
Automating the Synthesis of Recommender Systems

for Modelling Languages

Lissette Almonte
Universidad Autónoma de Madrid

Madrid, Spain

Sara Pérez-Soler
Universidad Autónoma de Madrid

Madrid, Spain

Esther Guerra
Universidad Autónoma de Madrid

Madrid, Spain

Iván Cantador
Universidad Autónoma de Madrid

Madrid, Spain

Juan de Lara
Universidad Autónoma de Madrid

Madrid, Spain

Abstract

We are witnessing an increasing interest in building recom-
mender systems (RSs) for all sorts of Software Engineering
activities. Modelling is no exception to this trend, as mod-
elling environments are being enriched with RSs that help
building models by providing recommendations based on
previous solutions to similar problems in the same domain.
However, building a RS from scratch requires considerable
effort and specialized knowledge.
To alleviate this problem, we propose an automated ap-

proach to the generation of RSs for modelling languages. Our
approach is model-based, and we provide a domain-specific
language called Droid to configure every aspect of the RS
(like the type and features of the recommended items, the
recommendation method, and the evaluation metrics). The
RS so configured can be deployed as a service, and we offer
out-of-the-box integration of this service with the EMF tree
editor. To assess the usefulness of our proposal, we present a
case study on the integration of a generated RS with a mod-
elling chatbot, and report on an offline experimentmeasuring
the precision and completeness of the recommendations.

CCS Concepts: • Software and its engineering→ Soft-

ware notations and tools; Designing software; • Infor-
mation systems→ Information retrieval.

Keywords: Modelling Languages, Model-Driven Engineer-
ing, Domain-Specific Languages, Recommender Systems
ACM Reference Format:

Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador,
and Juan de Lara. 2021. Automating the Synthesis of Recommender

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE ’21, October 17–18, 2021, Chicago, IL, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9111-5/21/10. . . $15.00
https://doi.org/10.1145/3486608.3486905

Systems for Modelling Languages. In Proceedings of the 14th ACM

SIGPLAN International Conference on Software Language Engineer-

ing (SLE ’21), October 17–18, 2021, Chicago, IL, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3486608.3486905

1 Introduction

Modelling plays a fundamental role in Software Engineering,
especially in model-driven engineering (MDE) [9]. In this
paradigm, models are actively used in the different develop-
ment phases to specify, analyse, design, simulate and test
the system to be built, among other activities.

Modelling is performed using modelling languages which
can be general-purpose ones, like the Unified Modelling
Language (UML) [56], or domain-specific languages (DSLs)
tailored to a target domain [27, 58]. Today, sophisticated
development environments and powerful language work-
benches are the norm. However, modelling remains mostly a
manual activity, which often does not profit from knowledge
found in existing models, or the experience of engineers
working on similar domains.

Recommender systems (RSs) [1] are information filtering
systems that help users in choosing among a potentially
large set of items (e.g., movies, songs or books). They aim at
predicting the preferences of users to offer a prioritised list
of potentially interesting items. They are widely used in all
sorts of commercial and leisure applications, and their use
in software engineering activities is increasing as well [46].
This way, we can find RSs that help in choosing appropriate
third-party programming libraries [38, 55], recommend API
method invocations [37], suggest code refactorings [13, 22],
and assist on the evaluation of change impact analysis [8],
to name a few. Recently, we are also witnessing an incipient
interest to apply RSs to modelling (see, e.g., [2, 5, 10, 12, 15,
20, 23, 31, 34, 35]); however, their use in MDE is not the norm
yet. One possible reason is that building RSs requires deep
expertise in recommendation techniques, and involves an
important development effort [4, 36].

With the aim to facilitate the adoption of RSs in MDE, we
propose a model-driven solution to automate the synthesis of
RSs for modelling languages. Based on the vision put forward
in [3], our solution consists of a DSL called Droid supporting

https://doi.org/10.1145/3486608.3486905
https://doi.org/10.1145/3486608.3486905

SLE ’21, October 17–18, 2021, Chicago, IL, USA Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara

the configuration of the kind of model elements to be rec-
ommended, and an engine that automates the evaluation of
different recommendationmethods against configurable met-
rics. The selected recommendation method is deployed as a
service, which heterogeneousmodelling clients can integrate.
Currently, we provide an automated, out-of-the-box integra-
tion with the tree editor of the Eclipse Modeling Framework
(EMF) [53], but additionally, the generated recommenders
can be integrated with other modelling technologies. To as-
sess this fact, we describe a case study of the integration of
a recommender with a third-party modelling chatbot called
Socio [42]. Finally, to assess the usefulness of our proposal,
we report on an offline evaluation of a RS created with our
approach over UML models. The experiment results are in
line with RSs specifically created for class diagrams [10], but
our approach does not require any programming.
Paper organization. Section 2 provides background on RSs.
Section 3 overviews our approach, and Section 4 presents the
Droid DSL. Section 5 details the technical architecture and
tool support. Section 6 presents a case study incorporating a
RS to amodelling chatbot, and an offline evaluation. Section 7
compares with related research, and Section 8 ends with the
conclusions and future work.

2 Recommender Systems

Recommender systems have become a key component of a
large and varied number of software applications. Nowadays,
everyone is exposed to recommendation services on mu-
sic (e.g., Spotify, Pandora) and video (e.g., Netflix, YouTube)
streaming platforms, e-commerce sites (e.g., Amazon, eBay),
and social networks (e.g., Facebook, Twitter), among others.

Common to all these applications, RSs analyse the activity
of a typically very large group of users to provide them with
personalised suggestions of options (items), based on the evi-
dence observed about their interests and preferences. In this
context, they provide advantages both for the users – whose
experience is improved by receiving ideas about content to
consume or products to buy – and the service providers –
by promoting increased sales and customer loyalty, as cus-
tomers are able to discover content or products that they
would not have known otherwise.

In Software Engineering in general [21], and MDE in par-
ticular [4], RSs have also found a wide array of applications.
Integrated in software design and development tools, recom-
mendation services can assist on the creation [43], comple-
tion [2, 20], repair [6, 41, 50], search [35], and reuse [54] of
artefacts, e.g., models, meta-models and transformations.

In these cases, the target user for whom recommendations
are generated and her preferences (or profile) may have special
meanings. For instance, it may refer to a class in a UML
diagram for a recommender that is devoted to suggesting
potential attributes and methods of interest for incomplete
classes; the recommended items or artefacts are thus class

attributes and methods, and the preferences and features
that describe users and items can be the names and types of
class attributes, methods and method arguments.
In general, the recommendations are generated based

on content-based similarities between users and items [33],
user-item preference (rating) patterns identified in the user
community via collaborative filtering techniques [39], or
both sources of information via hybridisation methods [11].
Content-based (CB) systems suggest items “similar” to those
the target user preferred in the past, whereas collaborative fil-
tering (CF) systems suggest items preferred by like-minded
people. Moreover, CF approaches can consider either the
similarities of the 𝑘 most similar users – known as nearest
neighbours – to the target user (UBCF), or the similarities
of the 𝑘 most similar items (IBCF) to the target user’s items.
Finally, typical hybrid approaches follow user- or item-based
CF strategies exploiting content-based similarities (CBUB or
CBIB) instead of rating-based similarities as CF does.

The quality of the recommendations can also be evaluated
through different approaches [24]. User studies allow evalu-
ating a recommender online, e.g., via A/B tests that capture
the impact that recommendations have in real time. Offline
experiments, by contrast, are conducted on datasets made of
past user-item interactions, and are split into training and
test data to build and evaluate a recommender, respectively.
For both types of evaluations – online and offline – several
metrics can be computed [7]. Typical metrics that measure
the ranking quality of the recommendation lists are preci-
sion, i.e., the probability that a selected item is relevant; recall,
i.e., the percentage of relevant items in the recommendation
lists; F1, i.e., the harmonic mean of precision and recall;MAP

(Mean Average Precision), i.e., the mean average precision
over all the users; and nDCG (Normalized Discounted Cumu-
lative Gain), which considers if the most useful items appear
in the top positions of the recommendation lists. Other com-
plementary metrics are USC (User Space Coverage), which
measures the percentage of users that the RS can recom-
mend, and ISC (Item Space Coverage), which measures the
diversity of the recommendations.

As we will present in the subsequent sections, our model-
based approach to automatically generate RSs allows con-
figuring all the above-mentioned aspects: Recommendation
methods, target user and item profiles, and offline evaluation
methodologies and metrics (cf. Listing 1).

