and describes open chal-

lenges and interesting research directions. Finally, Sec-

tion 7 concludes with a summary.

2 Recommender Systems

In this section, we first provide an overview of RSs (Sec-

tion 2.1), then we describe the main types of recommen-

dation techniques (Section 2.2), and lastly, we present

the most frequent methodologies and metrics for eval-

uating RSs (Section 2.3).

2.1 Introduction to recommender systems

RSs are software tools and associated techniques that

suggest items considered relevant for a particular

user [3], usually in scenarios or applications where the

space of items is very large and item search and selec-

tion are difficult or even overwhelming to the user. For

this purpose, RSs explicitly or implicitly gather infor-

mation about the user’s preferences for a set of items

(e.g., movies, songs, books or products), and subse-

quently use the collected information to make person-

alised predictions on items relevant to a target user,

such as which movie to watch or which book to read

next. Making use of information retrieval and machine

learning techniques, RSs facilitate decision-making in

domains where there are many options to choose from.

Instead of requiring users to specify their interests by

means of a query, these systems proactively suggest

items of potential relevance to the users.

In general, RSs follow a process that encompasses

three main steps:

1. Collecting relevant user information;

2. Learning from the collected information to build

user profiles; and

3. Applying a heuristic function or a previously built

model to select and rank the items that the user is

most likely to prefer.

In order to present personalised item suggestions

to a user, RSs build a user profile that captures past

choices and preferences of the user. This information

can be either explicitly provided by the user or implic-

itly inferred by the system. Explicit feedback refers to

preference statements made by the users about items

they know, and which are typically stored as numeric

ratings or unary/binary values (e.g., likes and thumbs

up/down). In contrast, implicit feedback is inferred by

observing and mining user interactions within the sys-

tem, such as previous search queries, product purchases

Recommender Systems in Model-Driven Engineering 3

and mouse clicks, among others. Other features that

can be used to model the preferences of users include

demographic data, personality traits, emotional states,

and trust relationships [112].

In a similar way, RSs characterise the items that

may be recommended by means of item profiles. These

profiles take different item attributes into account, such

as metadata and text features extracted from item de-

scriptions or textual contents [77].

2.2 Types of recommender systems

RSs are commonly classified into the following major

categories, depending on how they generate person-

alised recommendations:

– Content-based systems, which recommend items

that are similar to other items the target user liked

in the past [77];

– Collaborative filtering systems, which base their sug-

gestions on the items liked by “similar” people to

the target user [96,120];

– Knowledge-based systems, which exploit domain

knowledge to describe and relate users and items

for providing personalised recommendations [22];

– Context-aware systems, which consider the current

user’s context (e.g., location, time, weather) to en-

rich personalised recommendations [4];

– Social-based systems, which analyse and exploit the

social network connections of the target user to gen-

erate recommendations [46];

– Demographic-based systems, which use demographic

data to represent user and item profiles considered

in the recommendation generation process [102];

and

– Hybrid systems, which combine two or more of the

previous types of RSs [23].

Additionally, RSs can be categorised according to

the algorithmic approach they use to compute the rel-

evance of items [3]. In this regard, we can distinguish

between two types of systems:

– Memory-based systems, where the relevance of items

is estimated through heuristic formulae [120]; and

– Model-based systems, which predict item relevance

by using a data-based model built via machine

learning techniques, e.g., matrix factorisation [70]

or neural networks [48].

The following subsections explain in more detail the

above categories and types of RSs, which will be con-

sidered in our review.

2.2.1 Content-based recommenders

Content-based (CB) systems recommend similar items

to those items the target user liked in the past [3].

They use item attributes or features to represent both

user and item profiles and establish the corresponding

user/item similarities. In general, they consider textual

information (e.g., keywords, metadata and social tags)

to build the user and item profiles [77].

A CB recommender is able to provide accurate per-

sonalised suggestions when it has enough information

about the target user’s preferences, since content simi-

larities can be easily established. Moreover, it is capable

of suggesting items for which no preferences have been

expressed yet (i.e., cold items), since recommendations

are generated via content-based item similarities.

However, this type of RSs has certain disadvantages.

One of them is the overspecialisation problem, in which

the user is exposed to items that are very similar to the

ones the user already knows, limiting the discovery of

diverse, relevant items. In this sense, CB recommenders

are not suitable for domains and applications where, at

a certain point, the user has to be suggested novel, fresh

or even unexpected (serendipitous) recommendations,

e.g., in the news articles domain. Another drawback of

these systems is the new user cold-start problem, as a

RS needs a considerable amount of users’ preferences

before it can provide well-suited recommendations.

2.2.2 Collaborative filtering recommenders

Collaborative filtering (CF) systems make suggestions

to the target user based on items preferred by like-

minded people [3]. They rely on the feedback (com-

monly ratings) that users give about the items. Hence,

user and item similarities are established via explicit or

implicit rating-based similarities and patterns [48,120].

Differently to CB approaches, a CF system is able

to provide novel and diverse recommendations for the

target user. Even in situations of rating sparsity, CF

has shown better performance than CB in many real-

world applications, and represents the most widely

used approach for providing personalised recommenda-

tions [70].

Nonetheless, similarly to CB approaches, CF recom-

menders suffer from the new user cold-start problem,

i.e., they need to have enough ratings to provide accu-

rate recommendations. CF also manifests the so-called

item cold-start problem, since an item can only be rec-

ommended after being rated. Moreover, CF is affected

by situations of high sparsity, where the number of col-

lected ratings is very small with respect to the total

number of possible ratings given by users to items.

4 Lissette Almonte et al.

2.2.3 Knowledge-based recommenders

Knowledge-based (KB) systems recommend items using

domain-specific knowledge about how item attributes

and features could meet the user’s needs and inter-

ests [22]. Many recommendation approaches can be

categorised as KB. Among them, two types of ap-

proaches have gained great interest in the literature:

case-based and constraint-based [112]. Case-based sys-

tems address the recommendation task via case-based

reasoning methods, which aim to solve a new prob-

lem (i.e., a new case) by remembering previous similar

cases and reusing knowledge about them. Constraint-

based systems, on the other hand, predominantly ex-

ploit knowledge, commonly expressed by means of ex-

plicit rules, on how user requirements are related to the

item attributes and features.

The main advantage of KB systems is their capa-

bility of providing and explaining accurate recommen-

dations that entail a deep understanding of the user’s

preferences, which cannot be achieved by CB and CF

approaches. Although KB systems usually do not suffer

from cold-start problems, they are affected by the so-

called knowledge acquisition bottleneck. This consists on

the need of learning models or domain experts to model

and build the used knowledge bases. Additionally, KB

recommenders usually are ad-hoc solutions to partic-

ular problems, and thus their generalisation to other

problems or domains is difficult or not possible.

2.2.4 Hybrid recommenders

Hybrid systems make use of two or more recommenda-

tion methods, such as CB and CF, to take advantage of

their benefits and avoid some of their limitations [23].

Because of this, many real-world RSs are hybrid. With-

out entering into details, we can identify three main

ways to implement a hybrid system:

– Incorporating some feature of one recommendation

method into another one, e.g., a CF strategy that

uses CB similarities;

– Combining the recommendations generated sepa-

rately by two methods, e.g., via ranking aggregation

and diversification techniques; and

– Building a unifying recommendation model that in-

corporates characteristics of distinct methods, e.g.,

a matrix factorisation model with both collabora-

tive and content-based features.

2.2.5 Other recommenders

There are other types of RSs that can be considered or-

thogonal to CB, CF and KB systems, since they exploit

particular data following CB and CF strategies. Special

attention can be drawn to the next recommenders:

– Context-aware recommenders, commonly abbrevi-

ated as CARS, take into consideration contextual

information associated or influencing to user pref-

erences when generating personalised recommenda-

tions [3]. Quoting Dey [32], “context is any informa-

tion that can be used to characterise the situation of

an entity.” In CARS, context commonly refers to

circumstances in which recommendations are pro-

duced, such as the time, the weather and the user’s

current location.

CARS are appropriate for applications where con-

textual variables determine or have a high impact on

the relevance of the suggested items. For instance,

in a RS for travelling, the vacation recommenda-

tions for the winter season can be very different from

those generated for the summer [4]. Naturally, not

all contextual information available might be rele-

vant, and the fact that contextual factors and data

sources differ from application to application makes

CARS difficult to implement and evaluate. More-

over, CARS may require extra effort from the users,

who may need to provide information about certain

contextual conditions, such as their current mood

and companion.

– Social-based recommenders generate personalised

recommendations in social media [46]. A widely ex-

plored approach in these systems is the exploitation

of explicit relationships between users in social net-

works. In this sense, many solutions are based on the

so-called trust-based model, where the social influ-

ence and trust of users are established and propa-

gated through the social network. In fact, research

supports the theory that social trust can be used

as a positive way to generate explanations of pro-

vided recommendations [133]. Social-based methods

perform well when used together with other recom-

mendation approaches, like CB or CF, since social

network information can help in dealing with the

user and item cold-start problems [112].

– Demographic-based recommenders make use of de-

mographic data about the users, e.g., age, gen-

der and address [102]. Taking this information into

account, the recommendation algorithms identify

users or items that are demographically compati-

ble with the target user. These systems assume that

users with similar demographic attributes may rate

similarly, and have been applied to alleviate cold-

start problems of traditional recommendation ap-

proaches.

Recommender Systems in Model-Driven Engineering 5

2.3 Evaluation of recommender systems

RSs need to be evaluated at different phases of their

life-cycle. At design time, it is necessary to assess the

adequacy of the selected recommendation approach for

the application at hand. This evaluation is done via

offline experiments by running potential recommenda-

tion algorithms on the same dataset of user-item in-

teractions (i.e., the rating matrix) and comparing their

performance by means of several metrics [45]. This type

of evaluation permits measuring the quality of the al-

gorithms in accomplishing a recommendation task, but

neglects user-centred aspects related to usage satisfac-

tion, acceptance and experience with the system.

In offline experiments, as commonly done for evalu-

ating machine learning methods, the dataset is usually

split into two subsets: the training set, used to build

the recommendation model, and the test set, used to

evaluate the built model. Sometimes, a third subset,

the validation set, is also used for parameter tuning of

the trained model, before testing.

There are two main types of recommendation tasks

that can be evaluated: the item rating prediction (which

is in disuse in the RSs community) and the item ranking

generation (or top-N recommendation). Each of them

has specific metrics, sometimes adopted and adapted

from the machine learning and information retrieval ar-

eas. In the rating prediction task, the objective of a RS

is to accurately predict the numeric value of the rating a

user would give to an item, and thus metrics such as the

mean absolute error (MAE) and the root mean square

error (RMSE) are considered. In the ranking genera-

tion task, the goal of a RS is to provide the user with a
personalised ranked list of relevant items, with special

interest in the items at the first (top) positions of the

list. In this case, metrics oriented to measure the accu-

racy of the ranking are used, e.g., precision, recall, mean

reciprocal rank (MRR), and normalised discounted cu-

mulative gain (nDCG) [45]. These accuracy metrics can

be complemented with metrics for other ranking char-

acteristics, such as diversity, novelty and coverage [14].

RSs should also be evaluated after deployment. This

can be done via online experiments, which usually are

user-centric [67]. The built system is deployed in a real

environment and tested by end-users in real-time, com-

monly online. In these experiments, a widely used eval-

uation methodology is A/B testing, where two versions

A and B of the system are deployed, and one of them

implements the recommendation algorithm or function-

ality that is being evaluated. After a period of time,

the user feedback and behaviour recorded in both sys-

tems are analysed and compared according to certain

metrics. There is also the possibility of performing a

user study where a prototype of the system is deployed

in a controlled setting and evaluated with a reduced

set of users, maybe recruited by crowd-sourcing. User

studies can also follow the A/B testing methodology,

and incorporate online questionnaires to gather the us-

age satisfaction and opinions about the system and its

functionalities.

3 Model-Driven Engineering

In this section, we provide a brief overview of the main

concepts, artefacts and tasks within MDE solutions. We

do not aim to be exhaustive, but to provide the neces-

sary context to understand the kind of support needed

from RSs in MDE. The interested reader can see [19]

for a more detailed account of MDE.

3.1 MDE artefacts

Figure 1 shows a schema with the main elements of

MDE solutions. In MDE, models are the main assets,

from which other artefacts – like code or other models

– may be derived in an automated way. Models con-

form to a meta-model, which defines the modelling lan-

guage syntax and determines the set of models that

are valid. Meta-models comprise a structural diagram

plus additional constraints formulating restrictions that

cannot be expressed diagrammatically. The structural

diagram is defined as a class diagram, frequently us-

ing standards like the Meta-Object Facility (MOF) [85]

and implementations like the Eclipse Modeling Frame-

work (EMF) and Ecore [131]. Constrains are described

using constraint languages like the Object Constraint

Language (OCL) [97].

Meta-model
Structural diagram
OCL constraints

Model

«conforms»

Model’ model
transformation

co
d

e

ge
n

.

code/text
artefact

Fig. 1 Main elements of MDE solutions.

In addition to models, MDE solutions may include

model transformations to modify existing models (e.g.,

performing refactorings or optimizations) or to create

new models out of existing ones (e.g., creating a design

6 Lissette Almonte et al.

model from a requirements model). Model transforma-

tions are defined using either specialized transformation

languages like ATL [59] or QVT [107], general-purpose

languages like Java, or technologies like XSLT [79].

Finally, textual artefacts – like code, configuration

files or documentation – can be produced from models

using code generators. These are typically written in

specialized template languages, such as Acceleo [2] or

EGL [115].

3.2 MDE tasks

Model-based software solutions involve the creation

of models using a modelling language. Modelling lan-

guages can be either general-purpose like the UML, or

domain-specific languages created for a particular do-

main. Therefore, in MDE, engineers may need to create

the following kinds of artefacts: models, meta-models

(i.e., modelling languages), model transformations, and

code generators.

As in any software engineering process, in MDE, it is

desirable to be able to reuse existing artefacts to avoid

their creation from scratch. This requires the ability to

find similar artefacts, or fragments of them, in existing

repositories.

The syntactic correctness of models is crucial to en-

able sound solutions and be able to apply model trans-

formations and code generators on them. Therefore, it

is important to complete partial models to become con-

formant to their meta-model. This completion process

applies not only to models, but also to model trans-

formations, code generators and meta-models, as these

can be seen as models that have a specific semantics

and conform to their own meta-models.

MDE artefacts may have errors, and so, they may

need to be repaired either syntactically to conform

to their meta-models, or semantically to conform to

some specified requirements. Meta-model/model co-

evolution [38] is a particular case of the latter, whereby

a meta-model evolves to accommodate changing or new

requirements, and the broken models need to be re-

paired to make them conform to the new meta-model

version. Other tasks related to repairing artefacts in-

clude the creation of input test data (e.g., input mod-

els for testing model transformations) [13], oracles (e.g.,

transformation contracts) [44], and fixes [119].

4 Survey Methodology and Scope

Following accepted guidelines for systematic map-

pings [104, 105, 139], we have performed a systematic

mapping review to analyse how pervasive is the use

of RSs to support modelling and MDE, identifying

the tasks that have been subject to recommendations

and the recommendation techniques most frequently

applied. The reviewed articles typically introduce RSs

that facilitate some modelling or MDE task.

To collect articles on this topic, we sought into Sco-

pus, the ACM digital library and the Web of Science

using a formal query comprising 23 terms. The query

retrieves articles whose title, abstract or keywords con-

tain at least one term related to RSs, and at least one

term related to modelling or MDE.

Table 1 shows the considered terms, so that the re-

trieved articles should contain some term from each col-

umn of the table. We included terms like model com-

pletion, model reuse and model repair as related to RSs,

because we detected that some approaches did not use

standard terminology and vocabulary of the RSs area

(cf. Section 2). However, they pursue the same goal of

recommending a reduced set of modelling items or ac-

tions among a large set of possible ones. We executed

the query in September 2020, and only considered peer-

reviewed papers written in English and published in

journals, conferences, workshops and book chapters.

Table 1 Terms used in the formal search query. Articles
must contain in their title, abstract or keywords at least one
term from each column.

Recommender Systems /
Purpose

Modelling / MDE

recommender model-driven
recommendation domain-specific language
model completion state machine
model reuse model transformation
model repair code generation
transformation completion code generator
transformation reuse unified modelling language
transformation repair UML
generator completion
generator reuse
generator repair
quick fix
quick fixes
assistant
assistance

Table 2 shows a summary of the search results. The

query initially retrieved 1,456 documents: 979 from Sco-

pus, 316 from the ACM digital library, and 161 from

the Web of Science. After removing duplicates, 1,175

unique documents remained.

