A Genetic Algorithm for Solving the P-Median Problem
*Abdel Latif Abu Dalhoum, “Al Zoubi, Moh’d, ~“Marina de la Cruz, ~ Alfonso Ortega, “Manuel Alfonseca
*King Abdullah IT School for Information Technology, University of Jordan
Email: {a.latif, mba}@ju.edu.jo
**Escuela Politécnica Superior, Universidad Autonoma de Madrid
Email: {Marina.Cruz, Alfonso.Ortega, Manuel.Alfonseca}@uam.es

Keywords: location allocation problem, p-median
model, grammar evolution, Christensen grammar.

ABSTRACT

One of the most popular location-allocation models
among researchers is the p-median. Most of the
algorithmic research on these models has been devoted
to developing heuristic solution procedures. The major
drawback of heuristic methods is that the time required
finding solutions can become unmanageable. In this
paper, we propose a new algorithm, using different
variants of grammar evolution, to solve the p-median
problem.

Acknowledgement: This work has been sponsored

by the Spanish Ministry of Science and Technology
(MCYT), project number TIC2002-01948.

1. Introduction

The field of location-allocation modelling has been
widely used in different application areas. It essentially
consists of a set of techniques for determining “good”
locations of facilities for providing goods and services,
including industrial facilities, schools, warehouses, fire
stations, voting centres and fast-food restaurants (see
[Daskin 1995] for application details).

The p-median model is perhaps the most popular
location-allocation model among researchers. It has
been shown that a large number of location problems
can be solved by p-median [Densham and Rushton
1992], [Hilsman 1984]. The goal of the p-median
model is to select the locations of p facilities to serve n
demand points, so that the sum of the distances
between each demand point and its nearest facility is
minimized. As an optimization problem, the p-median
model is shown to be NP-hard [Megiddo and Supowit
1984]. Therefore, most of the algorithmic research on
this problem has been devoted to developing heuristic
solution procedures.

One of the oldest and most frequently used
heuristics to solve the p-median problem is the
exchange algorithm, originally proposed by [Teitz and
Bart 1968] and later used by many other authors
[Garcia-Lopez et al 2002], [Hansen et al 2001],
[Hodgson 1978], [Resende and Werneck 2003],
[Whitaker 1983]. The algorithm starts with an initial
solution to the initial facility set, and the p-median
objective function is computed for this solution. The
algorithm then seeks to improve the initial solution by

exchanging points of the facility set for points of the
non facility set. The objective function is computed
after each exchange. Swaps are allowed only if the
objective value is improved. The algorithm stops when
no improvement in the objective value can be found.
The major drawback of the exchange algorithm is that
the time required for finding solutions can become
unmanageable; therefore, the algorithm is especially
successful when small problems are involved
[Densham and Rushton 1992].

In this paper, we have applied two versions of
grammar evolution [O’Neill and Conor 2003] to solve
the p-median problem. Section 2 in the paper describes
the p-median model in some more detail. Section 3
summarizes the field of grammar evolution. Section 4
describes our use of standard grammar evolution to
solve the p-median problem. In section 5, we use
instead Christiansen grammar evolution [Christiansen
1990] [Shutt 1993] for the same purpose. Finally,
section 6 provides the conclusions we have reached
and our future research objectives.

2. The p-median model

The p-median model is a solution to the location-
allocation problem, which locates p facilities among n
demand points and allocates each demand point to one
of the facilities. The objective is to minimize the sum
of the distances between each demand point and its
nearest facility. The p facilities composing a solution
for the problem are called the medians.

Assuming that every demand point can be elected
as a median, the p-median problem is formally stated
as follows [ReVelle and Swain 1970]:

N n
in = d, X,
min ;;W, i X 0

subject to:
dox, =1 i,)
X <y, 0, J, 3)

>y, =p @)

x;=0or1 Ui, j, (5)
yi=0or1 j, (6)

where:
N total number of demand points,

n Total number of facilities,

1 if point i is assigned to facility
located at point j, 0 otherwise,
1 if point j is allocated as a facility,
0 otherwise,

w; demand at point i,

d; distance from point 7 to point j,
desired number of facilities to be

located.