3 Overview of the Approach

To facilitate the construction of RSs for arbitrary modelling
languages, we propose amodel-based solutionwhose scheme
is depicted in Fig. 1. Our solution permits customising a RS
for a particular modelling language, assists in deciding which
recommendation method works better for the recommenda-
tion task at hand, and generates a recommendation service
that can be integrated with external modelling tools.

Automating the Synthesis of Recommender Systems for Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

RS designer

modelling
language

MM

DROID
model

model
set

«instance of»

active
model

modelling client

deploy
Recommen-

dations

language
users

 1. Configure
 RS
 (dsl DROID)

 2. Train &
 evaluate
 RS

 3. Select
 recomm.
 method

«instance of»

RS
service

Figure 1. Overview of the approach.

Our approach makes available a DSL called Droid to con-
figure the RS for the targeted modelling language. The ap-
proach assumes that the modelling language is defined by
a meta-model. This way, in the first step, the designer of
the RS uses Droid to select from the modelling language
meta-model the elements that are to be recommended (e.g.,
attributes for a class, tasks for a process model). The DSL also
permits specifying the candidate recommendation methods,
the dataset used to train the recommenders, and the evalua-
tion metrics used to rank the built recommenders. Section 4
will present Droid in detail.

Next, in the second step, our system automatically eval-
uates each selected recommendation method against the
indicated metrics, using the provided dataset. The result is
an interactive report with the value of each metric for the
recommendation methods.
In the last step, the RS designer chooses a recommenda-

tion method, and the system automatically synthesizes a
RS service that can be integrated within different modelling
tools. Currently, our system provides full automatic support
for deploying the RS within the Eclipse modelling tree ed-
itor [53], but other modelling clients are possible as well.
Sections 5.4 and 6.2 will provide details on this out-of-the-
box client integration, and others.

4 The Droid DSL

Droid is a textual DSL for the configuration of RSs for par-
ticular modelling languages. Fig. 2 shows its meta-model,
which permits detailing the following aspects of a RS:

(i) The URI of the meta-model of the modelling language,
and the repository containing the instance models to be
used for training the RS. In Fig. 2, this is captured by the
class RecommenderConfiguration and its attributes.

(ii) The class subject to recommendations, called target

(class DomainClass and reference RecommenderCon-
figuration.target). The items to be recommended (class
DomainProperty, its subclasses and reference Domain-
Class.items).

(iii) The way the objects of the target class and the items are
identified in the models (references DomainClass.pk and
DomainClass.features).

inv: not (perUser
and perItem)

feature

evaluation

DomainProperty
aliasName: String

«enumeration»
SplitType

CROSSVALIDATION
RANDOM

«enumeration»
MethodType

ITEMPOP
IBCF
UBCF
COSINECB
CBIB
CBUB

«enumeration»
MetricType

PRECISION
RECALL
F1
NDCG
ISC
USC
MAP

NeighbourhoodSize
value: Int[0...*]

Metric
name: metricType

«from Ecore»
EStructural

Feature

Simple
Feature

DerivedProperty
expression: String

«from Ecore»
EClass

Domain
Class

EvaluationMethod
maxRecommendation: Int=5
relevanceThreshold: Double
cutoffs: Int[1...*]

SplitMethod
splitType: SplitType=CrossValidation
nFolds: Int=10
perUser: Boolean=true
perItem: Boolean=false
percentageTraining: Double

Recommendation
Method

method: MethodType

RecommenderConfiguration
name: String
metaModelURI: String
repositoryURI: String

neighbour
* metric

1...*

pk
features *

items *

class

classes *

target

splitmethods
1...*

Figure 2. Meta-model of Droid.

(iv) The information about the candidate recommendation
methods for the RS, and the metrics used to compare
them. This is specified through the classes Recommen-
dationMethod, SplitMethod and EvaluationMethod.

To illustrate Droid, we will use an example consisting of
the configuration of a RS for UML class modelling. The RS
will recommend attributes, operations and superclasses for
a given class. Listing 1 shows its configuration using Droid.

In Listing 1, line 1 specifies the name of the recommender;
line 2 specifies the meta-model that the RS will use (in this
case, the meta-model of UML 2.0 class diagrams); and line
3 specifies the repository of models to be used to train and
evaluate the selected candidate recommendation methods.
The latter models need to conform to the specified meta-
model. Since in our example, the training models are UML
class models in the domain of libraries, the recommender is
named “Literature Recommender.”

Fig. 3 shows a small, simplified excerpt of the UML meta-
model needed for our example: Classes, which contain both
attributes (class Property) andOperations, and relate to their
ancestors using the superClass derived reference.

The section “Target” in Listing 1 (lines 5–11) declares the
target class of the recommendation and its relevant items.
This way, the synthesised RS will provide recommendations
for each declared item when invoked on objects of the target
class. Line 6 specifies that the class Class is the recommen-
dation target, and lines 7–9 specify three types of items to
recommend: Attributes, methods and superclasses. Each item
has a name (displayed to the user when the recommendation
is performed), and the attributes or references leading from
the target class to the items (in the example, ownedAttribute,
ownedOperation and superClass, cf. Fig. 3). The meta-model
of Droid also permits specifying derived properties via OCL

SLE ’21, October 17–18, 2021, Chicago, IL, USA Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara

1 Recommender: "LiteratureRecommender"
2 Metamodel: "http://www.eclipse.org/uml2"
3 Repository: "/LiteratureRecommender/instances"
4
5 Target {
6 class Class {
7 item "attributes" : ownedAttribute;
8 item "methods" : ownedOperation;
9 item "super classes" : superClass;
10 }
11 }
12
13 Identifiers {
14 class Class {
15 pk feature name;
16 }
17 class Property {
18 pk feature name;
19 pk feature type;
20 }
21 class Operation {
22 pk feature name;
23 pk feature type;
24 }
25 class Type {
26 pk feature name;
27 }
28 }
29
30 Recommendations {
31 Methods {
32 collaborativeFiltering: ItemPop, IBCF(10,15,20,25,50,100),
33 UBCF(10,15,20,25,50,100);
34 contentBased: CosineCB;
35 hybrid: CBIB(10,15,20,25,50,100), CBUB(10,15,20,25,50,100);
36 }
37 Split {
38 splitType: CrossValidation;
39 nFolds: 10;
40 perUser: true;
41 }
42 Evaluation {
43 metrics: Precision, Recall, F1, NDCG, ISC, USC, MAP;
44 cutoffs: 1,5,10,15,20;
45 maxRecommendations: 50;
46 relevanceThreshold: 0.5;
47 }
48 }

Listing 1.Defining a RS for UML class diagrams with Droid.

ownedOperationownedAttribute

DataType

Type

TypedElement

StructuralFeature
isReadOnly: boolean

NamedElement
name: String

generalization

Generalization
Classifier

isAbstract: boolean

Property
aggregation: AggregationKind

Operation
type: Type [0..1]

Class
isActive: boolean = false /superClass

*

*

type
0..1

general

*
specific

* *

Figure 3. Simplified excerpt of the UML meta-model.

expressions [40] (class DerivedProperty in Fig. 2), though
our current implementation does not support it yet.

The section “Identifiers” in lines 13–28 declares the iden-
tifiers and features of the involved classes. In our example,
Classes are described by their name (line 15), which is their
primary key (prefix pk), while Properties andOperations are
identified by their name and type. The type of the latter is
Type (cf. Fig. 3), and so, lines 25–27 declare its identifier.

The last section is “Recommendations”, in lines 30–48.
This enables the configuration of recommendation methods
for the RS, and the way to evaluate them. This information
is optional, since Droid provides default values in case the
RS designer does not have the required expertise or is not
interested in a fine-grained configuration of the evaluation
process (see, e.g., the default values of class SplitMethod in
Fig. 2). The section has three subsections: “Methods”, “Split”
and “Evaluation” (classes RecommendationMethod, Split-
Method and EvaluationMethod in Fig. 2).