Next, the unique documents were filtered in two

subsequent phases. In the first phase, four reviewers

examined the abstracts of all documents to identify

which ones proposed some kind of recommendation for

modelling tasks. The reviewers were two professors spe-

Recommender Systems in Model-Driven Engineering 7

Table 2 Research papers retrieved per database.

Detail Num. Papers
Databases queried
Scopus 979
ACM 316
Web of Science 161
First revision phase
Total retrieved 1,456
Unique 1,175
Discarded 1,024
First selection 151
Second revision phase
Relevant 53
Not available 9
Not relevant 89
Snowballing
Snowballing papers 13
Total relevant 66

cialised in MDE, one professor with expertise in RSs

and information retrieval, and one doctoral student in

both research areas. Overall, 151 documents were se-

lected by at least one of the reviewers and were moved

to the next phase, and 1,024 were discarded for being

unrelated to our study. In both phases, we used inclu-

sion criteria based on quality (peer-reviewed papers),

language (papers written in English), and focus (we dis-

carded papers unrelated to modelling, recommenders or

modelling assistants, as well as papers focussing on us-

ing MDE techniques for creating RSs).

In the second phase, the 151 selected papers were

carefully read. From these papers, 53 were considered

relevant for the study, 9 were unavailable, and 89 were

not relevant since they either proposed RSs for activi-

ties not related to models or modelling, or did not de-

scribe recommenders or modelling assistants.

Finally, we conducted a snowballing process [105],

analysing related works in the bibliography of the se-

lected papers. This resulted in the selection of 13 addi-

tional relevant papers. Overall, a final set of 66 relevant

papers was considered, ranging from 2004 to Septem-

ber 2020, covering almost 16 years of research. These

66 documents account for 51 different approaches, as

in some cases, there are several documents covering the

same approach. Figure 2 shows the distribution of pa-

pers over the studied period of time. We observe an

increasing trend that likely suggests a growing interest

in the field. Please note that the query may not fully

cover the year 2020 as it was executed on September

2020.

Figure 3 categorises the relevant papers according

to the publication type. Most papers are from confer-

ences and workshops, which denotes that the research

area is still young. The most frequent conferences and

0

1

2

3

4

5

6

7

8

9

10

20
04

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Total Conferences and workshops Journals

Fig. 2 Relevant papers per year.

journals of publication are the International Conference

on Model-Driven Engineering Languages and Systems

(MoDELS) (9 papers), the International Conference on

Model-Driven Engineering and Software Development

(MODELSWARD) (6 papers), the International Con-

ference on Software Engineering (ICSE) (4 papers),

and the Journal on Software and Systems Modeling

(SoSyM) (3 papers). Hence, the primary publication

venues are devoted to software engineering and mod-

elling.

28.79%

1.52%

69.70%
Article
Book chapter
Conference Paper

Fig. 3 Distribution of works depending on publication type.

In the next section, we propose a classification of the

works along four dimensions, and analyse the papers

with respect to these categories.

5 Recommender Systems in MDE

We organise our review according to the four dimen-

sions of the feature model [61] depicted in Figure 4:

domain, tooling, recommendation and evaluation.

The domain dimension encompasses analysis vari-

ables in the context of MDE applications, such as the

type of artefact that is subject of the recommendation

and the purpose of the recommendation. The tooling

8 Lissette Almonte et al.

RecommenderSystemsForMDE

Evaluation

Domain

Tooling

Recommendation

Legend:

Mandatory
Optional
Or Group
Alternative Group
Abstract Feature
Concrete Feature

Fig. 4 Dimensions for analysing the use of RSs in MDE.

dimension includes aspects related to the recommen-

dation tool, such as its maturity, its support for the

integration with other MDE tools, and its proactive-

ness to request or apply recommendations. The recom-

mendation dimension entails variables used in the RSs

area to characterize how recommendations are gener-

ated [106], such as the recommendation method, the

user preferences used to calculate the recommendation,

the recommended items and the recommendation tasks.

Lastly, the evaluation dimension refers to the method-

ologies and metrics used to evaluate the recommenders.

These dimensions represent assessment criteria from

both the MDE and the RSs perspectives. The dimen-

sions and variables are orthogonal, although some of

them may have cross dependencies in some of the sur-

veyed cases. For instance, the recommendation purpose

may influence the metrics used to evaluate a given rec-

ommender. However, these dependencies have less im-

pact than those between the variables belonging to a

given dimension, which are addressed in the analysis

presented herein.

The next four subsections analyse and classify the

selected papers along the dimensions and inner vari-

ables.

5.1 Domain

A fundamental aspect of any RS is its application do-

main. This comprises the three orthogonal features that

we present in the feature model of Figure 5.

First, we consider the type of artefact that is the

subject of recommendation: model, meta-model, model

transformation or code generator. These are the four

main elements of most MDE solutions [19].

Second, we distinguish whether the RS is language-

independent, or on the contrary, it is tied to a

particular language for modelling (e.g., UML [136],

Simulink [128]), meta-modelling (e.g., MOF [85],

Ecore [131]), model transformation (e.g., ATL [59],

QVT [107]), or code generation (e.g., Acceleo [2],

EGL [115]).

Transformation

Complete

Reuse

Artefact

Purpose

CodeGenerator

OtherPurpose

MetaModel

LanguageIndependent

Create

Model

Find

Domain

Repair

Fig. 5 Domain dimensions for RSs in MDE.

Finally, we look at the purpose of the RS, that is,

the kind of task that the recommender facilitates1. As

we will see later, the reviewed papers target one or more

of the following six types of tasks, introduced in Sec-

tion 3: complete, create, find, repair, reuse and other

purpose. When the purpose is complete, the artefact al-

ready exists and the RS provides suggestions on how to

extend it. When the purpose is create, the recommender

helps in constructing the initial version of a new artefact

from scratch. If the purpose is find, the RS facilitates

the discovery of relevant elements or artefacts within a

repository. Recommenders targeting repair tasks sug-

gest solutions to fix errors in an existing artefact. These

solutions may imply the creation, deletion or modifica-

tion of different elements inside the artefact. When the

purpose is reuse, the system helps in reusing an exist-

ing artefact (or part of it) within another artefact. This

task goes beyond find as the recommender provides as-

sistance in integrating the reused artefact in the new

context. Finally, in other purpose we collect the tasks

with a purpose different from the mentioned before.

Table 3 classifies the surveyed papers by purpose

and artefact type, and marks the language-independent

approaches with an asterisk (*). Since some systems

can be used with various purposes, they can appear

in several cells of the table, sometimes with different

language-independent marks.

Overall, we can see that there are virtually no

recommenders for code generators, and recommenders

that help in creating new artefacts from scratch are also

scarce. Most RSs are for models, especially for model

completion and model repair, and the context in the lat-

ter case is sometimes model/meta-model co-evolution.

1 We use purpose and task interchangeably, though the lat-
ter can be more detailed. For example, for repairing (a pur-
pose) we can find fine-granular tasks, like creating input test
data, oracles and selecting fixes (cf. Section 3).

Recommender Systems in Model-Driven Engineering 9

Table 3 Purpose of recommendation vs. recommended artefacts (approaches marked with * are language-independent).

XXXXXXXXPurpose
Artefact Meta-Model Model Transformation Code Generator

Complete

DoMoRe [5,6]
Hermes [34–36]

Kögel et al. [68, 69]
Refacola [130]

Baya [27]
Deng et al. [31]
DiaGen* [82]
DIG MDE [92]
DoMoRe* [5, 6]

Elkamel et al. [37]
Heinemann [49]
Hermes* [34–36]

IPSE [40]
Kermeta* [86]

Kögel et al.* [68,69]
Koschmider et al. [50, 51,71]

Li et al. [75]
PME* [99]

Rangiha et al. [110]
RapMOD [72,73]
Refacola* [130]

Savary-Leblanc [121]
Sen et al.* [126,127]

SimVMA [132]
SMART [47]

AXSM [52]
CONVErT [10]

Create DSL-maps [103] UCcheck [9]

Find Extremo [123–125]

Cerqueira et al. [26]
Extremo* [123–125]

Matikainen et al. [81]
SBPR [63,64]

Repair

Batot et al. [12]
Clarisó et al. [28]

PARMOREL [11,53]
Refacola [130]

AMOR [21]
Anguel et al.* [8]
ASIMOV* [38]

BAM [137]
BPMoQualAssess [60]

B-repair [24]
DiaGen* [82]
DPF* [108]

IntellEdit* [93]
Mani et al.* [79]
MDSafeCer [87]

Nassar et al.* [91]
PARMOREL* [11,53]

Refacola* [130]
ReVision* [98]
SMART [47]

anATLyzer [117–119] Mani et al. [79]

Reuse Hermes [34–36]

Hermes* [34–36]
Koschmider et al. [50, 51,71]

Paydar et al. [100,101]
REBUILDER [42]

SimVMA [132]

Refactory [111]

Other Purpose
Bobek et al. [17]
MAGNET [16]
ModBud [116]

In the following, we analyse the application domain of

the approaches grouped by their purpose.

Complete. Most approaches whose purpose is com-

pleting an artefact target model completion, and

among them, four are also applicable to meta-models.

In addition, two approaches deal with completing

model transformations.

Approaches to model completion can be classified

into two categories. The first one comprises tech-

niques to recommend how to extend a partially spec-

ified model to make it correct (i.e., the recommended

complete model satisfies every specified domain and

meta-model well-formedness constraint). The pro-

posed model completions are typically computed us-

10 Lissette Almonte et al.

ing search-based techniques, for example with solvers

based on Alloy [54] (a constraint solver over mod-

els), Prolog (a logic-based programming language) or

via rules. DiaGen [82], DIG MDE [92], IPSE [40],

Kermeta [86], Refacola [130] and the work by Sen et

al. [126, 127] belong to this category. DiaGen gener-

ates possible completions based on hyper-graph gram-

mar rules, and the others use Prolog or Alloy for this

task. This search may have a high computational cost.

For this reason, when a partial model cannot be com-

pleted automatically because of its complexity, DIG

MDE identifies the failing constraints and suggests

how to manually change the model to enable its com-

pletion.

The second model completion category comprises

works providing step-wise recommendations on how

to evolve a given model. This model does not need to

be partial, as in the first category. Suggestions usu-

ally come from repositories of existing models, frag-

ments or patterns. For example, SimVMA [132] pro-

vides step-wise suggestions to evolve Simulink models

based on model clone analysis; Heinemann [49] recom-

mends elements defined in model libraries (e.g., blocks

from Simulink libraries) based on data mining exist-

ing models; the approach by Kögel et al. [68, 69] rec-

ommends model changes applicable to the same con-

text of the last model change; DoMoRe [5,6] suggests

domain concepts and names for new model elements;

RapMOD [72, 73] offers auto-completion actions for

(UML) graphical models, similarly to the vision pa-

per [121]; Elkamel et al. [37] recommend UML classes

that are similar to the ones in the UML class diagram

being developed; Li et al. [75] and Deng et al. [31] rec-

ommend activity nodes for process models; Rangiha et

al. [110] recommend tasks and actor roles in a social

process-modelling tool; Koschmider et al. [50, 51, 71]

recommend process fragments to complete a process

model; Baya [27] recommends mashup model patterns

based on the context, the user and different expert rec-

ommendations, and helps in weaving the selected pat-

tern into the partial model under development; and

Hermes [34–36] permits building Eclipse-based RSs

that help in completing models with recommended el-

ements from other models in a repository.

Instead of profiting from repositories of models,

PME’s recommendations are based on an analysis of

the language meta-model [99]. PME enables proactive

(graphical) modelling, meaning that plausible modifi-

cations according to the models’ meta-model are auto-

matically applied, and the user is prompted only when

several optional modifications exist. SMART [47] sup-

ports the use of test-driven development to create

UML diagrams (class, use cases, state machines and

sequence diagrams). It uses an action language to

specify behavioural tests, and when a test fails, it sug-

gests ways to complete the model to make it pass the

test.

Among the previous model completion approaches,

four can also be applied to meta-models. DoMoRe

works on domain models, like UML class diagrams

and entity-relationship diagrams, and therefore can

be used to add concepts of a domain of interest to

meta-models. The approach of Kögel et al. [69] rec-

ommends complementary changes to a user editing

action, and can be applied at the meta-model level,

e.g., to recommend generalization relations to a core

super-class. Refacola is a refactoring constraint lan-

guage and framework, extended to (meta-)model as-

sistance in [130]. It is meta-level independent, provid-

ing assistance for completing partial (meta-)models

to become syntactically correct. Finally, the Hermes

framework can be configured with recommendation

strategies. It is applicable to models within the EMF

ecosystem, and hence to meta-models as well.

Regarding the completion of model transformations,

CONVErT [10] synthesises transformation code start-

ing from examples of source and target models and

their correspondences. Correspondences are specified

manually, but there is also a recommender of likely

correspondences based on similarity heuristics such

as the name, structure and neighbourhood of model

elements. AXSM [52] is a mapping recommender in-

tegrated in a tool to build data transformations via

declarative mappings, from which translators written

in XSLT, Java or ATL can be synthesised. AXSM

recommends potential mappings based on heuristics

grounded on the data schemas and on prior user se-

lections.

Create. Only two of the analysed works target the cre-

ation of artefacts, one for meta-models and the other

for models. The first one is DSL-maps [103]. Given

the requirements of a DSL expressed as a mind-map,

DSL-maps recommends meta-modelling patterns ad-

dressing them. The designer can select patterns among

the ranked suggestions, and the tool combines the pat-

terns to synthesise an initial meta-model, which the

designer can then refine. The second approach is a

modelling assistant for use case diagrams called UC-

check [9]. This tool has a wizard to create new use case

diagrams using an existing one as a reference, from

which suitable actors and use cases are recommended.

Find. The analysed papers include approaches to

query repositories and suggest relevant artefacts for

models and meta-models, but not for transformations

or code generators. Extremo [123–125] is an extensible

Recommender Systems in Model-Driven Engineering 11

tool-independent assistant that helps finding relevant

information for models and meta-models out of hetero-

geneous data sources (e.g., ontologies, XML schemas,

RDF data, meta-models), and the results are ranked

according to their suitability for the user. The rest of

approaches are specific for some kind of model: the RS

of Cerqueira et al. [26] finds and recommends sequence

diagrams that match the user preferences; Matikainen

et al. [81] tackle the problem of recommending the

state machine from a library that implements the best

policy to control a robot; and SBPR [63, 64] recom-

mends process models from a repository according to

the user business profile in LinkedIn (e.g., skills, inter-

ests and current position).

Repair. Repair approaches have been proposed for all

kinds of artefacts: models, meta-models, transforma-

tions and code generators.

Regarding model repair, most works aim to recom-

mend fixes for inconsistencies found in a given model

(i.e., violations of the model’s meta-model cardinal-

ity or well-formedness constraints). These approaches

differ either in the applied technique to compute and

rank the repairs, or in the application domain. In

particular, IntellEdit [93] ranks quick fix solutions to

model inconsistency problems according to the least-

change principle; PARMOREL [11,53] determines the

model repair actions based on the user preferences and

on the experience gained from repairing under differ-

ent personalization settings; the Diagram Predicate

Framework (DPF) [108] and the approach by Nassar

et al. [91] implement repairs as transformation rules;

DiaGen [82] represents models as hyper-graphs and

uses hypergraph patches to produce recommendations

for repairing models; Refacola [130] uses constraint-

based rules; BPMoQualAssess [60] provides guidelines

to improve the actual value of quality metrics for busi-

ness process models; B-repair [24] is specific to the B

formal specification language and ranks the suggested

repairs based on their estimated quality; ReVision [98]

tracks model inconsistencies to the editing action orig-

inating them in the model history, and fixes this action

to obtain a consistent model; MDSafeCer [87] detects

missing information for supporting key evidence in

process-based argumentations, and recommends how

to resolve such deviations; ASIMOV [38] assists in the

co-evolution of models and meta-models by propos-

ing model co-evolution actions that a meta-modeller

must have defined previously; and Anguel et al. [8]

also tackle the co-evolution problem but they auto-

matically fix resolvable changes and recommend co-

evolution actions to deal with non-resolvable changes.

There are also some model repair approaches that

do not tackle model conformance, but they target

other kinds of model-related problems. In particular,

Mani et al. [79] compute repairs for input test mod-

els that make a code generator produce an incorrect

output; in addition to complete, the suggestions for

fixing behavioural tests in SMART [47] can also be

classified as repairs; the Business Application Mod-

eller (BAM) [137] permits specifying temporal rules

for process models and, for some types of rules, it rec-

ommends how to fix their violations; and AMOR [21]

is a model repository for model versioning that in-

cludes a recommender of possible resolutions for model

conflicts.