The objective function (1) to be minimized the sum
of the (weighted) distances between the demand points
and the medians. Constraint (2) guarantees that all the
demand points are assigned to exactly one facility
location. Constraint (3) forbids that a demand point be
assigned to a facility that was not selected as a median.
Constraint (4) defines the total number of medians as p.
Constraints (5) and (6) guarantee that the values of x
and y are binary (0 or 1).

3. Grammar evolution

Genetic algorithms are optimization tools that
simulate the principles of natural evolution and search
for the minimum of an objective function.

Genetic algorithms operate on a population of
chromosomes. An objective function (termed fitness
function) provides the mechanism to evaluate each
element in the population. From the current population,
the next population is generated using several
probabilistic operators: selection, crossover, mutation,
elision and fusion.

Selection: The best elements in the population are
selected according to their fitness. Solutions with the
best fitness have better chance to survive in the next
generation.

Crossover: the crossover operator combines the
genotypes of two elements to generate new progeny,
exchanging parts of the parental genotypes.

Mutation: some components in the progeny
genotypes are modified randomly.

Elision: some components in the progeny genotype

are randomly deleted.
Fusion: some components in the progeny genotype
are randomly replicated.

Grammar evolution (GE) [O’Neill and Conor 2003]
is an automatic evolutionary programming algorithm
based on strings, independent of the language used.
Genotypes are represented by strings of integers (each
of which is named codon) and the grammar of the
target programming language is used to
deterministically map each genotype into a
syntactically correct phenotype (a program). This
allows GE to avoid one of the main difficulties in
automatic evolutionary programming [Koza 1992].

The following scheme shows the way in which GE
combines traditional genetic algorithms with genotype

to phenotype mapping:
1) Generate at random an initial population of
genotypes.

2) Translate each member of this initial set into its
phenotype.

3) Sort the genotype population by their fitness
(computed from the phenotypes).

4) 1If the best individual is a solution, the process
ends.

5) Replace the worst individuals by the genetically
modified offspring of the best individuals.

6) Go to step 2.

GE genotypes are deterministically translated by
applying to each codon the following process:

1) Choose the leftmost non terminal symbol in the
current word.

2) Number the n right hand sides of all the rules for
this non-terminal symbol (from 0 to n-1).

3) Select the right hand side of the rule whose
number equals codon mod (number of right hand
sides for this non-terminal)

4) Derive the next word by replacing the non terminal
by the selected right hand side.

4. Christiansen Grammar evolution

Christiansen grammars [Christiansen 1990] [Shutt
1993] are an extension of attribute grammars, where
the first attribute associated to every symbol is a
Christiansen grammar. Derivation relationship 1is
redefined to make the model adaptable: the first
attribute contains the rules applicable to the
corresponding symbol. As with any other attribute, its
value can be computed while the grammar is being
used, thus the grammar may be changed on the fly.

Several formal notations have been used to describe
Christiansen grammars. This paper follows that used in
[Shutt 1993], which is very similar to typical attribute
grammars. It is slightly more declarative, and explicitly
specifies, for every attribute, whether it is inherited (])
or synthesized (1). The full syntax is as follows:

* Non terminals are followed by the list of their

attributes.

* In the production rules, the names of the
attributes are implicit. Their values are used
instead.

e Additional semantic actions, which cannot be
expressed by the values of the attributes, follow
the rule between brackets. These actions are
usually written in pseudo code.

Christiansen grammar evolution makes the GE
genotype to phenotype mapping adaptive, by using a
Christiansen grammar in place of the context-free
grammar normally used in GE. The Christiansen
grammar is designed to express both the syntactic and
the semantic conditions that a valid phenotype must
comply with.