First, the subsection “Methods” (lines 31–36) specifies the
recommendation methods that the designer wants to ex-
periment with to determine the best one for the case at
hand. Lines 32–33 select the collaborative filtering methods
ItemPOP (item popularity), IBCF (item-based collaborative
filtering), and UBCF (user-based collaborative filtering). The
latter two are configured with neighbourhood sizes of 10, 15,
20, 25, 50 and 100. Next, line 34 specifies the content-based
method CosineCB (pure content-based method), and line 35
selects the hybrid methods CBIB (content-based item-based)
and CBUB (content-based user-based) with neighbourhood
sizes of 10, 15, 20, 25, 50 and 100. Overall, these are the six
recommendation methods currently supported by Droid (cf.
enumeration MethodType in Fig. 2).
The subsection “Split” (lines 37–41) specifies how to di-

vide the dataset for the evaluation of the recommendation
methods. The listing defines a 10-fold cross-validation split
type, following a perUser technique. The split type refers to
the approach to divide the data into training and test sets.
Cross-validation divides the data into k subsets, one used for
test and the rest for training, and repeats the process assign-
ing in each iteration the role of test set to each one of the k
subsets. Droid also supports random split, in which case, the
percentage of data used for training/test must be given, and
the sampling for the test/training sets is done randomly with
a uniform distribution [45]. Splits can be built using either a
perUser or a perItem technique. In the former case, the sub-
sets are built per available user, while with perItem, they are
built by available item. For example, a perUser random split
type with 80% training percentage implies that 80% of the
preferences of each user (i.e., 80% of the attributes, methods
and superclasses of each class) will be used as the training
set, and the remainder 20% as the test set.
The last part of the listing (subsection “Evaluation” in

lines 42–47) describes the evaluation protocol. This includes
the desired metrics for the evaluation (Precision, Recall, F1,
nDCG, ISC,USC andMAP, cf. Section 2); the number of items
in the top of the ranking that will be used to calculate the

Automating the Synthesis of Recommender Systems for Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

metrics (cutoffs, line 44); the maximum number of items that
the RS will recommend (maxRecommendations, line 45); and
a threshold value for the rating of items used to determine
whether an item is relevant and a good recommendation, or
not (relevanceThreshold, line 46). This threshold defines a
binary classification for the probability of a prediction to be
true. In the listing, the relevance threshold of 0.5 implies that
the rating values below 0.5 are considered false (irrelevant),
and those equal to or above 0.5 are true (relevant).

5 Architecture and Tool Support

In this section, we introduce the architecture of Droid (Sec-
tion 5.1), the tool support for RS design (Section 5.2), the
generated recommendation service (Section 5.3), and the au-
tomatic integration with the EMF tree editors (Section 5.4).

5.1 Architecture

Fig. 4 shows the architecture of the Droid ecosystem, which
comprises three parts. The first one is theDroid Configurator,
which permits the configuration, evaluation and synthesis of
RSs. The configurator provides an Eclipse textual editor for
the DSL presented in Section 4, where the RS designer can
configure the RS for a particular modelling language (label 1).
The specified configuration is the input to the RS Evaluator
(label 2), which relies on the external libraries RankSys [57]
and RiVal [49] to evaluate the recommendation methods
selected by the RS designer using Droid. RankSys is a frame-
work for the implementation of recommendation algorithms,
and RiVal is a toolkit for data splitting and evaluation of
RSs. The results of each metric chosen by the RS designer
are displayed in an Eclipse view (label 3). Section 5.2 will
provide more details on the Droid Configurator.

RankSys

RS
designer

…

modelling
language

user

RS
Evaluator

DROID
Editor

RiVaL

Results
View

RS
Synth

1

config
files

2 4 DROIDREST
REST API

EMF
Tree Editor

5

SOCIO

6

3

Figure 4. Architecture of Droid.

Based on the obtained results, the RS designer can select
the preferred recommendation method, and a RS Synthesizer
generates a set of configuration files out of the selection
and the RS configuration (label 4). The configuration files
are used by the second part of our ecosystem, which is the
Droid Service (label 5). This is a generic recommendation
REST API that can be customised for particular modelling
languages using the configuration files generated by the RS
Synthesizer. The service enables clients to request recom-
mendations using a JSON-based model representation. The

service processes such requests and sends the recommenda-
tions as a response. Section 5.3 will elaborate on this service.

Finally, in the Client part, any modelling tool can use the
Droid Service to obtain recommendations and make them
available to the modelling language users (label 6). Currently,
our tooling supports the automatic integration of the result-
ing RSs within the default tree editor that EMF provides for
Ecore-based languages. In Section 6.2, we will show another
integration within a modelling chatbot.

5.2 Tool Support: The Droid Configurator

The Droid Configurator (https://droid-dsl.github.io/) is an
Eclipse plug-in that helps the RS designer in configuring and
evaluating RSs for a modelling language.

It provides a wizard where the RS designer can create droid
projects by specifying a name for the project, the meta-model
of the language for which the RS is being developed, a folder
containing the models to be used for training and evaluating
the RS, and the format of these models (XMI, Ecore, or UML).
To simplify the RS configuration, the wizard gives the option
to automatically generate a default one (i.e., default values for
the “Recommendations” section in lines 30–48 of Listing 1),
which the designer can modify later if so desired.

Fig. 5 shows the Droid Configurator environment. The
Droid editor (label 1) permits the configuration of the RS via
the DSL introduced in Section 4. The editor has been built
using Xtext [59], and features syntax highlighting, autocom-
pletion, and markers for errors and warnings. With label
2, the figure shows an auto-completion pop-up window to
choose an existing attribute of the class Class from the UML
meta-model, to serve as an item of the target class.
The environment includes a code generator that synthe-

sizes Java code from the Droid specification. This code is in
charge of evaluating the RSs. The package explorer in the fig-
ure (label 3) shows the generated Java classes in the src-gen
folder. The RS designer does not need to look into this code,
since the RS Evaluator component (cf. Fig. 4) automatically
generates the code and displays the results in a dedicated
Eclipse view (label 4).
The Results View (label 4) summarises in a drill-down

table the evaluation results for each recommendationmethod
and metric. The table uses different colours to facilitate the
comparison of the metric values (specifically, of the values
of the F1 metric). The recommendation methods whose F1
value is in the top 20% are shown in green; the methods
whose F1 value is under the median are shown in red; and
the rest of the methods are shown in orange.
Fig. 6 shows the Results View in more detail. The view

groups the evaluated methods by category: Collaborative
Filtering, Content-Based and Hybrid. Within a group, each
method contains a subsection per neighbourhood size, if
applicable. The rows corresponding to a group show the
results of the method with the best F1 value within the group.

https://droid-dsl.github.io/

SLE ’21, October 17–18, 2021, Chicago, IL, USA Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara

Figure 5. Screenshot of the Droid Configurator.

For example, row “Collaborative Filtering” shows the metrics
of the collaborative filtering method with best F1 value.

Figure 6. Results View of the Droid Configurator.

5.3 Tool Support: The Droid Service

We have built a generic recommender called DroidREST. It
is a REST service implemented in Java using Jersey1 and
Tomcat2. The service computes the recommendations based
1https://eclipse-ee4j.github.io/jersey/
2http://tomcat.apache.org/

on the configuration files generated by the RS Synthesizer
(cf. Fig. 4). These configuration files store the trained rec-
ommender that knows which items to suggest based on the
context information. Hence, there is no need to deploy a
different service for each RS defined with Droid.
Clients can make POST requests to the service, which

receives a recommender name together with a JSON file
containing the target object of the recommendation and its
context (i.e., the items that the target contains). The response
to the request is a list of recommended items for the given
target, using the recommendation method selected by the
designer. In addition, clients can pass optional parameters for
specific settings, like the maximum number of recommended
items to retrieve (newMaxRec), the threshold for the ranking
value (threshold), and the type of item (itemType). The re-
sponse time of the service to calculate the recommendations
is less than a second.
The REST service implementation comprises three main

classes: Recommender, which handles the requests from
clients; ContextItem, which parses the received JSON files to
extract the recommendation target and its items from the
modelling context; and RecommenderGenerator, which gen-
erates the recommendations for the given target taking its
context and the provided query parameters into account.

5.4 Tool Support: Integration with EMF Tree Editor

EMF automates the synthesis of a default modelling editor
starting from the Ecore meta-model of a modelling language.
This editor permits creating instances of the meta-model
using a tree view. Given the widespread use of these editors,
our implementation generates out-of-the-box an integration
of the Droid recommendation service into the default EMF
tree editor of a modelling language. Next we explain the tech-
nical details of this client integration, and show an example.