With respect to meta-model repair, two of the works

target OCL integrity constraints [12, 28]. Batot et

al. [12] tackle the co-evolution of OCL constraints

upon meta-model changes. Their approach recom-

mends a ranked list of OCL modifications that are

correctly typed by the new meta-model version, and

minimise the number of changes and information loss.

Clarisó et al. [28] repair OCL constraints which are too

restrictive or too lax. Their method suggests weaker

or stronger candidate versions of the problematic con-

straint, and the user can select one of them. In addi-

tion, two of the model repair approaches can be used

to repair meta-models as well. PARMOREL allows re-

pairing meta-models having duplicate attributes in re-

lated classes, or properties modelled both as attributes

and as references [11]. Refacola [130], on the other

hand, can help repairing syntactically incorrect meta-

models, e.g., with inconsistent opposite or contain-

ment references (typical problems at the model level

that can also happen in meta-models).

We found only one work supporting model transfor-

mation repair. This is anATLyzer [117–119], a tool in-

tegrated with the ATL IDE that identifies errors and

recommends a ranked list of quick fixes to repair the

transformation syntactically. Fixes are ranked taking

into account the number of problems they solve, re-

maining errors and newly introduced errors.

Finally, we classify the approach by Mani et al. [79] as

applicable to code generators because even if it sug-

gests model repairs, these are applied in the context

of code generation with XSLT.

Reuse. Recommenders in MDE have been applied to

the reuse of models and transformations. Regarding

model reuse, SimVMA [132] recommends Simulink

models similar to the one that is being developed, and

which the designer can import or clone for their reuse;

REBUILDER [42] finds UML diagrams similar to a

given query, and supports their full or partial composi-

tion into the given design; Paydar et al. [100,101] pro-

pose a reuse technique whereby the designer provides

an input UML use case diagram, the most similar use

12 Lissette Almonte et al.

cases are retrieved from a model repository, and then

the activity diagrams associated to these use cases are

semi-automatically adapted to (i.e., reused in) the new

usage context; Koschmider et al. [50, 51, 71] propose

both a recommender of process model fragments, and

an explicit search facility to retrieve complete process

models or fragments and insert them in the current

modelling context, adapting them if needed; and Her-

mes [34–36] can incorporate model search strategies to

find model elements suitable for reuse. Being generic,

Hermes can also be applied to meta-models.

As for transformation reuse, it is supported by Refac-

tory [111]. This tool permits defining generic refac-

torings over role models, so that developers can reuse

the refactorings on new languages by binding the role

model elements into elements of the language meta-

model. Refactory includes a recommender that helps

in identifying possible bindings, likely starting from

some manually bound elements to avoid a high num-

ber of suggestions.

Other purpose. The remaining papers have very spe-

cialised purposes. Bobek et al. [17] propose a rec-

ommender for process modelling, which suggests the

elements of a configurable diagram (i.e., a process

with variability) that should be included in the cur-

rent modelled process. MAGNET [16] guides users

on the next tutorials to speed up the learning curve

of a modelling tool. Finally, ModBud [116] is an en-

visioned framework to build assistants that educate

novice modellers on abstraction. Such assistants may

provide recommendations on a constructed model by

comparison with a prescriptive model devised by the

assistant.

In Table 3, the language-independent approaches

have an asterisk (*). We can see that most works are

tied to a particular language, but a substantial amount

of those applicable to models are language-independent.

For this purpose, they are frequently defined over a

meta-modelling framework – like the Eclipse Modeling

Framework (EMF) [131], Kermeta [57], GME [74], or

DPF [109] – which enables their application to mod-

els of any language defined within the framework. This

is the case of [11, 34–36, 53, 68, 69, 86, 91, 93, 98, 99, 108,

123–127, 130]. In the case of DiaGen [82], language

independence is achieved by representing models as

hypergraphs, and language definitions as hyper-graph

grammars. Other approaches are meta-level indepen-

dent, and since meta-models are also models, such ap-

proaches are suitable for both meta-models and mod-

els [5,6,11,34–36,53,68,69,123–125,130]; however, when

applied to meta-models, the approaches are depen-

dent on the meta-modelling language used, like EMF’s

Ecore. Finally, language independence can be a gradual

term. For example, DoMoRE is language-independent

as it is applicable to arbitrary domain models, but it

cannot deal with other types of models such as be-

havioural models.

Table 4 summarises the languages that the

language-dependent approaches handle. Most are

widely used languages, like UML diagrams (11 ap-

proaches), business process models (9 approaches),

Ecore (7 approaches), Simulink (2 approaches), OCL

(2 approaches), XSLT (1 approach) and ATL (1 ap-

proach). The rationale is that building a RS generally

involves a high effort and may require from training

data, which may pay off for widespread languages, but

the development may be too expensive for lesser used

domain-specific languages (DSLs). There are some ex-

ceptions of RSs for DSLs though, typically embedded

in tools built by the researchers [10,52,92,111].

Table 4 Languages targeted by recommender systems.

Language Approach Purpose
Meta-Model

Ecore

DoMoRe [5,6]
DSL-maps [103]
Extremo [123–125]
Hermes [34–36]
Kögel et al. [68,69]
PARMOREL [11,53]
Refacola [130]

Complete
Create
Find
Repair
Reuse

OCL
Batot et al. [12]
Clarisó et al. [28]

Repair

Model

Business process models

BAM [137]
Bobek et al. [17]
BPMoQualAssess [60]
Deng et al. [31]
Koschmider et al. [50,51,71]
Li et al. [75]
MDSafeCer [87]
Rangiha et al. [110]
SBPR [63,64]

Complete
Find
Repair
Reuse
Other

DSL for embedded systems DIG MDE [92] Complete
Mashup models Baya [27] Complete

Simulink
Heinemann [49]
SimVMA [132]

Complete
Reuse

State/abstract machines
B-repair [24]
Matikainen et al. [81]

Find
Repair

UML behavioural diagrams SMART [47]
Complete
Repair

UML class/
structural diagrams

AMOR [21]
Elkamel et al. [37]
IPSE [40]
ModBud [116]
RapMOD [72,73]
REBUILDER [42]
Savary-Leblanc [121]

Complete
Reuse
Other

UML sequence diagrams Cerqueira et al. [26] Find

UML use case diagrams
Paydar et al. [100,101]
UCcheck [9]

Create
Reuse

Transformation
ATL anATLyzer [117–119] Repair
DSL for refactorings Refactory [111] Reuse
Marama Torua AXSM [52] Complete
CONVErT CONVErT [10] Complete
Code Generator
XSLT Mani et al. [79] Repair

Recommender Systems in Model-Driven Engineering 13

5.2 Tooling

Next, we analyse the tool support of the approaches us-

ing the criteria shown in the feature model of Figure 6.

Prototype

Automated

Manual

Tooling

System

RecommenderTrigger

ToolIndependent

Semiautomated

RecommendationEnactment
Interactive

Proactive

FullImplementation

OnDemand

Framework

Proposal

Maturity

Plugin

⇒System ¬ToolIndependent

Fig. 6 Tooling dimensions for RSs in MDE.

First, we look at the maturity of the supporting

tools. We distinguish between proposals with no imple-

mentation, prototypes built as proof-of-concepts of the

proposed ideas, and mature tools that make a full im-

plementation available either as a framework, a plugin

or a system. Frameworks typically offer generic func-

tionality that can be customised by manually written

code (e.g., by subclassing). Plugins encapsulate func-

tionality that complements other tools, such as the

Eclipse IDE. Systems can be either complete new appli-

cations that incorporate recommendation facilities, or

extensions of existing MDE tools with a RS.

Second, we classify the approaches as tool-

independent if they can complement or be integrated

into other MDE tools. The constraint in the feature

model states that systems cannot be tool-independent,

since the RSs are embedded in the tools themselves.

Third, RSs may trigger recommendations on de-

mand, proactively, or both. In the first case, the user

needs to explicitly start the recommendation process. In

the latter case, the RS makes recommendations without

user intervention, when certain conditions are met.

Finally, we analyse the support for enacting the rec-

ommendations. This can be manual if the RS provides

a list of recommendations and it is up to the user to

decide how to use them; interactive if the RS permits

the user to select a recommendation, which then be-

comes applied to the given context; automated if the

recommendation is automatically applied without user

intervention; and semiautomated if the recommendation

enactment is automated but the user may be prompted

during the process, e.g., to input some value or decide

between alternative options.

Table 5 classifies the revised papers according to

these features. In the following, we discuss the different

approaches attending to their maturity level, tool inde-

pendence, recommender trigger, and recommendation

enactment.

Maturity. The second column of Table 5 displays the

maturity level of the approaches. When there are sev-

eral incremental papers on the same approach, the

column only shows the maturity achieved in the lat-

est one (i.e., the highest maturity level). Among the

51 approaches, 4 (7.8%) are proposals with no imple-

mentation, 19 (37.2%) present prototypes as proof-of-

concept, and the remaining 28 (55%) provide full im-

plementations. Most full implementations are either

plug-ins (13) or systems/extensions of systems (13),

while frameworks (3) are less pervasive. We catego-

rize the Hermes [34–36] framework for developing RSs

as a plug-in as well, as it uses a plug-in architecture

that exposes and profits from Eclipse extension points.

Tool independence. This feature applies to ap-

proaches that make a prototype or full implemen-

tation available, but not to proposals that have not

been realized in practice (even though they may have

the potential to become tool-independent). Most tool-

supported RSs in MDE have been developed either

as full software systems, or as extensions of the fol-

lowing existing systems: the ATL development en-

vironment [117–119], some data mashup tools [27],

the Generic Eclipse Modeling System (GEMS) [92],

the Ecore Diagram Editor [5, 6], DPF [108], Dia-

Gen [82], Fujaba [40], AutoFOCUS3 [16], the AM-

ASS platform [87], the AMOR model versioning sys-

tem [21], Kermeta [86], the Generic Modeling Environ-

ment (GME) [99], Sparx Enterprise Architect [72,73],

and the meta-modelling tool AToM3 [126, 127]. All

these approaches built as complete systems or sys-

tem extensions are tool-dependent (84.31%). In some

cases, the tools are implemented atop EMF to achieve

generality. However, we only consider that an ap-

proach is tool-independent if, in addition, it provides

explicit means to facilitate its integration with other

tools. Under this perspective, only four (7.84%) ap-

proaches are truly independent from any modelling

tool. We comment on these approaches next.

The framework developed by Batot et al. [12] recom-

mends how to co-evolve OCL invariants upon Ecore

meta-model changes (i.e., it is language-dependent);

14 Lissette Almonte et al.

Table 5 Recommender systems for MDE: Tooling. We use n.a. as abbreviation for not applicable.

Tool Recommender Trigger Recommendation Enactment
Approaches Maturity Independent OnDemand Proactive Manual Interact. Auto. Semi-

AMOR [21] Plug-in X X
anATLyzer [117–119] System X X
Anguel et al. [8] Prototype X X
ASIMOV [38] System X X
AXSM [52] Plug-in X X
BAM [137] Plug-in X X
Batot et al. [12] Framework X X X
Baya [27] Prototype X X
Bobek et al. [17] Prototype X X
BPMoQualAssess [60] Prototype X X
B-repair [24] System X X
Cerqueira et al. [26] Prototype X X
Clarisó et al. [28] Proposal n.a. X X
CONVErT [10] Prototype X X
Deng et al. [31] Prototype X X
DiaGen [82] System X X
DIG MDE [92] System X X X
DoMoRe [5,6] System X X X
DPF [108] Prototype X X
DSL-maps [103] Plug-in X X
Elkamel et al. [37] Prototype X X
Extremo [123–125] Plug-in X X X
Heinemann [49] Prototype X X
Hermes [34–36] Framework, Plug-in X X X X X X X
IntellEdit [93] Framework X X
IPSE [40] Plug-in X X
Kermeta [86] Plug-in X X
Kögel et al. [68, 69] Prototype X X
Koschmider et al. [50, 51,71] Prototype X X
Li et al. [75] Prototype X X
MAGNET [16] System X X
Mani et al. [79] Prototype X X
Matikainen et al. [81] Prototype X X
MDSafeCer [87] Plug-in X X
ModBud [116] Proposal n.a. X X X
Nassar et al. [91] Plug-in X X X
PARMOREL [11,53] Plug-in X X
Paydar et al. [100,101] Prototype X X
PME [99] Plug-in X X
Rangiha et al. [110] Prototype X X
RapMOD [72,73] Plug-in X X
REBUILDER [42] System X X
Refacola [130] Prototype X X X
Refactory [111] Prototype X X
ReVision [98] System X X
Savary-Leblanc [121] Proposal n.a. unknown unknown X
SBPR [63,64] System X X
Sen et al. [126,127] System X X
SimVMA [132] Proposal n.a. X X
SMART [47] System X X
UCcheck [9] System X X

Recommender Systems in Model-Driven Engineering 15

however, the framework is not specific for particu-

lar editors, and is extensible with new heuristics to

guide the search of recommendations. Refacola [130]

achieves tool independence by being based on a

constraint-based domain-specific language to spec-

ify model-assistance operations. Extremo [123–125] is

a modelling assistant that defines extension points

(the extensibility mechanism provided by Eclipse)

to allow its integration with external modelling and

meta-modelling tools within Eclipse. Finally, Her-

mes [34–36] is not a concrete RS but a framework with

a plugin-based architecture to develop RSs within

Eclipse. Its extension points allow defining new recom-

mendation strategies and the integration with mod-

elling editors and heterogeneous data repositories.

Other approaches can be used with several tools,

but are still tool-dependent. This is the case of UC-

check [9], an assistant for use case diagrams coded in

Python that supports use case diagrams specified with

TTool – a free software from Telecom Paris – and the

Cameo Systems Modeler.

Recommender trigger. As the fourth column of Ta-

ble 5 shows, most RSs provide recommendations on

user demand (41 approaches out of 51, an 80.39%).

Fewer approaches provide recommendations proac-

tively without user intervention (12 out of 51, a

23.53%), typically by monitoring the user editing

actions to update the recommendations in return.

Only a few tools (3 of them, a 5.88%) can trigger

the recommendations both on demand and proac-

tively: the recommender of domain model elements

DoMoRe [5,6], the envisioned modelling learning envi-

ronment ModBud [116], and the generic RS framework

Hermes [34–36]. Finally, Savary-Leblanc [121] does not

give enough details on how to access the recommen-

dations, so we mark it as unknown in the table.

Recommendation enactment. The last four

columns in Table 5 display how the works enact the

recommendations. In most cases, recommendations

can be applied either manually (31.37%) or inter-

actively (49.02%). Automated enactments typically

occur in model completion and model repair. As an

example, DIG MDE [92] automatically completes

a model, and if this is not possible, it recommends

the user how to fix the model manually. In turn,

the tool by Nassar et al. [91] permits repairing

models either automatically or interactively. Three

approaches (5.88%) provide semiautomated enact-

ment of recommendations: two are co-evolution

approaches [8, 38] that automatically infer and apply

a migration strategy, but the user may need to select

between alternative solution steps, e.g., in the case

of non-resolvable changes; the other corresponds

to the proactive modelling approach in PME [99],

where models are automatically modified according

to the models’ meta-model, and the user is only

prompted if several optional modifications exist.

Finally, since Hermes [34–36] is a framework to build

RSs, it provides mechanisms to support all types of

recommendation enactment.

5.3 Recommendation

MDE researchers have applied diverse recommenda-

tion approaches for a variety of tasks and purposes. In

this section, we characterise, categorise and analyse the

works on MDE recommenders according to the features

shown in the diagram of Figure 7.

UserPreferences

All

One

Artefact

Explicit

N

RecommendationMethod

OtherItem

Ranking

ArtefactFragment

LongTerm

OtherMethod

RecommendedItem

ContentBased

Cardinality

Hybrid

EditingActions

ModellingAdvice

KnowledgeBased

Recommendation

CompleteArtefact

RecommendationDegree

AcquisitionType

ShortTerm

Implicit

CollaborativeFiltering

Temporality

Fig. 7 Recommendation dimensions for RSs in MDE.

As a first feature of analysis, we consider the recom-

mendation method used. The majority of the RSs apply

one of the four main techniques explained in Section 2.2:

content-based, collaborative filtering, knowledge-based

and hybrid. In addition, some works use ad-hoc tech-

niques that do not fall into the previous categories.

They are represented by OtherMethod in Figure 7.

Second, RSs collect user information to provide per-

sonalised recommendations (feature UserPreferences in

the diagram). In this respect, we investigate how this

information is collected (feature AcquisitionType). In

16 Lissette Almonte et al.

some cases, the user’s preferences are gathered implic-

itly by monitoring the user interactions with the system

or analysing the current state of the modelling/MDE

activity. In other cases, the user needs to explicitly pro-

vide his/her preferences to the system, for example via

questionnaires. In addition, we examine the temporality

of the collected preferences, which can reflect recent,

likely temporal preferences for the task at hand (i.e.,

ShortTerm) or more general and enduring preferences

(i.e., LongTerm).