CGE adds the following tasks to the previous
algorithm:

1.1) Evaluate the attributes
1.2) Select the applicable rules from the first attribute
in each non terminal

Our algorithm borrows a few interesting theoretical
results from syntactic analysis techniques. Reference
[Aho et al 1986] shows that syntactically driven left-to-
right translation schemes guarantee the proper
evaluation of the kind of attributes previously
described. The same reference also shows that this kind
of attributes can be considered complete (they can
represent any kind of attributes) and are compatible
with a left to right depth-first route across the
derivation tree. Since the genotype to phenotype
mapping builds trees to derive words, rather than to
analyze them, backtracking is needed to ensure the
proper conclusion of the translation.

Notice that the main feature of Christiansen
Grammars is the modification of the set of rules
applicable to each given non-terminal. This is done by
removing and adding rules to the initial inherited
grammar. Rules are numbered after changing the
grammar and before each derivation step, in this way
ensuring a deterministic genotype to phenotype

mapping.

4. A solution to the p-median model using
standard grammar evolution

In our first experiment, we used grammar evolution
to solve the location-allocation problem by means of
the p-median model. The grammar used was the
following:

e Terminal symbols: set of all the allocation
points = {1, 2,3, ..., N}

e Non-terminal symbols: {S, Al 1, ... Al (N-
p), A2 1, ... A2 (N-p), ... A(p-1)_1, ... A(p-
D(N-p)}

* Axiom: S

» The rules generate all the possible ordered sets
of the p-medians, i.e. subsets of cardinal p of
the set of terminal symbols in lower-to-higher

order, without repetition.

The axiom (S) generates either median 1, followed
by Al 1 (which generates p-1 medians from the set
{2...N}), or median 2, followed by Al 2 (which

generates p-1 medians from the set {3 ... N}), ... or
median N-p, followed by Al (N-p) (which generates
p-1 medians from the set {N-p+1 ... N}, or

alternatively the set of p-medians N-p+1, N-p+2, ... N.

The Ai j rules are built in the same way as a
function of the A(i-1) j symbols, which generate one
median less. Eventually, the derivations of this
grammar generate all the possible correct p-median
subsets.

We have performed 25 experiments of grammar
evolution with this grammar, working on a set of 5000
demand points and a set of 40 allocations points, from
which 20 should be selected (i.e. N=5000, n=40,
p=20). Every experiment was run for 1500 generations.
In every generation, only the best two individuals in
the population of 100 tentative solutions made it
through to the next generation. The other 98 were
replaced by new offspring. The average best initial
distance between the demand points and their allocated
p-medians was always greater than 98.5 units. After the
1500 generations of grammar evolution, the best
average distances came to be in the interval [95.18-
96.53]. The evolution of the average distance as a
function of the number of generations is very similar to
that described in the next section and shown in figure
1.

5. A solution to the p-median model using
Christensen grammar evolution

In our second experiment, we used Christensen
grammar evolution to solve the location-allocation
problem by means of the p-median model. The
grammar used was the following:

G=1{ {S(g 120), A(l g, 1 8o, I m;, TMy,) },
{1,2,3, ..., 40},
S,
P}
where P is made of the following rules:
S(4 os 1 220) = As(! o, 781, 21, Tmy)
Ay(l gy, 1gr, imy, Tmy)

Ajo(g8, 1 g1o,4 myg, 1 M)
Aso(L 19,1 €20, M9, T Myp) }
{ IA(l gi, Tgo: i m;, Tmo)—’i
{g=8 —{A-jlig« U {A- mit1};
m,=mi+1 }} g

This grammar generates the same language than the
one of the previous section. The axiom S has two
attributes: the initial grammar and the synthesized one.
The non terminal A has four attributes distributed in
two pairs, the first one takes into account the grammars

used in the derivations; the second one is devoted to
the right hand side of the rules added after each
derivation. The first attribute of each pair is inherited
while the second one is synthesized. The first rule
generates a word containing 20 copies of the non-
terminal A. Its semantic actions propagate the
grammars and the right hand sides of the new rules
from left to right.