In EMF, the generation of the default tree editors is auto-
mated by means of a model-to-text template language called
Java Emitter Template (JET)3. JET supports the definition and
execution of code generation templates from EMF models.
This way, EMF provides a set of predefined JET templates that
generate the Java code implementing the editor for a given
Ecore meta-model. We have overwritten those templates
to extend the generated tree editor with a “Recommender”
pop-up menu on the objects that may be target of recommen-
dations. This menu shows, for a selected object, the kinds
of items that can be recommended. This information (i.e.,
the kinds of recommendation targets and items, see lines
5–11 in Listing 1) is not hard-coded in Java, but stored in
a configuration file called recommender.properties. This per-
mits building the “Recommender” menu dynamically upon
clicking on an object, and facilitates the external evolution
of the menu. Upon selecting a recommendation item kind
for an object, a request is sent to the Droid service, passing

3https://projects.eclipse.org/projects/modeling.m2t.jet

Automating the Synthesis of Recommender Systems for Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

the object, its context and the item type as parameters. The
response is a list of recommendations, which are displayed in
a table ordered by their relevance. The users can then select
recommendations and apply them to the current model.
As an example, next, we show the integration of a RS

specifiedwith Droid, within the default tree editor generated
for a simple modelling language for object-oriented design.
The RS recommends attributes, methods and superclasses
for classes. We do not use the running example to illustrate
our client integration, since our approach requires starting
from an Ecore meta-model and generates the whole editor
from scratch, while the UML modelling editor has not been
created using the JET templates predefined in EMF. The main
concepts used in both examples are similar though.
Fig. 7 shows the use of the RS within the generated tree

editor. The package explorer (label 1) contains a project with
a model and the recommender.properties configuration file.
The model is being edited in the window to the right (label 2).
Right-clicking on any object of type Klass (label 3) shows the
“Recommender” pop-up menu (label 4). This menu contains
a submenu for each available kind of recommendation (in
this case, “Attributes”, “Methods” and “Superclasses”).

1

2

4 5

3

Figure 7. Selecting the recommendation item kind

The upper part of Fig. 8 shows the result of selecting the
submenu “Attributes” on a Klass named Customer. A list of
recommended attributes is presented to the user, including
their name, type and rating (i.e., trust on the recommen-
dation). When the user selects an attribute (“direction” in
the figure, label 1), this is automatically added to the Klass
Customer (label 2) and removed from the list.

6 Evaluation

With the aim to check the usefulness of the recommendations
provided by Droid RSs, Section 6.1 reports on an offline
evaluation with UML class models. To assess the feasibility
of using Droid RSs outside Eclipse, Section 6.2 presents
a case study that integrates a Droid RS with a modelling
chatbot [42]. Finally, Section 6.3 discusses threats to validity.

1

2

Figure 8. Selecting and applying a recommendation

6.1 Usefulness of Recommendations

The goal of this first experiment is to answer the research
question (RQ) RQ1: “How precise and complete are the recom-

mendations provided by Droid recommenders?”. To this aim,
we performed the offline experiment that is reported next.

6.1.1 Experiment Setup. We ran an offline experiment
on two datasets from two different domains. The purpose
was to analyse the performance of the RSs generated with
Droid on distinct domains.
The used datasets contain models extracted from

MAR [25]. This is a structure-based search engine for models
and meta-models, which can be queried via input keywords.
In particular, we retrieved UML models, since they are the
most numerous in MAR. As domains for our experiment,
we chose Literature and Education. The keywords used to
retrieve the models for the Literature domain were bibliogra-
phy, book, author, journal and magazine. The keywords used
for the Education domain were professor, teacher, student and
alumn (as stem of other words like alumnus or alumni). The
resulting datasets are available at https://github.com/Droid-
dsl/DroidConfigurator.
Table 1 shows, per each domain, the number of models,

users (i.e., classes), items (i.e., attributes, methods and su-
perclasses) and features (i.e., attributes describing users and
items) in the datasets. The Literature and Education datasets
have 1,447 and 1,051 UML models, respectively, conformant
to the UML 2.0 class diagrams meta-model (cf. Fig. 3). The
table does not consider duplicate elements. Hence, if two
models contain classes with the same name, they are con-
sidered to be the same class. This is more evident in the
Education domain, which has more models than users.

6.1.2 Experiment. We used Droid to configure a RS for
each domain, selecting all available recommendation meth-
ods with different parameters. Specifically, we used the

https://github.com/Droid-dsl/DroidConfigurator
https://github.com/Droid-dsl/DroidConfigurator

SLE ’21, October 17–18, 2021, Chicago, IL, USA Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara

Table 1. Description of the datasets.

Literature Education
Num. models 1,447 1,051
Num. users 1,740 905
Num. items 6,731 3,317
Num. features 6,497 3,231

Droid specification shown in Listing 1, and so, we trained
multiple RSs through a variety of collaborative, content-
based and hybrid recommendation methods: Item popular-
ity (ItemPop), item-based collaborative filtering (IBCF), user-
based collaborative filtering (UBCF), content-based with co-
sine similarity (CosineCB), content-based item-based (CBIB)
and content-based user-based (CBUB). We parameterised the
methods IBCF, UBCF, CBIB and CBUB with neighbourhood
sizes k 10, 15, 20, 25, 50 and 100. In the following, we refer to
the methods that use neighbourhoods by concatenating the
method name and the neighbourhood size k. For instance,
IBCF50 refers to the IBCF k-NN method with 50 neighbours.

In all cases, we used 10-fold cross-validation and a per-user
technique to split the datasets (cf. Section 4). We analysed
the performance of the RSs by means of the ranking qual-
ity metrics precision (p), recall (r), F1, MAP (Mean Average
Precision) and nDCG (Normalized Discounted Cumulative
Gain); and the coverage and diversity metrics USC (User
Space Coverage) and ISC (Item Space Coverage). Addition-
ally, in the experiment, we used a relevance threshold of 0.5,
and cut-offs 5, 10, 15 and 20.

6.1.3 Experiment Results. Table 2 shows the results of
the experiment for each domain/dataset (Literature and Edu-

cation). The rows show the selected recommendation meth-
ods, and the columns correspond to the metric values. For
space constraints, the table omits the results of the recom-
mendation methods IBCF and CBIB, as their performance is
worse than that of UBCF and CBUB.

We can observe that the order of magnitude of the metric
values is the same in both domains. As studied in the RS
field [7], this magnitude depends on many factors, such as
the dataset characteristics (e.g., the average number of prefer-
ences per user, or the rating sparsity, which is the proportion
of existing ratings from the whole set of potential user-item
preference relations), and the evaluation methodology (e.g.,
the method to split training and test data, or the test ratings
for which the metrics are computed). In our experiment, we
followed the TestItems methodology [7] which, for a target
user, evaluates recommendation lists that may contain test
items from all users. This explains why the precision values
are close to 0. For this reason, in general, the important as-
pect to consider is the relative difference of the metric values
achieved by the different recommendation methods.
Analysing Table 2, a first conclusion is the fact that the

content-based method CosineCB was the worst performing,

being outperformed even by the ItemPop baseline. This is
not surprising in our experiment. CosineCB estimates the
preference of a user (class) for an item (attribute, method,
or superclass) by means of the cosine of the angle between
the user and item feature vectors. These feature vectors cor-
respond to the names of the classes, attributes and meth-
ods in the models of the datasets. Since we do not perform
any text pre-processing on those names (e.g., to unify low-
ercase and uppercase, singular and plural, morphological
deviations, misspellings, synonyms, ambiguities), there are
different names that could have been considered the same,
facilitating the cosine similarity. Moreover, we may have
used finer-grained user and item profiles which capture the
occurrence frequency of features.
By contrast, UBCF and CBUB were the best performing

recommendation methods. The results of their item-based
counterparts were worse, and are not reported in the ta-
ble. UBCF with neighbourhoods of sizes 10 and 15 achieved
the best F1 values in both domains. In terms of MAP and
nDCG, which focus on the precision of the top positions
in the recommendation lists, the best results were obtained
with neighbourhoods of sizes 20 and 25 in the Education

domain, and sizes 50 and 100 in the Literature domain. If we
consider F1, MAP and nDCG all together, UBCF with neigh-
bourhood size 15 seems the best choice for the available data
and targeted task.
As expected, since CosineCB and ItemPop do not depend

on user-item rating patterns, they have an USC of 1, which
means that they are able to make recommendations for 100%
of the users. In terms of ISC diversity, there is no significant
difference between methods and domains, which reflects
that both popular and unpopular items are recommended.

Table 3 shows the precision and recall of the recommenda-
tion methods on both domains per cut-off values, p@k and
r@k, focusing on the first k = 5, 10, 15 and 20 recommen-
dations. We observe that the higher the value k, the lower
the precision and the higher the recall. Again, CosineCB was
outperformed by ItemPop. As we explained above, the poor
performance of CosineCB can be improved by performing
some text pre-processing, which we plan to address in fu-
ture work. However, even with raw data, these results are
in-line with the precision reported by other RSs for class di-
agrams [10] (around 0.04). Although not shown in the table,
UBCF outperformed IBCF. The hybrid use of content-based
and collaborative filtering techniques did not improve the
recommenders based on a single technique. When consider-
ing both p@k and r@k, UBCF with neighbourhood size 50
was the best performing method.