Third, we analyse the types of items provided as

recommendations (feature RecommendedItem). These

can be complete artefacts (e.g., a model), fragments

of an artefact (e.g., a class), advices that the user can

profit from during a modelling activity, or editing ac-

tions (e.g., in the context of model repair). The diagram

includes the OtherItem feature for items that do not fall

in any of the previous categories.

Finally, the feature RecommendationDegree com-

prises the amount of recommendations presented to the

user (Cardinality) and whether they are ranked (Rank-

ing).

Table 6 categorises the surveyed approaches accord-

ing to these features. Taking this categorisation into

consideration, we start by analysing the approaches at-

tending to the recommendation method they use, and

then, we analyse them based on the other features.

Content-based. These approaches use different con-

tent encoding and similarity notions to represent and

relate items for generating personalised recommenda-

tions.

First, we comment on the content-based approaches

that recommend complete artefacts. Cerqueira et

al. [26] compare two alternative encodings of sequence

diagrams (bag-of-words and a vector encoding struc-

tural features) for the recommendation of sequence di-

agrams matching the user’s preferences. The RS uses

a content-based filtering algorithm to find the clos-

est sequence diagrams. The RS proposed by Paydar

et al. [100, 101] facilitates the reuse of models with

functional requirements of web applications. For this

purpose, the system recommends similar use cases to

the one provided by the user, and then adapts the ac-

tivity diagrams linked to the selected use case to the

provided one. Item similarities are computed based

on name similarity of the use case elements and on

the diagram context. SimVMA [132] uses clone detec-

tors to estimate similarities. It uses near-miss clones to

recommend similar Simulink models, from which low-

granularity recommendations can also be extracted.

Similarity has also been exploited to recommend arte-

fact fragments. For example, Elkamel et al. [37] use

similarity metrics to suggest similar classes to newly

created classes. The developer may accept the sug-

gested classes with all or some of their attributes and

methods. DoMoRe [5, 6] addresses the same problem

by means of semantic similarities. It relies on an exten-

sive knowledge database – called SemNet – of several

million domain-specific terms and their relationships

to provide context-sensitive recommendations. In par-

ticular, DoMoRe suggests names for new elements,

and possible related concepts to the selected one (e.g.,

upon selecting a class, the system suggests possible

sub-/superclasses, container and aggregated classes,

related and associated classes). Savary-Leblanc [121]

envisions a RS that calculates the similarity using se-

mantic distances obtained from lexical databases like

WordNet [84]. Extremo [123–125] also employs seman-

tic similarity based on WordNet to provide a ranked

list of recommended model elements, upon an explicit

query of the user.

Content-based similarity has been applied to trans-

formation development as well. CONVErT [10] helps

discovering and specifying transformation correspon-

dences using concrete visualisations. A RS suggests

mappings between source and target models based on

different similarity heuristics, choosing mappings that

resemble examples provided by the user. In a similar

vein, AXSM [52] recommends mappings based on sim-

ilarity criteria (source/target element tag names, ele-

ment types, structural similarity, example data item

equivalences) and previous user selections within the

MaramaTorua tool. Refactory [111] supports the defi-

nition of generic refactorings over role models so that

developers can reuse the refactorings on new languages

by mapping the role model elements into elements of

the language meta-model. The tool includes a RS to

complete the mapping using structural similarity and

other heuristics, like name similarity.

Collaborative filtering. These approaches exploit

information about past behaviour or opinions from the

user community [56]. In some cases, users correspond

to developers for which personalised recommendations

are generated, and in other cases, users (and items)

are mapped to elements within the artefacts that are

target of recommendations.

MAGNET [16], PARMOREL [11, 53] and Mod-

Bud [116] belong to the first case. MAGNET is a RS

within the AutoFOCUS3 modelling tool to help begin-

ners to learn using the tool. It monitors user actions

and proposes short videos illustrating what to do next.

The RS model is based on data collected during a tu-

torial with a previous set of users. PARMOREL uses

reinforcement learning to find a sequence of actions

that repairs the issues present in a model. The al-

gorithm initially reuses the experience obtained from

Recommender Systems in Model-Driven Engineering 17

Table 6 Recommender systems for MDE: Recommendation method.

Recommendation Degree
Approaches Acquisition Type Temporality Recommended Item Cardinality Ranking

Content-based
AXSM [52] Implicit, Explicit Short-term Artefact fragment All X
Cerqueira et al. [26] Implicit, Explicit Short-term Complete artefact N X
CONVErT [10] Implicit, Explicit Short-term Artefact fragment N X
DoMoRe [5,6] Implicit Short-term Artefact fragment All X
Elkamel et al. [37] Implicit Short-term Artefact fragment All
Extremo [123–125] Explicit Short-term Artefact fragment All X
Paydar et al. [100,101] Implicit Short-term Complete artefact N X
Refactory [111] Implicit Short-term Artefact fragment N
Savary-Leblanc [121] Implicit unknown Artefact fragment unknown
SimVMA [132] Implicit, Explicit Short-term Complete artefact, artefact fragment All X
Collaborative filtering
MAGNET [16] Implicit Short-term Modelling advice All X
Matikainen et al. [81] Implicit Short-term Complete artefact N X
ModBud [116] Implicit, Explicit unknown Modelling advice unknown unknown
PARMOREL [11,53] Implicit, Explicit Long-term Editing actions One
Knowledge-based
AMOR [21] Implicit Short-term Editing actions All X
Anguel et al. [8] Implicit Short-term Editing actions All
ASIMOV [38] Implicit Short-term Editing actions N
BAM [137] Implicit Short-term Editing actions All X
Baya [27] Implicit Short-term Artefact fragment N X
Bobek et al. [17] Implicit Short-term Artefact fragment N X
BPMoQualAssess [60] Implicit Short-term Modelling advice All
Deng et al. [31] Implicit Short-term Artefact fragment N X
DiaGen [92] Implicit Short-term Editing actions All
DIG MDE [92] Implicit, Explicit Short-term Artefact fragment All
DPF [108] Implicit Short-term Artefact fragment All
DSL-maps [103] Implicit Short-term Artefact fragment All X
IPSE [40] Implicit Short-term Artefact fragment, modelling advice One
Kermeta [86] Implicit Short-term Artefact fragment All
Li et al. [75] Implicit Short-term Artefact fragment N X
Mani et al. [79] Implicit Short-term Editing actions All
MDSafeCer [87] Implicit Short-term Modelling advice All
Nassar et al. [91] Implicit Short-term Editing actions All
RapMOD [72,73] Implicit Short-term Artefact fragment N X
REBUILDER [42] Implicit Short-term Complete artefact, artefact fragment All X
Refacola [130] Implicit Short-term Editing actions N
ReVision [98] Implicit Short-term Editing actions All X
Sen et al. [126,127] Implicit, Explicit Short-term Artefact fragment N
UCcheck [9] Implicit Short-term Modelling advice All
Hybrid: Content-based, collaborative filtering
Heinemann [49] Implicit Short-term Artefact fragment N X
Kögel et al. [68, 69] Implicit Short-term Editing actions N
Koschmider et al. [50,51,71] Implicit, Explicit Short-term Complete artefact, artefact fragment N X
Hybrid: Content-based, knowledge-based
B-repair [24] Implicit Short-term Editing actions N X
Hybrid: Content-based, social-based
Rangiha et al. [110] Implicit, Explicit Long-term Artefact fragment All X
SBPR [63,64] Implicit Short-term Complete artefact All X
Other Method
anATLyzer [117–119] Implicit Short-term Editing actions All X
Batot et al. [12] Implicit Short-term Editing actions N X
Clarisó et al. [28] Implicit, Explicit Short-term Editing actions N X
IntellEdit [93] Implicit Short-term Editing actions All X
PME [99] Implicit Short-term Artefact fragment All X
SMART [47] Implicit Short-term Editing actions All
Any Method
Hermes [34–36] Implicit, Explicit Long-term Editing actions N X

18 Lissette Almonte et al.

other users’ repairs, and learns after each repair. Mod-

Bud is an envisioned framework to build modelling

bots to assist novice users. The authors foresee using

machine learning to predict good modelling decisions

for given design requirements.

Matikainen et al. [81] address the second case. Their

RS selects the best-performing state machine to con-

trol a robotic vacuum cleaner. Room layouts are in-

terpreted as users, robot state machines as items, and

item ratings are based on the performance of the robot

state machines on the room layouts.

Knowledge-based. Most approaches belong to this

category. They use techniques that can be gen-

erally classified as constraint-based or case-based.

Constraint-based techniques determine the recom-

mendations by looking for a set of items that fulfil

established domain-dependent rules. Case-based tech-

niques, in contrast, provide recommendations to a

problem by examining past solutions for alike prob-

lems (cases) [56].

Some of the constraint-based recommenders found in

the literature are built upon technologies such as Alloy

and Prolog. Specifically, Sen et al. [126] use Prolog as

a backend of the AToM3 language workbench [29] to

suggest completions of a partial model. The work was

extended by using Alloy [127] to recommend the clos-

est valid complete model within a given scope. Ker-

meta [86] also uses Alloy to provide completion sug-

gestions. Refacola [130] provides a constraint-based

language to express model-assistance operations in a

declarative way. In the domain of education, IPSE [40]

relies on Prolog to guide users in creating a class di-

agram. The guidelines are explicitly modelled by the

teacher by means of constraints suggesting hints when-

ever matched. For the domain of embedded systems,

DIG MDE [92] uses Prolog to guide the user in com-

pleting combinatorially challenging modelling prob-

lems on the basis of user-defined rules.

RSs for completion and repair are sometimes based

on (graph transformation) rules. DPF [108] computes

completion rules which ensure the satisfaction of well-

formedness predicates. RapMOD [72] matches editing

operations in UML structural diagrams to a catalogue

of modelling activities, and ranks the candidate activ-

ities by relevance. Different from model completion,

rule-based model repair may require deleting elements

to obtain a valid model. Hence, Nassar et al. [91] derive

graph transformation programs able to fix an invalid

model by first deleting superfluous objects and links,

and then adding necessary elements. DiaGen [82] uses

hyper-graph grammar rules and hyper-graph patches

(graph modifications) to propose both model comple-

tions and repairs. Similarly, ReVision [98] proposes

model repairs based on consistency-preserving editing

rules, with heuristics that avoid undoing former edit-

ing steps.

For quality assurance, BPMoQualAssess [60] recom-

mends improvements for process models based on

rules modelling expected quality criteria (e.g., regard-

ing size, nesting levels, and element ratios), and UC-

check [9] provides advices for improving use case dia-

grams based on sets of rules and guidelines.

Recommenders for model/meta-model co-evolution

can also be rule-based. This is the case of ASI-

MOV [38], where the language designer specifies the

migration assistance rules, and modellers use them to

obtain recommendations for model migration. In con-

trast, the approach by Anguel et al. [8] suggests a mi-

gration strategy based on meta-model matching and

the use of logic programming.

Some rule-based RSs target behavioural models. MD-

SafeCer [87] recommends how to resolve flaws of safety

argumentations attached to process models. For this

purpose, it first identifies the problematic elements,

and then uses rules to provide advices to resolve the

deviations. Also for process modelling, BAM [137] uses

model-checking to detect errors in process models, and

suggests corrections for the errors in relation to user-

defined validation rules and Dwyer’s temporal specifi-

cation patterns [33].

Some works use patterns following a case-based ap-

proach. In particular, Baya [27] relies on a knowledge

base of curated patterns, several similarity metrics and

ranking algorithms as a basis for the recommenda-

tion of the next steps when building mashup models.

Moreover, it applies weaving to incorporate the rec-

ommended pattern into the mashup model. The pro-

cess model recommenders of Li et al. [75] and Deng

et al. [31] extract task relations and patterns from

process models, which are then used to recommend

activity nodes for the current model. The AMOR [21]

model versioning system recommends resolution pat-

terns for conflicts between two model versions. The

patterns can be mined from repositories or specified

manually. DSL-maps [103] uses a catalogue of patterns

to transition from the requirements of a DSL (given

as a mind-map) to its design (given as a meta-model).

It performs a lexical analysis of the requirements to

match them against an ontology-based description of

the patterns, and suggests a ranked list of patterns to

realize the requirements. Mani et al. [79] also use pat-

terns to assist when repairing faults in input models

of code generators. Their approach identifies correct

output fragments that are similar to the incorrect one,

and suggests repair actions based on run-time data.

Recommender Systems in Model-Driven Engineering 19

Finally, probabilistic forms of knowledge representa-

tion are also possible. For example, REBUILDER [42]

combines case-based reasoning with WordNet and

Bayesian networks to enable reusing UML diagrams,

or part of them. Bobek et al. [17] also use Bayesian

networks to recommend following tasks when instan-

tiating a configurable process model.

Hybrid. Some works combine several recommendation

methods to benefit from their strengths and mitigate

particular limitations. The surveyed papers have com-

bined content-based techniques with collaborative fil-

tering, social-based and knowledge-based methods.

Three approaches combine collaborative filtering with

content-based recommendations. The first one, by

Kögel et al. [68, 69], recommends model changes by

looking at the previous model history (e.g., what other

developers did on previous model versions) and co-

occurring model changes. Heinemann [49] evaluates

the use of association rules and collaborative filter-

ing to recommend Simulink library elements for the

current model. The collaborative filtering method con-

siders models as users, and elements as items. Finally,

the RS of Koschmider et al. [50,51,71] uses both simi-

larity metrics and frequency of use by the community

to recommend complete process models or fragments.

For behavioural modelling, B-repair [24] suggests au-

tomatic repairs of faulty models written in the B for-

mal specification language. The approach uses two

types of rules (hence being knowledge-based) to sug-

gest fixes in state machine transitions. Then, it uses

machine learning (features learnt from state machine

transitions, a content-based approach) to estimate the

quality of the repairs and rank the recommendations.

Finally, SBPR [63, 64] combines the traditional

content-based approach with social-based recommen-

dation to suggest business process models for reuse.

For this purpose, it extracts information from the

user profile in LinkedIn2. Similarly, the approach by

Rangiha et al. [110] profits from social tagging to rec-

ommend suitable actors and roles in a social business

process modelling tool. In addition, it recommends

tasks based on similarity metrics.

Other method. A few works use non-traditional rec-

ommendation methods based on search and static

analysis.

On the one hand, two approaches use model search as

the underlying technique for recommendation, both

targeting OCL. Clarisó et al. [28] generate potential

fixes to OCL constraints by using mutation. Batot

et al. [12] tackle the co-evolution of OCL constraints

and meta-models using multi-objective optimization

2 https://www.linkedin.com/

guided by criteria like correctness and minimization

of changes and information loss.

On the other hand, several works provide recommen-

dations out of the static analysis of models, meta-

models or OCL expressions. PME [99], which extends

the generic modelling environment (GME) to support

proactive modelling, recommends further editing ac-

tions (e.g., connecting an object to another) upon

user actions (e.g., selecting an object). The recommen-

dations are created by the syntactic analysis of the

meta-model and OCL constraints. IntellEdit [93] rec-

ommends quick fixes for repairing models based on the

static analysis of failing OCL expressions. It ranks the

recommended fixes by the amount of required changes

(from lower to higher). AnATLyzer [117–119] extends

the ATL IDE for developing model transformations

with the detection of type errors and suggestions of

quick fixes. Errors are detected by static analysis and

model finders. The proposed quick fixes are ranked by

the number of errors that they correct. The ranking

can be calculated dynamically using speculative anal-

ysis [88] (i.e., the simulated execution of all possible re-

pairs and the analysis of their consequences), or stati-

cally using rankings pre-computed on a set of transfor-

mations with injected faults. Finally, SMART [47] sup-

ports test-driven development of UML models. It stat-

ically analyses the test cases and their execution logs

to report errors. Moreover, it suggests quick fixes for

automatically solving structural errors (e.g., adding

a missing model element), and provides guidance to

solve behavioural errors triggered during the test case

execution (e.g., displaying a sequence diagram with

the test case execution, or a summary of the changes

in attribute values or the model state).

Any method. The framework Hermes [34–36] for the

creation of RSs can be extended with any recommen-

dation strategy and recommendation method. It pro-

vides facilities to define the recommendation context,

which can be obtained either implicitly or explicitly.

Developers of RSs can persist user preferences (long-

term temporality) and set filters and ranks for their

strategies.

Once we have classified the works according to the

recommendation method, we characterise how they col-

lect the user’s preferences (acquisition type), the tem-

porality of those preferences, and the size and ordering

of the recommendation sets (recommendation degree).