Each A can initially produce a number in the set
{1,..,21} because the derivation process goes left to
right and the first facility cannot be greater than 21.
After applying any rule to a non-terminal A
(producing, for example the facility m) all the rules
giving a facility less or equal than m have to be
removed. The derivation goes left to right, so the ith
non-terminal A is derived after the i-1th A. Given that
the right hand side of every new rule is propagated by
means of a couple of attributes, the synthesized
grammar of each A symbol must contain a new rule for
A whose right hand side is computed from the
attributes of the left hand side of the rule applied.

We have performed 25 experiments of Christensen
grammar evolution with this grammar, working on a
set of 5000 demand points and a set of 40 allocations
points, from which 20 should be selected (i.e. N=5000,
n=40, p=20). Every experiment was run for 1500
generations. In every generation, only the best two
individuals in the population of 100 tentative solutions
made it through to the next generation. The other 98
were replaced by new offspring. The average best
initial distance between the demand points and their
allocated p-medians was always greater than 98.5 units.
After the 1500 generations of Christensen grammar
evolution, the best average distances came to be in the
interval [94.93-96.92]. Figure 1 shows the evolution of
the average distance as a function of the number of
generations in the experiment that generated the best
result.

It can be observed that the average distance follows
an approximate Poisson curve. In a previous work on
the automatic generation of fractal curves with a given
fractal dimension [Cebrian et al 2004], we proposed a
procedure to make the genetic algorithm which we
were using, in a grammar evolution context, increase
its performance by about one order of magnitude. This
procedure made use of the fact that the time needed to
reach the goal in that case is not a normal distribution,
but a heavy-tail one. Thus, a strategy based on stopping
the algorithm and reinitializing it, when it has not
reached an acceptable goal after a certain number of
generations, gives rise to very good performance
improvements. With this procedure in view, we have
analyzed the situation for the case of the p-median
location-allocation problem, but have come to the
conclusion that, although it is possible that the
distributions may still be heavy-tail, the performance
improvement reached by applying the re-initialization
procedure will be minimal, if any, because the
minimum number of generations to reach an acceptable
goal seems to be very large. This means that re-starting
the algorithm does not provide us with a better chance

of reaching an acceptable goal in a short time.

1

]

o

)

%

%

| [[L
0 B0 1000 1500

Figure 1. Average distance as a function of the
number of generations in the Christensen grammar
evolution solution to the p-median location-allocation
problem.

6. Conclusions and future work

In this paper, we propose a new algorithm to solve
the p-median problem. The algorithm uses grammar
evolution or Christiansen grammar evolution to find a
good solution to the problem. Christiansen grammar
evolution starts from a much easier to design grammar,
made of only 22 rules, while the standard grammar
evolution version has to work with over 4500 rules.
Both procedures reached comparable results: it can be
mentioned that the best two solutions obtained were
got with the Christiansen evolution grammar, but this
procedure also led to the worst solution. From the point
of view of performance, both alternatives came to be
about comparable.

In the future, we intend to compare our two
approaches to the use of standard genetic algorithms or
the tabu algorithm, performed by other authors [Correa
et al 2001], [Lorena and Lopes 1996]. We also will
apply the procedure to real problems, such as finding
the best distribution of locations for cellular telephone
antennae, or for bank ATM in the city of Amman. In

fact, the trend towards using location-allocation
modelling to support decision making for different
organizations in the world, is becoming very important
for planning purposes and in many leading countries is
now at the implementation stage. The need for such
modelling is even greater in developing countries, for
instance, to determine vital GIS locations. This is the
reason why we intend to implement our new algorithm
to support decision making to determine ATM bank
locations. This is important, since there are no existing
planning strategies for such purposes with a low-cost
price.

References

[Aho et al 1986] Aho, A.V., Sethi, R., Ullman, J.D.
1986: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA.

[Cebrian et al 2004] Cebrian, M., Ortega, A.,
Alfonseca, M. 2004: Acceleration of a procedure to
generate fractal curves of a given dimension through
the probabilistic analysis of execution time, in
Intelligent Engineering Systems Through Artificial
Neural Networks, Vol. 14, ed. C.H.Dagli, A.L.Buczak,
D.L.Enke, M.J.Embrechts, O.Ersoy, pp. 265-270,
ASME Press, New York, 2004.