Answering RQ1, our evaluation shows that standard rec-
ommendation methods are able to provide sensible recom-
mendations for every class, starting from relatively small
datasets that have not been pre-processed. These results are
in-line with RSs specifically created for class diagrams [10].
Still, we have identified some aspects that would allow

Automating the Synthesis of Recommender Systems for Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

Table 2. Results of the experiment. The best values are shown in bold.

Literature Education

Method

p r F1 MAP nDCG USC ISC p r F1 MAP nDCG USC ISC

ItemPop 0.006 0.180 0.012 0.055 0.086 1.000 0.012 0.007 0.224 0.013 0.082 0.117 1.000 0.017
CosineCB 0.001 0.032 0.002 0.017 0.020 1.000 0.004 0.002 0.076 0.004 0.003 0.017 1.000 0.007
UBCF10 0.033 0.290 0.060 0.157 0.195 0.824 0.059 0.035 0.337 0.064 0.184 0.227 0.830 0.056
UBCF15 0.026 0.304 0.048 0.160 0.201 0.860 0.060 0.026 0.346 0.048 0.184 0.228 0.863 0.057

UBCF20 0.022 0.319 0.041 0.161 0.205 0.863 0.060 0.022 0.360 0.042 0.183 0.232 0.868 0.057

UBCF25 0.020 0.327 0.038 0.163 0.208 0.865 0.060 0.021 0.369 0.039 0.184 0.235 0.868 0.057

UBCF50 0.019 0.348 0.037 0.159 0.211 0.865 0.058 0.018 0.383 0.035 0.176 0.231 0.868 0.057

UBCF100 0.020 0.360 0.037 0.155 0.210 0.865 0.056 0.019 0.387 0.035 0.166 0.224 0.868 0.055
CBUB10 0.015 0.202 0.028 0.108 0.132 0.929 0.055 0.023 0.258 0.042 0.137 0.168 0.926 0.053
CBUB15 0.011 0.210 0.022 0.105 0.130 0.962 0.056 0.015 0.260 0.029 0.135 0.165 0.984 0.054
CBUB20 0.009 0.213 0.017 0.102 0.129 0.963 0.056 0.012 0.265 0.022 0.133 0.165 1.000 0.055
CBUB25 0.008 0.212 0.015 0.098 0.125 0.987 0.056 0.010 0.271 0.019 0.133 0.166 1.000 0.055
CBUB50 0.006 0.212 0.011 0.088 0.117 1.000 0.055 0.008 0.304 0.016 0.133 0.176 1.000 0.055
CBUB100 0.007 0.242 0.014 0.097 0.133 1.000 0.051 0.008 0.302 0.016 0.124 0.169 1.000 0.052

Table 3. Results of the experiment per cut-offs. The best values are shown in bold.

Literature Education

Method

p@5 p@10 p@15 p@20 r@5 r@10 r@15 r@20 p@5 p@10 p@15 p@20 r@5 r@10 r@15 r@20

ItemPop 0.022 0.014 0.012 0.010 0.072 0.090 0.110 0.123 0.027 0.018 0.015 0.012 0.099 0.129 0.154 0.168
CosineCB 0.003 0.002 0.002 0.001 0.016 0.018 0.020 0.021 0.001 0.001 0.001 0.001 0.001 0.004 0.006 0.007
UBCF10 0.053 0.033 0.025 0.020 0.194 0.231 0.253 0.265 0.061 0.037 0.027 0.022 0.228 0.270 0.295 0.308
UBCF15 0.055 0.034 0.026 0.021 0.200 0.237 0.259 0.272 0.060 0.038 0.028 0.022 0.227 0.272 0.299 0.313
UBCF20 0.057 0.036 0.027 0.022 0.205 0.245 0.267 0.282 0.062 0.038 0.029 0.023 0.232 0.276 0.305 0.320
UBCF25 0.058 0.037 0.028 0.022 0.207 0.250 0.274 0.289 0.063 0.039 0.029 0.023 0.235 0.281 0.310 0.329

UBCF50 0.060 0.038 0.029 0.023 0.212 0.261 0.286 0.302 0.062 0.039 0.030 0.024 0.229 0.279 0.313 0.335

UBCF100 0.060 0.039 0.029 0.024 0.210 0.260 0.287 0.306 0.059 0.038 0.029 0.024 0.217 0.270 0.302 0.327
CBUB10 0.031 0.018 0.013 0.011 0.139 0.163 0.176 0.184 0.040 0.024 0.018 0.014 0.178 0.209 0.226 0.237
CBUB15 0.030 0.019 0.014 0.011 0.135 0.165 0.180 0.188 0.039 0.024 0.018 0.014 0.174 0.206 0.226 0.236
CBUB20 0.029 0.019 0.014 0.011 0.130 0.168 0.184 0.193 0.038 0.024 0.018 0.014 0.170 0.205 0.225 0.236
CBUB25 0.028 0.018 0.014 0.011 0.124 0.162 0.180 0.190 0.038 0.024 0.018 0.014 0.169 0.206 0.227 0.239
CBUB50 0.025 0.016 0.013 0.011 0.114 0.142 0.167 0.183 0.044 0.027 0.021 0.017 0.173 0.211 0.243 0.261
CBUB100 0.034 0.022 0.017 0.014 0.129 0.163 0.182 0.197 0.043 0.026 0.021 0.017 0.166 0.202 0.230 0.252

improving the generated recommendations, such as using
larger datasets, pre-processing the text features that the
content-based methods exploit, or even incorporating more
specific, task-oriented recommendation methods.

6.2 Case Study on RS Integration

This section shows a case study on the integration of a RS
specified with Droid into a modelling chatbot called Socio.
With this study, we aim to answer the following RQ (RQ2):
How difficult is it to integrate a Droid-based RS with a non-

Eclipse-based modelling client?

Socio [42] is a chatbot or conversational agent that en-
ables heterogeneous groups of domain andmodelling experts
to collaborate onmodelling tasks. It works in social networks,
like Telegram or Twitter, and facilitates the active partici-
pation of domain experts with no technical background in
building models (class diagrams) by using natural language
(NL) as the modelling interface.

Fig. 9(a) shows a user interaction with Socio in Telegram.
The user can sendmessages expressing domain requirements
in NL to the chatbot (labels 1 and 3). Socio interprets the
messages and the current status of the model, infers the nec-
essary modelling actions, updates the model, and sends back

an image of the model with the modified elements in green
(labels 2 and 4). For example, given the message “School
contains teachers and students” (label 1), Socio infers that
there must be three classes named School, Teacher and Stu-

dent. Then, because of the contains verb, it infers that School
should have two containment references with cardinality
one to many (as teachers and students are plural), one called
teachers and going to Teacher, and the other called students

and going to Student. Since the model is empty at this mo-
ment, Socio creates all these elements (label 2).

Users normally do not provide all requirements in a single
message, and so, Socio permits a model to be incomplete or
incorrect. The interaction with label 3 illustrates this. When
the user says “Teachers have a name and surname”, Socio
interprets that there must be a class named Teacher with two
features, name and surname. Since the class already exists, it
only adds the two features, but since there is no information
about their types, their definition is incomplete (label 4).
Besides model creation via NL processing, the chatbot

has commands to manage, validate, download the model, or
undo and redo the modelling actions. In Telegram, these com-
mands start by a backslash followed by a keyword. Labels 5
and 6 in Fig. 9(a) show an example of the undo command.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara

a) SOCIO modelling examples b) Recommender command

1
2

3

4

5

6

7

8

9
10

Figure 9. Example of Socio interaction in Telegram.

For this case study, we extended Socio with a RS specified
with Droid and hence available as a service. Fig. 10 shows
a scheme of the integration of the RS within Socio, where
the new components are highlighted in green. Socio has a
front-end provided by Telegram and a back-end. The latter is
the main component of the architecture since it handles all
the functionality of Socio: Information and model storage,
NL processing and modelling actions. The Telegram client
connects the user interaction in Telegram with the back-end.

Telegram client
(front-end)

Recommender
command

Interactive
message handler

Recommender
handler

Transformer

Model
modifier

SOCIO

1

2

3

4

5

6

7

model

modelling
language

user

 DROIDREST
REST API

SOCIO REST API
(back-end)

Figure 10. Architecture of Droid integration with Socio

For the integration, we created a Recommender command
on the client side (label 1 in Fig. 10). When the user types this
command to obtain recommendations (label 1), the Telegram
client sends a request to the back-end, which is handled by
the Recommender handler (label 2). Since the model is in-
ternally represented with EMF, a Transformer converts the

context element of the recommendation into the JSON for-
mat required by Droid (label 3). Then, the Recommender

handler requests recommendations to the Droid service (la-
bel 4), and sends the returned recommendations back to the
client (label 5). In the client, an Interactive message handler

transforms the recommendations into an interactive mes-
sage containing one button per recommended item (label
6). When the user selects one of these buttons, the handler
sends a request to the back-end to add the selected item
to the model (label 7). Then, the selected button is deleted,
while the other buttons remain available to permit applying
further recommendations.