Acquisition type. All works but Extremo collect

data implicitly. The most common type of implicit

data is the user’s previous interaction with the sys-

tem (including the current selection of elements in the

20 Lissette Almonte et al.

editor) and the in-progress model. In some cases, like

SBPR, this includes user information from LinkedIn.

In addition, 12 approaches [10,11,26,28,50–53,71,92,

110, 116, 123–127, 132] also collect data explicitly. In

these cases, data is acquired through questionnaires,

parameters, tags or requirement definitions, in com-

bination with implicit data acquisition methods like

analysing the user’s in-progress model.

Temporality. Most approaches (90%) collect prefer-

ences for their use during a short period of time, typ-

ically the current modelling session or model state.

PARMOREL [11, 53] uses long-term preferences by

storing the experience gained from each repair, allow-

ing the algorithm to improve its performance in con-

secutive executions. The process model recommender

of Rangiha et al. [110] exploits persistent social tags to

express, e.g., required skills for tasks and skill-sets of

users. Hermes [34–36], being a framework, enables de-

velopers to persist user preferences as required by the

recommendation strategy. Finally, two works [116,121]

do not provide detailed temporality information.

Recommendation degree. When it comes to the

recommended items, most approaches (53%) present

all recommendations found by the method to the user.

Since this might be overwhelming if there are many

options, some approaches (4%) present just one rec-

ommendation, and others (39%) present the top N

recommendations.

The filtering criteria vary depending on the recom-

mendation method, and are frequently used to rank

the suggestions. Examples of filtering criteria include

the most similar models (as in [26]), the quick fixes re-

pairing more errors (as in [119]), or the fixed model or

constraint having the lowest number of modifications

with respect to the original one (as in [28,93]). Some-

times, the quality of the recommendation is calculated

using pre-trained machine-learning models, as in [24].

In the case of anATLyzer [119], the user can choose ei-

ther a fast but less accurate ranking of recommended

quick fixes (based on a pre-calculated estimation of

the repair power of quick fixes); or a slower but more

accurate one (based on a speculative application of the

quick fixes to the current transformation). As Table 6

shows, some early works do not provide information

about cardinality or ranking.

5.4 Evaluation

In this section, we review how the RSs have been evalu-

ated on the basis of the two orthogonal features shown

in Figure 8: the followed evaluation methods and the

used evaluation metrics.

Evaluation

ApplicationIndependent

RankingAccuracy

UsageSatisfaction

Method

OfflineExperiment

ApplicationDependent

Metrics

OnlineExperiment

RatingPrediction

SystemPerformance

RecommendationQuality

UserStudy

OtherMeasure

⇒ ∨UsageSatisfaction OnlineExperiment UserStudy

Fig. 8 Evaluation dimensions for RSs in MDE.

As the figure shows, we first distinguish three types

of evaluation methods [45]: offline experiments, online

experiments, and user studies. Offline experiments cor-

respond to analytical studies on datasets, online exper-

iments are user-centric studies that evaluate the system

in a real setting, and user studies consist of experiments

planned for small groups of participants.

In addition, we identify several metrics to assess

different recommendation goals and quality measures.

We classify the metrics as application-independent

and application-dependent. In turn, application-

independent metrics are divided into three groups.

The first one comprises traditional metrics used to

evaluate RSs regardless the application or task for

which they have been developed. Here, we distinguish

between recommendation quality (accuracy) metrics –

i.e., rating prediction metrics (e.g., MAE and RMSE)

and ranking accuracy metrics (e.g., precision, recall,

nDCG and MRR) – and other measures that capture

non-accuracy recommendation characteristics, such

as diversity, coverage and novelty. A second group

of domain-independent metrics is related to system

performance, such as consumed time and required

resources to perform a task. The third group of

domain-independent metrics is formed by usage sat-

isfaction metrics, such as user engagement, perceived

usefulness and trust on the system, as well as system

usability, responsiveness, security and privacy. As

Figure 8 shows, measuring usage satisfaction requires

performing on-line experiments or user studies, as

offline experiments do not involve users.

Finally, application-dependent metrics are devised

for particular MDE applications and tasks. They in-

clude metrics such as the average number of constraint

violations in model repair recommendations, or the to-

tal number of valid matches in the recommendation of

model transformation mappings.

Table 7 categorises the analysed RSs according to

the method (offline, online and user study) and metrics

used for their evaluation. An approach can appear mul-

Recommender Systems in Model-Driven Engineering 21

Table 7 Recommender systems for MDE: Evaluation.

Application Independent
Rating Ranking Other System Usage Application

Approaches Prediction Accuracy Measure Performance Satisfaction Dependent
Offline experiment
AMOR [21] X
anATLyzer [119] X
Batot et al. [12] X
Baya [27] X X
B-repair [24] X
CONVErT [10] X
Deng et al. [31] X X
DiaGen [82] X
DIG MDE [92] X
Extremo [123–125] X X
Heinemann [49] X
IntellEdit [93] X X
Kögel et al. [68, 69] X
Li et al. [75] X X
Mani et al. [79] X
Matikainen et al. [81] X
PARMOREL [11,53] X
PME [99] X X
Refacola [130] X X X
Refactory [111] X
SBPR [64] X
Online experiment
ASIMOV [38] X X
DoMoRe [5,6] X
User study
anATLyzer [119] X
AXSM [52] X
Baya [27] X X
Cerqueira et al. [26] X X
CONVErT [10] X
DSL-maps [103] X
Elkamel et al. [37] X
IPSE [40] X
Koschmider et al. [50, 51,71] X X X
MAGNET [16] X
Paydar et al. [100,101] X
RapMOD [72,73] X X X
No evaluation
[8,9,17,28,34–36,42,47,60,86,87,91,98,108,110,116,121,
126,127,132,137]

tiple times in the table if it was evaluated by means of

several methods. Additionally, Table 8 presents a ma-

trix crossing the methods and metrics used in the pa-

pers. Overall, we can observe that online experiments

are the least used evaluation method, and that neither

rating prediction nor non-accuracy metrics are used;

the former are indeed in disuse in the RS research field.

A total of 19 approaches (37%) have no evaluation.

Offline experiment. This is the most popular evalu-

ation method, used in 21 of the revised approaches.

Making use of data records with past user behaviour

and feedback, among other information, offline ex-

periments simulate past and present real conditions

without requiring the participation of users during the

evaluation process.

These experiments exploit available datasets to com-

pute a variety of aspects about a RS, such as its scal-

ability and performance, the precision and quality of

its recommendations, and the reduction of modelling

effort. However, since data repositories of models are

not as common as, e.g., those for programming lan-

guages, a fundamental issue about offline experimen-

tation for MDE recommenders is the availability of

artefacts over which the evaluation can be performed.

To address this issue, we have observed four solutions

22 Lissette Almonte et al.

Table 8 Recommender systems for MDE: Evaluation vs metrics.

XXXXXXXXMetrics
Evaluation Offline Experiment Online Experiment User Study

Rating Prediction

Ranking Accuracy

Baya [27]
B-repair [24]

CONVErT [10]
Deng et al. [31]
Heinemann [49]
IntellEdit [93]

Kögel et al. [68, 69]
Li et al. [75]

Refacola [130]
SBPR [64]

Cerqueira et al. [26]
Elkamel et al. [37]

Paydar et al. [100,101]
RapMOD [72,73]

Other Measure

System Performance

Baya [27]
Deng et al. [31]
DiaGen [82]

DIG MDE [92]
Extremo [123–125]

Li et al. [75]
PARMOREL [11,53]

PME [99]
Refacola [130]

ASIMOV [38]
Baya [27]

Koschmider et al. [50, 51,71]
RapMOD [72]

Usage Satisfaction DoMoRe [5,6]

AXSM [52]
Baya [27]

Cerqueira et al. [26]
CONVErT [10]
DSL-maps [103]

IPSE [40]
Koschmider et al. [50, 51,71]

MAGNET [16]

Application-
Dependent

AMOR [21]
anATLyzer [119]
Batot et al. [12]

Extremo [123–125]
IntellEdit [93]

Mani et al. [79]
Matikainen et al. [81]

PME [99]
Refacola [130]
Refactory [111]

ASIMOV [38]
anATLyzer [119]

Koschmider et al. [50, 51,71]
RapMOD [72,73]

in the literature. The first one is the generation of syn-

thetic data. For the case of repair recommenders, the

set of artefacts is typically generated by applying mu-

tation operators over a set of seed artefacts to obtain

faulty artefact variants. This approach was used by

anATLyzer to evaluate the recommendation of quick

fixes over transformations [117–119]; by B-repair to

evaluate fixes over state machines [24]; by IntellEdit

to evaluate if its content-assistant solves errors in mod-

els [93]; by Matikainen et al. to evaluate the recom-

mendation of state machines for robotic cleaners [81];

and by Mani et al. to evaluate the effectiveness of

its model repair recommender [79]. The seed artefacts

may come from third parties (as in the case of anAT-

Lyzer and Mani et al.), be generated synthetically (as

in IntellEdit and Matikainen et al.) or manually (as

in B-repair). A second solution is to locate repository

sources of the appropriate type. For example, CON-

VErT was evaluated through models from the Illinois

Semantic Integration Archive [10], Extremo gathered

heterogeneous information from several sources such

as OMG meta-models or the AtlanMod meta-model

Zoo [123], Refacola used the whole AtlanMod Ecore

meta-model Zoo [130], Heinemann used models of a

Simulink repository [49], Matikainen et al. used floor

plans from the Google SketchUp database of 3D mod-

els [81], and the evaluation of SBPR involved process

models from different sources [64]. A third solution

consists of taking example artefacts from published

papers (as in B-repair), or datasets used by other au-

thors (as in the case of Kögel et al. in 2016 [68, 69]).

Finally, another solution is to obtain real-world arte-

Recommender Systems in Model-Driven Engineering 23

facts from companies, like Li et al. [75] and Deng et

al. [31], who used a dataset of 221 business processes

collected from a local government in China, in com-

bination with a synthetic dataset. Table 9 shows the

public (i.e., available) datasets and repositories used

in the surveyed papers.

In addition to mutating artefacts to introduce faults,

we have found other modifications in artefacts. In RSs

for model completion, the models of the considered

dataset are removed elements to enable triggering the

recommendations, and their effects are compared with

the original model. This is the strategy followed by

Heinemann [49], Li et al. [75], Deng et al. [31] and

Baya [27]. In the first case, half of the model elements

were removed; in the second case, the recommenda-

tion starts from the second activity node; and in the

two last cases, model portions of increasing size were

systematically removed.

Some approaches require training the recommender.

For this purpose, the dataset is partitioned into sets

for training and validation, as done by Li et al. [75],

Deng et al. [31] and Heinemann [49]. To estimate the

generalizability of the method and avoid problems re-

lated to overfitting and selection bias, k-fold cross-

validation is recommended for statistical analysis [25].

This way, Deng et al. [31] use 5-fold cross-validation:

the dataset is partitioned into five subsets, one is taken

for validation (testing), the rest for training, and the

procedure is repeated 5 times with each subset. Simi-

larly, Heinemann [49] used 10-fold cross-validation.

Regardless the use of datasets, some systems are em-

pirically compared against baselines, which can be

naive methods as done by Heinemann [49], who used

a RS that suggests the most popular Simulink blocks

in libraries. A few cases use existing recommenders

built by other researchers, like Li et al. [75] and

Deng et al. [31], who compare their approach against

two other recommenders for process models. In other

cases, the system is evaluated with and without its

recommendation component enabled [99,111]. Finally,

some approaches are evaluated analytically, like Ex-

tremo [124,125], whose extensibility is assessed via in-

tegration with several third-party tools and formats,

or PME [99], where the authors built an analytical

model to estimate the modelling effort.

Online experiment. Only two of the revised ap-

proaches were evaluated using online experiments,

both in the context of external projects. ASIMOV [38]

was evaluated using a real commercial scenario named

Alps Furniture. Two groups of users were asked to co-

evolve models either using ASIMOV or manually, and

the results were analysed to assess the effort and time

reduction achieved when using the tool. The domain

modelling recommender DoMoRe [5, 6] was used in

various industrial and research environments, and the

user feedback and experience allowed identifying po-

tential aspects for improvement.

User study. There are 12 approaches evaluated with

user studies. These typically involve a small group of

users that perform some tasks, making it possible to

analyse the effectiveness of the users on completing

the tasks with and without the recommender, as well

as to gather information about user experience via

questionnaires [112].

We have identified 3 types of user studies, in which: i)

users perform tasks using the proposed recommender;

ii) users utilise the recommender in an A/B testing

setting (i.e., some users perform tasks with the rec-

ommender, and some others without it); and iii) the

recommendations are compared to the decisions an ex-

pert user would make (i.e., the expert user plays the

role of oracle function).

The first type of user studies was applied to

AXSM [52] to evaluate usage satisfaction; to the RS

proposed by Cerqueira et al. [26] to evaluate the us-

age satisfaction and the accuracy of its sequence dia-

gram recommendations; to CONVErT [10] to get user

feedback on the usefulness and usability of the tool

to develop transformations aided by interactive rec-

ommendations; to DSL-maps [103] to assess the per-

ceived usability and usefulness of its pattern assistant

to build meta-models; to IPSE [40] to measure usage

satisfaction about its support to help learning UML

skills; to MAGNET [16] to get user feedback on the

usefulness of the recommendations to learn using Aut-

oFOCUS3; and to RapMOD [72, 73] to measure the

quality of its graphical model auto-completion recom-

mendations and the reduction of modelling effort.

The second study type was used by Baya [27] to eval-

uate (in a crowdsourced user study) whether recom-

mending and weaving mashup model patterns reduces

the development time, the number of user interactions,

and the time between user interactions. In addition,

the participants filled-in a questionnaire to evaluate

their satisfaction with the tool. Also in this category,

Elkamel et al. [37] evaluate the relevance and accuracy

of the recommended elements for UML diagrams, and

Koschmider et al. [50, 51, 71] asked two sets of stu-

dents to create process models with and without rec-

ommenders. In the latter case, the authors measured

the time spent, the quality of the results and the usage

satisfaction.

Finally, two approaches compare their recommenda-

tions with the a-priori choices of expert users. The

authors of anATLyzer [119] evaluated the usefulness

of its quick fixes and the utility of its ranking with

24 Lissette Almonte et al.

Table 9 Public datasets used in the evaluations.

Dataset URL Paper

Alps Furniture meta-model
https://backus1.uniandes.edu.co/~enar/dokuwiki/doku.php?id=

asimovevaluation
[38]

anATLyzer quick fix website (ATL transform.) http://sanchezcuadrado.es/projects/anatlyzer/quickfixes.html [119]
ATL transformations Zoo https://www.eclipse.org/atl/atlTransformations/ [118]
AtlanMod Ecore Meta-model Zoo https://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Ecore [130]
Extremo website (meta-models) https://github.com/angel539/extremo/wiki/Performance-Evaluation [123]
Extremo website (model instances) https://github.com/angel539/extremo/wiki/Case-Studies [123]
Google SketchUp (3D models) https://www.sketchup.com/products/3d-warehouse [81]
Illinois Semantic Integration Archive http://pages.cs.wisc.edu/~anhai/wisc-si-archive/ [10]
Matlab Central File Exchange (Simulink files) https://www.mathworks.com/matlabcentral/fileexchange/ [49]

Model versioning benchmarks
http://www.modelversioning.org/index3899.html?option=com_content&

view=article&id=54&Itemid=68
[21]

PARMOREL github (models) https://github.com/MagMar94/ParmorelRunnable [53]
PARMOREL website (models) https://ict.hvl.no/project-parmorel/ [11]
ProB Public Examples Repository https://www3.hhu.de/stups/downloads/prob/source/ [24]
Refactory website (generic model refactorings) http://www.modelrefactoring.org [111]
State machine execution contract http://ecariou.perso.univ-pau.fr/contracts/exec-contract.html [12]
State machine model and OCL queries https://github.com/atlanmod/LazyOcl_StateMachineExample [12]
UML-based Web Engineering (UWE) website https://uwe.pst.ifi.lmu.de/examples.html [100,101]
Yahoo! Pipes http://www.pipes.digital/pipes [27]

respect to the free choices made by two independent

developers. Paydar et al. [100,101] used the opinion of

experts as the golden standard to evaluate the accu-

racy of their algorithms to detect behaviour/concepts

in use cases, annotate activity diagrams with entities

from class diagrams, and recommend use cases based

on similarity metrics.

Application-independent metrics. The most used

ranking accuracy metrics are precision, recall and F-

measure [10,26,27,31,49,64,68,69,72,73,93,100,101].