[Christiansen 1990] Christiansen, H. 1990: A Survey of
Adaptable Grammars, ACM SIGPLAN Notices, vol. 25,
n°11. November 1990, pp. 35-44.

[Correa et al 2001] Correa E. S., Steiner M. T. A.,
Freitas A. A., Carnieri C. 2001: A Genetic Algorithm
for the p-median Problem,
Proceedings of the Genetic and Evolutionary
Computation Conference GECCO 2001, San
Francisco, California, Morgan Kaufmann Publishers.

[Daskin 1995] Daskin, M. 1995: Network and Discrete
Location: Models, Algorithms and Applications, John
Wiley, New York.

[Densham and Rushton 1992] Densham, P., Rushton,
G. 1992: A More Efficient Heuristic for Solving Large
P-Median Problems, Papers in Regional Science 71,
pp- 307-329.

[Garcia-Lopez et al 2002] Garcia-Lopez, F., Melian-
Batista, B., Moreno-Perez, J., Moreno-Vega, J. 2002:
The Parallel Variable Neighborhood Search for the P-
Median Problem, Journal of Heuristics, 8(3), pp. 375-
388.

[Hansen et al 2001] Hansen, P., Mladenovic, N., Perez-
Brito, D. 2001: Variable Neighborhood Decomposition
Search, Journal of Heuristics, 7(3), pp- 335-350.

[Hilsman 1984] Hilsman, E. 1984: The P-Median
Structure as a Unified Linear Model for Location
Allocation Analysis, Environment and Planning A,
Vol. 16, pp. 305-318.

[Hodgson 1978] Hodgson, M. 1978: Toward More
Realistic Allocation in Location-allocation Models: An
Interaction Approach, Environment and Planning A,
10, pp. 1273-85.

[Koza 1992] Koza, J.R. 1992: Genetic Programming:
On the Programming of Computers by Means of
Natural Selection, ~ MIT Press, Cambridge,
Massachusetts. 1992

[Lorena and Lopes 1996] Lorena, L., Lopes,.L.S. 1996:
Computational experiments with genetic algorithms
applied to set covering problems, Pesquisa
Operacional, 16:41-53.

[Megiddo and Supowit 1984] Megiddo, N., Supowit, J.
1984: On the Complexity of Some Common Geometric
Location Problems, SIAM J. Computing 13, pp. 182-
196.

[O’Neill and Conor 2003] O’Neill, M., Conor, R. 2003:
Grammatical — Evolution, evolutionary automatic
programming in an arbitrary language, Kluwer
Academic Publishers.

[Resende and Werneck 2003] Resende, M., Werneck,
R. 2003: On the Implementation of a Swap-Based
Local Search Procedure for the P-Median Problem, In
R. E. Ladner, editor, Proceedings of the Fifth
Workshop on Algorithm Engineering and Experiments
(ALENEX'03), pp. 119-127. SIAM.

[ReVelle and Swain 1970] ReVelle, C.S., Swain, R.W.
1970: Central Facilities Location, Geographical
Analysis 2, pp. 30-42.

[Shutt 1993] Shutt, J. N. 1993 : Recursive Adaptable
Grammars. A thesis submitted to the Faculty of the
Worcester Polytechnic Institute in partial fulfillment of
the requirements for the degree of Master of Science in

Computer Science, August 10 (amended December 16,
2003)

[Teitz and Bart 1968] Teitz, M., Bart, P. 1968:
Heuristic Methods for Estimating the Generalized
Vertex Median of a Weighted Graph, Operations
Research, Vol. 16, 1968, pp. 955-961.

[Whitaker 1983] Whitaker, R. 1983: A Fast Algorithm
for the Greedy Interchange of Large-Scale Clustering
and Median Location Problems, INFOR, Vol. 21, pp.
95-108.