Fig. 9(b) shows the usage of the /recommender command
in Telegram.When a user types the command (label 7), Socio
displays the current model and prompts the user to select a
class (label 8). Once the user selects a class (label 9), Socio
asks the kind of items to be recommended (label 10). Since
Socio models do no support methods, the user can choose
the recommendation of attributes and supertypes.

Fig. 11 illustrates the recommendations provided byDroid.
It shows the recommended supertypes (label 1) and attributes
(label 2) for the class Teacher. When the user presses the but-
ton with the recommendation Person, Socio creates a new
class because it does not exist, and adds it as a supertype of
Teacher. When the user presses the button with the recom-
mendation name, Socio detects that Teacher already defines
this attribute and only updates its type. This way, recom-
mendations not only add new elements to the model, but
sometimes also allow fixing incomplete elements.

1

2

Figure 11. Droid recommendations in Socio.

Table 4 shows the LOC and number of Java classes de-
veloped to achieve the RS integration. The Interactive mes-

sage handler is the largest component, which is normal as
it handles several user interactions. We can observe that
the integration did not require many changes in the Socio
architecture, and the new components are not large.

Answering RQ2, this case study proves that Droid-based
RSs can be easily integrated with tools outside Eclipse. While
the integration with Socio has not many LOC, we added
code on both its front-end and its back-end. Moreover, more
than 50% of the code was dedicated to the user interaction.

Automating the Synthesis of Recommender Systems for Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

Table 4. Metrics for integrating Droid with Socio.

LOC Num. Classes

Back Recommender handler 160 2
Transformer 44 1

Front Recommender command 128 2
Interac. message handler 400 1
Total 732 6

These two circumstances can make a big difference in the
effort required to integrate the RS with other modelling tools.

6.3 Threats to Validity

Next, we discuss threats to validity in our evaluations.
With respect to the offline experiment of Section 6.1, we

tried to minimize the threats to its external validity by mak-
ing use of two independent and large datasets from two
different domains. However, the domain selection and the
keywords chosen for the query may affect the generality
of the results. To tackle this issue, we plan to conduct ex-
periments with other domains and datasets in the future.
Another threat is the specific recommendation task accom-
plished in the experiment, namely the completion of class
diagrams with new attributes, methods and superclasses.
Hence, further experiments are needed to draw conclusions
on the use of our approach for other recommendation tasks.
Concerning internal validity, we tried to avoid any bias on
the results by the use of third-party datasets.
Regarding the case study reported in Section 6.2, the re-

sults are specific to Socio and cannot be generalized, which
remains the main threat to the external validity. However,
the integration of Socio was specially challenging due to
its distributed architecture and its independence of Eclipse;
hence, we expect that the effort to integrate a Droid-based
RS in other clients will not be higher than for Socio.

7 Related Work

In this section, we review the two main areas of related
works: Recommenders for modelling languages, and auto-
mated approaches for the synthesis of RSs.

7.1 Recommenders for Modelling Languages

According to [4], the most common usage purposes for rec-
ommenders in MDE are completion, finding, repair, reuse,
and to a lesser extent, creation ofmodelling artefacts. The rec-
ommendations typically apply to models and meta-models,
while recommenders for model transformations and code
generators are scarce. Droid can be applied to any kind of
artefact, provided that it is defined by a meta-model.

Most recommenders for modelling languages target UML,
especially class diagrams. IPSE [20] has a knowledge-based
RS that guides students on creating class diagrams, and
the recommendations build on Prolog constraints defined

by the teacher. RapMOD [31] recommends relevant auto-
completion actions for graphical UML class diagrams. RE-
BUILDER [23] relies on case-based reasoning, Bayesian net-
works and WordNet to recommend class diagrams similar
to a given one. Elkamel et al. [16] use similarity metrics to
recommend similar classes to the ones in the current class
diagram. Other researchers propose RSs for other UML dia-
grams: Cerqueira et al. [12] propose a CB approach for recom-
mending behavioural features for UML sequence diagrams,
and Aquino et al. [5] present a recommender of actors and
use cases for use case diagrams.While these works tackle use-
ful modelling tasks, they serve a specific modelling language
and the recommendation method is fixed. Instead, Droid
is not UML-specific but it permits customizing the target
modelling language, the kind of items to be recommended,
and the recommendation algorithm.
Some approaches aim to provide semantically related

terms and context-sensitive information for a modelling task.
Burgueño et al. [10] propose a domain concept recommender
based on the analysis of the textual information available on
the domain model being constructed, as well as on general
knowledge about the business domain. The domain mod-
elling tool DoMoRe [2] exploits a knowledge base of domain-
specific terms and their relationships to provide context-
sensitive recommendations. Other tools, like Extremo [35]
or the assistant envisioned by Savary-Leblanc [51], employ
semantic similarity based on lexical databases like WordNet
to recommend semantically related terms. While these tools
target a specific modelling task, our framework is generic
and configurable for arbitrary modelling languages.
Recommenders have also been applied to business pro-

cessmodelling. For example, to recommend complete process
models based on the user profile [28], as well as finer-grained
recommendations that pursue completing a process model
with new fragments [30], activity nodes [14, 32], tasks [44]
or actor roles [44]. Again, these works are specific to a mod-
elling language, and the recommendation method is fixed.

In contrast to the previous language-specific approaches,
others are language-independent. These are typically appli-
cable to arbitrary modelling languages defined in a given
meta-modelling framework, such as EMF. For example, PAR-
MOREL [6, 26] uses reinforcement learning to repair mal-
formed EMF models based on the user preferences and the
experience gained from previous repairs. ReVision [41] sug-
gests consistency-preserving model editing rules for model
repair. SimVMA [54] uses clone detection to help mod-
ellers find models or operations relevant to them. Finally,
Kögel [29] proposes to analyse the history of past model
changes to suggest recommendations, and foresees the use
of machine learning, heuristic search algorithms, associa-
tion rules and decision trees. Altogether, even though these
works plan on frameworks for different languages, the rec-
ommendation method is fixed, and the recommendations
cannot be customised, as we can do using Droid.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara

7.2 Recommender System Generation

While we can find many RSs for modelling languages, most
were developed by hand from scratch, which requires a high
effort [36]. Hence, recent studies [4] have identified the need
of methods and tools automating the construction of recom-
menders for modelling languages. This work aims to fill this
gap. Next, we compare with other related approaches.

Fellmann et al. [19] define a reference model with the data
perspective requirements of RSs for process modelling. The
model can be instantiated as a guide for developing new
process modelling recommenders, or to assess existing ones.
While useful, the approach is specific to process modelling,
and does not provide automation or code synthesis.

Rojas et al. [48] present an MDE framework to create mo-
bile RSs of geographic points of interest. The framework
helps defining the structural, behavioural and navigational
aspects of the RS, and customising the user preferences, sim-
ilarity metrics and similarity formula. In [47], a similar solu-
tion is used to recommend trips and tours. However, in both
works, the target domain of the recommendation is fixed.

We also find MDE proposals to support non-expert users
on applying data mining. For example, Espinosa at al. [17, 18]
reuse the past experiences of data mining experts to com-
pute the accuracy for a given new dataset and recommend
the one with the best performance. The framework permits
customising the data mining task to perform, the evaluation
method and metrics, and the mining algorithm. Even though
this solution offers the flexibility and benefits of MDE, the
generated recommenders are data mining applications.

In a more general setting, Hermes [15] is a generic frame-
work to build recommenders for modelling environments.
Its extensible architecture permits defining new recommen-
dation strategies, new widgets to trigger and display the
recommendations, and new contexts to adapt the recommen-
dations to the modelling environment. These elements are
coded as extensions of base classes, or registered in the case
of resources like icons and labels. Hermes provides a dash-
board to define the class extensions, and supports the manual
testing of the recommender. In contrast, our DSL Droid does
not require coding, but it provides a simple syntax to config-
ure the kinds of recommended items, the recommendation
method, and its evaluation based on standard metrics. More-
over, it automatically generates a tailored RS as a web service
to make it available from arbitrary environments.