Some papers consider additional metrics to evaluate

the accuracy of the recommendations, such as mean

reciprocal rank (MRR) [100, 101]; 11-point interpo-

lated average precision [100,101]; the average number

of recommended alternative solutions per successful

recommendation [130]; the hit rate, which is the frac-

tion of correct recommendations in the recommenda-

tion list [31]; or relevance and accuracy rates [37].

Several authors measure the performance of their ap-

proaches, being time metrics the most common, in

particular, the time to compute recommendations [11,

27,53,63,73,82,99,123,130], and the time spent by the

user to perform a task [27,38,72].

Finally, usage satisfaction metrics include mostly feed-

back from the users after using the system. The feed-

back is collected informally [5,6,52], by means of ques-

tionnaires [10, 16, 27, 40, 103] or asking the users to

rank the provided recommendations using a Likert

scale [26].

Application-dependent metrics. These are metrics

specific to MDE activities, such as the number of

model editing operations [38, 72, 79, 99], the edit dis-

tance between conflict pairs [21], the average num-

ber of properties changed per applied quick fix [130],

the number of attempts to co-evolve a model [38], the

lines of code needed to integrate a meta-modelling tool

with the RS [124, 125], the number of meta-model

constraints fixed in a co-evolution scenario [12], the

amount of constraint violations [93], the coverage of a

room layout model [81], or the number of valid meta-

model/role model matches [111].

Additionally, some metrics are related to the com-

pleteness or correctness of the recommendation ap-

proach, such as how complete a set of quick fixes is [79,

119], the validity of quick fixes or co-evolution actions

(they completely remove an error) [38,79,119,130], or

the impact of quick fixes (number of problems removed

or introduced by their application) [93,119].

6 Discussion

This section discusses the results of our systematic map-

ping in relation to the three RQs posed in the introduc-

tion. Section 6.1 answers RQ1 (“In which ways can rec-

ommender systems assist in the different tasks within

MDE processes?”), Section 6.2 answers RQ2 (“Which

recommendation techniques are most commonly used

to support MDE tasks, and how are recommenders

for MDE evaluated?”), and Section 6.3 answers RQ3

(“What are the main opportunities in recommender sys-

tems for MDE solutions?”). Finally, Section 6.4 dis-

cusses the threats to the validity of our study.

Recommender Systems in Model-Driven Engineering 25

6.1 RQ1: In which ways can recommender systems

assist in the different tasks within MDE processes?

As discussed in Section 5.1, existing RSs for MDE tar-

get five main purposes: complete, create, find, repair

and reuse. These tasks can be performed over models,

meta-models, transformations or code generators.

The graphic in Figure 9 shows the number of ap-

proaches per purpose, stratified by the artefact type. It

can be observed that the majority of approaches focus

on completion and repair (together, 73.4% of the ap-

proaches), followed by reuse (10.9%), find (7.8%), other

purposes (4.7%) and create (3.2%).

4 4

1 1 1

21

16

5 4

3 1

2

1

1

1

0

5

10

15

20

25

Complete Repair Reuse Find Other Create

Meta-model

Model

Transformation

Code generator

#a
p

p
ro

ac
h

e
s

Fig. 9 Distribution of approaches by recommendation pur-
pose.

As Figure 10 shows, most recommenders work

over models (76.5%), followed by meta-models (15.6%),

transformations (6.2%) and code generators (1.6%).

21

4
2

1

1

4

1

16

4

1
1

5

1

1

3

0

5

10

15

20

25

30

35

40

45

50

Model Metamodel Transformation Code generator

Complete

Create

Find

Repair

Reuse

Other

#a
p

p
ro

ac
h

e
s

Fig. 10 Distribution of approaches by type of artefact.

Recommenders with the purpose of completing

artefacts typically help in the development of mod-

els. For this purpose, some approaches transform par-

tial models into a constraint satisfaction problem or

logic programming to obtain a syntactically correct

model conformant to its meta-model and integrity

constraints [40, 82, 86, 92, 126, 127, 130]. This may in-

volve adding many elements to the partial model. In-

stead, other approaches provide finer-grained recom-

mendations for a step-by-step construction of a model.

These recommendations are based on similar existing

models [34–37, 132], model libraries [49], model histo-

ries [68, 69], knowledge bases [5, 6], or a static analy-

sis of the language meta-model [99]. Since meta-models

are also models, some approaches can be applied on

both of them. Recommenders to complete transforma-

tions suggest mappings between source and target ele-

ments [10,52].

Recommenders in repair approaches mainly con-

sider models as well. These recommendations assist in

repairing inconsistent models using a variety of tech-

niques, such as rules [38, 91, 108], guidelines [60] or re-

inforcement learning [11, 53]. Sometimes, model repair

occurs on specific contexts, like meta-model/model co-

evolution [8,38] or conflict resolution in model version-

ing [21]. There is less support to repair meta-models and

OCL constraints [12, 28], transformations [117–119],

and models within code-generation activities [79].

In our study, we have identified numerous language-

independent approaches [11, 34–36, 53, 68, 69, 82, 86, 91,

93, 98, 99, 108, 123–127, 130], but most RSs are specific

for a modelling language. Figure 11 shows the targeted

languages for the language-dependent cases. Most are

widely used languages, like UML or process modelling

notations, and there are RSs for both structural models

(e.g., class diagrams) and behavioural ones (e.g., pro-

cess models, sequence diagrams, and state machines).

9
7

5
2 2 2 2

7

2

1
1

0

2

4

6

8

10

12 UML behavioural diagrams

UML sequence diagrams

UML use case diagrams

UML class/structural diagrams

Other languages

#a
pp

ro
ac

he
s

Fig. 11 Distribution of approaches by targeted language.

It is worth mentioning that there is tool support

for 99.2% of the approaches, though some of them

(37.2%) are prototypes. This demonstrates the feasibil-

ity of developing RSs for MDE tasks, but more effort

may be needed to increase the number of mature, fully-

developed tools. As Section 5.2 mentions, most recom-

menders help in the modelling activity on user demand,

but proactive approaches that monitor the user activity

to update the recommendations are not uncommon.

26 Lissette Almonte et al.

6.2 RQ2: Which recommendation techniques are most

commonly used to support MDE tasks, and how are

recommenders for MDE evaluated?

Figure 12 shows the recommendation methods used

by the studied approaches. Most RSs for MDE are

knowledge-based (47%), followed by content-based

(19.6%), hybrid (11.8%) and based on collaborative fil-

tering (7.8%). Among the hybrid approaches, two are

content-based and social-based, one is content-based

and knowledge-based, and three combine content-based

techniques with collaborative filtering. The bar Other

Methods refers to ad-hoc methods different from the

previous classical recommendation algorithms. Inter-

estingly, there are more RSs applying ad-hoc methods

(11.8%) than collaborative filtering (7.8%). Only one

approach is extensible on the recommendation meth-

ods and therefore it may potentially support any of

them [34–36].

24

10

6
4

13
1
2

0

5

10

15

20

25
Content-based, social-based

Content-based, knowledge-based

Content-based, collaborative filtering

Other methods

#a
pp

ro
ac

he
s

Fig. 12 Distribution of approaches by recommendation
method.

Most of the information to build personalised rec-

ommendations is collected implicitly. Only 13 works

consider explicit preferences of users, and all but one

of those cases use implicit information as well.

An interesting question concerns the relation be-

tween recommendation methods and modelling pur-

poses. Table 10 classifies the approaches along these

two dimensions (cf. Tables 3 and 6). We can see that

content-based methods have been used mostly to com-

plete artefacts, but also to find and reuse them; col-

laborative filtering has been applied to find, repair and

other purposes; knowledge-based RSs have been exten-

sively used to complete and repair artefacts, as well as

for every recommendation purpose in our classification

except finding; and other ad-hoc methods have targeted

complete and repair.

If we look at the recommendation purpose, we ob-

serve that recommenders for completion have used

all considered recommendation methods (especially

Table 10 Number of approaches grouped by recommenda-
tion purpose and method.

Content-
based

Collab.
filtering

Knowledge-
based

Hybrid Other Any

Complete 6 0 10 4 2 1
Create 0 0 2 0 0 0
Find 2 1 0 1 0 0
Repair 0 1 12 1 4 0
Reuse 3 0 1 1 0 1
Other 0 2 1 0 0 0

knowledge- and content-based) but collaborative fil-

tering. Creation tasks have only been approached us-

ing knowledge-based methods. Recommenders for find-

ing artefacts use collaborative filtering, content-based

or hybrid algorithms, but not knowledge-based. Re-

pair has been resolved mostly using knowledge-based

methods, but also using collaborative filtering, ad-

hoc and hybrid (content-based plus knowledge-based)

methods. Finally, reuse has been tackled by content-

based, knowledge-based and hybrid (content-based plus

collaborative-filtering) methods.

Regarding evaluation, only 32 out of the 51 ap-

proaches (62.7%) have been evaluated. Offline exper-

iments are the most frequent kind of evaluation [10–12,

21,24,27,31,49,53,64,68,69,75,79,81,82,92,93,99,111,

119, 123–125, 130]. This may be due to the difficulty

to find a relevant number of users with the required

level of expertise in modelling and willing to participate

in online experiments or user studies. Moreover, some

recommenders are implemented for very specific tools

developed within research labs, sometimes prototypi-

cally, and therefore the tools are neither mainstream

nor have a vast number of users. Therefore, while some

approaches have been evaluated by means of user stud-

ies [10, 16, 26, 27, 37, 40, 50–52, 71–73, 100, 101, 103, 119],

they involve small groups of participants (ranging from

2 to 44), typically students [10,26,37,40,73,100,101], de-

velopers/modellers [52,103,119] or more rarely employ-

ees [16,27]. Online experiments are very scarce [5,6,38].

Offline experiments require data, which sometimes

come from public repositories [10,49,64,81,123,130] or

companies [31,75]. However, in contrast to the program-

ming field, it is difficult to have access to modelling arte-

facts, especially from industrial projects. For this rea-

son, many authors resort to synthetic datasets created,

e.g., via mutation or systematic generation [24, 79, 81,

93, 117–119]. In other cases, the authors evaluate their

proposal using artefacts from other papers [24, 68, 69]

or analytically via case studies.

Some of the revised RSs have been evaluated using

domain-independent metrics applicable to general RSs,

specifically ranking accuracy metrics (mainly precision,

recall and F-measure), time metrics and usage satisfac-

Recommender Systems in Model-Driven Engineering 27

tion collected via questionnaires. The advantage is that

these metrics are standard and well accepted. As an ex-

ample, to measure usability (a dimension of usage satis-

faction), one could use de-facto standard questionnaires

like the System Usability Scale (SUS) [20]. Instead, or in

addition, some evaluations have considered metrics spe-

cific to MDE tasks – like the number of fixed/violated

OCL constraints in a model – or domain-specific no-

tions of completeness or correctness. These metrics are

defined ad-hoc for each case.

Finally, we discuss whether some kinds of recom-

mendation tasks are evaluated more than others. We

have found that all RSs with the purpose of finding

artefacts or fragments have been evaluated (100%), fol-

lowed by completion tasks (73.9% of the RSs help-

ing in completion tasks have been evaluated), repair

tasks (61.1%), and create (50%) and reuse tasks (50%).

RSs targeting repair have been mostly evaluated offline,

while recommenders for other purposes have been eval-

uated using a wider variety of methods.

6.3 RQ3: What are the main opportunities in

recommender systems for MDE solutions?

This section analyses gaps in the current research, re-

sulting from an analysis of the coverage of the feature

model by the proposals. Then, we identify opportuni-

ties based on an analysis of the different dimensions of

the classification we propose, using both insights from

the reviewed papers and our own experience.

Our analysis of the state-of-the-art reveals some

gaps in the targeted tasks and artefacts. Most ap-

proaches focus on models, a handful on meta-models,

very few on transformations, and hardly any on code

generators. However, given that MDE fosters the au-

tomated processing of models, RSs for transformations

and code generators (e.g., recommending completions

of the code generation template; suggesting template

fragments; or helping to repair faulty generators) would

be very useful for the community. Similarly, the purpose

of most RSs is completing and repairing models; how-

ever, there are few recommendation approaches for find-

ing relevant artefacts, reusing them in a given context,

and creating artefacts from scratch. For the latter case,

we envision RSs proposing initial artefact templates out

of higher-level descriptions, maybe defined using natu-

ral language. Finally, RSs for structural diagrams are

more numerous than those for behavioural diagrams.

Developing further RSs for behavioural diagrams would

reveal whether behaviour and structure may require

different recommendation methods, whether similarity-

based recommendation is enough for behavioural dia-

grams, or whether behavioural diagrams would benefit

from semantic comparison (e.g., based on execution) to

generate recommendations.

Many of the studied papers present RSs for a spe-

cific language or tool (cf. Tables 4 and 5). Such recom-

menders tackle a single problem and are “hard-wired”

into the systems they were designed for. Hence, an open

line of research is devising solutions that allow adapting

the recommendation algorithms, the users’ preferences

or the evaluation metrics to the users’ needs. In this re-

spect, a reference architecture for intelligent modelling

assistance was proposed in [90], and one step in this

direction is Hermes [34–36], since this framework per-

mits integrating RSs into tools as well extending the

framework with new recommendation methods.

In contrast to the field of programming, one of

the main barriers when building RSs for MDE activ-

ities is the lack of data that can be used for train-

ing the recommenders. There are several initiatives to

create repositories of modelling artefacts, both in the

MDE [39, 76, 114] (some listed in Table 9) and BPMN

communities [43]. Moreover, dedicated model search en-

gines have been recently proposed [76], which can be

used to create datasets of modelling artefacts. However,

more efforts to make artefacts public and accessible are

required.

Related to the previous point, we are recently wit-

nessing the proposal of low-code development plat-

forms for specific domains, like the creation of data

analysis workflows (e.g., RapidMiner3), chatbots (e.g.,

Dialogflow4) or event-driven applications (e.g., Node-

Red5). These platforms are cloud-based, making it eas-

ier for users without a technical background to con-

struct applications by means of graphical languages and

forms. Low-code platforms free the user from installing
the development tool and deploying the defined applica-

tions, since they are used in a web browser. Frequently,

low-code platforms form ecosystems where the models

created by all users are stored in the platform’s reposi-

tory. This availability of data and users makes low-code

platforms the ideal scenario for creating recommender

systems, as shown in [55].

As we discussed in Section 6.2, a large percentage

of the RSs in MDE are knowledge-based or content-

based. This differs from the predominance of collabora-

tive filtering and hybrid approaches in the RSs research

field [15], where e-commerce (e.g., Amazon, Zalando),

leisure (e.g., Netflix, Spotify), tourism (e.g., Booking,

Yelp) and social networks (e.g., Facebook, Twitter) are

the most widely addressed domains. It is in these do-

mains where large communities of users provide feed-

3 https://rapidminer.com/
4 https://cloud.google.com/dialogflow
5 https://nodered.org/

28 Lissette Almonte et al.

back – mainly in the form of numeric ratings and tex-

tual reviews – which is exploited to find user similar-

ities valuable for generating effective personalised rec-

ommendations. Following this trend, there are plenty of

opportunities to research on how to exploit further col-

laborative filtering in MDE, for instance, via model and

code sharing platforms. Moreover, the few revised works

that apply collaborative filtering to MDE neglect long-

term users’ preferences, hence this stands as a problem

worth investigating as well.

Regarding the evaluation of recommendations, Sec-

tion 6.2 showed that only two approaches [5, 6, 38] re-

port online experiments in real settings, and only one

of them [38] uses A/B testing, as commonly done in the

online evaluation of information retrieval and filtering

approaches. This evaluation methodology not only al-

lows assessing the performance of certain recommen-

dation functionality with users at a large scale, but

also its real effectiveness in a non-controlled scenario

where contextual conditions arise. In contrast, most

approaches were evaluated via offline experiments. In

these cases, using public datasets and following stan-

dard evaluation methodologies are essential to ensure

reproducibility and ease advances in the field. Except

for a few cases [27,119,123], we have observed a general

lack of reproducibility of the reported experiments. In

line with the current open science movement [83], we

believe that disclosing replication packages (containing

the raw data and all necessary scripts for their analy-

sis) is the way forward in this area. By making datasets

available, the creation of new RSs as well as their com-

parison and improvement are facilitated.

In addition to generic recommendation accuracy

and system performance metrics (cf. Table 7), we envi-

sion the formal definition and generalization of metrics

oriented to particular MDE tasks (i.e., complete, create,

find, repair and reuse) as a relevant research challenge.

As our study reveals, the literature already presents

ad-hoc metrics, such as the number of model editing

operations to evaluate model completion [72,99] or the

number of constraint violations to assess the correct-

ness of model repair [93]. However, there is room for

designing and reporting more general, well established

task-specific measures that would allow comparing dis-

tinct recommendation methods.