More similar to our proposal, the vision paper [52] foresees
a lowcode development environment where end users can
define RSs by using graphical interfaces, drag-and-drop util-
ities and forms. The authors aim to support the construction
of arbitrary RSs, not specific for modelling languages. The
lowcode environment will build on a generic meta-model to
provide components implementing recurring functionalities
for RSs, such as data pre-processing, capturing context, and
producing and presenting recommendations. The authors

foresee having several DSLs to configure each aspect of the
recommender. Our philosophy is similar, but we focus on
RSs for modelling. This way, our DSL allows the fine-grained
specification of the recommendation target and items, and
our tooling generates a RS available as a REST API that can
be integrated in other tools.

8 Conclusions and Future Work

RSs are increasingly being used in Software Engineering,
and MDE is no exception to this trend. Since building RSs for
DSLs is time expensive, we have developed a model-based
approach to automate their construction. The approach pro-
vides a DSL to configure the target of the recommendation
and the type of the recommended items, and supports the
evaluation of the RSs to identify the best one for the problem
at hand. Our solution relies on a generic recommendation
service that can be integrated out-of-the-box with the EMF
tree editor for models. We have demonstrated the feasibility
of its integration with non-Eclipse tools, and have evaluated
the precision and completeness of the recommendations.
In practice, the creation of RSs for modelling requires

having big sets of models for training. These exist for popular
modelling languages (e.g., UML, BPMN, Simulink), but not
for other DSLs. We trust that the emergence of dedicated
model search engines [25] and repositories will facilitate
this task. Moreover, there are other options. First, RSs can
be trained with the available models, and retrained as more
models become available. Second, one may apply “transfer
learning” for some DSLs, i.e., training the RS with models of
another similar DSL. For example, one may build a RS for
UML class diagrams, and apply it to Ecore meta-models.
In the future, we plan to work on pre-processing tech-

niques for the model sets. For instance, for the UML class
recommender, it could be useful to pre-process names (e.g.,
deleting blank spaces) and cluster semantically similar names.
We would also like to enrich the recommendation context,
e.g., including classes related to the recommendation target.
We have focussed on classical recommendation methods, but
we aim to make Droid a DSL front-end to configure arbi-
trary recommendation methods, including those specific for
modelling tasks. For this purpose, we are making our archi-
tecture extensible via extension points, to be implemented
for specific methods. Another line to explore is to gather
recommendation feedback from the users, and adjust future
recommendations based on it. Finally, we plan to make a user
study to identify strengths and weaknesses of our proposal.

Acknowledgments

This project has received funding from the EU Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 813884, the Spanish
Ministry of Science (RTI2018-095255-B-I00) and the R&D
programme of Madrid (P2018/TCS-4314).

Automating the Synthesis of Recommender Systems for Modelling Languages SLE ’21, October 17–18, 2021, Chicago, IL, USA

References

[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the
next generation of recommender systems: A survey of the state-of-
the-art and possible extensions. IEEE Transactions on Knowledge and

Data Engineering 17, 6 (2005), 734–749.
[2] Henning Agt-Rickauer, Ralf-Detlef Kutsche, and Harald Sack. 2018.

DoMoRe - A recommender system for domain modeling. In 6th Inter-

national Conference on Model-Driven Engineering and Software Devel-

opment (MODELSWARD). SciTePress, 71–82.
[3] Lissette Almonte, Iván Cantador, Esther Guerra, and Juan de Lara.

2020. Towards automating the construction of recommender systems
for low-code development platforms. In Proc MODELS Companion

Proceedings. ACM, 66:1–66:10.
[4] Lissette Almonte, Esther Guerra, Iván Cantador, and Juan de Lara. 2021.

Recommender systems in model-driven engineering: A systematic
mapping review. Software and System Modeling in press (2021).

[5] Erika Rizzo Aquino, Pierre de Saqui-Sannes, and Rob A. Vingerhoeds.
2020. A methodological assistant for use case diagrams. In 8th Inter-

national Conference on Model-Driven Engineering and Software Devel-

opment (MODELSWARD). SciTePress, 227–236.
[6] Angela Barriga, Adrian Rutle, and Rogardt Heldal. 2020. Improving

model repair through experience sharing. Journal of Object Technology
19, 2 (2020), 13:1–21.

[7] Alejandro Bellogín, Iván Cantador, and Pablo Castells. 2013. A compar-
ative study of heterogeneous item recommendations in social systems.
Information Sciences 221 (2013), 142–169.

[8] Markus Borg, Krzysztof Wnuk, Björn Regnell, and Per Runeson. 2017.
Supporting change impact analysis using a recommendation system:
An industrial case study in a safety-critical context. IEEE Transactions

on Software Engineering 43, 7 (2017), 675–700.
[9] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-

Driven Software Engineering in Practice, Second Edition. Morgan &
Claypool Publishers, San Rafael, California (USA).

[10] Loli Burgueño, Robert Clarisó, Shuai Li, Sébastien Gérard, and Jordi
Cabot. 2021. An NLP-based architecture for the autocompletion of
partial domain models. In CAiSE (LNCS, Vol. 12751’). Springer Interna-
tional Publishing, 91–106.

[11] Robin Burke. 2002. Hybrid recommender systems: Survey and ex-
periments. User Modeling and User-adapted Interaction 12, 4 (2002),
331–370.

[12] Thaciana Cerqueira, Franklin Ramalho, and Leandro Balby Marinho.
2016. A content-based approach for recommending UML sequence
diagrams. In 28th International Conference on Software Engineering

and Knowledge Engineering (SEKE). KSI Research Inc. and Knowledge
Systems Institute Graduate School, 644–649.

[13] Marcos César de Oliveira, Davi Freitas, Rodrigo Bonifácio, Gustavo
Pinto, andDavid Lo. 2019. Finding needles in a haystack: Leveraging co-
change dependencies to recommend refactorings. Journal of Systems

and Software 158 (2019).
[14] ShuiGuang Deng, DongjingWang, Ying Li, Bin Cao, Jianwei Yin, Zhao-

hui Wu, and Mengchu Zhou. 2017. A recommendation system to
facilitate business process modeling. IEEE Transactions on Cybernetics

47, 6 (2017), 1380–1394.
[15] Andrej Dyck, Andreas Ganser, and Horst Lichter. 2014. A framework

for model recommenders - Requirements, architecture and tool sup-
port. In 2nd International Conference on Model-Driven Engineering and

Software Development (MODELSWARD). SciTePress, 282–290.
[16] Akil Elkamel, MariemGzara, andHanêne Ben-Abdallah. 2016. An UML

class recommender system for software design. In 13th IEEE/ACS In-

ternational Conference of Computer Systems and Applications (AICCSA).
IEEE Computer Society, 1–8.

[17] Roberto Espinosa, Diego García-Saiz, Marta E. Zorrilla, José Jacobo
Zubcoff, and Jose-Norberto Mazón. 2013. Development of a knowledge
base for enabling non-expert users to apply data mining algorithms,

In SIMPDA. CEUR Workshop Proceedings 1027, 46–61.
[18] Roberto Espinosa, Diego García-Saiz, Marta E. Zorrilla, José Jacobo

Zubcoff, and Jose-Norberto Mazón. 2019. S3Mining: A model-driven
engineering approach for supporting novice data miners in selecting
suitable classifiers. Computer Standards and Interfaces 65 (2019), 143–
158.

[19] Michael Fellmann, Dirk Metzger, Sven Jannaber, Novica Zarvic, and
Oliver Thomas. 2018. Process modeling recommender systems - A
generic data model and its application to a smart glasses-based model-
ing environment. Bus. Inf. Syst. Eng. 60, 1 (2018), 21–38.

[20] H. Garbe. 2012. Intelligent assistance in a problem solving environ-
ment for UML class diagrams by combining a generative system with
constraints. In eLearning. IADIS, 412–416.

[21] Marko Gasparic and Andrea Janes. 2016. What recommendation
systems for software engineering recommend: A systematic litera-
ture review. Journal of Systems and Software 113 (2016), 101–113.
https://doi.org/10.1016/j.jss.2015.11.036

[22] Github. 2021. Copilot. https://copilot.github.com/.
[23] Paulo Gomes. 2004. Software design retrieval using Bayesian networks

and WordNet. In 7th European Conf. on Advances in Case-Based Rea-

soning (ECCBR) (Lecture Notes in Computer Science, Vol. 3155). Springer,
184–197.

[24] Asela Gunawardana and Guy Shani. 2015. Evaluating recommender
systems. In Recommender Systems Handbook. Springer, 265–308.

[25] José Antonio Hernández López and Jesús Sánchez Cuadrado. 2020.
MAR: a structure-based search engine for models. In MoDELS ’20.
ACM, 57–67.