Related to user experience, an important success

factor of RSs is how they integrate within the MDE

tool [1, 89, 90]. For notations in the business process

modelling domain, some studies investigate how to

present recommendations [66], and surveys on the pre-

ferred ways to display recommendations in graphical

modelling have been conducted as well [36]. However,

more usability studies are required to understand the

most effective, user-friendly ways to present recommen-

dations for different styles of modelling languages and

tasks.

With respect to other research trends on RSs,

we highlight recommendation explainability [133] and

group-oriented recommendation [80] as two directions

of potential interest which, according to our review,

have not been addressed yet in the MDE area but are

being extensively investigated by the RS community.

On the one hand, explaining to the user the reasons for

which recommendations are presented, as well as the

potential benefits of the recommendations for the task

at hand, can increase the user engagement and trust on

the system, among other aspects [133]. On the other

hand, there are cooperative tasks and environments

that provide recommendations to a group of people,

and consequently have to take individual preferences

and constraints into account. In this context, the cho-

sen methods for aggregating user models and generating

consensus recommendations have to be complemented

with an appropriate (collaborative) evaluation [80].

Lastly, although it is out of the scope of this study,

we want to mention an open research issue related to

the development process of RSs. We have observed that

most RSs have been developed by hand from scratch,

and very few works have investigated the application of

MDE to assist in the design, implementation and eval-

uation of a RS for a given problem. The development

of a RS and its integration into a tool undoubtedly re-

quires a high effort, as noted in [90]. This makes the

construction of RSs for DSLs – which typically have

a smaller user community than languages like UML –

less cost-effective. Therefore, methods for automating

the construction of RSs for modelling languages, like
those proposed in [7, 129], could be very useful for the

MDE community.

6.4 Threats to validity

Some factors may threat the validity of our study. First,

we might have missed some papers due to the query we

have used. To mitigate this threat, we tested several

versions of the query, confirming that papers we knew

were relevant appeared in the query results.

A related threat is that some relevant papers might

not be indexed in the databases considered for our

query. To mitigate this risk, we performed a final pro-

cess of snowballing [138] to consider further relevant

papers not included in the query results.

In the screening process, we might have erroneously

left some relevant papers out. To mitigate this risk, each

paper was independently checked by the four authors of

Recommender Systems in Model-Driven Engineering 29

the study, and was added to the second screening phase

if one of them considered it relevant. In this second

phase, it was read in full detail.

Finally, there is a thin line dividing the systems that

can be considered to provide a RS, with respect to

others that just offer some kind of automation. This

situation is exacerbated by the fact that some sys-

tems rely on highly specialized algorithms which are

non-standard in the RS literature. In our review, we

included those systems that provide recommendations

and assistance to the user to choose a small set of items

over a large set of possibilities, or which consider im-

plicit or explicit users’ preferences. When in doubt, we

included the system in the study.

7 Summary

In this paper, we have presented a systematic map-

ping review of existing research works on RSs for MDE.

We have classified those works along four main dimen-

sions (domain, tooling, recommendation and evalua-

tion) characterised by means of feature models.

The review has allowed answering three research

questions. First, we have seen that current RSs mainly

target model completion and repair. Second, the most

used recommendation methods in MDE are knowledge-

based and content-based. Finally, we have identified re-

search gaps and opportunities in the area, like develop-

ing RSs helping in developing transformations and code

generators, finding and reusing artefacts, and creating

artefacts from scratch. We encourage the community

to pick these challenges to improve the current MDE

practice and tooling.

Acknowledgements We thank the reviewers for their use-
ful comments. This work has been funded by the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sk lodowska-Curie grant agreement
n◦ 813884 (Lowcomote [134]), by the Spanish Ministry of Sci-
ence (project MASSIVE, RTI2018-095255-B-I00), and by the
R&D programme of Madrid (project FORTE, P2018/TCS-
4314).

References

1. S. Abrahão, F. Bourdeleau, B. H. C. Cheng, S. Kokaly,
R. F. Paige, H. Störrle, and J. Whittle. User expe-
rience for model-driven engineering: Challenges and fu-
ture directions. In 20th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and
Systems, MoDELS, pages 229–236. IEEE Computer So-
ciety, 2017.

2. Acceleo. https://www.eclipse.org/acceleo/, 2020.
3. G. Adomavicius and A. Tuzhilin. Toward the next gen-

eration of recommender systems: A survey of the state-
of-the-art and possible extensions. IEEE Transactions

on Knowledge and Data Engineering, 17(6):734–749,
2005.

4. G. Adomavicius and A. Tuzhilin. Context-aware recom-
mender systems. In Recommender Systems Handbook,
pages 217–253. Springer, 2011.

5. H. Agt-Rickauer, R. Kutsche, and H. Sack. Automated
recommendation of related model elements for domain
models. In 6th International Conference on Model-
Driven Engineering and Software Development (MOD-
ELSWARD), Revised Selected Papers, volume 991 of
CCIS, pages 134–158. Springer, 2018.

6. H. Agt-Rickauer, R. Kutsche, and H. Sack. DoMoRe
- A recommender system for domain modeling. In 6th
International Conference on Model-Driven Engineering
and Software Development (MODELSWARD), pages
71–82. SciTePress, 2018.

7. L. Almonte, I. Cantador, E. Guerra, and J. de Lara.
Towards automating the construction of recommender
systems for low-code development platforms. In 1st
LowCode Workshop (LowCode@MoDELS), pages 66:1–
66:10. ACM, 2020.

8. F. Anguel, A. Amirat, and N. Bounour. Hybrid ap-
proach for metamodel and model co-evolution. In
5th IFIP TC 5 International Conference on Computer
Science and its Applications (CIIA), pages 563–573.
Springer, 2015.

9. E. R. Aquino, P. de Saqui-Sannes, and R. A. Vinger-
hoeds. A methodological assistant for use case diagrams.
In 8th International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD),
pages 227–236. SciTePress, 2020.

10. I. Avazpour, J. Grundy, and L. Grunske. Specify-
ing model transformations by direct manipulation us-
ing concrete visual notations and interactive recommen-
dations. Journal of Visual Languages and Computing,
28:195–211, 2015.

11. A. Barriga, A. Rutle, and R. Heldal. Improving model
repair through experience sharing. Journal of Object
Technology, 19(2):13:1–21, 2020.

12. E. Batot, W. Kessentini, H. A. Sahraoui, and
M. Famelis. Heuristic-based recommendation for meta-
model - OCL coevolution. In 20th ACM/IEEE Inter-
national Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS), pages 210–220. IEEE
Computer Society, 2017.

13. B. Baudry, S. Ghosh, F. Fleurey, R. B. France, Y. L.
Traon, and J. Mottu. Barriers to systematic model
transformation testing. Commun. ACM, 53(6):139–143,
2010.

14. A. Belloǵın, I. Cantador, and P. Castells. A comparative
study of heterogeneous item recommendations in social
systems. Information Sciences, 221:142–169, 2013.

15. S. Berkovsky, I. Cantador, and D. Tikk. Collabo-
rative Recommendations: Algorithms, Practical Chal-
lenges And Applications. World Scientific, 2018.

16. S. bin Abid, V. Mahajan, and L. Lucio. Machine learn-
ing for learnability of MDD tools. In 31st Interna-
tional Conference on Software Engineering and Knowl-
edge Engineering (SEKE), pages 355–468, 2019.

17. S. Bobek, M. Baran, K. Kluza, and G. J. Nalepa. Appli-
cation of bayesian networks to recommendations in busi-
ness process modeling. In Workshop AI Meets Business
Processes co-located with AI*IA, volume 1101 of CEUR
Workshop Proceedings, pages 41–50, 2013.

18. M. Borg, K. Wnuk, B. Regnell, and P. Runeson. Sup-
porting change impact analysis using a recommenda-
tion system: An industrial case study in a safety-critical

30 Lissette Almonte et al.

context. IEEE Transactions on Software Engineering,
43(7):675–700, 2017.

19. M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven
Software Engineering in Practice, Second Edition. Syn-
thesis Lectures on Software Engineering. Morgan &
Claypool Publishers, 2017.

20. J. Brooke et al. SUS-a quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7, 1996.

21. P. Brosch, M. Seidl, and G. Kappel. A recommender
for conflict resolution support in optimistic model ver-
sioning. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications, SPLASH/OOPSLA Companion, pages 43–
50. ACM, 2010.

22. R. Burke. Knowledge-based recommender systems. En-
cyclopedia of Library and Information Systems, 69(Sup-
plement 32):175–186, 2000.

23. R. Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User-adapted Interac-
tion, 12(4):331–370, 2002.

24. C. Cai, J. Sun, and G. Dobbie. Automatic B-model
repair using model checking and machine learning. Au-
tomated Software Engineering, 26(3):653–704, 2019.

25. G. C. Cawley and N. L. C. Talbot. On over-fitting in
model selection and subsequent selection bias in per-
formance evaluation. Journal of Machine Learning Re-
search, 11:2079–2107, 2010.

26. T. Cerqueira, F. Ramalho, and L. B. Marinho. A
content-based approach for recommending UML se-
quence diagrams. In 28th International Conference
on Software Engineering and Knowledge Engineering
(SEKE), pages 644–649, 2016.

27. S. R. Chowdhury, F. Daniel, and F. Casati. Recommen-
dation and weaving of reusable mashup model patterns
for assisted development. ACM Transactions on Inter-
net Technology, 14(2-3):21:1–21:23, 2014.

28. R. Clarisó and J. Cabot. Fixing defects in integrity
constraints via constraint mutation. In 11th Interna-
tional Conference on the Quality of Information and
Communications Technology (QUATIC), pages 74–82.
IEEE Computer Society, 2018.

29. J. de Lara and H. Vangheluwe. AToM3: A tool for multi-
formalism and meta-modelling. In 5th International
Conference on Fundamental Approaches to Software
Engineering (FASE), volume 2306 of Lecture Notes in
Computer Science, pages 174–188. Springer, 2002.

30. M. C. de Oliveira, D. Freitas, R. Bonifácio, G. Pinto,
and D. Lo. Finding needles in a haystack: Leverag-
ing co-change dependencies to recommend refactorings.
Journal of Systems and Software, 158, 2019.

31. S. Deng, D. Wang, Y. Li, B. Cao, J. Yin, Z. Wu, and
M. Zhou. A recommendation system to facilitate busi-
ness process modeling. IEEE Transactions on Cyber-
netics, 47(6):1380–1394, 2017.

32. A. K. Dey. Understanding and using context. Personal
and ubiquitous computing, 5(1):4–7, 2001.

33. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Pat-
terns in property specifications for finite-state verifica-
tion. In 21st International Conference on Software En-
gineering (ICSE), pages 411–420. ACM, 1999.

34. A. Dyck, A. Ganser, and H. Lichter. Enabling model
recommenders for command-enabled editors. In 1st In-
ternational Workshop on Model-driven Engineering By
Example (MDEBE@MoDELS), volume 1104 of CEUR
Workshop Proceedings, pages 12–21, 2013.

35. A. Dyck, A. Ganser, and H. Lichter. A framework
for model recommenders - requirements, architecture

and tool support. In 2nd International Conference on
Model-Driven Engineering and Software Development
(MODELSWARD), pages 282–290. SciTePress, 2014.

36. A. Dyck, A. Ganser, and H. Lichter. On designing
recommenders for graphical domain modeling environ-
ments. In 2nd International Conference on Model-
Driven Engineering and Software Development (MOD-
ELSWARD), pages 291–299. SciTePress, 2014.

37. A. Elkamel, M. Gzara, and H. Ben-Abdallah. An UML
class recommender system for software design. In 13th
IEEE/ACS International Conference of Computer Sys-
tems and Applications (AICCSA), pages 1–8. IEEE
Computer Society, 2016.

38. H. Florez, M. E. Sánchez, J. Villalobos, and G. Vega.
Coevolution assistance for enterprise architecture mod-
els. In 6th International Workshop on Models and Evo-
lution (ME@MoDELS), pages 27–32. ACM, 2012.

39. R. B. France, J. M. Bieman, S. P. Mandalaparty,
B. H. C. Cheng, and A. C. Jensen. Repository for
model driven development (remodd). In 34th Inter-
national Conference on Software Engineering (ICSE),
pages 1471–1472. IEEE Computer Society, 2012.

40. H. Garbe. Intelligent assistance in a problem solving en-
vironment for UML class diagrams by combining a gen-
erative system with constraints. In eLearning. IADIS,
2012.

41. M. Gasparic and A. Janes. What recommendation sys-
tems for software engineering recommend: A system-
atic literature review. Journal of Systems and Software,
113:101–113, 2016.

42. P. Gomes. Software design retrieval using bayesian net-
works and wordnet. In 7th European Conf. on Advances
in Case-Based Reasoning (ECCBR), volume 3155 of
Lecture Notes in Computer Science, pages 184–197.
Springer, 2004.

43. A. Großkopf, J. Brunnert, S. Wehrmeyer, and M. Weske.
Bpmncommunity.org: A forum for process modeling
practitioners - A data repository for empirical BPM re-
search. In Business Process Management Workshops,
BPM, volume 43 of Lecture Notes in Business Informa-
tion Processing, pages 525–528. Springer, 2010.

44. E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel,
W. Retschitzegger, J. Schönböck, and W. Schwinger.
Automated verification of model transformations based
on visual contracts. Autom. Softw. Eng., 20(1):5–46,
2013.

45. A. Gunawardana and G. Shani. Evaluating recom-
mender systems. In Recommender Systems Handbook,
pages 265–308. Springer, 2015.

46. I. Guy. Social recommender systems. In Recommender
Systems Handbook, pages 511–543. Springer, 2015.

47. S. Hayashi, P. YiBing, M. Sato, K. Mori, S. Sejeon, and
S. Haruna. Test driven development of UML models
with SMART modeling system. In 7th International
Conference on The Unified Modelling Language: Mod-
elling Languages and Applications (UML), volume 3273
of Lecture Notes in Computer Science, pages 395–409.
Springer, 2004.

48. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S.
Chua. Neural collaborative filtering. In 26th Interna-
tional Conference on the World-Wide Web (WWW),
pages 173–182, 2017.

49. L. Heinemann. Facilitating reuse in model-based devel-
opment with context-dependent model element recom-
mendations. In 3rd International Workshop on Recom-
mendation Systems for Software Engineering (RSSE),
pages 16–20. IEEE, 2012.

Recommender Systems in Model-Driven Engineering 31

50. T. Hornung, A. Koschmider, and G. Lausen. Rec-
ommendation based process modeling support: Method
and user experience. In 27th International Conference
on Conceptual Modeling (ER), volume 5231 of Lecture
Notes in Computer Science, pages 265–278. Springer,
2008.

51. T. Hornung, A. Koschmider, and A. Oberweis. A recom-
mender system for business process models. Information
Technology & Systems, 2009.

52. J. Huh, J. C. Grundy, J. G. Hosking, K. N. Li, and
R. Amor. Integrated data mapping for a software meta-
tool. In 20th Australian Software Engineering Confer-
ence (ASWEC), pages 111–120. IEEE Computer Soci-
ety, 2009.

53. L. Iovino, A. Barriga, A. Rutle, and R. Heldal. Model
repair with quality-based reinforcement learning. Jour-
nal of Object Technology, 19(2):17:1–21, 2020.

54. D. Jackson. Software Abstractions - Logic, Language,
and Analysis. MIT Press, 2006. http://alloytools.

org/.
55. D. Jannach, M. Jugovac, and L. Lerche. Supporting

the design of machine learning workflows with a recom-
mendation system. ACM Trans. Interact. Intell. Syst.,
6(1):8:1–8:35, 2016.

56. D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich.
Recommender Systems - An Introduction. Cambridge
University Press, 2010.

57. J. Jézéquel, B. Combemale, O. Barais, M. Monperrus,
and F. Fouquet. Mashup of metalanguages and its im-
plementation in the Kermeta language workbench. Soft-
ware and Systems Modeling, 14(2):905–920, 2015.

58. H. Jiang, J. Zhang, X. Li, Z. Ren, D. Lo, X. Wu, and
Z. Luo. Recommending new features from mobile app
descriptions. ACM Transactions on Software Engineer-
ing and Methodology, 28(4):22:1–22:29, 2019.

59. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL:
A model transformation tool. Science of Computer Pro-
gramming, 72(1-2):31–39, 2008.

60. F. Kahloun and S. A. Ghannouchi. Improvement of
quality for business process modeling driven by guide-
lines. In 22nd International Conference on Knowledge-
Based and Intelligent Information & Engineering Sys-
tems (KES), volume 126 of Procedia Computer Science,
pages 39–48. Elsevier, 2018.

61. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-021, Soft-
ware Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1990.

62. S. Kelly and J. Tolvanen. Domain-Specific Modeling -
Enabling Full Code Generation. Wiley, 2008.

63. H. Khider, S. Hammoudi, A. Benna, and A. Meziane.
Social business process model recommender: An MDE
approach. In 5th International Conference on So-
cial Networks Analysis, Management and Security
(SNAMS), pages 106–113. IEEE, 2018.

64. H. Khider, S. Hammoudi, and A. Meziane. Business
process model recommendation as a transformation pro-
cess in MDE: conceptualization and first experiments.
In 8th International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD),
pages 65–75. SciTePress, 2020.

65. M. C. Kim and C. Chen. A scientometric review of
emerging trends and new developments in recommen-
dation systems. Scientometrics, 104(1):239–263, 2015.

66. K. Kluza, M. Baran, S. Bobek, and G. J. Nalepa.
Overview of recommendation techniques in business

process modeling. In Proceedings of 9th Workshop
on Knowledge Engineering and Software Engineering
(KESE9), volume 1070 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2013.

67. B. P. Knijnenburg and M. C. Willemsen. Evaluating
recommender systems with user experiments. In Rec-
ommender Systems Handbook, pages 309–352. Springer,
2015.

68. S. Kögel. Recommender system for model driven soft-
ware development. In 11th Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE), pages
1026–1029. ACM, 2017.

69. S. Kögel, R. Groner, and M. Tichy. Automatic change
recommendation of models and meta models based on
change histories. In 10th Workshop on Models and Evo-
lution (ME@MoDELS), volume 1706 of CEUR Work-
shop Proceedings, pages 14–19, 2016.

70. Y. Koren and R. Bell. Advances in collaborative filter-
ing. In Recommender Systems Handbook, pages 77–118.
Springer, 2015.

71. A. Koschmider, T. Hornung, and A. Oberweis.
Recommendation-based editor for business process
modeling. Data & Knowledge Engineering, 70(6):483–
503, 2011.

72. T. Kuschke and P. Mäder. RapMOD - in situ auto-
completion for graphical models: poster. In 39th Inter-
national Conference on Software Engineering (ICSE),
Companion Volume, pages 303–304. IEEE Computer
Society, 2017.

73. T. Kuschke, P. Mäder, and P. Rempel. Recommend-
ing auto-completions for software modeling activities.
In 16th International Conference on Model-Driven En-
gineering Languages and Systems (MoDELS), volume
8107 of Lecture Notes in Computer Science, pages 170–
186. Springer, 2013.

74. A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Vol-
gyesi. The generic modeling environment. In Workshop
on Intelligent Signal Processing, volume 17, page 1,
2001.

75. Y. Li, B. Cao, L. Xu, J. Yin, S. Deng, Y. Yin, and
Z. Wu. An efficient recommendation method for im-
proving business process modeling. IEEE Transactions
on Industrial Informatics, 10(1):502–513, 2014.

76. J. A. H. López and J. S. Cuadrado. MAR: a structure-
based search engine for models. In ACM/IEEE 23rd
International Conference on Model Driven Engineering
Languages and Systems (MoDELS), pages 57–67. ACM,
2020.

77. P. Lops, M. De Gemmis, and G. Semeraro. Content-
based recommender systems: State of the art and trends.
In Recommender Systems Handbook, pages 73–105.
Springer, 2011.

78. S. Maki, S. Kpodjedo, and G. E. Boussaidi. Context
extraction in recommendation systems in software en-
gineering: A preliminary survey. page 151–160, USA,
2015. IBM Corp.

79. S. Mani, V. S. Sinha, P. Dhoolia, and S. Sinha. Au-
tomated support for repairing input-model faults. In
25th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 195–204.
ACM, 2010.

80. J. Masthoff. Group recommender systems: Combining
individual models. In Recommender Systems Handbook,
pages 677–702. Springer, 2011.

81. P. Matikainen, P. M. Furlong, R. Sukthankar, and
M. Hebert. Multi-armed recommendation bandits for

32 Lissette Almonte et al.

selecting state machine policies for robotic systems. In
2013 IEEE International Conference on Robotics and
Automation (ICRA), pages 4545–4551. IEEE, 2013.

82. S. Mazanek and M. Minas. Business process models as a
showcase for syntax-based assistance in diagram editors.
In 12th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS), volume
5795 of Lecture Notes in Computer Science, pages 322–
336. Springer, 2009.

83. D. Méndez, D. Graziotin, S. Wagner, and H. Seibold.
Open science in software engineering. In Contemporary
Empirical Methods in Software Engineering, pages 477–
501. Springer, 2020.

84. G. A. Miller. WordNet: A lexical database for English.
Communications of the ACM, 38(11):39–41, 1995.

85. MOF 2.5.1. https://www.omg.org/mof/, 2016.
86. N. Moha, S. Sen, C. Faucher, O. Barais, and J. Jézéquel.

Evaluation of Kermeta for solving graph-based prob-
lems. International Journal on Software Tools for Tech-
nology Transfer, 12(3-4):273–285, 2010.

87. F. U. Muram, B. Gallina, and L. G. Rodriguez. Prevent-
ing omission of key evidence fallacy in process-based ar-
gumentations. In 11th International Conference on the
Quality of Information and Communications Technol-
ogy (QUATIC), pages 65–73. IEEE Computer Society,
2018.

88. K. Muslu, Y. Brun, R. Holmes, M. D. Ernst, and
D. Notkin. Speculative analysis of integrated develop-
ment environment recommendations. In 27th Annual
ACM SIGPLAN Conf. on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOP-
SLA), pages 669–682. ACM, 2012.

89. G. Mussbacher, B. Combemale, S. Abrahão, N. Ben-
como, L. Burgueño, G. Engels, J. Kienzle, T. Kühne,
S. Mosser, H. A. Sahraoui, and M. Weyssow. Towards
an assessment grid for intelligent modeling assistance.
In 23rd International Conference on Model Driven En-
gineering Languages and Systems, Companion Proceed-
ings, pages 48:1–48:10. ACM, 2020.

90. G. Mussbacher, B. Combemale, J. Kienzle, S. Abrahão,
H. Ali, N. Bencomo, M. Búr, L. Burgueño, G. Engels,
P. Jeanjean, J. Jézéquel, T. Kühne, S. Mosser, H. A.
Sahraoui, E. Syriani, D. Varró, and M. Weyssow. Op-
portunities in intelligent modeling assistance. Software
and Systems Modeling, 19(5):1045–1053, 2020.

91. N. Nassar, H. Radke, and T. Arendt. Rule-based repair
of EMF models: An automated interactive approach.
In 10th International Conference on Theory and Prac-
tice of Model Transformation (ICMT), volume 10374
of Lecture Notes in Computer Science, pages 171–181.
Springer, 2017.

92. A. Nechypurenko, E. Wuchner, J. White, and D. C.
Schmidt. Applying model intelligence frameworks for
deployment problem in real-time and embedded sys-
tems. In Models in Software Engineering, Workshops
and Symposia at MoDELS’06, Reports and Revised Se-
lected Papers, volume 4364 of Lecture Notes in Com-
puter Science, pages 143–151. Springer, 2006.

93. P. Neubauer, R. Bill, T. Mayerhofer, and M. Wimmer.
Automated generation of consistency-achieving model
editors. In IEEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
pages 127–137. IEEE Computer Society, 2017.

94. P. T. Nguyen, J. D. Rocco, D. D. Ruscio, L. Ochoa,
T. Degueule, and M. D. Penta. FOCUS: a recommender
system for mining API function calls and usage patterns.

In 41st International Conference on Software Engineer-
ing (ICSE), pages 1050–1060. IEEE / ACM, 2019.

95. P. T. Nguyen, J. D. Rocco, D. D. Ruscio, and M. D.
Penta. CrossRec: Supporting software developers by
recommending third-party libraries. Journal of Systems
and Software, 161, 2020.

96. X. Ning, C. Desrosiers, and G. Karypis. A compre-
hensive survey of neighborhood-based recommendation
methods. In Recommender Systems Handbook, pages
37–76. Springer, 2015.

97. OCL. http://www.omg.org/spec/OCL/, 2014.
98. M. Ohrndorf, C. Pietsch, U. Kelter, and T. Kehrer. Re-

Vision: a tool for history-based model repair recommen-
dations. In 40th International Conference on Software
Engineering (ICSE), Companion Proceeedings, pages
105–108. ACM, 2018.

99. T. Pati, S. Kolli, and J. H. Hill. Proactive modeling: a
new model intelligence technique. Software and Systems
Modeling, 16(2):499–521, 2017.

100. S. Paydar and M. Kahani. A semantic web enabled
approach to reuse functional requirements models in
web engineering. Automated Software Engineering,
22(2):241–288, 2015.

101. S. Paydar and M. Kahani. A semi-automated approach
to adapt activity diagrams for new use cases. Inf. Softw.
Technol., 57:543–570, 2015.

102. M. J. Pazzani. A framework for collaborative, content-
based and demographic filtering. Artificial Intelligence
Review, 13(5-6):393–408, 1999.

103. A. Pescador and J. de Lara. DSL-maps: from require-
ments to design of domain-specific languages. In 31st
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 438–443. ACM,
2016.

104. K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson.
Systematic mapping studies in software engineering. In
12th International Conference on Evaluation and As-
sessment in Software Engineering, EASE, Workshops
in Computing. BCS, 2008.

105. K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guide-
lines for conducting systematic mapping studies in soft-
ware engineering: An update. Information and Software
Technology, 64:1–18, 2015.

106. L. Quijano-Sánchez, I. Cantador, M. E. Cortés-Cediel,
and O. Gil. Recommender systems for smart cities. Inf.
Syst., 92:101545, 2020.

107. QVT 1.3. http://www.omg.org/spec/QVT/, 2016.
108. F. Rabbi, Y. Lamo, I. C. Yu, and L. M. Kristensen.

A diagrammatic approach to model completion. In 4th
Workshop on the Analysis of Model Transformations
(AMT@MoDELS), volume 1500 of CEUR Workshop
Proceedings, pages 56–65, 2015.

109. F. Rabbi, Y. Lamo, I. C. Yu, and L. M. Kristensen. Di-
agrammatic development of domain specific modelling
languages with webdpf. International J. Inf. Syst.
Model. Des., 7(3):93–114, 2016.

110. M. E. Rangiha, M. Comuzzi, and B. Karakostas.
Role and task recommendation and social tagging
to enable social business process management. In
BPMDS/EMMSAD@CAiSE, volume 214 of Lecture
Notes in Business Information Processing, pages 68–
82. Springer, 2015.

111. J. Reimann, M. Seifert, and U. Aßmann. On the reuse
and recommendation of model refactoring specifications.
Software and Systems Modeling, 12(3):579–596, 2013.

112. F. Ricci, L. Rokach, and B. Shapira, editors. Recom-
mender Systems Handbook. Springer, 2015.

Recommender Systems in Model-Driven Engineering 33

113. M. P. Robillard, R. J. Walker, and T. Zimmer-
mann. Recommendation systems for software engineer-
ing. IEEE Software, 27(4):80–86, 2010.

114. J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio.
Collaborative repositories in model-driven engineering.
IEEE Softw., 32(3):28–34, 2015.

115. L. M. Rose, R. F. Paige, D. S. Kolovos, and F. Polack.
The Epsilon generation language. In 4th European Conf.
on Model Driven Architecture - Foundations and Appli-
cations (ECMDA-FA), volume 5095 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2008.

116. R. Saini, G. Mussbacher, J. L. C. Guo, and J. Kienzle.
Teaching modelling literacy: An artificial intelligence
approach. In 22nd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Sys-
tems (MoDELS), Companion Proceedings, pages 714–
719. IEEE, 2019.

117. J. Sánchez Cuadrado, E. Guerra, and J. de Lara. Quick
fixing ATL model transformations. In 18th ACM/IEEE
International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS), pages 146–155.
IEEE Computer Society, 2015.

118. J. Sánchez Cuadrado, E. Guerra, and J. de Lara. AnAT-
Lyzer: an advanced IDE for ATL model transforma-
tions. In 40th International Conference on Software En-
gineering (ICSE), Companion Proceedings, pages 85–
88. ACM, 2018.

119. J. Sánchez Cuadrado, E. Guerra, and J. de Lara. Quick
fixing ATL transformations with speculative analysis.
Software and Systems Modeling, 17(3):779–813, 2018.

120. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation algo-
rithms. In 10th International Conference on the World-
Wide Web (WWW), pages 285–295, 2001.

121. M. Savary-Leblanc. Improving MBSE tools UX with
ai-empowered software assistants. In 22nd ACM/IEEE
International Conference on Model Driven Engineering
Languages and Systems (MoDELS), Companion Vol-
ume, pages 648–652. IEEE, 2019.

122. D. C. Schmidt. Guest editor’s introduction: Model-
driven engineering. Computer, 39(2):25–31, 2006.

123. Á. M. Segura and J. de Lara. Extremo: An eclipse plugin
for modelling and meta-modelling assistance. Science of
Computer Programming, 180:71–80, 2019.

124. Á. M. Segura, J. de Lara, P. Neubauer, and M. Wimmer.
Automated modelling assistance by integrating hetero-
geneous information sources. Computer Languages, Sys-
tems and Structures, 53:90–120, 2018.

125. Á. M. Segura, A. Pescador, J. de Lara, and M. Wimmer.
An extensible meta-modelling assistant. In 20th IEEE
International Enterprise Distributed Object Computing
Conference (EDOC), pages 1–10. IEEE Computer So-
ciety, 2016.

126. S. Sen, B. Baudry, and H. Vangheluwe. Domain-specific
model editors with model completion. In Models in Soft-
ware Engineering, Workshops and Symposia at MoD-
ELS’07, Reports and Revised Selected Papers, volume

5002 of Lecture Notes in Computer Science, pages 259–
270. Springer, 2007.

127. S. Sen, B. Baudry, and H. Vangheluwe. Towards
domain-specific model editors with automatic model
completion. Simulation, 86(2):109–126, 2010.

128. Simulink. https://www.mathworks.com/products/

simulink.html, 2020.

129. C. D. Sipio, D. D. Ruscio, and P. T. Nguyen. Democ-
ratizing the development of recommender systems by
means of low-code platforms. In 1st LowCode Workshop
(LowCode@MoDELS), pages 68:1–68:9. ACM, 2020.

130. F. Steimann and B. Ulke. Generic model assist. In 16th
International Conference on Model-Driven Engineer-
ing Languages and Systems (MoDELS), volume 8107
of Lecture Notes in Computer Science, pages 18–34.
Springer, 2013.

131. D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework, 2nd Edi-
tion. Addison-Wesley Professional, 2008.

132. M. Stephan. Towards a cognizant virtual software mod-
eling assistant using model clones. In 41st International
Conference on Software Engineering: New Ideas and
Emerging Results (NIER@ICSE), pages 21–24. IEEE
/ ACM, 2019.

133. N. Tintarev and J. Masthoff. Evaluating the effective-
ness of explanations for recommender systems. User
Modeling and User-Adapted Interaction, 22(4-5):399–
439, 2012.

134. M. Tisi, J. Mottu, D. S. Kolovos, J. de Lara, E. Guerra,
D. D. Ruscio, A. Pierantonio, and M. Wimmer. Lowco-
mote: Training the next generation of experts in scalable
low-code engineering platforms. In STAF (Co-Located
Events), volume 2405 of CEUR Workshop Proceedings,
pages 73–78. CEUR-WS.org, 2019.

135. M. Tsunoda, T. Kakimoto, N. Ohsugi, A. Monden, and
K. Matsumoto. Javawock: A Java class recommender
system based on collaborative filtering. In 17th Interna-
tional Conference on Software Engineering and Knowl-
edge Engineering (SEKE), pages 491–497, 2005.

136. UML 2.5.1. https://www.uml.org/, 2017.

137. S. Witt, S. Feja, A. Speck, and C. Hadler. Business
application modeler: A process model validation and
verification tool. In IEEE 22nd International Require-
ments Engineering Conference (RE), pages 333–334.
IEEE Computer Society, 2014.

138. C. Wohlin. Guidelines for snowballing in systematic lit-
erature studies and a replication in software engineer-
ing. In 18th International Conference on Evaluation
and Assessment in Software Engineering, EASE, pages
38:1–38:10. ACM, 2014.

139. C. Wohlin, P. Runeson, P. A. da Mota Silveira Neto,
E. Engström, I. do Carmo Machado, and E. S. de
Almeida. On the reliability of mapping studies in soft-
ware engineering. Journal of Systems and Software,
86(10):2594–2610, 2013.