[26] Ludovico Iovino, Angela Barriga, Adrian Rutle, and Rogardt Heldal.
2020. Model repair with quality-based reinforcement learning. Journal
of Object Technology 19, 2 (2020), 17:1–21.

[27] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-SpecificModeling

- Enabling Full Code Generation. Wiley.
[28] Hadjer Khider, Slimane Hammoudi, and Abdelkrim Meziane. 2020.

Business process model recommendation as a transformation process
in MDE: Conceptualization and first experiments. In 8th International

Conference on Model-Driven Engineering and Software Development

(MODELSWARD). SciTePress, 65–75.
[29] Stefan Kögel. 2017. Recommender system for model driven software

development. In 11th Joint Meeting on Foundations of Software Engi-

neering (ESEC/FSE). ACM, 1026–1029.
[30] Agnes Koschmider, Thomas Hornung, and Andreas Oberweis. 2011.

Recommendation-based editor for business process modeling. Data &
Knowledge Engineering 70, 6 (2011), 483–503.

[31] Tobias Kuschke and Patrick Mäder. 2017. RapMOD - in situ auto-
completion for graphical models: poster. In 39th International Confer-

ence on Software Engineering (ICSE), Companion Volume. IEEE Com-
puter Society, 303–304.

[32] Ying Li, Bin Cao, Lida Xu, Jianwei Yin, ShuiGuang Deng, Yuyu Yin,
and Zhaohui Wu. 2014. An efficient recommendation method for
improving business process modeling. IEEE Transactions on Industrial

Informatics 10, 1 (2014), 502–513.
[33] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. 2011.

Content-based recommender systems: State of the art and trends. In
Recommender Systems Handbook. Springer, 73–105.

[34] Pyry Matikainen, P. Michael Furlong, Rahul Sukthankar, and Martial
Hebert. 2013. Multi-armed recommendation bandits for selecting
state machine policies for robotic systems. In 2013 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 4545–4551.
[35] Ángel Mora Segura, Juan de Lara, Patrick Neubauer, and Manuel Wim-

mer. 2018. Automated modelling assistance by integrating heteroge-
neous information sources. Computer Languages, Systems and Struc-

tures 53 (2018), 90–120.
[36] Gunter Mussbacher, Benoît Combemale, Jörg Kienzle, Silvia Abrahão,

Hyacinth Ali, Nelly Bencomo, Márton Búr, Loli Burgueño, Gregor
Engels, Pierre Jeanjean, Jean-Marc Jézéquel, Thomas Kühn, Sébastien

https://doi.org/10.1016/j.jss.2015.11.036
https://copilot.github.com/

SLE ’21, October 17–18, 2021, Chicago, IL, USA Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara

Mosser, Houari A. Sahraoui, Eugene Syriani, Dániel Varró, and Martin
Weyssow. 2020. Opportunities in intelligent modeling assistance. Softw.
Syst. Model. 19, 5 (2020), 1045–1053.

[37] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa,
Thomas Degueule, and Massimiliano Di Penta. 2019. FOCUS: a rec-
ommender system for mining API function calls and usage patterns.
In 41st International Conference on Software Engineering (ICSE). IEEE /
ACM, 1050–1060.

[38] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimil-
iano Di Penta. 2020. CrossRec: Supporting software developers by
recommending third-party libraries. Journal of Systems and Software

161 (2020).
[39] Xia Ning, Christian Desrosiers, and George Karypis. 2015. A compre-

hensive survey of neighborhood-based recommendation methods. In
Recommender Systems Handbook. Springer, 37–76.

[40] OCL. 2014. http://www.omg.org/spec/OCL/.
[41] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, and Timo Kehrer.

2018. ReVision: a tool for history-based model repair recommenda-
tions. In 40th International Conference on Software Engineering (ICSE),

Companion Proceeedings. ACM, 105–108.
[42] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. 2018. Collaborative

modeling and group decisionmaking using chatbots in social networks.
IEEE Softw. 35, 6 (2018), 48–54.

[43] Ana Pescador and Juan de Lara. 2016. DSL-maps: from requirements
to design of domain-specific languages. In 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE). ACM, 438–443.
https://doi.org/10.1145/2970276.2970328

[44] Mohammad Ehson Rangiha, Marco Comuzzi, and Bill Karakostas. 2015.
Role and task recommendation and social tagging to enable social
business process management. In BPMDS/EMMSAD@CAiSE (Lecture

Notes in Business Information Processing, Vol. 214). Springer, 68–82.
[45] Z. Reitermanová. 2010. Data splitting. In WDS. Matfyzpress, 31–36.
[46] Martin P. Robillard, Robert J. Walker, and Thomas Zimmermann. 2010.

Recommendation systems for Software Engineering. IEEE Software

27, 4 (2010), 80–86.
[47] Gonzalo Rojas, Francisco Dominguez, and Stefano Salvatori. 2009.

Recommender systems on the Web: A model-driven approach. In E-

Commerce and Web Technologies, Tommaso Di Noia and Francesco
Buccafurri (Eds.). Springer Berlin Heidelberg, 252–263.

[48] Gonzalo Rojas and Claudio Uribe. 2013. A conceptual framework to
develop mobile recommender systems of points of interest. In SCCC.
IEEE Computer Society, 16–20.

[49] Alan Said and Alejandro Bellogín. 2014. Rival: a toolkit to foster
reproducibility in recommender system evaluation. In Eighth ACM

Conference on Recommender Systems, RecSys ’14. ACM, 371–372. See
also https://github.com/recommenders/rival.

[50] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2018. Quick
fixing ATL transformations with speculative analysis. Software and
Systems Modeling 17, 3 (2018), 779–813.

[51] Maxime Savary-Leblanc. 2019. Improving MBSE tools UX with AI-
empowered software assistants. In 22nd ACM/IEEE International Con-

ference on Model Driven Engineering Languages and Systems (MoDELS),

Companion Volume. IEEE, 648–652.
[52] Claudio Di Sipio, Davide Di Ruscio, and Phuong T. Nguyen. 2020.

Democratizing the development of recommender systems by means
of low-code platforms. In MODELS ’20: ACM/IEEE 23rd International

Conference on Model Driven Engineering Languages and Systems, Esther
Guerra and Ludovico Iovino (Eds.). ACM, 68:1–68:9.

[53] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
2008. EMF: Eclipse Modeling Framework, 2nd Edition. Addison-Wesley
Professional, Upper Saddle River, NJ.

[54] Matthew Stephan. 2019. Towards a cognizant virtual software model-
ing assistant using model clones. In 41st International Conference on

Software Engineering: New Ideas and Emerging Results (NIER@ICSE).
IEEE / ACM, 21–24.

[55] Masateru Tsunoda, Takeshi Kakimoto, Naoki Ohsugi, Akito Monden,
and Ken-ichi Matsumoto. 2005. Javawock: A Java class recommender
system based on collaborative filtering. In 17th International Conference
on Software Engineering and Knowledge Engineering (SEKE). 491–497.

[56] UML. 2017. UML 2.5.1 OMG specification. http://www.omg.org/spec/
UML/2.5.1/.

[57] Saúl Vargas and Pablo Castells. 2011. Rank and relevance in novelty and
diversity metrics for recommender systems. In Fifth ACM Conference

on Recommender Systems, RecSys ’11. ACM, New York, NY, USA, 109–
116. See also http://ranksys.github.io/.

[58] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart C. L. Kats, Eelco Visser, and GuidoWachsmuth.
2013. DSL Engineering - Designing, Implementing and Using Domain-

Specific Languages. dslbook.org. http://www.dslbook.org
[59] Xtext. 2021. http://www.eclipse.org/Xtext/. (last accessed in July 2021).

http://www.omg.org/spec/OCL/
https://doi.org/10.1145/2970276.2970328
https://github.com/recommenders/rival
http://www.omg.org/spec/UML/2.5.1/
http://www.omg.org/spec/UML/2.5.1/
http://ranksys.github.io/
http://www.dslbook.org
http://www.eclipse.org/Xtext/

	Abstract
	1 Introduction
	2 Recommender Systems
	3 Overview of the Approach
	4 The Droid DSL
	5 Architecture and Tool Support
	5.1 Architecture
	5.2 Tool Support: The Droid Configurator
	5.3 Tool Support: The Droid Service
	5.4 Tool Support: Integration with EMF Tree Editor

	6 Evaluation
	6.1 Usefulness of Recommendations
	6.2 Case Study on RS Integration
	6.3 Threats to Validity

	7 Related Work
	7.1 Recommenders for Modelling Languages
	7.2 Recommender System Generation

	8 Conclusions and Future Work
	Acknowledgments
	References

